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Abstract We study the potential effects of spacetime non-
metricity in cosmology. In the spirit of Einstein–Cartan grav-
ity, but with non-metricity replacing torsion, we consider the
Einstein–Hilbert action and assume zero torsion. Adopting
certain hyperfluid models, with non-vanishing hypermomen-
tum that can source spacetime non-metricity, we add a mat-
ter component into the action and derive the field equations,
along with the conservation laws. Applying our formulae to
cosmology, we generalize the Friedmann and the Raychaud-
huri equations in the presence of non-metricity. Our results
show that, in a number of cases, non-metricity can mimic
the effects of matter with unconventional equation of state.
For instance, specific types of hypermomentum are found
to act as an effective stiff fluid, thus opening the possibility
that non-metricity could have played a significant role in the
early stages of the universe’s evolution. Alternative forms
of hypermomentum can dominate the universal dynamics at
late times. In either case, the equilibrium moment depends on
the initial conditions and it is determined by a simple relation
between the matter component and the hyperfluid.

1 Introduction

Non-Riemannian geometries [1] offer a natural playground
for developing gravitational theories beyond the Rieman-
nian framework of general relativity. The additional geomet-
ric structures of such theories come from both torsion and
non-metricity, as is the case of the Metric-Affine Gravity
(MAG) framework [2,3]. Naturally, such fundamental mod-
ifications have a strong impact on the cosmic evolution and
alter the Friedmann equations in a non-trivial manner [4]. For
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instance, in [5–7] and also in [8], it was shown that torsion
can drastically alter the cosmological evolution and provide
intriguing new results. From the geometrical point of view,
torsion reflects the fact that the parallel transport of two vec-
tors along each other does not form a closed parallelogram.
As for non-metricity, it manifests the inability of the metric to
be covariantly conserved, which in turn implies that lengths
and angles are not preserved during the parallel transport
of vectors [3]. Possible experimental effects/manifestations
of torsion and of non-metricity have been studied by Kost-
elecky [9], while other potential signatures of non-metricity
have been investigated in [10,11].

These non-Riemannian degrees of freedom, namely tor-
sion and non-metricity, are sourced by the hypermomentum
tensor of the matter [12]. The latter is formally defined as the
variation of the matter action with respect to the connection
and encapsulates the microstructure properties of the matter
fields, that is dilation, shear and spin. Of course, the role
of spin is well understood. Regarding dilation, this is ulti-
mately related to scale invariance, while the shear is related
to the hadronic properties of matter [2]. Continua with non-
vanishing hypermomentum tensor have been constructed in
[13–15] and the development of the Perfect Hyperfluid struc-
ture has been formulated in [16], with its generalization given
in [17]. The latter extends the classical perfect fluid notion of
general relativity (GR) to account for the microscopic prop-
erties of the matter. This model can be used to study the
cosmological aspects of torsion and non-metricity, since it
excites all their degrees of freedom in a homogeneous and
isotropic Friedmann-like universes [16]. To be more pre-
cise, the energy tensors of the perfect cosmological hyper-
fluid are constructed in such a way so as to respect both
isotropy and homogeneity (see Ref. [16]). The role of tor-
sion in Friedmann-like universes has been studied by several
authors (e.g. see [5,6,8,18]). Here, instead, we focus on non-
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metricity and study its role in homogeneous and isotropic
Friedmann-like universes.1 We find that, depending on the
form of the hypermomentum tensor, the effects of spacetime
non-metricty can mimic those of matter with different equa-
tions of state. In the case we consider, when the hyperfluid
has only a dilation component, for example, it behaves like
stiff matter and it can dominate the early evolution of the
universe. When dealing with purely shear hypermomentum,
on the other hand, the effects of non-metricity are identi-
cal to those of a perfect fluid with an arbitrary barotropic
index and can dominate at late times as well. Whether the
moment of equilibrium (between the matter component and
the hyperfluid) lies in the past or in the future, is determined
by a simple relation that depends on the initial conditions.
Overall, depending on its (effective) equation of state, the
non-metricity sector can lead to broad range of evolutionary
phases, including early-time inflation and late-time acceler-
ated expansion (see Sect. 5.5).

The paper is organised as follows. In Sect. 2 we develop the
framework, including the necessary definitions and the basic
geometric notions of non-metricity, the matter conservation
laws and the field equations of the theory. Then, in Sect. 3,
we outline the key cosmological aspects of Friedmann-like
universes with non-metricity and the sources that produce
them. Section 4 is primarily devoted to the investigation of
the hyperfluid model proposed in [14]. In Sect. 5 we adopt
the most general perfect cosmological (hypermomentum-
preserving) hyperfluid and demonstrate how it excites all the
non-metricity degrees of freedom. There, we also derive the
modified Friedmann and Raychaudhuri equations, together
with the associated conservation laws. These are accompa-
nied by a number of exact cosmological solutions and their
physical interpretation. Finally, we conclude with a discus-
sion of our results and an outline of possible future exten-
sions.

2 The theoretical framework

The fundamental novelty of non-metricity is that, in direct
contrast to Riemannian geometry, the metric tensor is no
longer covariantly constant. Put another way, the covariant
derivative of the metric is not necessarily zero. This intro-
duces a number of unconventional degrees of freedom to any
theoretical model of the universe.

2.1 The non-metricity tensor

Relaxing the metricity constraint allows magnitudes and
angles to change during the parallel transport of vectors and

1 The cosmological aspects of the general quadratic metric-affine grav-
ity with torsion and non-metricity have been recently studied in [19].

tensors. These changes reflect the fact that the metric tensor
is not covariantly conserved, and its failure to remain so is
measured by the non-metricity tensor

Qλμν = −∇λgμν, (1)

with Qλμν = Qλ(μν) by construction. The symmetries of
Qλμν ensure that one can construct a pair of independent
non-metricity vectors, namely

Qλ = Qλμνg
μν and qν = Qλμνg

λμ, (2)

the former of which is usually referred to as the Weyl vector.
In addition to non-metricity, spacetime torsion is also

present in a general non-Riemannian space. The torsion ten-
sor is defined as the antisymmetric part of the connection

S μ
κλ = �

μ
[κλ]. (3)

out of which one can construct the torsion vector

Sμ = S ν
μν . (4)

Let us note that, with the exception of this section, in the rest
of this manuscript the connection will be treated as symmetric
and therefore the space will be to assumed torsion free.

2.2 Connection and curvature

In the general metric-affine framework, the connection and
the metric are regarded as independent variables. Thus, con-
trary to GR, the connection is no longer expressed as a func-
tion of the metric (and of its derivatives) alone. More specif-
ically, in a torsion-free space, the symmetric connection is
given by

�λ
μν = �̃λ

μν + 1

2
gρλ

(
Qμνρ + Qνρμ − Qρμν

)
. (5)

The first term on the right-hand side of the above is the Levi–
Civita connection, with2

�̃λ
μν = 1

2
gρλ

(
∂μgνρ + ∂νgρμ − ∂ρgμν

)
, (6)

while the rest form the so-called “distortion tensor”3

Nλ
μν = �λ

μν − �̃λ
μν

= 1

2
gρλ

(
Qμνρ + Qνρμ − Qρμν

)
. (7)

Therefore, a general affine connection decomposes into its
Levi–Civita component and a non-metricity contribution. As
a result, any quantity that depends on the connection splits
into a Riemannian and a non-Riemannian part.

2 From here on-wards quantities with a tilde will always denote Rie-
mannian parts, i.e. computed with respect to the Levi–Civita connection.
3 In spaces where only non-metricity is present, the distortion tensor is
sometimes referred to as “deflection”.
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In the presence of non-metricity, spacetime curvature is
determined by the associated generalised Riemann tensor.
The latter satisfies an expression formally identical to that of
its Riemannian analogue, namely

Rμ
ναβ = 2∂[α�

μ
|ν|β] + 2�

μ
ρ[α�

ρ
|ν|β]. (8)

Nevertheless, Rμ
ναβ lacks some of the symmetries we are

accustomed with from standard GR. As a result, in non-
Riemannian manifolds, there are three independent contrac-
tions of the Riemann tensor. The first corresponds to the
familiar Ricci tensor defined as

Rνβ = Rμ
νμβ = 2∂[μ�

μ
|ν|β] + 2�

μ
ρ[μ�

ρ
|ν|β], (9)

which (in contrast to GR) is not necessarily symmetric. The
other two contractions are known as the “homothetic curva-
ture tensor” and the “co-Ricci tensor”. These are given by4

R̂αβ = Rμ
μαβ and Řμ

β = gναRμ
ναβ, (10)

respectively. Finally, the trace of the above leads to the
uniquely defined Ricci scalar

R = Rβ
β = gνβRνβ, with R̂μνg

μν ≡ 0. (11)

It goes without saying that all these tensors and scalars also
decompose into their Riemannian and non-metricity parts.
The Ricci scalar, in particular, decomposes into its Rieman-
nian and non-Riemannian parts as

R = R̃ + 1

4
QαμνQ

αμν − 1

2
QαμνQ

μνα

−1

4
QμQ

μ + 1

2
Qμq

μ + ∇̃μ(qμ − Qμ). (12)

As mentioned, the tilded variables are evaluated with respect
to the Christoffel connection, which makes R̃ the Riemannian
Ricci scalar.

2.3 Sources and conservation laws

In metric affine gravity the action is a functional of the metric,
of the independent affine connection and of the various matter
fields. In other words,

S[g, �, φ] = SG [g, �] + SM [g, �, φ], (13)

where SG is the gravitational and SM is the matter component
of the action.5 The tensors associated to the matter are the
usual (metrical) energy-momentum tensor

T αβ = 2√−g

δ(
√−gLM )

δgαβ

(14)

4 The symmetries of the conventional curvature tensor ensure that the
homothetic curvature tensor vanishes in Riemannian spaces, while the
co-Ricci tensor is the opposite of the Ricci tensor.
5 Gravitational theories where the matter part of the action does not
explicitly depend on the connection are often called Palatini theories.

and (since matter couples to the connection) the hypermo-
mentum tensor. The latter encapsulates the microscopic char-
acteristics of the matter (i.e. spin, dilation and shear) and it
is given by [12]

�
μν

λ = − 2√−g

δ(
√−gLM )

δ�λ
μν

. (15)

Working in the equivalent exterior calculus formalism and
using the vielbien e c

μ , we can also define the canonical
energy-momentum tensor by means of

tμc = 1√−g

δSM
δe c

μ

. (16)

Let us also recall the relations of the metric and the affine
connections with the vielbein. we have (see, e.g., [16]).

gμν = eμ
aeν

bηab (17)

connecting metric and vielbein, being ηab the tangent space
flat Minkowski metric. Also, the identity

∇νeμ
a = 0 = ∂νeμ

a − �ρ
μνeρ

a + ωa
νbeμ

b (18)

connects then the vieldbein and the affine connection. From
the above dependence, it then follows that the metrical and the
canonical energy-momentum tensors are not independent,
but they are related and obey the conservation laws [16,20].
In the case of symmetric connection, they read

tμλ = Tμ
λ + 1

2
√−g

∇ν(
√−g�

μν
λ ) (19)

and

1√−g
∇μ(

√−g tμα) = 1

2
�λμνRλμνα − 1

2
QαμνT

μν. (20)

Note that our conservation laws (19) and (20) follow
directly from the diffeomorphism invariance of the mat-
ter action and also from the GL invariance that the theory
exhibits when written in the language of differential forms.

We now adopt the scheme of [16], where the metrical
and the canonical energy-momentum tensors coincide. This
assumption does not always hold, since the metrical energy-
momentum tensor is symmetric and the canonical is generally
not. Nevertheless, in homogeneous and isotropic spacetimes
(like those considered here), both tensors are symmetric and
the above assumption holds. In addition, allowing the met-
rical and the canonical energy-momentum tensors to differ,
leads to a hypermomentum tensor that is not conserved and
to considerably more involved equations. We shall therefore
confine to hypermomentum-conserving hyperfluids, with

∇ν(
√−g�

μν
λ ) = 0 (21)

and

1√−g
∇μ(

√−g Tμ
α) = 1

2
�λμνRλμνα − 1

2
QαμνT

μν, (22)
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throughout the rest of this manuscript. In addition from now
on we shall assume vanishing torsion.

2.4 The field equations

Our aim is to study the cosmological implications of a grav-
itational theory that is analogous to the classical Einstein–
Cartan gravity, but with non-metricity replacing torsion. To
this end, we shall consider the action

S[g, �, ϕ] = 1

2κ

∫
d4x

√−gR + SM . (23)

Here, the first term on the right-hand side is the Einstein–
Hilbert action, evaluated with respect to the independent
connection, while SM denotes the matter sector and ϕ repre-
sents the matter fields that produce spacetime non-metricity.
Since the latter is at the centre of our study, we will assume a
symmetric (i.e. torsion-free) connection from now on. Then,
variation with respect to the metric and the independent con-
nection, yields the field equations

R(μν) − 1

2
Rgμν = κTμν and

P (μν)
λ = κ�λ

(μν), (24)

with

Pλ
(μν) = 1

2
Qλg

μν − Qλ
μν +

(
q(μ − 1

2
Q(μ

)
δλ

ν), (25)

giving the (torsion-free) Palatini tensor. The first set of for-
mulae represents the modified Einstein equations in the pres-
ence of non-metricity, while the second shows how the hyper-
momentum sources non-metricity. In what follows, we will
apply the above to a homogeneous and isotropic Friedmann-
like universe.

3 Cosmology with non-metricity

The Friedmann models are characterised by their spatial
homogeneity and isotropy. Non-metricity introduces new
degrees of freedom to all cosmological scenarios and broad-
ens their phenomenology. This is also true for the Friedmann
universes, although their high symmetry demands that the
matter content has the perfect-fluid form.

3.1 Geometrical aspects of Friedmann-like universes
non-metricity

Let us consider a spatially flat (i.e. with K = 0, where K is the
3-curvature index) Friedmann-Lemaître-Robertson-Walker
(FLRW) spacetime, satisfying the familiar Robertson-Walker
line element

ds2 = −dt2 + a2δi j dx
i dx j , (26)

where a = a(t) is the cosmological scale factor and i, j =
1, 2, 3. Introducing the normalized 4-velocity field uμ, with
co-moving coordinates uμ = δμ

0 = (1, 0, 0, 0) and uμuμ =
−1, the associated temporal-derivative operator is6

˙= uα∇α. (27)

In addition, the symmetric tensor

hμν = gμν + uμuν, (28)

acts as the metric of the spatial hypersurfaces. By construc-
tion, the above projects into the 3-space orthogonal to uμ

(since hμνuν = 0) and also satisfies the constraints hμ
μ = 3

and hμαhα
ν = hμν . On using the uμ and the hμν fields, one

achieves an 1+3 decomposition of the spacetime into time
and 3-D space.

In non-Riemannian Friedmann-like spacetimes, torsion is
described by two and non-metricity by three degrees of free-
dom, as it was respectively shown in [21,22]. Covariantly
written, the non-metricity tensor reads [16]

Qαμν = Auαhμν + Bhα(μuν) + Cuαuμuν, (29)

the contractions of which lead to the non-metricity vectors

Qμ = (3A − C)uμ and qμ =
(

3

2
B − C

)
uμ. (30)

The functions A = A(t), B = B(t) and C = C(t) moni-
tor the cosmological effects of non-metricity in Friedmann-
like universes. Also, together with the scale factor, the
above describe FLRW-like spacetimes with non-metricity.
For instance, along with the FLRW metric, expressions (29)
and (30) can be used to calculate the Riemann tensor and its
contractions (by means of Eq. (5)—see Appendix 1).

3.2 The perfect cosmological hyperfluid

In order to probe the implications of non-metricity for cos-
mology, we will consider an FLRW-type universe filled with
a perfect hyperfluid [16]. The latter generalises the familiar
perfect fluid by accounting for the non-Riemannian degrees
of freedom. Then, relative to a family of observers with 4-
velocity uμ, the energy-momentum tensor of the matter reads

Tμν = ρuμuν + phμν, (31)

with ρ and p representing the energy density and the isotropic
pressure of the matter respectively. As we have already dis-
cussed, the canonical energy-momentum tensor also takes
the above form. In addition, we restrict ourselves to a hyper-
momentum tensor that obeys the Cosmological Principle.
Isotropy and homogeneity correspond to invariance under

6 Evaluating the temporal derivative with respect to the Levi–Civita
connection for a scalar yields the same result.
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the action of the group of spacial rotations SO(3) and the
group of spacial translations. This can be expressed as

Lξ�
μν

λ = 0, (32)

namely by imposing vanishing Lie derivative along ξ , which
is the generating vector of spacial translations and rotations.
This procedure [16] gives

�αμν = φhμαuν + χhναuμ + ψuαhμν

+ωuαuμuν + εαμνρu
ρζ, (33)

whereφ, χ,ψ, ω and ω depend only on time given the homo-
geneous nature of our spacetime. This model was developed
in the general metric affine framework, with torsion and non-
metricity included. The hypermomentum tensor splits into its
irreducible parts, namely spin, dilation and shear as follows
[2]

�αμν = �[αμ]ν + 1

4
gαμDν + �̆αμν. (34)

The above hyperfluid sources both torsion and non-metricity,
with the former related to the spin part (�[αμ]ν) and the latter
related to the dilation and the shear (symmetric traceless)
parts. To exclude torsion from our analysis and isolate the
non-metricity effects, we set �[αμ]ν = 0. This ensures that
ψ = χ, ζ = 0 and subsequently leads to

�αμν = φhμαuν + 2ψu(αhμ)ν + ωuαuμuν . (35)

Of the remaining terms, the dilation part is equal to

Dν := �αμνg
αμ = (3φ − ω)uν, (36)

while the symmetric traceless shear part reads

�̆αμν =2ψu[μhα]ν + 1

4
(φ + ω)hαμuν + 3

4
(φ + ω)uνuμuα.

(37)

We have now developed all the necessary formalism
needed for the rest of our analysis. Next, in Sect. 4, we
will start with the cosmological implications of the Obukhov
hyperfluid [14]. Then, in Sect. 5, we turn our attention to the
generalised non-metricity tensor (29) developed in [16].

4 Cosmology with Obukhov’s hyperfluid

In Obukhov’s model the canonical energy-momentum tensor
coincides with the metrical, while the hypermomentum ten-
sor has the special (density)x(current) form [14]. Here, we
will further constrain this hypermomentum form, in order to
comply with the Cosmological Principle.

4.1 Energy-momentum and hypermomentum

As mentioned above, the energy-momentum tensor has the
familiar perfect fluid form (see Eq. (31) above). At the same
time, the hypermomentum tensor reads

�
μν

λ = J μ
λ uν, (38)

where Jμν is the hypermomentum density of the hyperfluid.
Given that the antisymmetric part (J[μν]) is related to spin
and torsion [2], hereafter Jμν will be assumed symmetric.
The simplest assumption is that the hypermomentum density
is proportional to the projection tensor hμν .7 Then, due to the
high symmetry of the FLRW-type host, there exists a time-
dependent function φ = φ(t) so that

Jμν = φhμν (39)

and �αμν = φhαμuν . As we will see next, the scalar field φ

completely determines the non-metricity effects.

4.2 Non-metricity and curvature of the theory

Non-metricity and hypermomentum are related through the
hypermomentum field equations. Substituting the hypermo-
mentum form seen in (4.1) above into the field equations
(24), leads to the non-metricity tensor

Qαμν = −1

2
κφuα(hμν + uμuν), (40)

the contractions of which provide the associated non-
metricity vectors

Qμ = −κφuμ and qμ = 1

2
κφuμ. (41)

Using the above, one can calculate the corresponding cur-
vature tensors. For the Ricci scalar, employing (12), (40) and
(41), one arrives at

R = R̃ + 3

8
κ2φ2 + 3

2
κ

1

a3 ∂t (a
3φ), (42)

where

R̃ = 6

[
ä

a
+

(
ȧ

a

)2
]

, (43)

is the Riemannian Ricci scalar. Proceeding in a similar man-
ner one can compute the Ricci tensor in the presence of space-
time non-metricity. In particular, the timelike component of
the latter is found to be

R00 = R̃00 − 3

4
κ2φ2 − 3

4
κ

1

a3 ∂t

(
a3φ

)
, (44)

7 This is not the only possibility and we will discuss the most general
case in the next section.
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with

R̃00 = −3
ä

a
, (45)

representing the Riemannian analogue. Likewise, for the
spacelike part of the Ricci tensor, we obtain

Ri j = R̃i j + 1

4
κgi j

[
1

a3 ∂t

(
a3φ

)]
, (46)

the trace of which (R = g00R00 + gi j Ri j ) leads to the Ricci
scalar given in Eq. (42) previously. Substituting the above
post-Riemannian expansions into the metric field equations,
one arrives at the generalized Friedmann equations in the
presence of non-metric degrees of freedom described by (40).

4.3 Modified Friedmann equations and conservation laws

Taking the timelike (00) and the spatial (i j , with i, j =
1, 2, 3) components of the metric field equations and using
the curvature relations of the last section, we obtain the mod-
ified Friedmann equations. When spacetime non-metricity is
sourced by the Obukhov hyperfluid, these take the form

H2 =
(
ȧ

a

)2

= 1

3
κρ + 1

16
κ2φ2 and

ä

a
= −1

6
κ(ρ + 3p) − 1

8
κ2φ2 − 1

4
κ

∂t (a3φ)

a3 , (47)

with H = ȧ/a representing the Hubble parameter (e.g. see
[23]). The first of the above, which measures the contribution
of matter and non-metricity to the Hubble expansion, also
recasts as

1 = �ρ + �φ, (48)

where �ρ = κρ/3H2 is the familiar density parameter
(e.g. see [23]) and �φ = κ2φ2/16H2 is its non-metricity
analogue. Accordingly, matter dominates the energy density
of the universe and drives its expansion, when �ρ � �φ .
In the opposite case, the universe is dominated by spacetime
non-metricity.

Turning to the conservation laws, we point out that, in
FLRW-type spacetimes with hypermomentum of the form
introduced in Sect. 4.1, one can easily show that

�αβγ Rαβγ ν ≡ 0. (49)

Then, the conservation law of the associated energy-momentum
tensor (see Eq. (22) earlier) reduces to the familiar continuity
equation

ρ̇ + 3H(ρ + p) = 0, (50)

of a standard perfect fluid [23]. The corresponding conserva-
tion law of the hypermomentum (see expression (21)) pro-
vides the evolution formula of φ. By employing the identity

∇λ(
√−gφuλ) = ∂λ(

√−gφuλ), (51)

which holds for vanishing torsion, the hypermomentum con-
servation law reads

φ̇ + 3Hφ = 0, (52)

ensuring the φ ∝ a−3. In other words, the non-metricity
scalar decays with the expansion at the rate of pressure free
“dust”. Finally, substituting the evolution law of φ back into
Eq. (47), we arrive at

ä

a
= −1

6
κ(ρ + 3p) − 1

8
κ2φ2

0

(a0

a

)6
, (53)

where the zero suffix corresponds to a chosen moment in
time. The above is the modified Raychaudhuri equation,
monitoring the acceleration/deceleration of the expansion of
a Friedmann-like universe in the presence of Obukhov-type
non-metricity. In particular, negative terms on the right-hand
side of the above decelerate the expansion, while positive
ones tend to accelerate. Alternatively, one can say that the
negative terms assist gravitational collapse, whereas the pos-
itive ones tend to resist contraction.

Before closing this section, we should note that the non-
metricity contribution to both Eqs. (47a) and (53) is propor-
tional to a−6, which means that its effects resemble those of
a “stiff” fluid with p = ρ (in agreement with [24]). Con-
sequently, the Obukhov non-metricity can play a significant
role only at early times. This is not unexpected, since the post-
Riemannian effects typically dominate at the early stages of
the universe [25]. Also, following the modified Friedmann
equation—see (47a), non-metricity contributes positively to
the total energy density of the universe and it cannot act
as an effective “ghost” fluid. Finally, according to the mod-
ified Raychaudhuri equation—see (53), the Obukhov non-
metricity always tends to decelerate the expansion (or alter-
natively accelerate the collapse).

4.4 Generalized unconstrained hyperfluid

In an FLRW-like universe with non-metrictiy, the hyper-
mmentum density of the hyperfluid (Jμν) is generally
spanned by two time functions. More specifically, expres-
sion (39) generalises to

Jμν = φhμν + ψuμuν, (54)

with ψ = ψ(t) as well. Then, the corresponding hypermo-
mentum tensor acquires the general form

�αμν = (φhαμ + ψuαuμ)uν . (55)

In this scenario, the dynamics of the hypermomentum and
the effects of non-metricity are determined by ψ as well
as φ,ψ . The question then is whether the inclusion of ψ

could radically change the results of the previous section. In
order to investigate this, we will employ the “first theorem”
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formulated in [26] and solve the connection in terms of the
Palatini tensor. The result reads

�λ
μν = �̃λ

μν + 1

2
gλα

(
Pαμν − Pναμ − Pμνα

)

+1

2
gαλgν[μ

(
Pα] − P̃α]

)
+ 1

2
δμ

λqν, (56)

which means that the general distortion tensor (including
both Q and S) is given by

Nλ
μν = 1

2
gλα

(
Pαμν − Pναμ − Pμνα

)

+1

2
gαλgν[μ

(
Pα] − P̃α]

)
+ 1

2
δμ

λqν . (57)

In the case of vanishing torsion, we set Sμνλ = 0 and also
symmetrize the above over the indices μ and ν, since the
connection is now symmetric. Therefore, for zero torsion,
the distortion tensor simplifies to

Nαμν = Nα(μν) = 1

2

(
Pα(μν) − P(ν|α|μ) − P(μν)α

)

+1

2
gα(μQν) + 1

2
(qα − Qα) gμν. (58)

Finally, upon using the connection field equations (see rela-
tion (24b)) and the fact that �αμν = �(αμ)ν , the above
expression reduces further to

Nαμν = −1

2
κ�μνα+ 1

2
gα(μQν)+ 1

2
(qα − Qα) gμν. (59)

With this in hand and using the post-Riemannian expan-
sions of the Ricci tensor and the Ricci scalar, a lengthy cal-
culation leads to the associated Friedmann equations

H2 = 1

3
κ

[
ρ + 1

2a3 ∂t

(
a3ψ

)]
+ Y 2 and

ä

a
=−1

6
κ(ρ + 3p)+ 1

a3 ∂t

(
a3Y

)
−2Y 2, (60)

where

Y = − 1

12
κ(3φ + ψ). (61)

These relations are supplement by the conservation laws of
the matter fields and the non-metricity sources. It can be
easily seen that the continuity equation of the matter remains
the same, namely

ρ̇ + 3H(ρ + p) = 0. (62)

On the other hand, the evolution of the non-metricity fields
φ and ψ , follows form the conservation law of the hypermo-
mentumd. More specifically, taking the trace of Eq. (21), we
obtain

(3φ − ψ)· + 3H(3φ − ψ) = 0, (63)

which implies that 3φ − ψ ∝ a−3. Furthermore, expanding
Eq. (21) gives

δλ
μ∂ν

(√−gφuν
) + uλu

μ∂ν

(√−g (φ + ψ)uν
)

+√−g (φ + ψ)(u̇λu
μ + uλu̇

μ) = 0, (64)

the timelike and the spacelike components of which integrate
to

φ = φ0

(a0

a

)3
and ψ = ψ0

(a0

a

)3
, (65)

respectively.8 Our last step is to plug these results back into
the Friedmann equations (see expressions (60a) and (60b)
above) and in so doing arrive at

H2 = 1

3
κρ + 1

16
κ2

(
φ + 1

3
ψ

)2

and

ä

a
= −1

6
κ(ρ + 3p) − 1

8
κ2

(
φ + 1

3
ψ

)2

. (66)

Comparing these results with Eqs. (47a) and (47b), we realise
that there is no essential differences between the two sets.
In fact, one can recover the latter set of formulae from the
former by simply introducing the “shift” φ → φ + ψ/3
and vice versa. It is therefore not surprising that this type
of non-metricity also decelerates the expansion (or accel-
erates gravitational collapse) and it cannot act as an effec-
tive ghost fluid. Nevertheless, this happens for the model of
the unconstrained hyperfluid, where the hypermomentum is
either of purely dilatonic type, or it is related to it by means
of a disformal transformation of the metric.9 It is possible for
non-metric degrees of freedom, associated with more general
forms for hypermomentum, to accelerate the expansion, or
resist gravitational collpase (see next section and also Sect. 5
below).

4.5 Weyl non-metricity

In order to demonstrate the versatility of the non-Riemannian
degrees of freedom, let us consider the simple case of Weyl
non-metricity, with

Qαμν = Auαgμν, (67)

with A = A(t). Following a procedure identical to the one
outlined above, one arrives at the modified Friedmann equa-
tions

H2 = 1
κρ + H A − 1

2
A2 and

ä

a
= −1

6
κ(ρ + 3p) + 1

2
Ȧ + 1

2
H A. (68)

8 Taking the time derivative of Eq. (60a) and using the conservation
laws (62) and (65) leads to (60b) as expected.
9 Following (55), we may write �αμν = g̃αμuν , with g̃αμ = φgαμ +
(φ + ψ)uαuμ.
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Accordingly, depending on the signs of A and Ȧ, the hype-
fluid and act as conventional or ghost-like matter, while at the
same time it can either decelerate or accelerate the expansion
of the host universe.

Finally, it is worth noting the duality between the above
set of Friedmann equations and their purely torsional coun-
terparts obtained in [5,26]. Indeed, the two sets are mapped
to each other upon the duality exchange A ↔ −4φ.

5 General non-metricity sourced by the perfect
Cosmological hyperfluid

The most general form on non-metricity allowed by the high
symmetry of the FLRW models, is sourced by the “perfect
cosmological hyperfluid”, recently formulated and devel-
oped in [16]. As a result, this model opens up a plethora
of new phenomenological possibilities when studying the
implications of non-metricity for cosmology.

5.1 Relating non-metricity and hypermomentum

We begin by substituting the general expression for the non-
metricity tensor of FLRW spacetimes (29), together with the
associated non-metricity vectors Qμ = (3A − C)uμ and
qμ = [(3B/2) − C]uμ, back into Eq. (25). The resulting
Palatini tensor reads

Pαμν = Pα(μν) = 1

2
(A − C)uαhμν

+1

2
(B − 3A − C)hα(μuν) − 3

2
Buαuμuν . (69)

The above and Eq. (35) combine in the connection field equa-
tion (24b)—notice the symmetrization in the hypermomen-
tum in the latter expression—to provide the relations between
the non-metricity functions and the sources (i.e. the hyper-
momentum variables). To be precise, we obtain

A = −1

6
κ(3φ + ω),

B = −2

3
κω and

C = −1

6
κ(3φ + ω + 12ψ). (70)

Alternatively, one arrives at the same result by contracting
the connection field equations to express the non-metricity
vectors in terms of their hypermomentum counterparts (see
Appendix 1).

We finally note that the case of the unconstrained hyper-
fluid (see Sect. 4) is characterised by χ = 0 = ψ = ω,
which substituted back into Eq. (70) give

C = A = −1

2
κφ and B = 0, (71)

in agreement with our earlier results. Therefore, as expected,
the unconstrained hyperfluid is a special case of the perfect
cosmological hyperfluid.

5.2 Generalised conservation laws

The conservation laws of the energy-momentum and the
hypermomentum tensors that describe the perfect cosmolog-
ical hyperfluid follow from Eqs. (21) and (22) by means of
(29) and (31). Recalling that we have assumed zero torsion
(Sμ = 0) and we have set χ = ψ , we find

ρ̇ + 3H(ρ + p) = −1

2
ψuμuν(Rμν + Řμν) (72)

and

−δμ
λ

∂ν

(√−g φuν
)

√−g
− uμuλ

∂ν

[√−g (φ + 2ψ + ω)uν
]

√−g

+
[

1

2
Qλu

μ − ∇λu
μ

+
(

1

2
Qμ − qμ

)
uλ − gμν∇νuλ

]
ψ + 2ψ̇uμuλ

−(φ + 2ψ + ω)(u̇μuλ + uμu̇λ) = 0, (73)

for the matter and the hyperfluid respectively. The former
is the modified continuity equation, with non-Riemannian
effects (hypermomentum contributions) on the right-hand
side, while the latter determines the evolution of the hyper-
fluid itself.

The conservation law (73) provides us with two evolution
equations for the hypermomentum variables. More specifi-
cally, the trace of the above expression yields

∂μ

[(
3φ − ω

)
uμ

]
= 0 (74)

and integrates immediately to give

3φ − ω = C0

a3 (75)

where C0 = a3
0(3φ0 −ω0) is the integration constant. More-

over, taking the trace of the specelike component of (73),
namely setting μ = i , λ = j and then contracting along i
and j , gives

φ̇ + 3Hφ + 2Hψ + 1

6
κψ

(
3φ − ω

)
= 0. (76)

Note that the unconstrained hyperfluid model is recovered
as the special case when ψ = 0, as expected. In addition, after
computing the right-hand side of the generalized continuity
equation given in (72), we arrive at10

ρ̇ + 3H(ρ + p) = −3

2
ψ

[
1

2
Ḃ +

(
A + 1

2
B + C

)
H

10 See Appendix 1 for details.

123



Eur. Phys. J. C (2023) 83 :216 Page 9 of 14 216

+1

2

(
1

2
B − A

)
(C + A)

]
. (77)

Before closing we should point out that, in order to com-
pletely describe the hypermomentum degrees of freedom,
we need to introduce “equations of state” between the vari-
ables φ, ψ and ω, analogous to that between the pressure (p)
and the density (ρ) of the conventional matter (see Sect. 5.4
below).

5.3 Generalised Friedmann equations

Starting with the generalised symmetric connection, which
differs from its Levi–Civita counterpart due to the non-
metricity, one generalises the Ricci tensor and the Ricci
scalar. Then, taking the timelike and the spacelike compo-
nents of the metric field equations, leads to (see Appendix 1)

H2 = 1

3
κρ − 1

2
H

(
3

2
B − A + C

)
− 1

4
Ḃ

+1

8
B(A − C) + 1

4
AC (78)

and

ä

a
= −1

6
κ (ρ + 3p) + H

(
A + 1

2
C

)
+ 1

2
Ȧ

−1

4
A(A + C). (79)

These are the modified Friedmann and Raychaudhuri equa-
tions respectively. Together with the conservation laws (75)–
(77), the above monitor the evolution of an FLRW-like uni-
verse with generalised non-metricity. In what follows, we will
attempt to explore the potential implications of our model for
cosmology.

5.4 Closing the system

We begin our investigation by employing the relations
between the non-metricity and the hypermomentum vari-
ables (see Eq. (70) in Sect. 5.1 earlier) to express (77), (78)
and (79) in terms of φ, ψ and ω. This results into the follow-
ing expression for the continuity equation

ρ̇ + 3H(ρ + p)

= 1

2
κ

[
ω̇ + H (3φ + 2ω + 6ψ)

+ 1

12
κ (3φ − ω) (3φ + ω + 6ψ)

]
ψ, (80)

supplemented by the generalised Friedmann

H2 = 1

3
κρ + 1

2
κH (2ψ + ω)

+1

6
κ

[
ω̇ − κωψ + 1

24
κ (3φ + ω) (ω + 3φ + 24ψ)

]

(81)

and Raychaudhuri

ä

a
= −1

6
κ (ρ + 3p) − 1

4
κH (ω + 3φ + 4ψ)

− 1

12
κ

(
3φ̇ + ω̇

) − 1

72
κ2 (3φ + ω) (ω + 3φ + 6ψ) ,

(82)

formulae. The above relations simplify considerably after
replacing ω, ω̇ and φ̇ with φ, by means of (75) and (76).
Indeed, a straightforward calculation leads to the more trans-
parent expressions11

H2 = 1

3
κρ + 1

4
κ2

(
φ − C0

6a3

)2

,

ä

a
= −1

6
κ (ρ + 3p) − 1

2
κ2

(
φ − C0

6a3

)2

− 1

2
κ2ψ

(
φ − C0

3a3

)
,

(83)

ρ̇ + 3H(ρ + p) = 1

2
κ

[
H + 1

2
κ

(
φ − C0

6a3

)]
ψ
C0

a3 and

φ̇ + H(3φ + 2ψ) + κψ
C0

6a3 = 0. (84)

In (83a) one can now see that the extra term due to non-
metricity is always positive, which ensures that the hyper-
momentum acts as a non-ghost fluid with a positive effective
energy density. In the second of the Friedmann equations
(namely in Raychaudhuri’s formula—see (83b)), the first of
the two extra terms always decelerates the expansion. The
second non-metricity term, on the other hand, has no definite
sign and safe conclusions can be drawn only after solving
the full system of equations. However, in order to do so, we
need to take additional steps.

Let us turn or attention to the modified continuity equa-
tion (84a), which has nonzero right-hand side due to the non-
metricity effects. The latter propagate via φ and ψ , of which
only φ has an evolution law (given by (84b) above). There-
fore, to proceed, we need to introduce an effective “equation
of state” of the form ψ = ψ(φ). Such a step is physically
motivated by our desire to represent the hypermomentum as
an effective fluid. Then, given that only φ appears in Eq. (83a)
and ψ appears only in (83b), we may associate the former
with the effective energy density and the latter with the effec-
tive pressure. On these grounds, the simplest equation of state
to assume is a “barotropic” one with ψ = w1φ.12 This rela-
tion is not so unatural and in fact can be derived by consid-
ering specific matter actions that couple to the connection.

11 The system of (83) and (84) is self-consistent, since (83b) can be
obtained by taking the time derivative of (83a) and then utilizing the
remaining equations.
12 This is one of the many possibilities, since hyperfluids could gen-
erally obey more “exotic” equations of state. As we will see, the sim-
ple cases presented below will naturally emerge as subcases of such a
“barotropic” hyperfluid.
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Such an example was given in [16] (see Appendix 1). In our
case, such an equation of state reads

ψ = w1�, (85)

with

� = φ − C0

6a3 , (86)

which is a combination that appears in all three equations
(83a), (83b) and (84a). On using the above equation of state,
the system (83a)–(84b) recasts into

H2 = 1

3
κρ + 1

4
κ2�2,

ä

a
= −1

6
κ(ρ + 3p) − 1

2
κ2�2

−1

2
κ2w1�

(
� − C0

6a3

)
, (87)

ρ̇ + 3H(ρ + p) = 1

2
κw1�

(
H + 1

2
κ�

)
C0

a3 and

�̇ + (3 + 2w1)H� + 1

6
κw1�

C0

a3 = 0,

(88)

where now C0 = 2a3
0(3�0 − ω0). Given that the last term

in (87b) has no definitive sign, one may in principle select
an equation of state that could drive cosmic acceleration.
Setting w1 = −1 and demanding that C0� > 0, for exam-
ple, ensures that the last term in the modified Raychaudhuri
equation tends to accelerate the expansion.

5.5 Solutions

Let us now turn our attention to specific scenarios that repre-
sent physically motivated simplifications of the general case.
In Eq. (34) we explained how the hypermomentum tensor
splits into its irreducible parts and how in our case the rele-
vant ones are the dilation and the shear. In what follows, we
isolate the effects of these two sources and investigate their
potential cosmological implications separately.

5.5.1 Pure dilation

Let us assume that the shear component vanishes and that
only the dilation part of the hypermomentum survives. As
seen from Eq. (37), this leads to the constraints

�̆αμν = 0 ⇔
{

ψ = 0
φ + ω = 0

. (89)

Setting ψ = 0 simplifies our system of equations consider-
ably, while applying the φ + ω = 0 condition to Eq. (75),
the latter gives

� = C0

12a3 , (90)

which follows form (88) as well. When ψ = 0, the continuity
equation does not explicitly depend on the hypermomentum.
Then, supplementing a barotropic equation of state (p = wρ)
for the matter leads to ρ ∝ a−3(1+w). On these grounds, the
Friedmann and the Raychaudhuri equations read

H2 = 1

3
κρ + κ2 C2

0

242a6 and

ä

a
= −1

6
κ(1 + 3w)ρ − 1

2
κ2 C2

0

122a6 , (91)

respectively. Therefore, qualitatively speaking, the effec-
tive energy density contribution of the pure-dilation case is
always positive, which means that the extra non-metricity
term in the Raychaudhuri equation is negative and deceler-
ates the expansion at all times (just like conventional matter
with 1+3w > 0). To facilitate the presentation, let us define
the effective energy density for the hyperfluid as

ρe = 1

3
κ

C2
0

43a6 (92)

and recast the above into

H2 = 1

3
κ(ρ + ρe) and

ä

a
= −1

6
κ(1 + 3w)ρ − 2

3
κρe. (93)

Accordingly, in dynamical terms, non-metricity mimics a
classical stiff fluid, namely like a perfect medium with
barotropic index w = 1. This behaviour is essentially identi-
cal to the one found in Sects. 3 and 4 earlier. Overall, gener-
alising the host spacetime to include non-metricity, provides
an alternative (geometrical) way of producing an effective
stiff component.

From the stiff matter interpretation of pure-dilation non-
metricity it becomes evident that, even if non-metricity is
dynamically negligible today, it could have dominated at
sufficiently early times and thus it might have dictated the
kinematical evolution of the universe in the past. Indeed,
Eq. (93a) accepts the solutions

a ∝ t1/3 and a ∝ t2/3(1+w), (94)

at early and late times respectively. Note that the first result
corresponds to ρe � ρ and the latter to ρe 
 ρ. Also, the
two solutions coincide when w = 1, namely when the con-
ventional matter also has a stiff equation of state. The possi-
bility raised by solution (94), is intriguing, since it provides
theoretical support to speculations that matter with hyper-
fluid characteristics could have dominated the very early
stages of the expansion. Here, we see that this can happen
naturally within the framework of MAG, by allowing for
non-Riemannian geometry (i.e. for spacetime non-metricity).
Having said that, assuming that non-metricity dominates, the
timing is crucial because it could interfere with fundamental
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physical processes, such as nucleosynthesis for example (see
next section).

Let us now consider analytical solutions for specific values
of the barotropic indices. Setting w = 1 = we, for exam-
ple, the two fluids evolve in the same way. The solution is
the identical to its standard GR counterpart, with the matter
density replaced by the sum of the densities of the fluids

a = a0

(√
3

4
κ

(
ρ0 + ρe0

)
(1 + w)t

)1/3

, (95)

where the zero suffix denotes the present time. Assuming that
matter is in the form of pressure-free dust (i.e. setting w = 0)
leads to

a = a0

(√
3

4
κρe0 t + 3

4
κρ0t

2

)1/3

. (96)

The first mode in the above grows as ∝ t1/3 and dictates the
early evolution of the model, while the second is proportional
to t2/3 and drives the late-time expansion (both in agreement
with solutions (94)).

Let us also consider the effects of pure-dilation non-
metricity on standard inflation. Assuming matter with a de
Sitter inflationary equation of state, we may set w = −1.
Then, we obtain the solution

a = a0

(
ρe

ρ

)1/6

0

[
sinh

(√
3κρ0t

)]1/3
, (97)

which also depends on the ratio ρe/ρ today. At early times,
that is for small values of t , the above approaches solution
(94a) and therefore inflation is suppressed. In contrast, at late
times, we recover the exponential expansion of standard de
Sitter-type inflation.

5.5.2 Pure shear

Turning our attention to pure shear hypermomentum, we set
the dilation component of �αμν (see Eq. (36)) to zero. Com-
bining the latter with (75), gives

Dν = 0 ⇔ C0 = 0 (98)

which in turn recast the system of (87) and (88) into

H2 = 1

3
κρ + 1

4
κ2�2,

ä

a
= −1

6
κ(ρ + 3p) − 1

2
κ(1 + w1)�

2, (99)

ρ̇ + 3H(ρ + p) = 0 and

�̇ + (3 + 2w1)�H = 0, (100)

respectively. As it turns out, the above relations are the same
with the ones derived in [27], were both torsion and non-
metricity were included, though there the hypermomentum
tensor had only shear component. For completeness, we will

briefly recover some of the solutions given in [27], before pro-
viding additional results. Following (99), the non-metricity
input to the generalized Friedmann equation is always pos-
itive, while its contribution to the Raychaudhuri equation
depends on w1-index. In addition, according to (100), the two
continuity equations have decoupled, which guarantees that
matter evolves independently of the �-field. The physical
interpretation becomes clearer if we introduce the effective
energy density

ρe = 3

4
κ�2. (101)

On using the above, the associated onservation law (see
Eq. (100b)) becomes identical to the continuity equation of
a barotropic perfect fluid, namely

ρ̇e + 3H(1 + we)ρe = 0, (102)

with we = [1 + (4w1/3)]. At the same time, the Friedmann
and the Raychaudhuri equations given in (99) read

H2 = 1

3
κρ + 1

3
κρe and

ä

a
= −1

6
κ(1 + 3w)ρ − 1

6
κ(1 + 3we)ρe, (103)

respectively. This cosmology is described by usual matter
plus an additional effective perfect fluid that has emerged
after generalizing the Riemannian geometry of the host
spacetime by including non-metricity effects. Following
(103a) conventional matter dominates when ρ � ρe. Other-
wise, it is the non-metricity that dictates the universal kine-
matics. According to Eq. (103b), matter that satisfies the
strong energy condition (i.e. with 1 + 3w > 0) decelerates
the expansion (as expected). Similarly, the (hypermomen-
tum) second term on the right-hand side of (103b) slows the
expansion down when 1 + 3we > 0, or equivalently when
w1 > −1. In the opposite case the expansion is accelerated,
whereas setting w = −1/3 = we leads to q = 0 and to the
familiar “coasting universe”. We should also point out that,
at the moment, there are no known constraints imposed on
w1 and therefore on we.

The continuity equations of the conventional and the effec-
tive fluids (see expressions (100a) and (102) previously) are
integrated immediately, respectively giving

ρ = ρ0

(a0

a

)3(1+w)

and ρe = ρe0

(a0

a

)3(1+we)

, (104)

where ρ0 and (ρe)0 are the matter density and the effective
density of the hypermomentum component today. On using
the above, the generalized Friedmann equation (see expres-
sion (103a)) yields

H2 = 1

3
κρ0

(a0

a

)3(1+w)
[

1 +
(ρe

ρ

)

0

(a0

a

)3(we−w)
]
. (105)
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The above implies that, although the hypermomentum com-
ponent may be subdominant today (i.e. even if (ρe)0 
 ρ0),
non-metricity could have dominated in the distant past, or it
may take over in the far future. Which of these alternative
scenarios occurs depends on the sign of the difference we−w

between the two barotropic indices. More specifically, when
we −w > 0, the shear hypermomentum dominates the early
evolution of the universe. In the opposite case, that is for
we − w < 0, this happens in the late future. Clearly, when
we = w, a universe that starts matter-dominated remains so
at all times and vice versa.

Provided that we − w �= 0, the two constituents reach
equipartition, analogous to that between radiation and dust,
at a specific moment in the lifetime of the universe, which
can lie either in the past or in the future. Following (105), the
scale factor at the equilibrium point is

a� = a0

(
ρe

ρ

)[1/3(we−w)]

0
. (106)

Making the plausible assumption that ρe/ρ 
 1 at present,
we may set (ρe/ρ)0 = 10−β , with β being a small positive
number. Then, the scale factor at equilibrium will be

a� = a0 × 10−[β/3(we−w)]. (107)

The above ensures that a� < a0 when we − w > 0, which
puts the time of equipartition in the past. In the opposite case
we find that a� > a0 and non-metricity takes over in the
future. Finally, recalling that the temperature of the universe
evolves inversely proportional to the scale factor, namely that
T ∝ 1/a, the temperature at the moment of equipartition is
given by

T� = T0 × 10[β/3(we−w)], (108)

with β > 0. Clearly, T� > T0 when we −w > 0 and T� < T0

for we − w < 0, putting the equilibrium time in the past and
in the future respectively.

6 Conclusions

In this work we have examined the role of spacetime non-
metricity in homogeneous and isotropic (Friedmann-like)
cosmologies. Non-metricity reflects the failure of the metric
to be covariantly conserved, which changes the magnitude
of vectors and tensors when they are parallelly transported.
Many familiar geometric notions change in the presence of
non-metricity, such as the symmetries of the Riemann tensor,
its contractions, the conservation laws, etc. It is therefore not
surprising that including non-metricity changes the cosmic
evolution in non-trivial ways.

We begun our investigation by considering the usual
Einstein–Hilbert action and a matter sector that also depends

on the connection, namely with non-vanishing hypermomen-
tum. The spacetime was assumed torsionless to begin with,
that is the connection was symmetric by default, in order to
isolate the effects of non-metricity. Within this framework,
we provided the connection, the field equations and the asso-
ciated conservation laws. Turning our attention to cosmology,
we considered a spatially flat Fridemann-like universe along
with the allowed form for the distortion and non-metricity
tensors. Clearly, the symmetries of the FRLW metric restrict
the allowed forms of the various energy tensors. More specif-
ically, the energy-momentum tensor can only have the perfect
fluid form and the hypermomentum must be compatible;e
with the Cosmological Principle [16].

With this in hand, we examined the unconstrained hyper-
fluid developed in [14]. This model can source two of the
three non-metricity degrees of freedom allowed in a cos-
mological setting. Nevertheless, having extracted the modi-
fied Friedmann equations and after employing the associated
cosmological laws, we obtained a number of results. The
conservation laws of the energy-momentum and the hyper-
momentum tensors, in particular, decouple and can be triv-
ially integrated to give the evolution laws (i.e. the continu-
ity equations) of ρ, as well as those of φ and ψ . The latter
showed that both ψ and φ evolve like pressureless matter,
with φ, ψ ∝ 1/a3, where a = a(t) is the cosmological scale
factor). Moreover, the fact that the aforementioned two fields
contribute quadratically to the modified Friedmann equations
implies that their input to the cosmological dynamics is pro-
portional to 1/a6. Consequently, the effect of φ and ψ is
phenomenologically identical to that of a perfect fluid with
a stiff equation of state. Put another way, an effective stiff-
matter component emerges naturally as a cosmological con-
sequence of the underlying non-Riemannian geometry of the
universe and without any further assumptions.

We have also explored in depth the most general form
of non-metricity sourced by a perfect hypermomentum-
preserving hyperfluid [16]. This generalized model is described
by three additional degrees of freedom, both for the non-
metricity and the hypermomentum that sources it. The com-
plete system of equations immediately led to some qualitative
conclusions. For example, the additional terms introduced to
the Friedmann equation were found to be positive always,
indicating that non-metricity mimics matter with positive
(i.e. non-ghost-like) effective energy density. The extra terms
in the modified Raychaudhuri equation, on the other hand,
suggested that non-metricity can accelerate or decelerate the
universal expansion, depending on the (effective) equation
of state one assumes for the hypermomentum variables.

Looking for analytic solutions, we examined two phys-
ically distinct subcases, that is for hypermomentum with
a dilation part only and for shear hypermomentum. In the
former case, we recover the (effective) stiff-matter scenario
mentioned above and also provided exact cosmological solu-

123



Eur. Phys. J. C (2023) 83 :216 Page 13 of 14 216

tions, corresponding to specific values of the barotropic index
(w) of the matter. For shear hypermomentum, we found
that the effects of non-metricity mimic those of a perfect
fluid with a “free” barotropic index (we). This freedom pro-
vides a rich phenomenology, since different values of we

can lead to universal acceleration, or deceleration, to expo-
nential expansion, etc (see Sect. 5.5). Put another way, non-
metricity can in principle mimic effects that are typically
attributed to the inflaton field, or to dark energy. Note that
in the shear-hypermomentum scenario, there is also a dis-
tinct moment in time, where the conventional matter and
the non-metricity induced (effective) fluid have equal energy
densities (i.e. ρe = ρ). Such a “moment of equipartition” is
dynamically similar to the “equilibrium point”, marking the
transition from the radiation to the dust era of the universe. In
fact, assuming that the current value of ρe can be constrained,
one could determine the transition time from a non-metricity
dominated epoch of the universe to the era of conventional
matter domination (and vice versa). Depending on the sign
of the difference w − we, this moment can lie in our past or
in our future.

Before closing, we should point out that our initial
assumption that the canonical and the metrical energy
momentum tensors coincide, restricts the allowed forms of
non-metricity. For example, “fixed length non-metricity”
is incompatible with our equations.13 In order to include
more general types of non-metricity, one needs to ease the
restrictions imposed in Eq. (73) and thus break away from
the hypermomentum-conserving hyperfluids [28]. We plan
consider such generalized non-metricity models in the near
future.

Data Availibility Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This manuscript
has no associated data.]
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Appendix A Curvature in the presence of general non-
metricity

Here we provide the curvature tensors and scalars necessary
for the derivation of the modified Friedman equations and
the associated conservation laws. Following Sect. 2.2, the
general affine connection splits into its Riemannian and Non-
Riemannian components as �λ

μν = �̃λ
μν + Nλ

μν , with

Nλ
μν = 1

2
gρλ

(
Qμνρ + Qνρμ − Qρμν

)
. (A1)

being the distortion tensor in the absence of torsion. Splitting
the connection leads to the decomposition of the Riemann
tensor and its contractions. In particular,

Rμ
ναβ = R̃μ

ναβ + 2∇̃[αNμ|ν|β] + 2Nμ
ρ[αNρ |ν|β], (A2)

with the tilded quantities evaluated with respect to the Levi–
Civita connection. For the most general form of non-metricity
compatible with the cosmological principle, namely when
Qαμν = Auαhμν + Bhα(μuν) + Cuαuμuν , the distortion
tensor becomes

Nλ
μν = 1

2
(B − A)hμνu

λ + Aδλ
(μuν)

+
(
A + 1

2
C

)
uλuμuν . (A3)

Contracting (A2) and using the above distortion tensor, as
well as its contractions, leads to the curvature variables. The
Ricci tensor, in particular, reads

Rνβ = R̃νβ + 1

2
gνβ ∇̃μ

[
(B − A)uμ

] + 1

2
∇̃β [(C − 2A) uν ]

+1

2
∇̃ν

(
Auβ

) + 1

2
∇̃μ

[
(A + B + C)uνuβu

μ
]

+1

4
(A − B)(A − C)hνβ − 3

4
A(A + C)uνuβ . (A4)

Then, after taking into account the FLRW metric and the
associated the Levi–Civita connection, we obtain

R00 = R̃00 + 3

2
Ȧ + 3

2
(2A + C)H − 3

4
A(A + C) (A5)

and

Rii = R̃ii + 1

2
(C + 3B − 4A)aȧ

+1

2
a2(Ḃ − Ȧ) + 1

4
a2(B − A)(C − A), (A6)

for the timelike and spacelike compontents respectively. Con-
tracting again, leads to the Ricci scalar

R = R̃ + 3

2
Ḃ − 3 Ȧ

+9H

(
1

2
B − A

)
+ 3

2
A2 + 3

4
B(C − A). (A7)
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These results combine with the Einstein field equations
to give the generalised Friedmann equations presented in
Sect. 5.3 of the main document.

We also note that the Co-Ricci tensor involved in the con-
servation law of the hypermomentum reads

Řλβ = −R̃λβ + 1

2
∇̃β [(2A − 2B + C)uλ]

+1

2
gλβ∇̃α

(
Auα

) + 1

2
∇̃λ

(
Auβ

)

+1

2
∇̃μ

[
(A + B + C)uλuβu

μ
]

−1

4
A(3A − 2B + C)hλβ

+3

4
(B − A)(A + C)uλuβ. (A8)

Finally, the homothetic curvature is antisymmetric and thus
always zero in isotropic spaces.

Appendix B Alternative derivation of the non-metricity
tensor and vectors

One can arrive at Eq. (70) given in Sect. 5.1 by taking con-
tractions of the connection field equations to express the non-
metricity vectors in terms of those of the hypermomentum.
The results read

Qλ = κ

[
�λα

α − 1

3
(�α

αλ + �α
λα)

]
and

qλ = 1

2
κ

[
�λα

α + 1

3

(
�α

αλ + �α
λα

)]
. (B1)

Plugging the above back into the connection field equations
and solving for the non-metricity tensor, we arrive at

Qλ
μν = κ

(
−�λ

(μν) + 2

3
�α

α(μδ
ν)
λ + Dλg

μν

)
, (B2)

where

Dλ = 1

2

(
�λα

α − 2

3
�α

αλ

)
. (B3)

This procedure also leads to relations (70) between the two
sets of variables.
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