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Abstract A two-dimensional ray model is introduced to
realize the non-Markovian speedup evolution of a center mas-
sive particle gravitationally coupled to a controllable envi-
ronment (multilayer arrangement of the massive particles).
By controlling the environment, for instance by choosing a
judicious mass of the environmental particles or by changing
the separation distance of each massive particle, two dynam-
ical crossover behaviors from Markovian to non-Markovian
and from no-speedup to speedup are achieved due to the
gravitational interactions between the system particle and
environmental particles. It is obvious that the critical mass
of the environmental particles or the critical separation dis-
tance for these two dynamical crossover behaviors restrict
each other directly. The larger the value of the mass of the
environmental particles is, the smaller the value of the crit-
ical separation distance should be requested. In addition, it
should be emphasized that the non-Markovian dynamics is
the principal physical reason for the speedup evolution of the
system massive particle. Particularly, the non-Markovianity
of the dynamics process of the system massive particle in the
even ray case has better correspondence with the quantum
speed limit time than that in the singular ray case.

1 Introduction

The most fundamental physical theories, quantum theory
and general relativity, claim to be universally applicable and
have been confirmed to a high accuracy in their respective
domains. So the unification of quantum mechanics with gen-
eral relativity is one of the most fundamental problems in
theoretical physics [1]. Yet, it is hard to merge them into a
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unique corpus of laws. One possible route to that general
theory is the quantization of gravity, with the same spirit as
other field theories. However, there is a long-standing debate
whether gravity should be quantized [2–6].

More recently the idea of tabletop detectors has been
widely discussed, opening up the possibility of revealing
the quantum nature of gravity. The BWV experiment [7,8],
which proposes the induced entanglement of two massive
particles, has attracted much attention. This scheme is based
on the theorem that local operation and classical communi-
cation (LOCC) [9] cannot produce quantum entanglement in
quantum information theory. Due to gravity based on a local
theory, if the gravitational interaction produces entanglement
between two massive particles, then quantum nature of grav-
ity can be verified. In this experiment, micro-diamond with
an embedded nitrogen-vacancy center spin has been designed
as the superposition of two massive particles at a certain dis-
tance parallel to their separation direction. The gravitational
interaction between the particles could cause quantum entan-
glement. For the feasible detection of an entanglement, one
requires the superposition of a mesoscopic particle. In Ref.
[10], an experimental setup for realizing such a superposition
is presented. Further, the origin of generating the quantum
entanglement is discussed in [11]. These studies have in turn
stimulated several studies on testing the quantum proper-
ties of gravity [12–19]. Among them, Nguyen and Bernards
have proposed a setup similar to that of the BMV experi-
ment [19], in which they assume the superposition of two
separated massive particles in the direction perpendicular to
their separation direction. Due to the symmetry of the con-
figuration, the gravitational interaction between two massive
particle can be simplified and the model is easy to achieve.

In view of the current experimental verification and the-
oretical research on the quantum nature of gravity, some
efforts have been recently devoted to investigating the role
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played by gravity on the dynamics control of the massive
particles [13,14,18–21]. For instance, by studying the entan-
glement dynamics between two particles due to gravity, the
authors showed that the system entangles as long as the cou-
pling between the particles is strong [19]. Then the dynamics
of a gravity-induced entanglement for N massive particles
was analyzed [20] by extending to N massive particles. The
above studies mainly focus on the influence of the presence
of gravity on entanglement and decoherence dynamics of
the massive particles. However, how to protect the quantum
properties of the system such as quantum entanglement and
quantum coherence under the action of gravity has not been
studied yet. Understanding how to protect the quantum prop-
erties of a system under gravity is crucial for detecting the
quantum properties of gravity.

Currently, several studies have shown that non-Markovian
effects [22–27] not only suppress the decay of the coherence
or the entanglement of quantum systems [28–30], but also
accelerate the quantum evolution speed of the systems [31–
36]. A non-Markovian speedup evolution of an open system
would be preferable to deal with the robustness of quantum
simulators and computers against decoherence [37,38]. That
is to say, the non-Markovian accelerated evolution of the
system could resist the decoherence of the quantum system
in the environment. Therefore, how to control the dynamics
of a massive particle as a quantum system due to gravity,
in particular, to manipulate non-Markovian effects and to
improve the quantum dynamical speed, becomes extremely
significant for detecting the quantum properties of gravity.

In our two-dimensional ray model, a center massive
particle mo interacts with multiple environmental particles
arranged in the surrounding ray structure. The distance
between the particles before and after the same ray is r , the
distance between the particles in the first layer is r , and the
other particles are placed in the direction of the ray accord-
ing to the position of the particles in the first layer. For
this model, we demonstrate how the non-Markovian speedup
dynamics control of a massive particle can be achieved by
manipulating the parameters of the adjustable environmen-
tal particles due to gravity. To quantify the non-Markovian
speedup dynamics of the system massive particle, here we
apply the quantum speed limit time (QSLT) to define the
border between no-speedup and speedup quantum evolu-
tion of the massive system [31,39–46]. And a general mea-
sure for non-Markovianity defined by Breuer et al. [22] is
used to distinguish the Markovian dynamics and the non-
Markovian dynamics. By investigating the influences of the
separation distance of each massive particle and the mass
of the environmental particles on the non-Markovianity and
QSLT, two dynamical crossover behaviors of the system,
from Markovian dynamics to non-Markovian dynamics and
from no-speedup evolution to speedup evolution, can be real-
ized via the gravitational interactions between the system

particle and each environmental particle. Additionally, we
also have quantitatively analyzed the regions of the environ-
ment parameters for the occurrence of the non-Markovian
speedup of the system particle. Our proposed scheme should
be ideally performed in a zero-gravity environment. Because
our model regards the system massive particle mo and its
environment particles as a closed system, the influence of
external gravities on the whole closed system is eliminated
as far as possible. When both the particles and the experimen-
tal setup, including the magnetic field gradient, are in perfect
free fall, the equivalence principle prevents any observable
effect of the other external gravitational fields.

The structure of this work is as follows. In Sect. 2, we give
the global Hamiltonian for the “two-dimensional ray model”,
and calculate the reduced density matrix of the system mas-
sive particle. In Sect. 3, we show the definition of QSLT and
non-Markovianity for a dynamics process of a quantum sys-
tem. In Sect. 4, we present the schematic diagram and conclu-
sion analysis of the non-Markovianity and the QSLT in the
two-dimensional singular ray case. In Sect. 5, the schematic
diagram and conclusion analysis of the non-Markovianity
and the QSLT in the two-dimensional even ray case are
described. In Sect. 6, we control the non-Markovianity and
the QSLT of the system massive particle by changing the
number of particles in the first layer. In Sect. 7, the conclu-
sion is put forward.

2 Model and dynamics

We mainly consider placing a multilayer adjustable environ-
mental particles (the mass mn′ of the particle at coordinate
position n′, which is arranged in the (rn′ , θn′ ) polar coordi-
nate plane as shown in Fig. 1) around a central system massive
particle mo. In order to exclude the effect of Casimir–Polder
interaction on the gravitational interaction, we set the mass
of the system particle mo ∼10−13 kg, the distance between
the first layer of environmental particles and the system par-
ticle r ∼ 250 μm. And other environmental particles are
placed outward along the ray with the first layer of particles
as reference. In this way, several rays are formed, and the dis-
tance between the environmental particles on the same ray is
also set as r . And regardless of Casimir–Polder interaction
between particles, the minimum distance between particles
should not be less than r , so the first layer can only place six
particles at most.

As shown in Fig. 1, when six particles are placed in the
first layer, the distance between adjacent particles is equal to
r , and the angle difference between adjacent rays equals to
π/3 (when the first layer is less than six, the distance between
adjacent particles in the first layer can be greater than r (the
angle difference can be greater than π/3). And as long as the
condition that the distance between two particles are not less
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Fig. 1 Schematic representation. The arrangement of environmental
particles in two-dimensional polar coordinates (x is the number of
branches of the rays, and here we take x = 6 as an example). The
central system massive particle with mass mo is placed at polar coordi-
nates (0, 0), while the environmental particle at coordinate position n′
with mass mn′ is placed at coordinates ( jr, θ) (1 ≤ j ≤ N , N is the
number of environmental particles in each ray branch, r is the distance
between the adjacent particles in each ray. The coordinate of the first
particle to the right of mo is fixed at (r, 0). In addition, the total num-
ber of environmental particles nx = Nx . This figure shows that each

particle is in a superposition of localized states along the z-axis sepa-
rated by a distance L (Among them, the right is a local enlarged view
of the model). In addition, the two-dimensional ray model we present
is different from the traditional star model, that is, when the number
of rays x is even, the two-dimensional ray model can be symmetric or
asymmetric. Therefore, as long as the distance between the adjacent
particles in the first layer meets the condition that the distance is not
less than r , the distance between the adjacent particles in the first layer
can also be non-equidistant

than r is satisfied, adjacent particles do not have to be placed
at the same distance. The position of the particle mn′ on
the (rn′ , θn′ ) is specified by (rn′ , θn′ ) = ( jr, θn′ ) with integers
1 ≤ j ≤ N (N is the number of particles on each ray branch)
and 0 < θn′ < 2π . And the center system massive particle
mo (0, 0) and the coordinate of the first particle on its right
(r, 0) are fixed. Each particle is prepared to be in a spatially
localized superposition state separated by a distance L along
the direction of the z-axis.

The left and right paths of the particle mn′ at coordinate
position n′ are represented as |↑〉n′ and |↓〉n′ . For this two-
dimensional model, the initial state of the total system is
chosen as

|�(0)〉 = |ψ(0)〉o ⊗ |ψ(0)〉1 ⊗ · · · ⊗ |ψ(0)〉n′

⊗ · · · ⊗ |ψ(0)〉nx , (1)

where |ψ(0)〉n′ = 1√
2
(|↑〉n′ + |↓〉n′) is the initial state of

the massive particle mn′ , nx represents the total number of
environmental particles in the two-dimensional model. The
kinetic term is ignored in this work because all massive parti-
cles are in a zero-gravity environment and the wave packet of
each particle does not spread. The initial state evolves under
the gravitational interactions, then in this two-dimensional
model, the corresponding Hamiltonian is

H =
∑

n′ 
=o

Ho,n′ + 1

2

∑

n′ 
=n′′
Hn′,n′′ , (2)

Ho,n′ = −�o,n′

2
σ (o)
z ⊗ I (1) ⊗ · · · ⊗ σ (n′)

z ⊗ · · · ⊗ I (nx ),

(3)

Hn′,n′′ = −�n′,n′′

2
I (1) ⊗ · · · ⊗ σ (n′)

z ⊗ · · · ⊗ σ (n′′)
z

⊗ · · · ⊗ I (nx ), (4)

where, Ho,n′ represents the gravitational interaction between
the central quantum system mo and the environmental parti-
cle mn′ at coordinate position n′, and Hn′,n′′ represents the
Newtonian gravitational potential energy between the ambi-
ent environmental particles at coordinates n′ and n′′. There-
fore, �o,n′ and �n′,n′′ can be uniformly expressed as

�o,n′ = �o, j = Gmomn′

(
1

jr
− 1√

j2r2 + L2

)
, (5)

�n′,n′′ =
(

Gmn′mn′′
√
j2r2 + j ′2r2 − 2 j j ′r2 cos(θn′ − θn′′)

− Gmn′mn′′
√
j2r2 + j ′2r2 − 2 j j ′r2 cos(θn′ − θn′′) + L2

)
,

(6)
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here, two particles are in different rays, |θn′ − θn′′ | ≥ π/3.
When two particles are in the same ray, |θn′ − θn′′ | = 0.
For the initial states in Eq. (1), the evolution density matrix
of the total system at time t can be obtained by ρ(t) =
e−i Ht/h̄ |�(0)〉〈�(0)|eiHt/h̄ . In order to explore the dynami-
cal behavior of the system massive particle, we should calcu-
late the evolution-reduced density matrix of the particle mo

from the density matrix of the total system by tracing over the
environmental particles. Therefore, in the basis of the system
particle {|↑〉o, |↓〉o}, the evolution-reduced density matrix of
the system particle mo is

ρmo(t) = Tr1,··· ,n′,··· ,nx [ρ(t)]

= 1

2

⎛

⎜⎜⎜⎝

1
N∏
j=1

cosx (
�o, j t
h̄ )

N∏
j=1

cosx (
�o, j t
h̄ ) 1

⎞

⎟⎟⎟⎠, (7)

here x represents the number of ray branches. From Eq. (7),
what we need to emphasize is that the dynamical behavior
of the system particle can only be influenced by the grav-
itational interactions between the system massive particle
mo and the environmental particles. The gravitational inter-
actions between environmental particles have no effect on
the dynamics of the system particle. In the next section, we
would monitor the system massive particle dynamical behav-
ior (such as the non-Markovianity and the QSLT) by manipu-
lating the various parameters of the environmental particles.

3 Definition of QSLT and non-Markovianity

The QSLT effectually defines the bound of minimal evolu-
tion time for an actual dynamics process from the initial state
ρs(0) to the target final state ρs(τ ). And it is helpful to ana-
lyze the maximal evolutional speed of the dynamics process
[31,33,36]. To describe the dynamics speedup of the sys-
tem massive particle mo by manipulating the environmental
particles, a proper QSLT could be effectually defined by the
bound of minimal evolution time for an arbitrary initial state
ρs(0) to the corresponding target final state ρs(τ ), which
can facilitate to analyze the maximal evolution speed of the
quantum system. In Campaioli et al. [48], the authors have
redefined a new bound from a geometric perspective by using
the method of states of geometric distance in a generalized
Bloch sphere. The QSLT is as follows

τQSL = ‖ρs(0) − ρs(τ )‖hs
‖ ˙ρs(t)‖

, (8)

with ‖ ˙ρs(t)‖ = 1
τ

∫ τ

0 dt‖ ˙ρs(t)‖ and ‖A‖hs =
√∑

i M
2
i .

Here Mi are the singular values of A, and τ is set as the

actual evolution time of the dynamics process. The advantage
of this definition is tighter and easier to calculate for almost
all quantum evolution processes. The physical interpretation
of τQSL is as follows: If τQSL/τ is equal to 1, the dynamics
evolution of the quantum state would not be speedup. That is
to say, the evolutional speed is already maximum. While for
τQSL/τ < 1, the dynamics evolution of the quantum state
may be speedup. Moreover, the smaller this τQSL/τ is, the
greater the quantum speedup could be.

As noted in [31,33,34], the non-Markovian behavior in
the dynamics process from ρs(0) to ρs(τ ) can be attributed
to quantum speedup evolution of a quantum system. That
is, the associated information back-flow from the environ-
ment to the system, can lead to faster quantum evolution,
and hence, to a smaller τQSL/τ . To further analyze the con-
nection between the non-Markovian behavior and quantum
speedup process, in the following, we would try to explore the
dynamics control from Markovianity to non-Markovianity of
the system massive particle mo by adjusting the environment
particles, i.e., by tuning the particles’ separation distance L
or changing the mass of the particles mn′ , and the environ-
mental particles’ number nx .

It is well known that quantum non-Markovianity is a mul-
tifaceted phenomenon and different methods for quantify-
ing memory effects do not agree with each other in gen-
eral [49–51]. However, for a single quantum system such
as the considered single massive particle in our work, a
measure of non-Markovianity N (
) (Breuer–Laine–Piilo
method [22]) can be introduced. For a quantum process 
(t),
ρs(t) = 
(t)ρs(0), with ρs(0) and ρs(t) denoting the den-
sity operators at time t = 0 and at any time t > 0, then the
non-Markovianity N (
) is quantified by

N (
) = max
ρ

1,2
s (0)

∫

σ>0
dtσ [t, ρ1,2

s (0)], (9)

here σ [t, ρ1,2
s (0)] is the rate of change of the trace distance,

σ [t, ρ1,2
s (0)] = d

dtD(ρ1
s (t), ρ

2
s (t)) represents the informa-

tion flow. The trace distance D describing the distinguisha-
bility between the two states is defined as D(ρ1

s (t), ρ
2
s (t)) =

1
2‖ρ1

s − ρ2
s ‖, ‖M‖ = √

M†M and 0 < D < 1. And

σ [t, ρ1,2
s (0)] ≤ 0 corresponds to all dynamical semi-

groups and all time-dependent Markovian processes. A non-
Markovian evolution is defined as a process in which, for
certain time intervals σ [t, ρ1,2

s (0)] > 0, the information
flows back into the system temporarily, originating from
the appearance of quantum memory effects. We needs to
take the maximum over all initial states for calculating the
non-Markovianity. In Refs. [22,47], by drawing a suffi-
ciently large sample of random pairs of initial states, it was
proven that the optimal state pair of the initial states can
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be selected as ρ1
s (0) = 1

2 (|↑〉s + |↓〉s)(s〈↑ | +s 〈↓ |) and
ρ2
s (0) = 1

2 (|↑〉s − |↓〉s)(s〈↑ | −s 〈↓ |).
Therefore, by considering each environment massive par-

ticle prepared to be in a spatially localized superposition state
ρ1
n′(0) = 1

2 (|↑〉n′ + |↓〉n′)(n′ 〈↑ | +n′ 〈↓ |), and choosing the
optimal state pair of the initial states of the system parti-
cle as ρ1

mo
(0) = 1

2 (|↑〉mo + |↓〉mo)(mo〈↑ | +mo 〈↓ |) and

ρ2
mo

(0) = 1
2 (|↑〉mo − |↓〉mo)(mo〈↑ | −mo 〈↓ |), the trace dis-

tances D(ρ1
mo

(t), ρ2
mo

(t)) in the two-dimensional model can
be respectively obtained

D(ρ1
mo

(t), ρ2
mo

(t)) =
∣∣∣∣∣∣

N∏

j=1

cosx
(

�o, j t

h̄

)∣∣∣∣∣∣
. (10)

The rate of change of the trace distance σ [t, ρ1,2
s (0)] can be

acquired from Eq. (10). Then one can readily verify the non-
Markovianity N (
) of the dynamics process of the system
particle mo. The above is an illustration of the basic calcula-
tion of the non-Markovianity and the QSLT. In the following,
by controlling the parameters (such as the mass of environ-
mental particles mn′ , the number of environmental particles
nx and the separation distance L of each massive particle),
the dynamical crossover behaviors from Markovian to non-
Markovian and from no-speedup to speedup can be achieved
in this two-dimensional model.

4 Dynamical crossover in two-dimensional singular ray
case

For two-dimensional singular ray case (x = 1, x = 3 and
x = 5), we mainly explore the dynamic crossover behav-
iors of mo coupled with the environmental particles with
gravitational interactions. In Fig. 2, the relationship between
the non-Markovianity N (ϕ) and the QSLT τQSL of the sys-
tem particle dynamics process from ρmo(0) to ρmo(τ ) with
the separation distance L and the number of environmental
particles nx under different structures, with the actual evo-
lution time τ = 0.4s, r= 250µm and mo = 1013 kg. For
simplicity, here we consider that each environmental particle
and the system massive particle have the same mass, that is
mo = mn′ = m. It is worth noting that a remarkable dynam-
ical crossover behavior from Markovian dynamics to non-
Markovian dynamics (ρmo(0) → ρmo(τ )) can occur at a cer-
tain critical separation distance L c = 0.64r (in the one-ray
case x = 1) of each environmental particle. When L < L c,
the dynamics process abides by Markovian behavior, and
then the non-Markovianity would occur in the case L > Lc,
as shown in Fig. 2a. And another dynamical crossover behav-
ior from no-speedup to speedup of the dynamics process from
ρmo(0) to ρmo(τ ) can also emerge at a different critical sepa-
ration distance L c′ = 1.1r . In the case L < L c′ , τQSL/τ = 1
as shown in Fig. 2a′, the quantum evolution process of the
system particle cannot be accelerated. And when L > L c′ ,

Fig. 2 For the two dimensional singular ray case (x = 1, x = 3
and x = 5), and the actual evolution time τ = 0.4s, r=250µm and
m=mo=10−13 kg. a–c Non-Markovianity N (ϕ) of the dynamics pro-
cess of the system particlemo as a function of L/r and the number of the

environment particles nx . a′–c′ The QSLT for the dynamics process of
the system particle mo from the initial state ρs(0) = 1

2 (|↑〉s +|↓〉s)(s〈↑
| +s 〈↓ |) to the target final state ρs(τ ) as a function of L/r and the
number of the environment particles nx
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Fig. 3 For the two dimensional singular ray case (x = 1, x = 3
and x = 5), and the actual evolution time τ = 0.4s, r=250µm,
L = 0.5r and mo=10−13 kg. a–c Non-Markovianity N (ϕ) of the
dynamics process of the system particle mo as a function of m/mo
with different number of the environment particles nx . a′–c′ The QSLT

for the dynamics process of the system particle mo from the initial state
ρs(0) = 1

2 (|↑〉s + |↓〉s)(s〈↑ | +s 〈↓ |) to the target final state ρs(τ ) a
function of and m/mo with different number of the environment parti-
cles nx

τQSL/τ < 1 can be acquired, the quantum dynamics pro-
cess can be speedup. So the dynamical crossover behaviors
from Markovian to non-Markovian and from no-speedup to
speedup can be achieved by controlling the separation dis-
tance L of each environmental particle.

Then we observe horizontally, as shown in Fig. 2a–c,
the more complex the structure of the two-dimensional ray
model is (the larger the x value is), the more critical point
L c for the transformation from Markovian behavior to non-
Markovian behavior increases. For example, L c = 0.64r
when the environment particle is a two-dimensional one-ray
structure. While for the environment particles are placed in
the two-dimensional five-ray structure, L c = 0.67r . Then,
we make a transverse comparison of a′, b′ and c′ in Fig. 2
and find that under the singular two-dimensional ray struc-
ture, the critical value L c′ = 1.1r would not change if x value
is changed. In addition, we find that the critical value L c (or
L c′ ) in all pictures will not change in their respective struc-
tures (when x value is unchanged), forming the critical line
L/r as shown in Fig. 2. Thus, we can infer that the change
of particle number in the same structure will not affect the
change of critical value.

Furthermore, we also find that the dynamics process
of the system particle would abide by the Markovian no-
speedup behavior in the condition of the shorter separation

distance L , such as L = 0.5r . In order to achieve the non-
Markovian speedup dynamics process of the system particle
in L = 0.5r , the role of the environmental particles’ mass
m on the dynamics behavior has been cleared in Fig. 3. In
the two-dimensional three-ray case, by adjusting the mass
of environmental particles satisfying m > 1.50mo, the evo-
lution of the system particle can transfer from Markovian
behavior to the non-Markovian behavior. We find that in
this two-dimensional three-ray case, the mc critical point
becomes slightly larger compared to the two-dimensional
one-ray case. The same change also occurs in the the two-
dimensional five-ray case, as shown in Fig. 3c, where the
transition point mc = 1.57mo. At the same time, we know
from Fig. 3a′–c′ that in the case of two-dimensional singular
rays, when L = 0.5r and m > 3mo, the dynamics of the sys-
tem can also achieve dynamic crossover behavior from no-
speedup to speedup. Except for the separation distance L and
the environmental particles’ massm, the environmental parti-
cles’ number nx can also be related to the dynamics behavior
of the system particle. In the two-dimensional singular ray
case, the transition critical point causing the non-Markovian
behavior (Figs. 2a–c and 3a–c) and the transition critical point
at which the dynamics process of the system particle starts
to accelerate (Figs. 2a′–c′ and 3a′–c′), are both independent
of the environmental particles’ number nx . From this, we
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Fig. 4 For the two dimensional even ray case (x = 2, x = 4 and
x = 6), and the actual evolution time τ = 0.4s, r=250µm and
m=mo=10−13 kg. a–cNon-Markovianity N (ϕ) of the dynamics process
of the system particle mo as a function of L/r and the number of the

environment particles nx . a′–c′ The QSLT for the dynamics process of
the system particle mo from the initial state ρs(0) = 1

2 (|↑〉s +|↓〉s)(s〈↑
| +s 〈↓ |) to the target final state ρs(τ ) as a function of L/r and the
number of the environment particles nx

can simply infer that the change of the critical point is only
related to the separation distance L and the mass m of the
environment particle. However, nx plays an important role in
controlling non-Markovian behavior or speedup behavior of
the system. Through verification, it is found that the smaller
nx , the greater the non-Markovianity and the smaller QSLT
appear. And then when the number of environmental parti-
cles nx reaches a certain value, the non-Markovianity and
the QSLT will not be affected by nx . It can be observed more
clearly from Fig. 3 that the color dashed lines tend to coin-
cide with the increase of particle numbernx in their respective
structures.

5 Dynamical crossover in two-dimensional even ray case

In this section, we have discussed the dynamic crossover
behaviors of the system massive particle mo in the two-
dimensional even ray case (x = 2, x = 4 and x = 6).
For example, in the two-dimensional four-ray case, by set-
ting the mass of the system particle mo equals to each envi-
ronmental particle, i.e., mo = mn′ = m, the results can be
obviously obtained. When L < 0.66r , the system dynam-
ics process (ρmo(0) to ρmo(τ )) shows the Markovian behav-
ior. By increasing L and making L > 0.66r , the system
dynamics process would display the non-Markovian behav-
ior. Therefore, L c = 0.66r is the transition point from
Markovian behavior to non-Markovian behavior (as shown

Fig. 4b). In addition, the critical value L c = 0.64r in the
two-dimensional two-ray case is slightly smaller. And the
critical value is L c = 0.69r in the case of two-dimensional
six-ray, as shown in Fig. 4a, c. It can be seen that this result
in the two-dimensional even ray case is consistent with that
in the two-dimensional singular ray case. That is to say, the
critical value of dynamic crossing behavior from Markovian
to non-Markovian increases with the increase of structure
complexity.

Moreover, when L = 0.5r , m = mo satisfies, the evo-
lution of the particle mo is always Markovian behavior.
Figure 5b describes the dynamics crossover behavior from
Markovian to non-Markovian by adjusting the mass m of
the environmental particles in the two-dimensional four-ray
case, the transition point of this dynamics behavior of the
system is mc = 1.53mo. Meanwhile, as shown in Fig. 5a,
b, the critical points for the two-dimensional two-ray case
and the two-dimensional four-ray case are mc = 1.48mo and
mc = 1.62mo, respectively. At the same time, combined with
the two-dimensional singular ray case, we draw a definitive
conclusion that the more complex the structure (the larger
the x value), the more difficult it is to reach the intersection
point of Markovian to non-Markovian dynamic behavior.

While for the transition point for the dynamical crossover
behavior from no-speedup to speedup of the dynamics pro-
cess of the system particle as shown in Figs. 4b′ and 5b′
in the two-dimensional four-ray case, the critical separation
distance and the environmental particles’ mass satisfy L c =
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Fig. 5 For the two dimensional even ray case (x = 2, x = 4 and
x = 6), and the actual evolution time τ = 0.4s, r=250µm, L = 0.5r
and mo=10−13 kg. a–c Non-Markovianity N (ϕ) of the dynamics pro-
cess of the system particle mo as a function of m/mo with differ-
ent number of the environment particles nx . a′–c′ The QSLT for the

dynamics process of the system particle mo from the initial state
ρs(0) = 1

2 (|↑〉s + |↓〉s)(s〈↑ | +s 〈↓ |) to the target final state ρs(τ ) a
function of and m/mo with different number of the environment parti-
cles nx

0.66r and mc = 1.53mo. Obviously, in this two-dimensional
four-ray case, two dynamics crossover behaviors would be
converted at the same transition point. Similarly, the two-
dimensional two-ray case and the two-dimensional six-ray
case have the same conclusion, as shown in Figs. 4a′, c′ and
5a′, c′. As noted in Refs. [31–33], the non-Markovianity in
the dynamics process (ρmo(0) to ρmo(τ )), and the associ-
ated information backflow from the environment, can lead to
faster quantum evolution and hence to smaller QSLT. So we
can conclude that in the two-dimensional even ray case, the
dynamical crossover behavior from no-speedup to speedup
is strictly related to the dynamics crossover behavior from
Markovian to non-Markovian. This conclusion is markedly
different from that in the two-dimensional singular ray case.
So we can easily get a strong rule: there is an obvious one-
to-one correspondence between the non-Markovianity and
the quantum speedup of the dynamics process of the system
massive particle in the case of even number rays. However,
the critical points increase with the complexity of the struc-
ture, for example, the critical points of the two dimensional
six-ray case are L c = 0.69r and mc = 1.62mo (Figs. 4b′ and
5b′).

As we work further, according to two-dimensional ray
model, we have observed that the dynamical crossover behav-
iors for a massive particle can be manipulated by the appro-

priate parameters of the controllable environment. Generally
in the realizable experiments, the parameters such as the envi-
ronmental particles’ number nx , the mass m of the environ-
mental particles and the separation distance L for each parti-
cle can be monitored. Then we need to emphasize that, when
the number of the rays x is fixed, the change of environmen-
tal particles’ number could not affect the value of transition
point, but would affect the value of the non-Markovianity and
the QSLT. In addition, the non-Markovianity tends to a sta-
ble value with the increase of separation distance. Finally,
the greater the environmental particles’ mass m satisfies,
the greater the non-Markovianity is achieve, and the greater
degree of dynamic acceleration will also occur. The physical
reason for the conclusion can be explained as: for the models
in our work, the greater the gravitational interaction between
the system particle and the environmental particles, can lead
to the stronger the information back-flow from the environ-
mental particles to the system particle. And the larger non-
Markovianity of dynamics process leads to the greater accel-
eration of the system particle’ quantum state evolution. It is
worth emphasizing that, the remarkable conclusion declares
that our mechanism to control the non-Markovianity of a
massive particle can also be used to accelerate the evolution
speed of this massive particle.
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Fig. 6 The different structures by changing the number of particles
in the first layer: a Non-Markovianity N (ϕ) of the dynamics pro-
cess of the system particle mo as a function of L/r . b The QSLT for
the dynamics process of the system particle mo from the initial state

ρs(0) = 1
2 (|↑〉s + |↓〉s)(s〈↑ | +s 〈↓ |) to the target final state ρs(τ )

a function of L/r . c The geometric distance ‖ρmo(0) − ρmo(τ )‖hs for
different number of particles in the first layer as a function of L/r . Here
the actual evolution time τ = 0.4s, r=250µm and mo=10−13 kg

6 Relationship between non-Markovianity and QSLT

In the above research content of this work, we have men-
tioned that under the fixed x value (i.e. in the same structure),
the change of the environmental particle number has almost
negligible effect on the critical value of dynamical crossover
behaviors. Therefore, we give the non-Markovianity and the
QSLT diagram corresponding to different ray number x in
the first layer under other conditions being the same. We find
that, the non-Markovianity decreases with the complexity of
the structure. The difference between the critical points of
the system particle mo from Markovian behavior to non-
Markovian behavior is not obvious (see Fig. 6a), but the
difference between the corresponding quantum acceleration
critical points is obvious (see Fig. 6b). Two interesting con-
clusions can be drawn: one is that the two-dimensional even-
ray case accelerates more easily than the two-dimensional
singular ray case. The other is that the two-dimensional two-
ray case is the easiest to accelerate the system particle dynam-
ics process, and this symmetrical structure is the best choice.
However, we should note that this two-ray condition is not
only linear, but also two-dimensional ray state (the angle
between the two ambient particles is less than 180 degrees).
In addition, we find that when 1.6 ≤ L/r ≤ 4.35 and there is
only one particle in the environment, the system accelerates
more easily, which is also the non-Markovianity correspond-
ing to the QSLT in this stage.

We simply describe ‖ρs(0) − ρs(τ )‖hs changing with
L/r to explore the reasons on the QSLT. In the small figure of
Fig. 6c, in the singular-ray case ‖ρs(0) − ρs(τ )‖hs increases
monotonically, while in the even-ray case ‖ρs(0) − ρs(τ )‖hs
decreases monotonically, showing obvious shunt. Other con-
ditions remain the same, and whenn2 = 2,‖ρs(0) − ρs(τ )‖hs
has the minimum value, which also corresponds to Fig. 6b
when n2 = 2, it is easiest to accelerate. In addition, we can
also find that when L/r � 1, Fig. 6b, c can be well corre-

lated. So ‖ρs(0) − ρs(τ )‖hs is indeed one of the reasons to
affect the QSLT.

7 Conclusions

In summary, the non-Markovian dynamics speedup control
of a massive particle has been achieved by manipulating the
parameters of the environment particles due to gravity. By
considering two-dimensional ray model consisting of a mas-
sive particle gravitationally interacting with multiple mas-
sive particles as a environment, two dynamical crossover
behaviors of the system particle, from Markovian dynamics
to non-Markovian dynamics and from no-speedup evolution
to speedup evolution, have been realized by adjusting the
separation distance of each massive particle, the number and
the mass of the environment particles.

We mainly consider the parameters (such as the environ-
mental particles’ number nx , the environmental particles’
mass m, the system particle’ mass mo, the separation dis-
tance L and the distance r between two adjacent particles)
in the total system to manipulate the dynamical crossover
behaviors of the system particle. In addition, when only one
of these variables is regulated, and the other parameters are
fixed. We have summarized the following physical conclu-
sions: Firstly, with the increase of the separation distance L
of each particle or the mass m of the environmental parti-
cle, the non-Markovianity of the dynamic process increases,
the information back-flow capacity increases, and the quan-
tum evolution process is easier to accelerate. Secondly, the
quantum evolution process of the system particle is easier to
accelerate in the even ray case than in the singular ray case.
And in the even ray case, the dynamical crossover behavior
from no-speedup to speedup is strictly related to the dynamics
crossover behavior from Markovian to non-Markovian. They
are one-to-one correspondence, and quantum acceleration is
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caused by the non-Markovianity. However, in the singular
ray case, the quantum speedup of the dynamics process is
not only affected by the non-Markovianity. The geometric
distance ‖ρs(0) − ρs(τ )‖hs must also be an important factor
affecting the QSLT. So the non-Markovianity is not deci-
sive for the speedup dynamics process. Thirdly, it is accurate
that the number of environmental particles does not affect
the change of critical value at the same x value (or in the
same structure). When the structure is not changed (the x
value is constant), the total number of particles increases
to the second layer and above (for example, n4 = 12 and
n4 = 16, the dynamics crossing point is m/mo = 1.53,
as shown in Fig. 5b), and the critical value almost remains
unchanged. This is because the distances between the envi-
ronmental particles (in the second layer and above layers)
and the system particle mo are large, and the gravitational
interactions between the system particle mo and these envi-
ronmental particles are weak, which has almost no effect on
the change of the critical value.

Additionally, we make the explanations on our proposed
scheme for the control of a massive particle evolution due
to gravity in the two-dimensional ray model. (a) In terms of
selection of actual physical system, the micro-size diamonds
with an embedded nitrogen-vacancy center spin could be can-
didates for the massive system particle and environmental
particles [7]. (b) When the model structure is the same (that
is, the x value is the same), the change of the number of ambi-
ent particles will not affect the change of the critical value.
Therefore, our most basic experimental environment can be
determined, that is, the quantum system and the nearest ambi-
ent particles distributed around it constitute a basic experi-
mental system. It should be noted that the number of the near-
est ambient particles should not exceed six. According to the
optimal result of our scheme (when x = 2 and there are two
environmental particles), it should be noted that the distance
between environmental particles should be greater than or
equal to 250 μm (excluding the influence of Casimir–Polder
interaction), and the size of system particles and environ-
mental particles should be set at 250 μm. (c) Both our work
and the previous relevant study [12] mainly consider an ideal
zero-gravity environment, in which the equivalence principle
prevents any observable effects of other external gravitational
fields. Of course, when the zero-gravity environment does
not satisfy, the external gravitational fields [52] would affect
the dynamic behavior of the system particle. In addition, for
the sake of simplicity and applicability in theoretical analy-
sis, we also choose the Newtonian approximation method. If
the relativistic effect is taken into account, the existence of
gravitational time dilation has a great influence on quantum
coherence of the system particle [53–56]. The gravitational
time dilation may affect the dynamical crossover behaviors
in our scheme. Therefore, we would introduce the relativis-

tic effect into our model for further research to the control of
quantum dynamics of the system massive particle.
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