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Abstract Our analysis focus on the dragging effects on the
accretion flows and jet emission in Kerr super-spinars. These
attractors are characterized by peculiar accretion structures
as double tori, or special dragged tori in the ergoregion, pro-
duced by the balance of the hydrodynamic and centrifugal
forces and also effects of super-spinars repulsive gravity. We
investigate the accretion flows, constituted by particles and
photons, from toroids orbiting a central Kerr super-spinar. As
results of our analysis, in both accretion and jet flows, proper-
ties characterizing these geometries, that constitute possible
strong observational signatures or these attractors, are high-
lighted. We found that the flow is characterized by closed
surfaces, defining inversion coronas (spherical shell), with
null the particles flow toroidal velocity (uφ = 0) embed-
ding the central singularity. We proved that this region dis-
tinguishes proto-jets and accretion driven flows, co-rotating
and counter-rotating flows. Therefore in both cases the flow
carries information about the accretion structures around the
central attractor, demonstrating that inversion points can con-
stitute an observational aspect capable of distinguishing the
super-spinars.

1 Introduction

The study of possible astrophysical signatures for Kerr super-
spinars constitutes an extensive and debated literature on a
huge variety of astrophysical phenomena – see for example
[1–13].

In the present analysis, we discuss newly introduced
observationally relevant astrophysical phenomena which can
expose distinctions between Kerr Naked Singularities (NSs)
and Black holes (BHs). We implement this analysis in the
accretion and jet emission frame investigating the accretion
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tori flow and jet emission in the super-spinnar gravitational
field.

Inversion points investigated here are points of vanish-
ing toroidal velocity of the particles and photons as related
to distant static observers, therefore defined by the condi-
tion uφ = 0 (or equivalently � = 0) on the flow particles
and photons velocities (relativistic angular velocity). This
condition defines a spherical surface, the inversion sphere,
embedding the central attractor, where � = 0. The inver-
sion sphere is independent from the normalization condi-
tion on the flow components at the inversion point, there-
fore describes equivalently photons and timelike particles.
Jet emission and accretion flow from the orbiting struc-
tures define a closed region surrounding the central attrac-
tors bounded by an inner and outer inversion sphere, and
fixed only by the spin – mass ratio of the attractor. This
closed region (spherical shell), defined inversion coronas,
filled with null particles flow toroidal velocity (uφ = 0) dis-
tinguishes proto-jets and accretion driven flows, co-rotating
and counter-rotating flows. The location and topology of
this sphere carries information about details of the accretion
structures around the central attractor. Therefore an inversion
corona is as a valid astrophysical tracer distinguishing Kerr
super-spinar solutions from Kerr BH solutions, providing
also possible strong observational signature of the NSs.

This analysis follows paper [14], where the case of Kerr
BH attractors has been considered, while in [43] a compari-
son between BH and NS inversion sphere is discussed.

The inversion points in the super-spinner geometries are
related to a combination of the repulsive gravity effects and
the frame dragging effects, typical of the NSs ergoregion.
Toroidal configurations around the central super-spinning
attractor have been thoroughly characterized in a several
studies, here we discuss the accretion flow velocity compo-
nents, energy and momentum at the inversion points taking
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into account the peculiar NS causal structure and the frame
dragging effects from the NSs ergoregions.

We detail, the fluid inversion points driven by the orbiting
toroidal structures. To fix the discussion we considered geo-
metrically thick general relativistic hydrodynamic (GRHD)
disks, centered on the equatorial plane of the central attractor,
which is also the tori symmetry plane. It should be noted that
the inversion points analysis is however independent from an
eventual tilted angle, and the assumption of coplanar tori is
in fact not necessary. More precisely we consider barotropic,
radiation pressure supported accretion tori, cooled by advec-
tion, with low viscosity and opaque, with super-Eddington
luminosity (high matter accretion rates) [15–18]. This model
(Polish doughnut) is widely used in literature as the initial
conditions of the GRMHD (magnetohydrodynamic) evolu-
tion of accretion disks [19–23]. In the GRHD barotropic mod-
els, the time scale of the dynamical processes τdyn (driven by
gravitational and inertial forces) is much lower than the time
scale of the thermal ones τtherm (including heating and cool-
ing processes, radiation) which is lower than the time scale
of the viscous processes τν . In other words, the strong grav-
itational field of the background is dominant with respect to
the dissipative forces, in determining the tori unstable phases
[16,18,20,21,24–31]. Within this approximation, during the
dynamical processes, the functional form of the angular
momentum and entropy distribution in the fluid, depends on
the system initial conditions and not on the the details of the
dissipative processes.

The accretion process turns therefore to be regulated by the
mass loss in the outer toroid Roche lobe overflow, associated
to the occurrence of the surface cusp. The instability process
follows the un-balance of the gravitational, inertial forces,
and the pressure gradients in the fluid. This is a important
self-regulated process, which turns out to locally stabilize the
accreting torus from the thermal and viscous instabilities and
it globally stabilizes the torus from the Papaloizou&Pringle
instability [16–18,32–34].).

As for the BH case, analyzed in [14], the flow inversion
points in the NS spacetimes, define the inversion sphere as a
closed and regular surface determined by the constant fluid
specific angular momentum �. Whereas the turning corona
is defined by the range of location of the disk inner edge or
the proto-jets cusps for accretion driven or proto-jets driven
flows.

Therefore, although the inversion points do not depend
on the details of the accretion processes, or the precise loca-
tion of the tori inner edge, in our analysis the flow of pho-
tons and free-falling particles are driven from the inner edge
(the toroidal surface cusp) of the accretion disk or proto-jets
(open, cusped configuration).

In general, the concept of accretion disks inner edge
depends on the details of the accretion process. However
analytic models of accretion tori fix a certain radius r×, inner

edge, which is usually an unstable geodesic circular orbit,
the cusp, as a theoretical radius distinguishing the accretion
flows in (free falling) particles from the region r < r×, and
at r > r×, defines the accretion torus up to an outer edge
router [35–42]. For a stellar attractor, the inner edge is gen-
erally located near the star surface, for BHs and the NSs the
inner edge lies between the marginally bound circular orbit
and the marginally stable circular orbit. The proto-jets have
a cusp in the orbital range defined by the marginally circular
orbit (usually a photon orbit) and marginally bound circu-
lar orbit.1 Therefore, the fluid specific angular momentum at
these orbits defines the accretion driven and defines the proto-
jets driven inversion coronas respectively. The morphological
structure of the jets and particularly the velocity components
on the central axis of rotation constitute an important topic
of jet emission collimation, thus for the proto-jets analysis
we consider in particular the presence of flow inversion point
in the direction of the rotational axis of the central attractors
(vertical direction).

More in details, this article plan is as follows:
In Sect. 2 we introduce the spacetime metric. The toroidal

structures are discussed in Sect. 2.1.
The inversion points are analyzed in Sect. 3. In Sect. 3.1 we

define the flow inversion points and in Sect. 3.2 flow inversion
points are related to the orbiting structures defining accretion
driven and proto-jets driven inversion coronas.

In Sect. 3.2.1 we address the special case of double tori
with equal specific angular momentum. Tori and inversion
points for � = ±a are studied in Sect. 3.2.2. Excretion
driven inversion points and torus outer edges are focused in
Sect. 3.2.3. The location of inversion points in relation to the
ergoregion is discussed in Sect. 3.2.4. NSs are distinguished
from the BHs by the presence of double inversion points on
planes different from the equatorial, we discuss this aspect in
Sect. 3.2.5. Proto-jets driven inversion points and inversion
points verticality are focused in Sect. 3.2.6: Some notes on the
inversion coronas thickness and slow counter-rotating inver-
sion spheres are in Sect. 3.2.7. We conclude in Sect. 3.2.8
with further notes on the flow inversion points from orbiting
tori. Section 4 contains discussion and final remarks. Three
appendix sections follow: some more in depth notes on the
tori models are in Sec. (A), relative location of the inversion
points in accreting flows is the focus of Sec. (B). Further notes
on the co-rotating flows inversion points are in Sec. (C).

1 The inner edge of the accreting tori has also be framed in the jet emis-
sion mechanism, with several indications of a jet emission-accretion
disk correlation [38–42].
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2 The Kerr spacetime metric

The Kerr spacetime metric reads

ds2 = −
(

1 − 2Mr

�

)
dt2 + �

�
dr2 + �dθ2

+
[
(r2 + a2) + 2Mra2

�
σ

]
σdφ2 − 4rMa

�
σdtdφ,

(1)

In the Boyer–Lindquist (BL) coordinates {t, r, θ, φ},2 where

� ≡ a2 + r2 − 2rM and � ≡ a2(1 − σ) + r2,

σ ≡ sin2 θ. (2)

Parameter a = J/M ≥ 0 is the metric spin, where total
angular momentum is J and the gravitational mass param-
eter is M . The Kerr naked singularities (NSs) have a >

M . A Kerr black hole (BH) is defined by the condition
a ∈ [0, M] with Killing horizons horizons r− ≤ r+ where
r± ≡ M ± √

M2 − a2). The extreme Kerr BH has dimen-
sionless spin a/M = 1 and the non-rotating case a = 0 is
the Schwarzschild BH solution.

The outer and inner stationary limits r±
ε (ergosurfaces),

are given by

r±
ε ≡ M ±

√
M2 − a2(1 − σ) (3)

respectively. We also introduce the function σerg : r = r±
ε :

σerg ≡ (r − 2M)r

a2 + 1 (4)

The region [r−
ε , r+

ε ] is the ergoregion. There is r−
ε = 0 and

r+
ε = 2M in the equatorial plane θ = π/2 (σ = 1), and
r+ < r+

ε on θ �= 0. More precisely there is

gtt > 0 for : a ≥ M
(
σ = σ+

ε , r = r−
ε

) ;(
σ ∈]σ+

ε , 1[, r ∈ [r−
ε , r+

ε ]) ; (σ = 1, r ∈]0, 2M]) ;
where σ+

ε ≡ a2 − M2

a2 . (5)

NS polesσ = 0 are associated to gtt < 0 fora ≥ 0 and r ≥ 0.
In the following, where appropriate, to easy the reading of
complex expressions, we will use the units with M = 1
(where r → r/M and a → a/M).

The equatorial circular geodesics are confined on the equa-
torial plane as a consequence of the metric tensor symmetry

2 We adopt the geometrical units c = 1 = G and the (−,+,+,+)

signature, Latin indices run in {0, 1, 2, 3}. The radius r has unit of
mass [M], and the angular momentum units of [M]2, the velocities
[ut ] = [ur ] = 1 and [uφ] = [uθ ] = [M]−1 with [uφ/ut ] = [M]−1 and
[uφ/ut ] = [M]. For the seek of convenience, we always consider the
dimensionless energy and effective potential [Vef f ] = 1 and an angular
momentum per unit of mass [L]/[M] = [M].

under reflection through the plane θ = π/2. We consider the
following constant of geodesic motions

E = −(gtφφ̇ + gtt ṫ), L = gφφφ̇ + gtφ ṫ,

where gabu
aub = κμ2, ut = gφφE + gtφL

g2
tφ − gφφgtt

,

uφ = − gtφE + gttL
g2
tφ − gφφgtt

, (6)

with ua ≡ {ṫ, ṙ , θ̇ , φ̇} where q̇ indicates the derivative of
any quantity q with respect the proper time (for μ > 0) or
a properly defined affine parameter for the light – like orbits
(for μ = 0), and κ = (±, 0) is a normalization constant
(κ = −1 for test particles).

Quantity ξφ = ∂φ is the rotational Killing field and ξt = ∂t
is the Killing field representing the stationarity of the Kerr
background. The constant L in Eq. (6) can be interpreted
as the axial component of the angular momentum of a test
particle following timelike geodesics and E represents the
total energy of the test particle related to the radial infinity, as
measured by a static observer at infinity. The specific angular
momentum is

� ≡ L
E = −gφφuφ + gφt ut

gtt ut + gφt uφ
= −gtφ + gφφ�

gtt + gtφ�

� ≡ uφ

ut
= − gtφ + gtt�

gφφ + gtφ�
(7)

where � is the relativistic angular velocity.
For a circularly orbiting test particle, particle counter –

rotation (co-rotation) is defined by La < 0 (La > 0). The
Kerr NS background geodesic structure is constituted by
the radii {r±

γ , r±
mbo, r

±
mso}, marginally circular (photon) orbit,

marginally bounded orbit, and marginally stable orbit respec-
tively for counter-rotating (+) and co-rotating (−) motion –
see Fig. 1. The spacetime geodesic structure regulates test
particles circular motion and some key aspects of accretion
disks physics – see Table 1. In Sect. 2.1 we discuss further
the notion of co-rotating and counter-rotating accretion tori
in NSs spacetimes.

2.1 Co-rotating and counter-rotating accretion tori in NSs
spacetimes

We analyze two families of accretion tori, governed by the
distribution of specific angular momentum on the equatorial
plane,

�∓ ≡ a3 ∓ r3/2� − a(4 − 3r)r

a2 − (r − 2)2r
, (8)

[18,25,43,44]. Toroids are full GRHD (barotropic) Polish
doughnut (PD) models, composed by one -particle-species
fluids orbiting on the equatorial plane (the tori symmetry

123



242 Page 4 of 32 Eur. Phys. J. C (2023) 83 :242

Fig. 1 Analysis of the extended
geodetic structure of the Kerr
NS, constraining tori with fluid
angular momentum � = �±.
Spins
{a0, a1, a2, a4, a5, a6, a7, a8, a9}
are defined in Table 2. Radius
r+
γ is the counter – rotating last

circular orbit relative to
counter-rotating fluids with
� = �+ < 0, radius r+

ε = 2M , is
the outer ergosurface on the
equatorial plane. {r±

mso, r
±
mbo}

are the marginally stable orbit
and marginally bounded orbits
relative to fluids with �±
respectively. Radii
{r±

[mso], r
±
[mbo], r

+
[γ ]} are defined

on Table 1. On radii r±
0

momenta are L(r±
0 ) = 0, and

there is E(r±
δ ) = 0

Table 1 Co-rotating and counter-rotating tori in Kerr NSs. � is the
fluid specific angular momentum. Radii r−

mso = {r̄−
mso, r̃

−
mso}, are

the marginally stable orbits related to the motion �− ≷ 0, where
r−
mso = r̄−

mso for spin a > a1 and r−
mso = r̃−

mso for a ∈]M, a1] and
r̄−
mso = r̃−

mso ona1 – Fig. 1. Spina1 is defined in Table 2. For simplicity of
notation, when it is not necessary to specify, we will use the abbreviated
notation r−

mso for {r̄−
mso, r̃

−
mso}. We adopt the notation q• ≡ q(r•) for any

quantity q evaluated on a radius r•. Radii {r±
γ , r±

mbo}, are the marginally
circular (photon) orbit and the marginally bounded orbit for �+ and �−
specific angular momentum. Relation between radii {r±

mso, r
±
γ , r±

mbo}
characterizes fluids with �+ and �− at NSs spins a > a2 – see Table 2 –
where there is r−

γ ≡ 0. Radii {r±
[mbo], r

±
[γ ]} constitute the Kerr geometry

extended geodesic structure. There is �−
γ = a and r−

[γ ] = a2 – see also
Fig. 1

r±
[mbo] : �±(r±

mbo) = �±(r±
[mbo]) ≡ �±

mbo, r±
[γ ] : �±(r±

γ ) = �+(r+
[γ ]) ≡ �+

γ

r±
γ < r±

mbo < r±
mso < r±

[mbo] and r+
[mbo] < r+

[γ ] < r−
γ ≡ 0,

�± ∈ L±
1 ≡]�±

mbo, �
±
mso[: quiescent and cusped tori. r× ∈]r±

mbo, r
±
mso], rcenter ∈]r±

mso, r
±
[mbo]];

�± ∈ L±
2 ≡ [�±

γ , �±
mbo[: quiescent tori and proto-jets. r j ∈]r±

γ , r±
mbo] rcenter ∈]r±

[mbo], r
±
[γ ]];

�± ∈ L±
3 : �± < �±

γ : quiescent tori, rcenter > r±
[γ ].

plane) of the central attractor, and parameterized with con-
stant specific angular momentum �± =constant.

The fluid dynamics is governed by the Euler equa-
tion only, expressible through an effective potential func-
tion, Vef f (r; �, a), encoding the centrifugal and gravitational
components of the force balance. The pressure gradients are
regulated by the gradients of an effective potential func-
tion for the fluid. Toroidal configurations are characterized
by a maximum of the pressure and density (torus center
rcenter ) and, eventually, a vanishing of pressure point, tori
cusps r× and proto-jets cusps r j . Proto-jets are open, cusped,
HD toroidal configurations, with matter funnels along the
attractor rotational axis. The torus edges are solutions of
V 2
e f f = K 2 =constant and there is K = K× for the cusped

tori edges. There is K× < 1 for tori cusps and K× ≥ 1 for
proto-jets cusps – see Table 1, these values can be obtain
from the function K (r) ≡ Vef f (r; �(r), a).

Geometrically thick tori considered in this analysis are
well known and widely used in literature – see for example

[18,59]. In this section we outline some fundamental aspects
for the analysis of the turning points, constituting the con-
straints used in the second part of this work, while in Sec. (A)
we summarize some in-depth aspects of these models.

We shall investigate the “disk –driven” free – falling accre-
tion flow composed by matter and photons, and the case of
“proto-jets (or jets) driven” flows.

In this section we discuss further the notion of co-rotation
and counter-rotation in NSs spacetimes.

We introduce the radii r±
0 < r+

ε = 2M : L = � = 0,
and r±

δ : E = 0,L > 0 where r−
0 < r−

δ < r+
δ < r+

0 ,
showed in Fig. 1 (explicit forms are in [43]) and spins a j with
j ∈ {0, 9} and {ai, aii, aiii, aiv}, in Table 2, defined by the
geodesic properties of the spacetime, showed in Fig. 1. Fluid
specific angular momentum � = �+ < 0 defines counter-
rotating fluids while � = �− � 0 distinguishes co-rotating
and counter-rotating tori respectively and we summarize the
situation in Table 3.
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Table 2 Notable spins in the Kerr NS spacetime. Radii r , defining the spin sets are in Table 1. Radii r±
0 and r±

δ are defined in Sect. 2.1 – see also
Fig. 1

a0 ≡ 4
3

√
2
3 M = 1.08866 M : r+

δ = r−
δ , a1 ≡ 1.28112 M , a2 ≡ 3

√
3

4 = 1.29904 M : r+
0 = r−

0

a3 ≡ √
3M a4 ≡ 3.7195M : r+

γ = r−
[mbo], a5 ≡ 8M : r−

[mbo] = r+
mbo

a6 ≡ 9M : r+
γ = r̄−

mso a7 ≡ 22.3137 M : r+
γ = r−

mbo a8 ≡ 24.6082M : r−
[mbo] = r+

mso

a9 ≡ 45.6274M : r+
mbo = r̄−

mso ai ≡ 4.12311M : r+
mso = r−

[γ ] aii ≡ 3M : r+
mbo = r−

[γ ]
aiii ≡ 2.23607M : r+

γ = r−
[γ ] aiv ≡ 1.03886 M : r+

mso = r̃−
[mso],

Table 3 Co-rotating and counter-rotating tori in Kerr NSs, � is the fluid specific angular momentum. Radii r±
0 and r±

δ are defined in Sect. 2.1 –
see also Fig. 1, spins are defined in Table 1. E and L are the test particles energy – and angular momentum

Counter-rotating tori (� < 0) Co-rotating tori (� > 0)

� = �+ < 0, � = �− < 0 in the ergoregion for a ∈ [M, a2] � = �− > 0 (L > 0, E > 0), for (r > 0, a > a2)

(I) � = �+ < 0 (L < 0, E > 0) (out of the ergoregion) (r ∈]0, r−
0 [∪]r+

0 ,+∞[, a ∈]a0, a2[) (L > 0, E > 0)

(II) � = �− < 0, (L < 0, E > 0), in ]r−
0 , r−

δ [∪]r+
δ , r+

0 [, for a ∈ [M, a0] (]r−
δ , r+

δ [, a ∈]M, a0[ (L < 0, E < 0)

and in ]r−
0 , r+

0 [, for a ∈]a0, a2] r ∈]0, r−
0 [∪r > r+

0 , a ∈]M, a0[ (L > 0, E > 0)

However, �− < 0 with (L < 0, E > 0) in the NS
ergoregion, and with co-rotating solutions �− > 0 with
(L < 0, E < 0) with negative energy E are all co-rotating
with respect to the static observers at infinity as they corre-
spond to the relativistic angular velocity with respect to static
observers at infinity, � > 0.

The Kerr geodesic structure regulates the accretion disk
physics bounding the accreiting disk inner edge (tori cusps)
and proto-jets cusps. The cusps are point of the mini-
mum pressure and density in the barotropic toroids – see
Sec. (A). The extended geodesic structure includes radii
{r±

[γ ], r
±
[mbo], r

±
[mso]} defined Table 1 and governing the loca-

tion of the toroidal configurations centers (point of maximum
density and pressure in the barotropic tori) [49–53].

Table 1 shows the situation for fluids with �+, and for
fluids with � = �− orbiting in NS spacetimes with spins
a > a2.

NSs with spin a ∈]M, a2] and fluids with �− are charac-
terized by a more articulated structure and we summarized
this situation in Figs. 1, 2, 3 and 4. For tori centers and cusps
located on r±

0 there is � = L = 0 (tori in these limiting cases
are considered in [43]). On r±

δ (“center” and “cusp” respec-
tively) there is E = 0 (� is not well defined). For a ∈ [M, a2],
there can be tori with �− < 0 and (E > 0,L < 0) in the
ergoregion and tori with �− > 0 and (E < 0,L < 0).
There can be double tori system with � = �+ = �− < 0
or � = �− > 0, and this case is detailed in Sect. 3.2.1.

3 Flow inversion points from orbiting tori with � = �±

In this section we analyze the accretion dirven and proto-jets
driven flow inversion points. In Sect. 3.1 the flow inversion

points are defined, while in Sect. 3.2 we discuss the flow
inversion points from the orbiting accretion tori and proto-
jets configurations.

3.1 Flow inversion points

The flow inversion points are points of vanishing axial veloc-
ity of the flow motion as related to distant static observers,
therefore defined by the condition uφ = 0 (or equivalently
� = 0) on the flow particles and photons velocities (rela-
tivistic angular velocity).

From the definition of � and E , Eqs. (6) and (7), and the
inversion point definition we obtain:

� = − gtφ
gtt

∣∣∣∣
ᵀ

= − 2arᵀσᵀ
�ᵀ − 2rᵀ

, where

r ∓T =∓
√√√√a2

(
σᵀ + σ 2ᵀ

�2 − 1

)
− 2aσᵀ

�
+ 1 − aσᵀ

�
+ 1, (9)

and

σᵀ ≡ ��ᵀ
a(a� − 2rᵀ)

, r −T = r +T = rcr ≡ a
√

1 − σᵀ,

Eᵀ ≡ −gtt (ᵀ)ṫᵀ, Lᵀ ≡ gtφ(ᵀ)ṫᵀ, (10)

where notation qᵀ or q(ᵀ) is for any quantity q considered at
the inversion point, and q0 = q(0) for any quantity q evalu-
ated at the initial point of the (free-falling) flow trajectories.

Therefore, Eᵀ and Lᵀ are the energy and momentum of
the flow particles at the inversion point. We stress that quan-
tities in Eqs. (9) and (10) are independent from the normal-
ization condition, being a consequence of the definition of
constant {�, E,L}. Radius rᵀ identifies a surface, inversion
sphere, which is a general property of the (photon and time-
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Fig. 2 Analysis of the flow inversion point radius r ±T with fluid spe-
cific angular momentum � = �−. (For �− > 0 inversion points are only
for spacelike particles with (E < 0,L < 0).) Spins {a0, a1, a2} are
defined in Table 2. Radii r−

mso = {r̄−
mso, r̃

−
mso} are the marginally stable

orbit, radius rmbo is the marginally bounded orbit. There is σ ≡ sin2 θ

(σ = 1 is the equatorial plane). There is r±
0 : L = 0, where L is

the test particle angular momentum and r±
δ : E = 0 where E is the

test particle energy. Radii r/M (left panels) and fluid specific angular
momentum �− (center panels) are plotted as functions of a/M , inver-
sion point radius r ±T is shown for different planes signed on the panels

(right panels). See also Fig. 3. There is r−
{I } ≡ r−

mbo − 0.01, r−
{I I } ≡(

r−
0 − r−

mbo

)
/2 + r−

mbo, r
−
{I I I } ≡ r−

mso − (
r−
mso − r−

0

)
/2, r−

{I V } ≡ r+
0 −(

r+
0 − r−

mso

)
/2, r−

{V } ≡ r+
0 + 0.1

Fig. 3 Analysis of the flow inversion point radius r ±T for differ-

ent planes σ ≡ sin2 θ signed on the panels, in the spin range is
a ∈ [M, a0], with fluid specific angular momentum � = �−. Radii
r−
mso = {r̄−

mso, r̃
−
mso} are the marginally stable orbit, radius rmbo is the

marginally bounded orbit. There is r±
0 : L = 0, where L is the test

particle angular momentum and r±
δ : E = 0 where E is the test par-

ticle energy. Left panels show radii r/M as functions of the NS spin
a/M . Center panels show the fluid specific angular momentum �−,
evaluated on the left panel radii, as function of a/M . Right panels:

inversion radius r +T > 0 on different planes, evaluated on the momenta
and radii of the center and left panels. Spins {a0, a1, a2} are defined
in Table 2. There is r−

[I ] ≡ r−
mbo − 0.01, r−

[II] ≡ [
r−

0 − r−
mbo

]
/2 +

r−
mbo, r

−
[III] ≡ [

r−
δ − r−

0

]
/2+r−

0 , r−
[IV] ≡ r−

mso−
[
r−
mso − r−

δ

]
/2, r−

[V ] ≡
r+
δ − [

r+
δ − r−

mso

]
/2, r−

[VI] ≡ r+
0 − [

r+
0 − r+

δ

]
/2, r−

[VI] ≡ r+
0 + 0.1.

Brown curves are the outer and inner ergosurfaces r±
ε respectively. See

also Fig. 2. (For �− > 0 inversion points are only for spacelike particles
with (E < 0,L < 0))
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Fig. 4 Fluid specific angular momentum �− for different spacetime
spin a/M signed on the panels, darker-cyan curve is �−

mso, light-blue
curve is �mbo. Marginally circular orbit radius is r−

mbo and marginally
stable orbits r−

mso = {r̃−
mso, r̄

−
mso}. Horizontal lines select � values used

for the evaluation of the inversion radii. Inversion points r ±T of Eq. (9)
of the co-rotating and counter-rotating accretion with � = �− are shown
as functions of the planes σ ≡ sin2 θ , where σ = 1 is the equatorial

plane, for different NS spin-mass ratio a/M signed on the panels. Plain
curves are r +T while r −T are dashed curves. For �− > 0 inversion points
are only for space-like particles with (E < 0,L < 0). Spins {a0, a1, a2}
are defined in Table 2. Radius r±

ε are the outer and inner ergosurfaces.
Plane curve σ+

ε is defined in Eqs. (5) and radius rcr is in Eq. (10). Lim-
iting plane σcr is function σσa of Eq. (C7) on the selected fluid specific
angular momentum. There are no inversion points for co-rotating fluids
in the geometries with a > a2

like) orbits in the Kerr NS spacetime, surrounding the central
singularity, depending only on � where � = 0. Furthermore,
radius rcr , of Eq. (10) is a background property, independent
explicitly from �. It si worth noting that there are no timelike
and photon-like inversion points with � > 0.

Contrary to the BH case, in the NS there can be two inver-
sion points radii r ±T. The inversion radii on the poles are well
defined in the BH case only (limσᵀ→0 r ±T = r±). Note that

a very large � in magnitude is typical of proto-jets emission
or quiescent toroids orbiting far from the central attractor for
counter-rotating tori (with � = �+ < 0) or some co-rotating
tori with � = �− > 0) in a class of slow rotating NSs, in
this case the inversion point approaches the ergosurface i.e.
lim�→±∞ σᵀ = σerg and lim�→(±∞) r ±T = r±

ε , we address
this issue with more details in Sect. 3.2.4.
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Increasing the spin a/M > 0, the inversion point
approaches the equatorial plane (σᵀ ≤ 1). However, for a
very faster spinning NS (a → +∞) the limit of rᵀ = r ±T for
is not well defined.

3.2 Accretion flows turning points

In Sect. 3.1 we discussed the existence of the inversion points
considering the condition of constant � = �±, independently
by the causal conditions on matter at the turning point.

In this section we explore the inversion spheres properties
for flows from the accretion disks orbiting NSs, depending on
the central attractor spin-mass ratios a/M and fluid specific
angular momenta �±.

We focus on the necessary conditions for the existence of
the inversion points of the counter-rotating and co-rotating
flows, considering first the condition � =constant and then
{�, E,L} constant, where a more general necessary condition
for the occurrence of the inversion point isL < 0. We assume
constance of (Eᵀ,Lᵀ) (implied by � =constant) evaluated at
the inversion point with ṫ > 0. We then consider the normal-
ization condition at the inversion point, gαβuαuβ = κ (with
uφ = 0) distinguishing particles and photons in the flow. The
matter flow is then related to the orbiting structures, consid-
ering toroids with � = �+ < 0 (L < 0, E > 0), centered
at r > r+

γ – Fig. 5 and tori with momentum � = �− < 0

(L < 0, E > 0), in ]r−
0 , r−

δ [∪]r+
δ , r+

0 [, for spacetimes
a ∈ [M, a0], and in the orbital region ]r−

0 , r+
0 [, for NSs

with spin a ∈]a0, a2].
Inversion radius rᵀ and plane σᵀ of Eq. (C4) are not

independent variables, and they can be found solving the
equations of motion or using further assumptions at any
other points of the fluid trajectory. However, quantities
(σᵀ(rᵀ), rᵀ(σᵀ)) depend on the constant of motion � only,
describing both matter and photons, and they are indepen-
dent from the initial particles velocity ({σ̇ᵀ, ṙ}, therefore their
dependence on the tori models and accretion process is lim-
ited to the dependence on the fluid specific angular momen-
tum �, and the results considered here are adaptable to a
variety of different general relativistic accretion models. We
note that the inversion sphere describes also outgoing parti-
cles, with ṙᵀ > 0, or particles with an axial velocity θ̇ �= 0
along the BH rotational axis.

For flows from the orbiting tori or proto-jets there is a max-
imum and a minimum boundary rᵀ(a; �, σᵀ), associated to
a maximum and minimum value of �. This region, as well
as its boundaries, will be called the inversion corona. The
extremes of � parameters are determined by the tori mod-
els parametrized with �. The orbiting structures constrain
the range of values for �, defining the inversion corona for
proto-jets or accretion driven flows, as background geome-
try properties, depending only on the spacetime spin. The

accretion driven inversion corona has boundaries defined by
r ±T (or σᵀ), evaluated on �±

mso and �±
mbo, while the proto-jets

driven coronas has (in general) boundaries defined by r ±T
(or σᵀ), evaluated on �±

mbo and �±
γ . For accretion driven, and

proto-jets driven inversion points, on the equatorial plane,
there is rᵀ < r× or rᵀ < rJ . Test particle energy and angular
momentum at the inversion points are in Fig. 5.

The structure of this section is as follows:
In Sect. 3.2.1, we address the special case of inversion

points from double tori systems orbiting NSs at equal fluid
specific angular momentum. Tori and inversion points at
� = ±a are explored in Sect. 3.2.2. Inversion points and
torus outer edge are the focus of Sect. 3.2.3. The inversion
point location in relation to the ergoregion in Sect. 3.2.4. In
Sect. 3.2.5 the presence of double inversion points is dis-
cussed. Inversion points from proto-jets and the inversion
points verticality are focused in Sect. 3.2.6. Some notes on
the inversion coronas thickness and slow counter-rotating
inversion spheres are in Sect. 3.2.7. Further notes on flows
inversion points from orbiting tori are in Sect. 3.2.8. Relative
location of the flows inversion points for different initial data
and the existence of more inversion points for flow particle
trajectory are investigated Sec. (B).

3.2.1 Double tori system

Slowly spinning NSs are characterized by the presence of
double orbiting tori and also double cusped tori, distinguish-
ing NSs from BHs, and having equal fluid specific angu-
lar momentum and therefore one common inversion radius
r ±T(σᵀ). Such tori have been detailed in [43], for convenience
we report below their main properties. The formation3 of this
system in the geometries with a ∈]M, a2[ is due to the pres-
ence of fluids with �− < 0, and with �− > 0 and E < 0.
Double tori can be both co-rotating or both counter-rotating.

More precisely, there are

(+,+) Counter – rotating double toroids having �− =
�+ < 0 orbiting NS with a ∈]a0, a2[ – Fig. 6. The inner
torus of the double system, centered in the ergoregion
where E > 0 and L < 0, has �− ∈ L−

1 and it can
be cusped. The topology of outer counter-rotating torus
depends on �+ = �− and the NS spin.
(-,-) Co-rotating double toroids with �− > 0, orbiting
NSs with a ∈]M, a0[, where E < 0 and L < 0 and
� > �−

mso > 0. The inner torus of the couple can be
cusped. As there is �−

mso > �−
γ > 0, see Figs. 7, 8 and 9,

3 This double system might eventually be formed by the same original
orbiting matter. However it should be noted that the toroidal components
are in general characterized by a very high difference of the energy at
the tori centers [43].
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Fig. 5 Analysis of the counter-rotating flows inversion points r ±T of
Eq. (9) with fluid specific angular momentum �+ < 0 of the plane
σ ≡ sin2 θ , for different NS spin-mass ratios signed on the panels,
where σ = 1 is the equatorial plane. Notation (mso) is for quantities
evaluated on the marginally stable orbit, (mbo) refers to the marginally

bounded orbit, (γ ) indicates the marginally circular orbit. Particles
energy ratio Eᵀ/ṫ and angular momentum Lᵀ/ṫ at the inversion points
r ±T of Eq. (9) (where ut = ṫ) are shown for two different inversion planes
σᵀ. (The most general solutions r ±T and σᵀ are shown not considering
energy and momentum constraints of Sect. 3.2)

the outer torus of the pair has � ∈ L−
3 , and it is quiescent.

There are only spacelike inversion points for E < 0 and
L < 0.

More in details:
(+,+): Double counter – rotating tori system with �− =
�+ < 0

It is convenient to introduce the following spins.

a0
ι ≡ 1.1078 : �+

γ = �−
mso < 0,

a−
ι ≡ 1.1157 : �+

mbo = �−
mso < 0,

a+
ι ≡ 1.118M : �+

mso = �−
mso < 0. (11)

(Note, there is �−
mbo > 0 for any spin a > M). Double tori

with equal � = �+ = �− < 0, are in the geometries with
a < a+

ι , for a selected range of specific angular momentum
� < 0 – see Figs. 10, 11 and 12.

Double cusped tori, can form in NSs spacetimes with a <

a+
ι with �+ ∈ L+

1 =]�+
mbo, �

+
mso[ for cusped tori, or with,

�+ ∈ L+
2 =]�+

γ , �+
mbo[ for tori and proto-jets, and quiescent

tori in �+ ∈ L+
3 : �+ < �+

γ .
The situation is as follows:

– For a ∈]a0, a2[, there is �− ∈]�−
mso, 0[, and the double

tori formation is constrained by �−
mso, defining the limit-

ing spins {a±
ι , a0}.

– For a ∈]M, a0[, there is �− < 0 : �− ∈] − ∞, 0[
and double counter-rotating tori are always possible at
�− < �+

mso. (The inner tori are always in L−
1 and entirely

contained in the ergoregion).

In other words, for a < a0, there is a very limited range
for the inner tori center and cusp location, according to a
variation of the momenta �+ in L+

1 , L+
2 or L+

3 . For a < a0

there is �−
mso > 0, and co-rotating (cusped and quiescent) tori

can be with � > �−
mso. In these NS geometries, there still can

be (cusped and quiescent) tori with �− < 0, having cusps in
r× ∈]r−

0 , r−
δ [ and center in rcenter ∈]r+

δ , r+
0 [.

More in details the situation is as follows:

– For a ∈]a−
ι , a+

ι [, there is �−
mso ∈]�+

mbo, �
+
mso[= L+

1
(cusped tori).

– For a ∈]a0
ι , a−

ι [, there is �−
mso ∈]�+

γ , �+
mbo[= L+

2 (quies-
cent tori or proto-jets).

– For a ∈]a0, a0
ι [ there is �−

mso < �+
γ and, in the range

�+ < �+
γ (L+

3 ) (quiescent tori).

Note, for a ∈ [a−
ι , a+

ι ] (there is a−
ι > a0) there is

�−
mso ∈ [�+

mbo, �
+
mso], and therefore in these geometries a

double cusped tori system with � ∈]�+
mbo, �

−
mso[ is possi-

ble. For �− = �+ < �+
γ , the outer disk is quiescent. For

�− = �+ ∈]�+
γ , �+

mbo[, the outer disk is quiescent, or there
is a proto-jet. The inner torus of the couple is quiescent or
cusped.

In the examples of Fig. 13 we can see also the location of
the inversion radius with respect to the ergosurfaces (further
discussion on this aspect is in Sect. 3.2.4.

(-,-) Double co-rotating tori with �− > 0
There are no (time-like and photon-like) inversion points

for � = �− > 0, however for completeness we also discuss
co-rotating tori.

Double co-rotating tori can orbits NSs with spins a ∈
]M, a0[, (E < 0,L < 0). The inner torus of the pair, having
�− ∈]�−

mso,+∞[, is always in L−
1 . However, the outer torus

is quiescent in L−
3 , since �−

mso > �−
γ .

There is 0 < �−
mbo < �−

γ = a < �−
mso. Quiescent tori

with �− ∈ L−
3 have center in rcenter > r−

[γ ] (inner edge is

in r > r+
0 ). As there are no solutions of �(r) = �−

γ = a in

]r−
δ , r+

δ [, therefore there are no double tori.
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Fig. 6 Inversion points for counter-rotating tori with fluid specific
angular momentum � = �+ < 0. The analysis for tori with fluid specific
angular momentum �− is in Fig. 22. Spins {a4, a5, a6, a7, a8, a9} are
defined in Table 2. There is �+

[∗] ≡ �−(r+
[∗]), and r+

[∗] ≡ r+
mso − (r+

mso −
r+
mbo)/2. Upper left panel: fluid angular momentum �+

[∗] and �+
mso, �+

mbo
(on the marginally stable and marginally bounded orbit respectively) as
functions of the NS spin-mass ratio. Upper right panel: geodesic struc-
ture of the Kerr NS and the inversion radius rᵀ for the torus model with

center radius rcenter and cusp r×, where � = �+
[∗]. Bottom-left panel:

inversion point radius r ±T as function of the plane σ ≡ sin2 θ ∈ [0, 1],
for different NS spin-mass ratio signed on the curves for fluid specific
angular momentum �+

[∗]. Dashed curves are the ergosurfaces r±
ε . Bot-

tom right panel: analysis of the flows inversion points in terms of the
relativistic angular velocities � for particles with fluid specific angular
momentum � = �+

[∗] for different spins. There is �(r ±T) = 0. Note the
presence of two inversion points

As noted in [43], there is K (r−
[γ ]) =

√
1 − 1/r−

[γ ] < 1,

where (r−
γ = 0, r−

[γ ] = a2) regulate the co-rotating proto-

jets formation and define the range L+
3 ≡ �− > �−

γ = a,

where only quiescent tori are formed, where r−
[γ ] is related

to the light surfaces with frequency ω = 1/� = 1/a. These
limiting configurations have also a role in the case of tori with
� = 0, providing a case of toroidal GRHD (open) cusped
configurations with “axial cusp” – [43]. The limiting case of
� = a is considered in Sect. 3.2.2.

Since r−
γ = 0, proto-jet cusps can be very close to the

central singularity – see Fig. 9 and Sect. 3.2.6.
More precisely: co-rotating proto-jets have cusps in r j ∈

]r−
γ , r−

mbo[, center in ]r−
[mbo], r

−
[γ ][ and momentum � ∈ L−

2 ≡
]�−

mbo, �
−
γ [. The case of proto-jets emission is considered in

details in and Sec.(3.2.6).
We summarize the situation as follows:

– Tori couples orbiting in NSs with spin a ∈]M, a0[.
There is

r−
[mso] > r−

[γ ] > r−
[mbo] > r−

mso > r−
mbo > r−

γ = 0. (12)

Radius r−
[mso] ≡ r̃−

[mso] : �−
mso ≡ �−(r−

mso) = �(r), see

Fig. 1, regulates the outer co-rotating torus center location
and constitutes a main difference with the BH geometry.
The outer torus is in L−

3 , while the inner torus is in L−
1 ≡

�− > �−
mso > �−

γ > �−
mbo. The outer torus cannot be

cusped, as the center is located in r > r−
[mso] > r−

[γ ] >

r−
[mbo], and �−

mso > �−
mbo– Eq. (12).

The inner co-rotating tori, possible in the geometries with
a ∈]M, a0[, where E < 0 and L < 0 and � > �−

mso >

0, have for very large �−, inner edge stretching on r−
δ

(the center approaches r+
δ ). The outer edge is studied in

Sect. 3.2.3.
From Figs. 7 and 8 it is clear that for a ∈]M, a0[ there
are double co-rotating tori only for � > �−

mso > �+
γ =

a > �−
mbo. The inner torus is cusped and is bounded by

the light – surface with ω = 1/�. The outer torus of the
couple is in L−

3 and therefore it is always quiescent and
with center in r > r−

[mso].
For � ∈]�−

mbo, �
−
γ [= L−

3 there are proto-jets or quies-

cent tori with cusp in [0, r−
mbo] and center in [r−

[mbo], r
−
[γ ]].

There are no double systems.
– Tori in the NSs spacetimes with spin ]M, a2].

In these spacetimes, the range � ∈ [0, �−
mbo] is a L−

1 range,
where cusped and quiescent co-rotating tori are possible,
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Fig. 7 Double co-rotating tori system with fluid specific angular
momentum � = �−. Gray vertical lines are r±

δ , black vertical lines r±
0 .

The specific angular momentum � = �−(r), the associated effective
potentials Vef f for NS spin-mass ratio a = 1.01M and �− according
to the colour notations of the �− − r/M panels. The inversion points
r ±T are also plotted as functions of the plane σ = sin2 θ ∈ [0, 1] (where
σ = 1 is the equatorial plane) for different � signed on the curves. Here
the most general solutions r ±T are shown not considering constraints of
Sect. 3.2. For �− > 0 inversion points are only for space-like parti-

cles with (E < 0,L < 0) in the conditions of Sec. (C). Radius r±
ε is

the outer and inner ergosurfaces, and rcr is defined in Eq. (10). Nota-
tion (mbo) is for marginally bounded orbit, (mso) for marginally stable
orbit. Momentum �−

γ = a refers on the limiting value of the specific
angular momentum � = �− > 0 for the occurrence of proto-jets (sim-
ilarly to the �+ case). There is r = √

z2 + y2 and σ = y2/(z2 + y2).
The inversion sphere always closes on the equatorial plane, for small in
magnitude � closes at large r

Fig. 8 Double co-rotating tori system with fluid specific angular momentum � = �− for a = 1.05M . See Fig. 7

Fig. 9 Analysis of the double co-rotating toroids with � = �−, possi-
ble for � > �−

mso > 0 in a ∈]M, a0[. For �− > 0 inversion points are
only for space-like particles with (E < 0,L < 0) in the conditions of
Sec. (C). Here the most general solutions r ±T are shown not consider-
ing the further constraints of Sect. 3.2. Spins {a0, a1, a2} are defined
in Table 2 and au = 1.03M . Notation (mso) is for marginally stable
orbit, (mbo) is for marginally bounded orbit, (γ ) is for marginally cir-
cular orbit. Radius r+

ε = 2M is the outer ergosurface on the equatorial
plane. Left panel: function K (r) ≡ Vef f (�(r)) (Vef f is the fluid effec-
tive potential) as function of the spin a/M , evaluated for the radii of

the extended geodetical structure. Center panel: fluid specific angular
momentum �(r) in the spacetime au : K (r−

mso) = K (r−
[mbo]). Double

co-rotating tori are possible for � > �−
mso. Right panel: toroidal configu-

rations in the geometry au with specific angular momentum � = 1.025.
The proto-jets with cusp very close to the central singularity. There
is r = √

z2 + y2 and θ = arcsin y/
√
z2 + y2. Cyan curve is radius

rcr = r +T = r −T, defined in Eq. (10). Blue curve contains pressure max-
ima (the tori centers, dependent on � only) and tori geometric maxima
(dependent on K and �), solutions of ∂r V 2

e f f = 0 in the plane (y, z), in

this case it is r = a2
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with cusp in [r−
mbo, r

−
0 ] and center in [r+

0 , r−
[mbo]], includ-

ing tori at � = 0 with cusp in r−
0 and center in r+

0 . The
quiescent disk could have an inner edge in the regions
bounded by (r±

0 , r±
δ ), where test circular particle orbits

have E ≷ 0 and L < 0.

Inversion points for double systems with �± < 0
Tori in a double system with � = �± < 0 have same

inversion spheres (determined by �), while generally proto-
jets and accretion driven coronas are geometrically separated
(there is �−

mso > �−
γ at a ∈]M, a0[) – Sect. 3.2.6. On the

other hand, only (particles and photons) flows with E > 0
and L < 0 have inversion points.

In the interpretation of the inversion sphere as accretion or
proto-jets driven, the tori surfaces interaction with the inver-
sion corona is relevant. In Sect. 3.2.3 this aspect is addressed
in details.

For �− < 0, double counter-rotating tori are possible.
Inner tori have cusp in ]r−

0 , r−
δ [ and center in ]r+

δ , r+
0 [, there-

fore torus includes the region ]r−
δ , r+

δ [. In this region cusped
tori can exist with � ∈]�+

mso,+∞[. (Fluid effective potential
is not well defined on the light surfaces rs with frequencies
ω = 1/� where the potential diverges. These surfaces con-
strain the torus edges).

Very large magnitude of fluid specific angular momen-
tum

In this section we consider the case of �± very large in
magnitude, focusing particularly on slowly spinning NSs
with with a ∈]M, a0[. In these spacetimes, there are co-
rotating and counter-rotating cusped tori (� ∈ L−

1 ) with
� → ±∞ (center and cusps close to the radii r±

δ where
� = ±∞), with centers bounded by ]r+

mso, r
+
δ [ (co-rotating

fluids) and ]r+
δ , r+

0 [ (counter-rotating fluids) and cusps in
]r−

δ , r−
mso[ (co-rotating fluids) and ]r−

0 , r−
δ [ (counter-rotating

fluids).
Tori with � = �− < 0 and L < 0 are only in the geome-

tries ]a0, a2[ – Figs. 7, 8 and 14. In the limits � → ±∞, there
is r ±T = r±

ε and σᵀ = σerg . The inversion sphere approaches
the ergosurfaces from above, in the counter-rotating case,
(and from below for the co-rotating case for space-like parti-
cles, implying that the counter-rotating sphere is larger than
the co-rotating inversion sphere). The counter-rotating inver-
sion spheres decrease with the angular momentum magni-
tude, (while it increases with �− > 0), bounded by r±

ε . The
outer torus of a pair with �+ → −∞ (and with �− → +∞)
are quiescent tori in L+

3 ( L−
3 ), centered very far from the

central singularity.
The inversion spheres for � → ±∞ are similarly

approaching from below and above the ergosurfaces respec-
tively – Figs. 7 and 8. (An interesting case is represented by
the solution uφ = 0 for very small �− < 0 in magnitude. For
the cusped tori with �− ∈]−∞, 0[ (with cusp in ]r−

0 , r−
δ [), the

smaller in magnitude the fluid specific angular momentum is
the larger the sphere (see Fig. 15 for the relative analysis of
rcr ).)

Therefore: in the spacetimes with a ∈]a0, a2[ double
cusped counter-rotating configurations can exist for �− ∈
]�−

mso, �
+
mso[.

Inner cusped torus of the couple has momentum ]�−
mso, �

−
mbo[

(L−
1 range). The cusp is located in ]r−

0 , r−
mso[ while the cen-

ter in ]r−
mso, r

+
0 [ (there is �− < 0), or otherwise the cusp

in ]r−
mbo, r

−
0 [ and center in ]r+

0 , r−
[mbo][ (with �− > 0). We

include also tori at � = 0, with critical points of pressure in
r±

0 .
For � ∈]�−

mbo, �
−
γ [, there are only proto-jets with cusps in

]0, r−
mbo[. For �− > �−

γ = a, there are quiescent tori (this is

an L−
3 range) with center in r > r−

[γ ] = a2 – see Fig. 14.
Inversion points are all outside the ergoregion.

For very small momenta magnitude � ≤ 0, there are
counter-rotating tori with � = �− �= �+ in L−

1 . In this case
the inversion coronas, for accretion driven flows, is very large
and located out of the ergoregion.

However the inversion sphere is always a closed surface
(there is always a inversion point on the equatorial plane).
(Further constrains to the inversion points due to the con-
ditions (E,L) constant on the flow particles are not consid-
ered.).

For � = �+ the largest inversion sphere is at �+
mso for

a � M , discussed in more details in Sect. 3.2.6. The maximal
extension on the equatorial plane is studied in [43].

In Fig. 16 solutions with � = �− > 0 are studied, where
E < 0 and L < 0 at a ∈]M, a0[ (spacelike, tachyonic parti-
cles inversion points), and � = �− < 0 with E > 0, L < 0
at a ∈]a0, a2[. By increasing the spin, the inversion point
sphere widens, extends outwards, and increases the vertical
height. The associated torus, on the other hand, shrinks, and
approaches the central singularity, having an inner Roche
lobe much larger than the outer Roche lobe. The case of very
low �− ∈]�+

mso, 0[ will be detailed in Sect. 3.2.6.

3.2.2 Tori and inversion points at � = ±a

Here we consider inversion points with � = ±a and tori with
� = −a. There are no double tori systems for � = ±a. We
can details the situation as follows

Tori with � = a.
There are no double tori with � = a as �−

mso > �−
γ = a

for a ∈]M, a0[ – Fig. 9.
More precisely for � = �− = �−

γ = a there are (qui-
escent tori or) proto-jets with cusp approaching the cen-
tral singularity (there is r−

γ = 0) and with on center in

r−
[γ ] = a2 ∈]r−

[mbo], r
−
[mso][. In the NS with a < a0, tori
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Fig. 10 Inversion spheres in double tori systems.Tori effective poten-
tial for different spins and fluid specific angular momentum as signed
on the panels. The tori centers and cusps are also signed with verti-
cal lines. It is clear the presence of an orbiting double tori systems.
Tori configurations and the inversion points r ±T are shown in the plane

(y/M, z/M) where σ = sin2 θ = y2/(z2 + y2) and r = √
z2 + y2

for different fluid specific angular momenta �. (The most general solu-

tions r ±T and σᵀ are shown, while discussion on the constrains is in
Sect. 3.2.) Note the inversion radius location with respect to the ergo-
surface r±

ε . For �− > 0 inversion points are only for space-like particles
with (E < 0,L < 0) in the conditions of Sec. (C). The limiting bound-
ary configuration for the inner torus is the defined by the light surface
rs with frequency ω = 1/� (darker-green surface) – See also Figs. 13
and 19

with �− > 0 have inner edge in ]r−
δ , r−

mso[ and center
]r−
mso, r

+
δ [.

There are no inversion points for � = a, since � =
�− = a > 0 in r = {0, r−

[γ ]} and, on r−
[γ ] there is

L > 0(spacelike inversion radius increases with � > 0,
bounded from above by the ergosurfaces – Fig. 7 – there
is rᵀ > rout – Fig. 17.

Tori with � = −a We distinguish the two cases � =
�± = −a respectively.

– Tori with � = �+ = −a can form in the geometries

with a > a−
a = 2

(√
2 + 2

)
M ≈ 6.828M as cusped

tori, quiescent tori or proto – jets according to the NS
spins – Fig. 18.

– Tori with � = �− = −a can form only in the space-

times with a ∈]M, at [, where at ≡ 2
(

2 − √
2
)
M ≈

1.17157 M , there are quiescent or cusped tori, with

cups bounded by r−
0 and r−

δ or r−
mso, and centers

bounded by r+
0 and r+

δ or r+
mso, according to the NS

spin – Fig. 18.

Inversion points with � = −a
There are inversion points for � = −a for

r ±T ∈]0, 4M] : (σ = 1, r +T = 4M),

(σ S
ᵀ , rᵀ = r−

S ), (σ ∈]σ S
ᵀ , 1[, rᵀ = r±

S ), where

σ S
ᵀ ≡ 1

2

[
a
√
a2 + 8 − (2 + a2)

]
,

r±
S ≡ σ + 1 ±

√
a2(σ − 1) + (σ + 1)2,

rcr = a

2

[√
a2 + 8 − a

]
(13)

increasing with the spin and the plane – Fig. 18 (there is
rcr (σ ) = 1 + σ ).
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Fig. 11 Photon orbits with trajectories inversion points in the NS
geometry with spin a = 1.1M . The (counter-rotating) particle flows
specific angular momentum is � = −4.8. There are two orbiting
counter-rotating tori with �− = �+ = −4.8. In Fig. 12 there is the
analysis for the test particles trajectories. The initial radius is r0 < r×,
where r× is the torus inner edge (cusp). The inversion sphere rᵀ is the
light-purple surface. On the equatorial plane radius r ±T is the purple
curve. Upper line: left panel shows the effective potential for the sys-
tem of two counter-rotating tori. Dotted curves show the location of tori
cusps r×. Center panel: equi-density surfaces an outer torus, cyan curve

is the light surface with rotational frequency ω = 1/�. Right panel is a
close-up view of the center panel on the inner torus. Radius r±

ε is the
geometry ergosuface. Center line: Gray surface is the geometry inner
and outer ergosurfaces. Center panel is the above view of the left panel.
Right panel is a close-up view of the center panel, where trajectories
from the inner counter-rotating torus flow are shown. Bottom panels
show the outer torus (orange surface) and inner torus (green surface),
while the cyan surface is the light-surface with rotational frequency
ω = 1/�. Right panel is a close-up view of the left panel

The analysis of the inversion point location with respect
to the outer edge is done in Sect. 3.2.3.

3.2.3 Inversion points and torus outer edge

Here we explore the inversion spheres and the location of the
flow inversion points on the equatorial plane with respect to
the tori outer edge.

There can be, in a fixed spacetime region, more orbiting
configurations with different � – see for example [25,44–48].
In this case, all proto-jets and cusped configurations have

equal inversion coronas respectively, depending only on the
NS spin a/M .

The inversion corona is in general a narrow region sur-
rounding the central singularity. As the conora thickness is
generally small, inversion points location in the corona vary
little with � in the range of values defining the corona. The
inversion radius can be on the equatorial plane at rᵀ < r× (or
rJ ), and this is always the case for tori – driven and proto-jets
driven configurations with � = �+ < 0 in Figs. 10, 13 and 19,
or otherwise the corona can also “embed” the inner torus of a
couple with with � = �−, for example in Figs. 16, 19, 20 and
10. Inversion corona is interpreted as accretion or proto-jets
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Fig. 12 Test particle orbits with trajectories inversion points in the
NS geometry with spin a = 1.1M . The (counter-rotating) particle
flows specific angular momentum is � = −4.8. There are two orbit-
ing counter-rotating tori. In Fig. 11 there is the analysis for the photons
trajectories and description of the toroidal models. The initial radius is
r0 < r×, where r× is the torus inner edge. The inversion sphere rᵀ is

the light-purple surface. On the equatorial plane, radius r ±T is the purple
curve. Gray surface is the geometry inner and outer ergosurfaces. Center
panel is the above view of the left panel. Right panel is a close-up view
of the center panel, where trajectories from the inner counter-rotating
torus flow are shown

driven if, on the equatorial plane, rᵀ < r× or rᵀ < rJ . On
planes different from the equatorial, the situation depends on
the particles initial conditions on the orbiting structure, on
the jet collimation angle, on the torus morphological charac-
teristics, as its height on the equatorial plane.

We can use the concept of “excretion” inversion points
if rᵀ > r× on the equatorial plane which is the case for
tori with �− < 0 (at a ∈]M, a2[). Fluids with � = �+
have always accretion or proto-jets driven inversion points
on the equatorial plane i.e. 2M = r+

ε < rᵀ < r+
γ . (How-

ever, we stress that there is no “external cusp” or “extraction
process” associated with the cusp, as for example emerges
in the models of thick discs analyzed in contexts in which
there is a toroidal magnetic field, in the presence of a cos-
mological constant or electric charge [54–57]. Here the term
excretion distinguishes the case where an accretion driven
or proto-jets driven interpretation is possible from the case
where the inversion sphere or a portion of the inversion sphere
embeds the torus or is external with respect to the central
singularity.).

A further aspect to be analysed is the location of the inver-
sion point, on the equatorial plane, in relation with the torus
outer edge. The cusped tori outer edge (maximum outer torus
extension on the equatorial plane) is provided in [43] with
K = Vef f (r×, �) (where the cusp is r×p for a ∈]a0, a1[, and
r× for a ∈]a1, a2[. (In Fig. 21 we prove that, for �− ≶ 0,
there is router < rᵀ, the tori outer edge is always inside the
ergoregion.).

In NSs with a ≤ a2, the co-rotating and counter-rotating
cusped tori outer edge never crosses the ergosurface on the
equatorial plane. (Tori are also confined by the light surface
with ω = 1/�.) Counter-rotating tori orbiting NS with a <

a2 can cross the radius r+
0 for certain values of the specific

angular momentum and NS spin. For co-rotating tori in the
NSs spacetimes with a < a0, with centers and cusps bounded
by r±

0 and r±
δ , the outer edge can cross r+

0 or r−
δ .

3.2.4 Inversion points inside and outside the ergoregion

In this section we explore inversion points location with
respect to the geometry ergoregion. For a ∈]M, a2], counter-
rotating tori in the ergoregion are possible. For counter-
rotating fluids, inversion points are only out of the ergoregion
– Eq. (C9). (Contrary to the counter-rotating case, inversion
points with � > 0, possible only for spacelike tachyonic –
particles with L < 0 and E < 0, in the geometries with
a ∈]0, a0], exist only in the ergoregion at r ∈]r−

ε , r+
ε [ – see

also Eq. (C5)).

Tori in the ergoregion
We consider tori with momentum � = �− � 0 in the NSs

ergoregion. There are, for a ∈]M, a0[, co-rotating cusped
tori in the ergoregion. There are also larger tori with cusp
in the ergoregion at [r−

0 , r−
mbo]. Proto-jets and co-rotating

tori cusps are in the ergoregion, in ]r−
γ , r−

mbo[ and [r−
0 , r−

mbo]
respectively.

Let us introduce the spins {amso, ambo} defined as:

amso ≡ 2.828M : r̄−
mso = 2M and

ambo ≡ 4.828M : r−
mbo = 2M. (14)

Fora ∈]a2, amso[, proto-jets and co-rotating cusps are only in
the ergoregion. For a ∈]amso, ambo[, tori cusps are out of the
ergoregion and proto-jets cusps are inside the ergoregion. For
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Fig. 13 Tori with fluids specific angular momentum �+ < 0 and
�− = �+ < 0 and flows inversion points. (The most general solu-
tions r ±T are shown, discussion on the constraints are in Sect. 3.2.)
Spins a±

ι are defined in Eq. (11). Radius rcr = r +T = r −T is defined in
Eq. (10). There is aμ ≡ a+

ι − (a+
ι − a−

ι )/2, and the fluid specific angu-
lar momenta (�+∗ , �+∗∗) are �±∗ ≡ �+

mbo ∓ 1.5, �±∗∗ ≡ �+
mbo ∓ 15.5. There

is �+
� ≡ �+(r+

� ), where r+
� ≡ r̄+

mso − (r̄+
mso − r+

mbo)/1.25. Radii r±
ε are

the outer and inner ergosurfaces. Upper left panel: inversion radius r ±T

on different planes σ ≡ sin2 θ and specific angular momenta signed on
the panel. (mso is for marginally stable orbit and mbo is for marginally

bounded orbit). Upper center panel: specific angular momenta as func-
tions of a/M . Upper right panel: specific angular momentum �± < 0
as function of r/M for the NS spin a = 1.05M . Remaining pan-
els show the inversion radius r ±T on the plane (y/M, z/M), where

σ = sin2 θ = y2/(z2 + y2) and r = √
z2 + y2, for different fluid

specific angular momenta �, according to the notation signed on the
upper line left panel. Tori models and accretion flows inversion points
are shown in Fig. 10 and 19. Note the inversion radius location with
respect to the ergosurfaces r±

ε . Figure 20 show the analysis for fluids
with momenta � = �−

Fig. 14 Double co-rotating tori system with fluid specific angular momentum � = �− for a = 1.117M . See Fig. 7
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Fig. 15 Radius rcr of Eq. (10), in the plane (y, z) where r = √
z2 + y2

and σ ≡ sin2 θ = y2/(z2 + y2). It is y = ±√
z(∓a − z) and

z = ± 1
2

(
±√

a2 − 4y2 + a
)

, for different spins signed on the pan-

els. Dashed gray lines are y = a/2 and z = a. Radii r±
ε are the outer

and inner ergosurfaces. Notation (mso,mbo, γ ) refers the marginally
stable, marginally bounded and last circular orbit respectively

a > ambo, proto-jets and tori cusps are out of the ergoregion
– see Figs. 1 and 22.

From Fig. 22 it is clear how, in the regions where �−
mso > 0

with L < 0, there is �−
mso > �−

mbo at a < a0.
Inversion points: inner and outer tori
For � = �+ there is r× > r+

γ > r +T on the equatorial
plane, and r +T can be interpreted as accretion driven inver-
sion point on the equatorial plane – Fig. 19. The distance
cusps-inversion points increases with the NS spins, for tori
with cusp at r > r+

γ , and approaches the central singularity
increasing �+ in magnitude.

In the double counter-rotating tori system with �− = �+ <

0 for a < a+
ι , there is one inversion point on the equatorial

plane, and for the inner smaller torus of the double system
(having � < 0 with L < 0 and E > 0) it can be inter-
preted as “excretion” driven inversion point (in the sense of
Sect. 3.2.1), or for particle flows incoming from the outer
region at � constant, with general uφ . On planes different
from the equatorial there are two inversion points, the inner
one can be interpreted as accretion driven inversion point.
Therefore, in the case of a double system, the inner region
of the inversion corona, might be considered the more active
part, in the sense that particles from different flows converge
with equal � from the external tori (the flow crosses the outer
inversion point) and from the inner torus accretion flows
(particles can also have different uφ [43]). Consequently, the
observation of the inversion point could provide indication
of the orbiting structures.

We have inferred that tori with �− < 0 have no accretion
driven inversion point on the equatorial plane. It is simple to
see, in the case �− < 0, as the inversion points are always

out of the ergoregion, while the cusps are always inside the
ergoregion. For a ∈]M, a0[ it has been proved that, while
r× ∈]r−

δ , r̃−
mso[, there is r +T > r+

0 > r×. Accretion driven
interpretation is still possible for planes different from the
equatorial, where there is a inversion point “internal” to the
cusp, and therefore a particle coming from the disk towards
the central singularity has a inversion radius. The inversion
radius external to the torus (outer to the outer edge) can play
a role in the flux forming the torus or for poorly collimated
jets. These counter-rotating tori are much smaller than the
inversion sphere, and this could imply that the detection of
particles (and photons) at the inversion sphere can be a tracer
for the orbiting structures which are limited at � ∈]0, �̃−

mso]
– (see the situation for a < a0 and r× ∈]r−

δ , r̃−
mso[).

As clear from Fig. 13, the inversion corona from counter
– rotating accretion tori is a narrow region with maximum
thickness on the equatorial plane.

For a � 1 the corona inner part differs from for fast and
slowly spinning central attractors. In Fig. 12 double inversion
points re showed, and the possibility of in-falling or out-going
particles crossing the inversion sphere.

As clear from Figs. 11 and 23, the outer torus can also be
larger than the inversion corona. The accretion driven coro-
nas can also be rather small – Fig. 10. As these tori are gener-
ally geometrically thick tori orbiting very strong attractors,
associated to high accretion rates, the small region of the
inversion corona might be a very active part of the accretion
flows. (The inner disk of a double counter-rotating toroids
with � = �+ = �− < 0, the inner Roche lobe can be larger
than the torus outer Roche lobe and the disk is smaller of the
“embedding” inversion sphere – Figs. 13, 20).

Example
If E > 0, the inversion radius is outside of the ergoregion

(there is L < 0 and � < 0). For � > 0 there are no inversion
point but spacelike inversion point for (E < 0,L < 0) in
the ergoregion (for s = −1). Let us consider below the more
general solution r ±T.

In the example considered in Figs. 6, 7, 8, 9, 14, 16 17, 18,
20, 21 and 22, we introduced the spin functions {a∗1, a∗2},
and the fluid specific angular momenta and radii (�±

[∗], r[∗]):

a∗2 ≡ 1.173M : {rcenter = r+
0 , r× = r−

0 },
a∗1 ≡ 1.03297M : {rcenter = r+

δ , r× = r−
δ },

�±
[∗] ≡ �±(r[∗]), r[∗] ≡ r±

mso − r±
mso − r±

mbo

2
. (15)

In Fig. 22, solutions rᵀ are only for a < a∗2, as there is
r−
center < r+

0 and therefore L < 0. The inversion point is
inside the ergoregion for a < a∗1, where rcenter < r+

δ and
L < 0 with E < 0 – see also Figs. 2, 3, 4, 10, 11 and 13.

Inversion points rᵀ for fluids with specific angular
momentum �− are only in the geometries with spins a ∈
]M, a∗2[, where L < 0 and there is �− � 0 (according to the
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Fig. 16 Upper line: Inversion radius r ±T on the equatorial plane σ = 1
as function of the NS spin-mass ratio a/M . (The most general solutions
r ±T, further constraints are in Sect. 3.2.) Gray curves are the Kerr NS
geodesic structure. The inversion radius is evaluated on different flow
specific angular momenta �, signed on the curves. For �− > 0 inver-
sion points are only for space-like particles with (E < 0,L < 0) in the
conditions of Sec. (C). Left panel is a close-up view of the left panel.
There is �−

(o) ≡ �−(r−
(o)) where r−

(o) ≡ r−
mso − (r−

mso − r−
δ )/2, while

�−
(∗) ≡ �−(r−

(∗)) where r−
(∗) ≡ r−

mso − (r−
mso − r−

0 )/2. Radius r−
mso is the

marginally stable orbit for fluids with specific angular momentum �−,
on r−

0 there is L = � = 0 (test particle circular angular momentum and

fluid momentum), on r−
δ there is E = 0 (energy of test particle circular

orbits). �+
mso < 0 and �+

mbo < 0 are the specific angular momenta for
fluid with � = �+ < 0 on the marginally stable orbit and marginally
bounded orbit respectively. Bottom left panel: light-gray curves are the
geodesic structure for a < a0, blue and black curves are the inversion
radius for particle flows with � = �−

mso > 0 and �−(r×) > 0 signed
on the panels. Radius r+

ε = 2M is the outer ergosurface on the equato-
rial plane. Bottom right panel: tori (plain curves) and inversion points
(dashed curves) for selected values of the NS spin-mass ratios a/M
signed on the panels, according to the tori models of the left panel.
There is r = √

z2 + y2 and σ ≡ sin2 θ = y2/(z2 + y2)

sign of E). At a = a2 there is the limiting condition rᵀ → ∞
on the equatorial plane.

The discriminant spin a∗1 determines the classes of NSs
according to the location of the inversion points with respect

Fig. 17 Analysis of the inversion radius r +T on the equatorial plane
σ = 1, for fluids with specific angular momentum � = �+ < 0 and
� = �− � 0 signed on the panel, as functions of the NS spin-mass
ratios a/M . Spins {a0, a1, a2} are defined in Table 2. Notation (mso) is
for marginally stable orbit, (mbo) is for marginally bounded orbit, (γ )

is for marginally circular orbit. The most general solutions are shown
not considering constraints of Sect. 3.2)

to the ergosurface. (Note that spins {a∗1, a∗2} are defined
according to the geodetic properties on the equatorial plane.).
For a > a∗1, the inversion point is out of the ergoregion
(r > r+

ε ), viceversa for a < a∗1, the inversion point is inside
the ergoregion. Some tori orbiting geometries a < a∗1 are
co-rotating (with L < 0 and E < 0), while for a ∈]a∗1, a∗2[,
tori are counter-rotating with L < 0 and E > 0. For a > a∗2

there are co-rotating tori with L > 0 and E > 0 (with no
inversion point), and counter-rotating tori with L < 0.

From the analysis of Figs. 11, 12, 16 and 23 it is clear
that the inversion point can be directly related to the outer
torus flows (even in the condition �− > 0 with L < 0, for
tachyonic particles), for �− < 0, where there is also the case
�− = �+ < 0. In the determination of the double inversion
point, the limiting role represented by the outer horizon for
the BH geometries is played by the radius rcr for the NSs,
which also determines the distancing of the inversion point
from the central axis of rotation and differentiates slow rotat-
ing NSs from faster spinning NSs – see Fig. 20.
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Fig. 18 Analysis of the tori
(upper line) and flow inversion
points (bottom line) with
� = −a. There is
at ≡ 2

(
2 − √

2
)
M ,

a+
a ≡ 2

√
2

(√
3 + 2

)
M and

a−
a ≡ 2

(√
2 + 2

)
M – see

Eq. (13). There is
σ = sin2 θ ∈ [0, 1] (equatorial
plane is σ = 1). Bottom line,
inversion radius at � = −a as
function of σ for different a
signed on the curves (left) and
as function of a for different σ

(right). Upper line: critical
points of pressure for tori with
�− = −a (left) and �+ = −a
(right). Black curves are the
geodesic structures. Spins
{a0, a1, a2} are defined in
Table 2

Fig. 19 Gray curves are the NS
geodesic structure. Spin a0 is
defined in Table 2 and spins a±

ι

in Eq. (11.) The center and inner
edge of cusped tori rcenter > r×
(plain curves) and the flow
inversion point rᵀ (dashed
curves), on the equatorial plane
σ = 1 are shown as functions of
the NS spin – mass ratio for
different fluid specific angular
momentum according to the
colors notation of Fig. 13. (Here
the most general solutions r ±T
are shown not considering
explicitly the constraints of
Sect. 3.2.) Tori configurations
are shown in Fig. 10. It is clear
the presence of double tori
configurations

3.2.5 On the double inversion points

A distinctive characteristic of the NS geometries with respect
to the BH geometries is the presence of two inversion point
functions r ±T(σᵀ) for fixed σ �= 1, therefore from uφ ≶ 0
and uφ ≷ 0 at constant � and double inversion points at fixed
� and vertical coordinate zᵀ – Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11,
13, 14, 16, 17, 18, 20, 21, 22 and 24.

In the BH spacetime this characteristic is limited to
fast spinning BHs, depending on the fluid specific angular
momentum and far from the equatorial plane. A double inver-
sion point in the BH spacetime occurs in ]z(+), zmax

ᵀ [ and
]r+, y(+)[ where zmax

ᵀ is the maximum vertical coordinate
of the inversion sphere and z(+) : r+ and y(+) : z = r+,

where r+ is the BH outer horizon and the coordinates are as
follows r = √

z2 + y2 and σ = sin2 θ = y2/(y2 + z2) [14].
The inversion corona is the same for particles and photons,

but distinguishes co-rotating from counter-rotating fluids and
it is different for accretion-driven and proto-jets driven flows.
Function r ±T(σᵀ) defines a (regular) locus of points surround-
ing the central singularity, where there can be two inversion
points for each plane σ �= 1. The values (rᵀ, σᵀ), constrained
on the inversion sphere r ±T(σᵀ), is fixed by the particles (pho-
tons) trajectory. In Figs. 6 and 22 is the analysis of the rela-
tivistic angular velocity �, showing two inversion radii r ±T at
fixed � and plane σᵀ. In Sec. (B) the relative location of inver-
sion points according � was considered. Defining the inner
and outer inversion point (at fixed σᵀ and �) as r (i)

ᵀ < r (o)
ᵀ
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Fig. 20 Analysis of tori with fluids specific angular momentum � =
�−, �− = �+ < 0 and flows inversion points. For �− > 0 inver-
sion points are only for space-like particles with (E < 0,L < 0)

in the conditions of Sec. (C). Here most general solutions r ±T are
shown, while further constraints are in Sect. 3.2. Spins a±

ι , are defined
in Eq. (11). There is aμ ≡ a+

ι − (a+
ι − a−

ι )/2, and (�−∗ , �−∗∗) are
�−∗ ≡ �−

mbo + 1.5, �−∗∗ ≡ �−
mbo + 15.5, with �−

� ≡ �−(r−
� ), where

r−
� ≡ r̄−

mso−(r̄−
mso−r−

mbo)/9, fora > a1, and r−
� ≡ r̄−

mso−(r̄−
mso−r−

0 )/2
for a ∈]M, a1[. (mso is for marginally stable orbit and mbo is for
marginally bounded orbit). See also Fig. 11 and 12. Upper line left
panel: the fluid specific angular momentum �− as function of a/M .
Radii r±

ε are the outer and inner ergosurfaces. Upper line right panel is a

close up view of the center panel: inversion radius r ±T on different planes

σ ≡ sin2 θ , on the equatorial plane σ = 1 (plain curves) and σ = 0.5
(dashed curves) and specific angular momenta according to the colors
notation of the left panel. Remaining panels show the inversion radius
r ±T on the plane (y/M, z/M), where σ = sin2 θ = y2/(z2 + y2) and

r = √
z2 + y2, for different fluid specific angular momenta �, accord-

ing to the notation signed on the upper line left panel. Tori models and
accretion flows inversion points are shown in Figs. 10 and 19. Note
the inversion radius location with respect to the ergosurface r±

ε . Fig-
ure 13 show the analysis for fluids with momenta � = �+ < 0. Radius
rcr = r +T = r −T is defined in Eq. (10)

Fig. 21 Analysis of the outer edge rout of the tori orbiting NSs with
spins a ∈]M, a2] with centers and cusps bounded by r±

0 and r±
δ . Panels

show the cusped torus inner and outer edges and the inversion point r +T
on the equatorial plane. There is r× < rout < r +T. There is no solution
rout = r+

ε = 2M on the equatorial plane. Radius r+
ε is the outer ergosur-

face (gray-plane). Light-gray surfaces are r±
0 and r±

δ . Spins {a0, a1, a2}

are defined in Table 2. Left panel: counter-rotating tori. Note the inver-
sion radius is always out of the ergoregion, the outer edge is inside
the ergoregion crossing, for some (a, �), the plane r+

0 . Center panel:
co-rotating tori. The inversion radius is always inside the ergoregion.
Right panel: counter-rotating tori. The inversion radius is located out of
the ergoregion
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respectively, there is � < 0 for r < r (i)
ᵀ ∪ r > r (o)

ᵀ , and

� > 0 for r ∈]r (i)
ᵀ , r (o)

ᵀ [.

3.2.6 Proto-jets driven inversion points and inversion
points verticality

We conclude this work considering in Sect. 3.2.6, proot-jets
driven inversion points and, in Sect. 3.2.6, the inversion point
location with respect to the singularity rotational axis (verti-
cality of the inversion point).

Inversion points from proto-jets Fluids with momentum
� = �+ form proto-jets with � ∈ L+

2 ≡]�+
γ , �+

mbo[. Fluids

with � = �− form proto-jets � ∈ L−
2 ≡]�−

mbo, �
−
γ [, where

�−
mbo > 0 and �−

γ = a > 0.

Radii r−
mbo > r−

γ = 0, constraint the critical points of
pressure for fluids with E > 0 and L > 0 (� = �− > 0),
with a proto-jet cusp in r j ∈]0, r−

mbo] and center in rcenter ∈
]r[mbo], r−

[γ ][, where r−
[γ ] = a2 – see Fig. 1. Therefore proto-

jets with � = �− are always co-rotating4 and there are no
inversion points for proto-jets driven flows with � = �−.

Proto-jets driven inversion points exist only for fluids
with � = �+ < 0 with a cusp out of the ergoregion at
r j ∈]r+

γ , r+
mbo[, and centers in5 r ∈ [r+

[mbo], r
+
[γ ]]) – Fig. 1.

Proto-jets driven inversion coronas are out of the ergoregion
and bounded by the values ]�+

mbo, �
+
γ [. Proto-jets inversion

points are distinguishable from accretion inversion points.
Compared with accretion driven coronas, proto-jets driven
coronas are closer to the ergoregion, approaching the equa-
torial plane, and smaller in extension with larger thickness.
Increasing the spin, the corona maximum point (verticality)
moves far from the attractor (the inversion radius always
decreases with increasing �+ < 0 in magnitude). Inver-
sion points verticality Inversion point verticality (vertical
coordinate zᵀ, elongation on the central rotational axis of the
inversion point) is particularly relevant for proto-jet driven
configurations.

In Fig. 25 inversion points location with respect to the
central rotational axis is shown.

Radius rcr , defined in Eq. (10), provides an indication
on the inversion radius maximum extension. Radius rcr , is
related to the r ±T definition, and it is a background property
dependent on the spin a only, and therefore describes both
fluid particles and photons. (The inversion radius does not
depend on the particles radial velocity and therefore is rele-
vant also for outgoing particles – see for example Fig. 23).

Inversion corona approaches the ergoregion as � increases
in magnitude.

4 Open cusped configurations are possible for example for � = �− at
a < a2, with the formation of axial cusp – [43].
5 There is a “mixed” region, where there can be co-rotating and counter-
rotating proto-jets structures for a > a7. From Eq. (14) it is clear that
for a > ambo the proto-jets with � = �− are out of the ergoregion.

The situation for flows with � = �+ is clear: the maximum
of the inversion point verticality zmax

ᵀ , occurs for � = �−
mso

and a ≈ M ,and there is (for proto-jets and accretion driven
flows) zmax

ᵀ < 1.4M – Fig. 13.
For proto-jets and accretion driven flows, the corona is

larger the smaller the momenta magnitude is, and the smaller
NS spin is. Increasing the spin and decreasing in magnitude
�, the inversion coronas extend on the equatorial plane. Fur-
thermore, at y < ymax

ᵀ , the proto-jets and accretion driven
coronas are very close and with narrow thickness, reducing
approximately to an orbit.

Let us consider now the more general solution �ᵀ = �−.
For � = �− the situation is more complex. Inversion points
exist only for accretion driven flows in NSs with a ∈]M, a2[.
In a = a2, with L < 0, there is a limiting situation, where
for a ≤ a2 the inversion sphere for � = �− < 0 (and L < 0)
increases in extension on the equatorial plane and on the ver-
tical direction becoming, in the limit a = a2 (where � = 0),
asymptotically large and therefore on the NS poles – Fig. 22.

The inversion sphere is inside or outside the ergoregion
according to � = �− > 0 (space-like particles) or � = �− <

0 – see discussion in Eq. (15).
For � = �±

mso, increasing the spin, the verticality
decreases.

For � = �+ the inversion sphere becomes slender and on
the equatorial plane moving far from the attractor.

At � = �−
mso < 0, increasing the spin, the spheres (and

the verticality) always increase. (Note that there are tori with
�− �= �+ < 0.) (Inversion spheres for �− < 0 are larger than
the inversion spheres for �− > 0 (spacelike solutions for
tachyons), as the counter-rotating ones contain in the ergore-
gion, while the co-rotating spheres are inside the ergoregion
– Figs. 7, 8 and 14).

(The inversion sphere maximum for �− > 0 is provided
by the ergoregion, to which the inversion sphere tends for
large a (i.e. a ≤ a0) and for �− → +∞, occurring for
critical points of pressure close to r±

δ . These tori are cusped
and located inside the ergoregion. They belong to a double
toroidal system with equal �− > 0 (where �−

mso > �−
γ ).

The outer co-rotating torus has � ∈ L−
3 , it is quiescent and

with center in r > r−
[mso] > r−

[γ ] > r−
[mbo] and geometrically

separated from the inner torus – see Fig. 26.

3.2.7 Inversion coronas thickness and slow
counter-rotating spheres

We conclude this section with some final comments on the
coronas thickness and on slow counter-rotating spheres with
�− ∈]�+

mso, 0[. Let us consider Figs. 25 and 27.
For �+, the accretion coronas thickness is always smaller

then the proto-jets coronas thickness and decreases, approach-
ing the singularity and the rotational axis, increasing on the
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Fig. 22 Inversion points for flows with fluid specific angular momen-
tum �−. For �− > 0 inversion points are only for space-like par-
ticles with (E < 0,L < 0) in the conditions of Sec. (C). The
most general solutions r ±T are shown not considering constraints of
Sect. 3.2. Spins {a0, a1, a2} are defined in Table 2. Spins {a∗1, a∗2} are
defined in Eq. (15), spins {amso, ambo} are defined in Eq. (14). There
is �−

[∗] ≡ �−(r−
[∗]), r−

[∗] ≡ r−
mso − (r−

mso − r−
mbo)/2. Upper left panel:

fluid angular momentum �−
[∗] and �−

mso, �−
mbo (on the marginally sta-

ble and marginally bounded orbit respectively) as functions of the NS
spin-mass ratio. Upper Center panel: geodesic structure of the Kerr NS
and radius r−

[∗] as function of a/M . Upper right panel and center-line
left panel show the inversion radius rᵀ (on the equatorial plane) for the
torus model with center radius rcenter and cusp r×, where � = �−

[∗].
Center-line right and center panels:: inversion point radius r ±T for dif-

ferent planes σ ≡ sin2 θ ∈ [0, 1] (σ = 1 is the equatorial plane),

signed on the curves, as function of spin-mass ratio a/M (center panel)
and as function of the plane, for different NS spin-mass ratio signed
on the curves (right panel) for fluid specific angular momentum �−

[∗].
Note the location of the inversion radius with respect to the ergosurfaces
r±
ε (dashed curves). Bottom line panel: analysis of the flows inversion

points in terms of the relativistic angular velocities � evaluated for
particles with fluid specific angular momentum � = �−

[∗] for different
plane sigma σ and spins as signed on the planes (left and right panels)
according to notation of the center-line right-panel. There is �(r ±T) = 0.

Bottom right panel shows �(�−
[∗]) on the equatorial plane (σ = 1) for

different spins a/M signed on the curves. Note the presence of two
inversion points for each curve at σ < 1. The analysis for the counter-
rotating tori with fluid specific angular momentum � = �+ < 0 is in
Fig. 6

equatorial plane. The inversion corona is therefore a partic-
ular active region close to the NS. The thickness increases
with the NSs spins, increasing also the thickness differences
between the accretion driven and proto-jets driven coronas.

The slow momenta inversion spheres, located out of the
ergoregion, are not immediately related to flows coming
from the counter-rotating tori in the ergoregion of NSs with
a ∈ [M, a2] (especially on the equatorial plane). There is no
inversion corona for these, quiescent or cusped, tori as the
specific momentum is in L−

1 =]�+
mso, 0[.

As expected, the inversion sphere increases, decreasing
the momentum in magnitude and it is always closed (there is
always a inversion point on the equatorial plane) (Figs. 15,
26, 27).

It should be noted that a solution r ±T (not related to tori)
also exists fora > a2 (withE > 0 andL < 0). It is interesting
to note that there are always inversion points for very large
distances from the NS, not linked to the frame dragging of the
ergoregion, and there are also solutions for BH spacetimes.
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Fig. 23 Photons orbits (upper line) and test particle orbits (center
line) with trajectories inversion points the NS geometry with spin
a = 1.71M . The specific angular momentum is � = −5. The ini-
tial radius is r0 < r×, where r× is the torus inner edge. The inversion
sphere rᵀ is light-purple surface. On the equatorial plane radius r ±T is the

purple curve. Gray surface is the geometry inner and outer ergosurfaces.
Upper and center line: Center panel is the above view of the right panel.
Right panel shown the torus (orange surface) while the green surface is
the light surface with rotational frequency ω = 1/�. Bottom line: Test
particles analysis where θ0 = π/2 and Carter constant is Q = 0.0035

The inversion spheres verticality is very high for very
small � in magnitude, however here we do not consider this
case as it is not related to the orbiting tori.

Interestingly in general, increasing the NS spin, the inver-
sion sphere increases, contrary to the case of high momenta
in magnitude, where it decreases with the NS spin, as for the
case � = �+ < �+

mso.

3.2.8 Flow inversion points from orbiting tori

Inversion spheres are fixed by the tori specific angular
momentum. We assume tori fix the initial conditions on the
(free) fluid particles trajectories, in terms of energy (for time-
like particles inherited by the torus parameter K ) and momen-
tum (� =constant), considering the (unstable) circular orbit
at r× (or r0 ≤ r×) as torus inner edge, and time-like par-

ticle energy as K (at r×) fixed by the torus. The reliabil-
ity of this assumption is confronted by the small variation
of the (narrow) inversion coronas thickness with the initial
data (parameter � =constant) variation and by the inversion
points independence on flow initial data (other than the spe-
cific angular momentum) – Fig. 4.

In the analysis of Figs. 10, 11, 13 and 19 double tori were
considered (see also Figs. 12 and 23).

Flows with � = �− < 0 can be interpretable, for the outer
torus of the pair at �− = �+ < 0, as accretion or proto-jets
driven inversion points. A distinctive property of Kerr NS
geometries is the presence of two inversion radii at planes
different from the equatorial – discussed in more details in
Sect. 3.2.5. The inversion point is uniquely defined by the �

and, at fixed �, there can be two (sphere) radii r ±T(σ ), defin-
ing a closed inversion sphere. Viceversa, functions r ±T(σ )
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Fig. 25 Analysis of the inversion point verticality for fluids with spe-
cific angular momentum � = �+ < 0 (left panel) and � = �− (center
and right panels). Here the most general solutions r ±T are shown not
considering constraints of Sect. 3.2. For �− > 0 inversion points are
only for space-like particles with (E < 0,L < 0) in the conditions of
Sec. (C). Inversion radius r ±T(�) is plotted for selected values of � and NS

spins a/M , signed on the panel, in the plane (y, z) where r = √
z2 + y2

and σ ≡ sin2 θ = y2/(z2 + y2). Spin a = M is the extreme Kerr BH.
Radii r±

ε are the outer and inner ergosurfaces. Notation (mso,mbo, γ )

refers the marginally stable, marginally bounded and last circular orbit
respectively. Purple surface in the center panel is focused on the right
panel

Fig. 26 Maximal extension on the equatorial plane of the inversion
radius r ±T = rb for fluids with specific angular momentum �− (left
panel) and �+ < 0 (right panel). Notation (mso) refers to marginally

stable orbit, (mbo) to marginally bounded orbit, γ to the last circular
orbit, at r±

0 there is � = 0. For �− > 0 inversion points are only for
space-like particles with (E < 0,L < 0) in the conditions of Sec. (C).
Spins {a0, a1} are defined in Table 2

correspond to one �. The inversion point does not explicitly
depend on the orbital energy of the particle (or photon) or on
the torus topology (if quiescent or cusped), which is fixed by
the K parameter (related to the energy definition E).

In Fig. 10, a limiting closed configuration is shown bound-
ing the inner torus of a couple with momentum �−, orbiting
in the NS ergoregion, identified with the light surfaces rs
solutions for the null-like circular orbits with rotational fre-
quencies ω± = 1/� : g(L,L) = 0, defined from the Killing
vector L = ξ t + ωξφ . The limiting frequencies ω± bound
the (time-like) stationary observers four-velocity, (where, in
the BH spacetimes, ω±(r±) = ω±

H are the frequencies of
the outer and inner Kerr horizons respectively). There is
ω±(r → 0) = 1/a, where r−

γ = 0 and �−
γ = 0.

4 Final remarks

The inversion points have been analyzed for accretion driven
and proto-jets driven flow in the Kerr super-spinar back-

ground. Defined by the condition uφ = 0, the flow inversion
points are related to the orbiting structures defining accretion
driven and proto-jets driven inversion coronas.

The location of inversion points has been considered also
in relation to the ergoregion, characterizing the dragging
effects on the accretion flows and jet emission in Kerr super-
spinars and proving that NSs are distinguished from the BHs
by the presence of double inversion points on planes different
from the equatorial.

In accretion and jet driven flows, possible strong obser-
vational signatures of these attractors, are highlighted. Our
results prove that inversion points can constitute an observa-
tional aspect capable of distinguishing the super-spinars.

The flow carries in fact information about the accretion
structures around the central attractor. These structures are
governed by the balance of the hydrodynamic and centrifu-
gal forces and also effects of super-spinars repulsive gravity.
In this paper we addressed in particular the special case of
double tori with equal specific angular momentum and slow
counter-rotating inversion spheres, tori and inversion points
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Fig. 27 Analysis of the inversion sphere for low angular momenta
counter-rotating tori �− ∈]�+

mso, 0[ in the ergoregion of NSs with
a ∈ [0, a2]. There is r = √

z2 + y2 and σ ≡ sin2 θ = y2/(z2 + y2). I
Radii r±

ε are the outer and inner ergosurfaces. Notation mso refers the
marginally stable circular orbit, mbo to marginally bounded orbit and
(γ ) to the marginally circular orbit. Upper left panel: purple surface is
the inversion sphere at specific angular momentum �− = −3.5 > �−

mso.
Black lines are test particles ingoing trajectories crossing the inversion

spheres and out – going trajectory crossing the inversion sphere. Gray
region is the ergosurfaces orange region is the counter-rotating torus in
the ergoregion. Upper center and right panel: specific angular momenta
�± < 0 as functions of r/M for selected spins signed on the panel.
Gray lines are �±

mso and (�+
mbo, �

+
γ ). Below left and center panel, the

ergosurfaces and inversion spheres for selected values of � < 0 signed
on the curves and for the NSs spins reported on the panels. Bottom right
panel shows super-imposition of the left and center plots

for � = ±a and excretion driven inversion points. Finally
proto-jets driven inversion points and inversion points verti-
cality have been discussed focused in relation to the inver-
sion coronas thickness. (On the other hand, for slow tori with
�− ∈]�+

mso, 0[, inversion spheres verticality is very high for
very small � in magnitude, this case however is not related to
the orbiting tori.). With narrow thickness and small extension
on the equatorial plane and rotational central axis, the inver-
sion surface varies little with the fluid initial conditions and
the details of the emission processes. The inversion coronas,
including all the possible inversion surfaces, are a geometric
property of the background. Therefore the information pro-
vided by the analysis of the inversion points has a remarkable
observational significance and applicability to various orbit-
ing toroidal models.

In these different scenarios our analysis provides distin-
guishable physical characteristics of jets and accretion tori
for possible strong observational signature of the primordial
Kerr superspinars. Therefore this work is part of the research
on the possible observational evidences of Kerr naked singu-
larity solutions, and the astrophysical tracers distinguishing
black holes from their super-spinar counterparts having cos-
mological relevance (as predicted for example by string the-
ory [58]). However the observational properties in the inver-
sion coronas we expect depend strongly on the processes

timescales i.e. the time flow reaches the inversion points,
depending on the initial data.

The accretion and proto-jets flows are constituted by par-
ticles and photons, coming from toroids orbiting a central
Kerr super-spinar. Constraints on the accretion or proto-jets
driven flows are grounded on the assumption that the accre-
tion disk “inner edge” is located between marginally bounded
orbit and marginally stable orbit for the accretion driven flow
and marginally stable and marginally circular orbit for the
proto-jets driven flows (with the exception for inner tori in
the ergoregion with a ∈]M, a2[), translated into the range of
values of the � parameter defining the coronas. The closed
surfaces, defining inversion coronas are spherical shells, fixed
by the fluids specific angular momentum, where the parti-
cles and photons flow toroidal velocity is null. The inver-
sion corona surround the central singularity, distinguishing
co-rotating and counter-rotating flows from proto-jets and
accretion driven flows. (Co-rotating flows (a� > 0) have no
(timelike or photon like particle) inversion points. However,
in Sec. (C) we also focused on the � > 0 case with E < 0 and
L < 0, where spacelike (tachyonic particles) inversion points
are possible inside the ergoregion, in relation to tori orbiting
a very small region of the ergoregion of certain slowly spin-
ning NSs. Further notes on the co-rotating flows inversion
points in relation to the NS causal structure are in Sec. (C).)
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We deepen the analysis in Sec. (B) discussing in detail the
relative location of the inversion points in accreting flows.

The results of this analysis are also based on the possibil-
ity to relate the flow inversion points to the orbiting configu-
rations, differentiated in accretion and proto-jets structures,
defining the driven and proto-jets driven flows respectively.
In each case we distinguish the definition and properties of
the inversion coronas.

The special case of double tori with equal specific angular
momentum is a notable example of a trace for the presence
of a center super-spinar in contrast with a central BH attrac-
tor. A further remarkable feature is the existence of tori for
specific angular parameter � = ±a and the inversion points
of their flows. We also discussed the existence of excretion
driven inversion points due to the repulsive gravity effects
typical of the ergoregions of a super-spinars class. More in
general we focused on the location of inversion points in
relation to the ergoregion and with the respect to the torus
outer edge, relevant for the double orbiting systems at equal
� in the NSs backgrounds. NSs are distinguished in fact from
the BHs also by the presence of double inversion points on
planes different from the equatorial, we discuss this aspect
extensively. Proto-jets driven inversion points and inversion
points verticality are focused a part addressing the presence
of inversion points in the jet emission. Consequently we char-
acterised several inversion coronas morphological features
as thickness, relating to the dimensionless spin of the central
attractor.

Slow counter-rotating inversion spheres, due to orbiting
tori with small � magnitude, have been pointed out as a tracer
of certain classes of super-spinars.

In conclusion properties characterizing these geometries
have been highlighted in both accretion and jet flows. As
the flow carries information about the accretion structures
around the central attractor, we established that the inver-
sion points can constitute an observational aspect capable
of distinguishing the super-spinars, proving that the closed
inversion region is capable to distinguish proto-jets from
accretion driven flows, and co-rotating from counter-rotating
flows, providing a signature of these attractors. As the inver-
sion coronas are small bounded orbital regions located out
of ergoregion, we expect it be a remarkably active part of the
accreting flux of matter and photons, particularly close to the
central singularity and the rotational axis, where this region
may be characterized by an increase of the flow luminosity
and temperature. We plan to apply in the future the analysis
using observational data, searching for signatures of the Kerr
super-spinars in the distinguishable physical characteristics
of jets and accretion tori highlighted here. An application that
may detect interesting scenarios, both in the super-spinars
and BHs fields, could be constituted by the turning points
evidence possibly imprinted by counter-rotating photons in
the shadows cast by the central singularity and now capa-

ble to be observed with the recent advances in observational
astronomy6.
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Appendix A: Tori model

Toroidal surfaces are the closed, and closed cusped Polish
doughnut (P-D) solutions. The accretion in these geomet-
rically thick tori is driven by the Paczynski mechanism of
violation of force balance [16]. The toroids rotation law,
� = �(�) is independent of the details of the fluids equa-
tion of state, and provides the integrability condition of the
Euler equation in the case of barotropic fluids – [18]. PD are
constructed as constant pressure surfaces, constructed in the
axis – symmetric spacetimes applying the von Zeipel the-
orem. (The surfaces of constant angular velocity � and of
constant specific angular momentum � coincide.).

Tori are described by the conditions ∂tq = 0 and ∂ϕq = 0,
with q being a generic spacetime tensor and assuming a
barotropic equation of state with uθ = 0 and ur = 0 on
the fluid particles velocities. The condition � =constant is
assumed for each toroids. The continuity equation is there-
fore is identically satisfied. The fluid dynamics is governed
by the Euler equation only. The pressure gradients are are
regulated by an effective potential function, Vef f (r; �, a),
encoding the centrifugal and gravitational components of the
force balance:

V 2
e f f = g2

tφ − gφφgtt

gφφ + 2gtφ� + gtt�2 . (A1)

6 (EHT: Event Horizon Telescope eventhorizontelescope.org).
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(There is �± = �(r; a) : ∂r Vef f = 0). In this frame
the torus edges are solutions of V 2

e f f = K 2 and there is
K = K× for the cusped tori edges. (We adopt the nota-
tion q• ≡ q(r•) for any quantity q evaluated on a radius
r•.). Function K (r) = Vef f (�(r)), characterizes proto-jets
cusps and accretion disks cusps as cusped tori have param-
eter K = K× ≡ K (r×) ∈]Kcenter , 1[⊂]Kmso, 1[. Centers
and cusps correspond to the minimum and maximum of the
fluid effective potential respectively. Toroidal configurations
are defined by a maximum of the pressure and density (torus
center rcenter ) and, eventually, a vanishing of pressure point
(torus cusp r×, or proto-jets cusp r j ).

The matter outflow (at r ≤ r×) occurs as consequence of
the violation of mechanical equilibrium in the balance of the
gravitational and inertial forces and the pressure gradients
in the tori (hydro-gravitational instability Paczyński mecha-
nism [16])): at (r ≤ r×), the fluid is pressure-free we shortly
indicate the toroids cusp as the inner edge of accreting torus.
P-D models are essentially defined only by their radial exten-
sion on the equatorial plane, by the radial pressure (density)
gradients (maximum and minimum points) on the equatorial
plane, therefore the main functions describing tori properties
are projected on the equatorial plane.

Appendix B: Relative location of the inversion points

A inversion radius r ±T(σ ) is associated to one and only one
� value, but it may be associated to a double toroidal orbital
system composed by two counter-rotating tori orbiting the
central singularities for � < 0. At plane different from the
equatorial (σ �= 0), fluids particles with a momentum � have
two inversion point radii r ±T and, at fixed � and vertical coor-
dinate zᵀ two inversion points yᵀ for planes different from
the equatorial (as well as two zᵀ at fixed yᵀ), which consti-
tutes a major difference with the BH case. NS geometries
are characterized by double inversion points at fixed �, on a
vertical coordinate. (There are also two inversion points at
fixed coordinate y on the inversion sphere, below and above
the equatorial planes).

We here consider two fluids with specific angular momen-
tum (�, κ��) on the inversion plane σᵀ, with κ� ∈ R – Eq (9).
We discuss the relative location of flows inversion points for
fluids characterized by a specific relation among their specific
momentum. Relatively counter – rotating/co-rotating fluids
are defined by the condition κ� ≶ 0, as �counter-rotating and
�co-rotating respectively. The special case, κ� = 1 consid-
ers inversion points for elements of same flow (we prove the
existence of κr �= 1)7 or from double toroids systems with
with equal specific angular momentum.

7 At fixed σᵀ (θᵀ) we study the radii rᵀ =
√
z2ᵀ + y2ᵀ, while in the analy-

sis of the double inversion points we fixed zᵀ, discussing coordinates yᵀ.

Inversion point definition depends only on the specific
fluid angular momentum �, and it is independent fromE or K .
The explicit independence from K ensures the independence
on the tori geometrical thickness, tori topology (cusped or
quiescent) and the precise location of the particles at initial
data. Therefore we solve the equation �(rᵀ) = κ��(κr rᵀ),
where �(rᵀ) is in Eq (9). It is clear that for κ� < 0, �counter-
rotating flows, (time-like and photon-like) inversion points
are only for one fluid, as co-rotating fluids have no inversion
points.

On the equatorial plane σ = 1
On the equatorial plane, σ = 1, the situation is as follows:

σ = 1 : rᵀ = rᵀ(κ�κr ) for (κ� < 0 : κr �= 1);
(k ∈]0, 1[, κ� < κr , κr �= 1), (κ� = 1, κr = 1, rᵀ �= 2),

(κ� > 1 : κr < k, κr �= 1), where

rᵀ(κ�κr ) ≡ κr − 1

κ� − κr
+

√
(κ� − 1)2

(κ� − κr )2 + 1. (B1)

We also included the limiting case κ� = κr = 1. It is clear
that the �co-rotating case is much more complex then the
�counter-rotating case.

The general case σ �= 1
In the general case (σ �= 1) we analyze the sub-cases

{(κ� < 0, κr > 1), (κ� > 0, κr > 1), (κ� > 0, κr <

1), (κ� < 0, κr < 1)}.
For κr = 1, there are solutions only for κ� = 1, (a inver-

sion point rᵀ(σᵀ) is uniquely identified by a value of �) and
r �= r±

ε . The cases (κ� < 0, κr ≶ 1) and (κ� > 0, κr ≶ 1)

can be studied considering the problem symmetries.
For (κ� < 0, κr > 1), �-counter-rotating fluids, the situa-

tion can be summarized as follows

For (κ� < 0, κr > 1) : σ = σw, for r ∈]0, r(κr )[,
r �= rκr , where

σw ≡ rκr [κ�(r − 2) − rκr + 2]
a2[κ�κr − 1] + 1, rκr ≡ 2

κr + 1
,

r(κr ) ≡ 2(κ� − 1)

κ� − κr
. (B2)

Or, alternately, in terms of the inversion point radius (with
σ �= {0, 1}) there is

For κ� < −1 : κr > 1,

(σ(τ), r
−
(τ )), (σ ∈]σ(τ), 1[, r±

(τ )), (σ(l), r
+
(τ )).

For κ� = −1 : κr > 1, (σ ∈]σ(l), 1[, r±
(τ )).

For κ� ∈] − 1, 0[: κr > 1,

(σ(τ), σ(l), r
−
(τ )), (σ > σ(τ), r

±
(τ )), (B3)

where

σ(l) ≡ a2(κr + 1)2 − 4κr

a2(κr + 1)2 , σ(τ) ≡ 1 − (κ� − 1)2κr

a2κe(κ�κr − 1)
,
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r∓
(τ ) ≡ κ� − 1

κe
∓

√
a2(σ − 1)κe(κ�κr − 1) + (κ� − 1)2κr

κrκ2
e

,

with κe ≡ κ� − κr .
We now consider the conditions (κ� > 0, κr > 1) for

�-co-rotating fluids, where there is

For κ� ∈]0, 1[:[
κr ∈]1, κ+

(r)[, (σ(τ), σ(l), r
−
(τ )), (σ > σ(τ), r

±
(τ ))

]
,[

κ+
(r), (σ > σ(τ), r

±
(τ )), (σ(l), r

−
(τ ))

]
,[

κr ∈]κ+
(r), 1/k[, (σ > 0, r±

(τ )), (σ(l), r
−
(τ ))

]
,[

κr ≥ 1/κ� : (σ �= {0, 1}, r+
(τ ))

]
.

For κ� = 1 :
[
κr > 1, (σ �= {0, 1, σ(l)}, r+

(τ ))
]
.

For κ� > 1 :[
κr ∈]1, κ+

(r)[, (σ(τ), r
−
(τ )), (σ(l), r

+
(τ )), (σ > σ(τ), r

±
(τ ))

]
,[

κr ∈ [κ+
(r), κ[, (σ > 0, r±

(τ )), (σ(l), r
+
(τ ))

]
,[

κr = κ�, (σ > 0, σ �= σ(l)[, r f )
]
,[

κr > κ�, (σ > 0, σ �= σ(l), r
+
(τ ))

]
. (B4)

with

κ∓
(r) ≡

a2
[
∓κ�

√
(a2−1)(κ�−1)2[(a−1)κ�+a+1][a(κ�+1)+κ�−1]

a4κ2
�

+ κ2
� + 1

]
− (κ� − 1)2

2a2κ�

;

r f ≡ − a2(σ − 1)(κ�κr − 1)

2(κ� − 1)κr
. (B5)

The case (κ� > 0, κr < 1) can be studied from the case
(κ� > 0, κr > 1), and considering the problem symmetries.
However it can be useful to see explicitly this case as follows

For κ� ∈]0, 1[:
[
κr ∈]0, κ�[, σ ∈]0, 1[, σ �= σ(l), r

+
(τ )

]
,[

κr = κ� : σ ∈]0, 1[, σ �= σ(l), r f
]
,[

κr ∈]κ�, κ
−
(r)], (σ ∈]0, 1[, r±

(τ )), (σ(l), r
+
(τ ))

]
,[

κr ∈]κ−
(r), 1[, (σ(τ), r

−
(τ )), (σ(l), r

+
(τ )), (σ > σ(τ), r

±
(τ ))

]
.

For κ� = 1 :
[
κr ∈]0, 1[, (σ ∈]0, 1[, r+

(τ )), σ �= σ(l)

]
.

For κ� > 1 :
[
κr ∈]0, 1/κ�], σ ∈]0, 1[, r+

(τ ), σ �= σ(l)

]
,[

κr ∈]1/κ�, κ
−
(r)], (σ ∈]0, 1[, r±

(τ )), (σ(l), r
−
(τ ))

]
,[

κr ∈]κ−
(r), 1[, (σ(τ), σ(l), r

−
(τ )), (σ > σ(τ), r

±
(τ ))

]
. (B6)

Appendix C: Notes on the co-rotating flows inversion
points

1. On the fluids parameters in NSs spacetime

We can analyze, in terms of past/future directed and space-
like particles, co-rotating and counter-rotating motion with
negative energy orbits E < 0 or withL < 0 in the ergoregion.
In order to do that, it is convenient to re-define the energy
E → sE with s ≡ ±1, having:

E = s(gtφφ̇ + gtt ṫ), L = gφφφ̇ + gtφ ṫ, gabu
aub = κμ2,

(C1)

κ = (±, 0) is the normalization constant. For time-like par-
ticles, from the condition on the energy E/μ = 1, as seen at
infinity (r → +∞) we set s = −1.

The angular velocity � can be parametrized with momen-
tum � → s�. Tori orbiting NSs can be described in terms of
s� and sE , therefore the following relations hold(
ut , uφ)

∣∣
s=−1 = − (

ut , uφ)
∣∣
s=1;L=−L

= (
ut , uφ)

∣∣
s=1;E=−E = − (

ut , uφ)
∣∣
s=−1;E=−E;L=−L

(C2)

�|�>0;s=±1 = �|�<0;s=∓1 , (C3)

Note, (σᵀ, r ±T) can be expressed in terms of the variable �̃ =
s�:

r ∓T(s)

≡
∓

√
a2σ 2ᵀ + (s�)2

[
a2(σᵀ − 1) + 1

] + 2aσᵀs� + aσᵀ + s�

s�
,

and σᵀ(s) ≡ s��ᵀ
a(as� + 2rᵀ)

. (C4)

Introducing the s sign there is � = s gtφ/gtt
∣∣
ᵀ, and Eᵀ ≡

sgtt (ᵀ)ṫᵀ. Co-rotating particles and fluids with s = −1 (i.e.
(L < 0 or � < 0) respectively) can be studied as co-rotating
fluids (i.e. (L > 0 or � > 0) respectively) with s = +1 and
viceversa.

With the energy re-parametrization Ẽ ≡ sE , accounting
for on the energy sign (s = ±1), the fluid effective potential
can be parametrized in terms of �̃ = s� (which can be inter-
preted as sign of fluid (and particle) rotation). The condition
at radial infinity is independent from s i.e. V 2

e f f = −κ for

r → +∞. The condition V 2
e f f ≥ 0 is fixed by the normal-

ization condition, determined by the κ-sign.

2. Inversion radius r ±T of the co-rotating (� > 0) flows

In this section we complete the analysis considering also the
general sign s = ±1, where �̃ ≡ s� and Ẽ ≡ sE . There are no
inversion points for E > 0 and L > 0. A necessary condition
for the existence of a inversion point, from definition Eq. (9)
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of L at (rᵀ, σᵀ), is L < 0 and therefore it occurs in the
co-rotating case only for L < 0 and E < 0. (However we
shall prove that these solutions are for spacelike (tachyonic)
particles.). Conditions discussed in this article are in fact a
necessary but not sufficient condition for the existence of a
inversion point for accreting flows.

Considering co-rotating flows, for s = −1, there are only
space-like inversion points from co-rotating flows withE < 0
and L < 0. We then consider the condition uφ = 0 with
LE > 0 and (�,L, E) constants.

There are co-rotating inversion points for

(� > 0) uφ = 0, (L ≤ 0, E ≤ 0) :
for s < 0 : (σᵀ ∈]σ+

ε , 1], rᵀ ∈]r−
ε , r+

ε [),
for s > 0 : (σᵀ ∈]0, σ+

ε [, rᵀ > 0),

(σᵀ = σ+
ε , rᵀ ∈]0, r−

ε [∪rᵀ > r−
ε ),

(σᵀ ∈]σ+
ε , 1], rᵀ ∈]0, r−

ε [∪rᵀ > r+
ε ), (C5)

(note that in this case we considered also the case s > 0)
where the test particle energy E and the angular momenta
(L, �) are

E[g] ≡ sut
[

2rᵀ
�ᵀ

− 1

]
, L[g] ≡ − 2arᵀσᵀut

�ᵀ
,

�[g] ≡ − 2arᵀσᵀ
s[2rᵀ − �ᵀ] . (C6)

Considering the normalization and stand still conditions
(uφ = 0,L ≤ 0, E ≤ 0), with (s < 0, k > 0), there
is (σ ∈]σ+

ε , 1], r ∈]r−
ε , r+

ε [, ut(y)). For (s > 0, k < 0),

there is (σ ∈]0, σ+
ε [, ut(y)), (σ = σ+

ε , r �= r−
ε , ut(y)), (σ ∈

]σ+
ε , 1], (r ∈]0, r−

ε [∪r > r+
ε , ut(y)), where E = ks/ut ,L =

−2arσut/�, ut(y) = √
k(2r/δ0 − 1), and δ0 ≡ 2r − �. (

Tori within these conditions are rather small and are located
in the NS ergoregion.).

It is useful to introduce the following angular momenta
and plane:

�∓
aσ ≡ aσᵀ

1 − r2
cr

∓
√√√√ a2r2

crσ
2ᵀ[

1 − r2
cr

]2 ,

σaσ ≡ 1

2

[√
�2

(
−4�

a
+ �2 + 4

)
− �2

]
+ �

a
, (C7)

– Fig. 28.

There are no inversion points on the poles σ = 0. More
in general inversion radii are for

� > 0 :
σᵀ ∈]σ+

ε , 1[: (� = �+
aσ , rᵀ = r −T); (� > �+

aσ , rᵀ = r ±T),

(σ = 1, � > �−
γ , rᵀ = r +T), (C8)

or, in other words

� > �−
γ : (σᵀ = σaσ , rᵀ = r −T);

σᵀ ∈](σaσ , 1[, rᵀ = r ±T);
(σᵀ = 1, rᵀ = r +T). (C9)

Value �−(r = 0) = �−
γ = a > �−

mbo is the limit for the
existence of proto-jets. In the geometries a > a2, for � > �−

γ ,

there are only quiescent tori centered in r > r−
[γ ], in this

region there is L > 0 and there are no inversion points. For
a ∈]M, a0[, �−

mbo < �−
γ < �−

mso in ]r−
δ , r+

δ [, and therefore
the case � > �−

γ includes only inversion points from the inner
tori for a ∈]M, a0[ (tori are for any � > �−

mso) and quiescent
tori at r > r−

[γ ]. For a ∈]a0, a2[, at � > a there are quiescent
tori.

Contrary to the counter-rotating case, the inversion point
with � > 0 exists only in the ergoregion r ∈]r−

ε , r+
ε [ –

see also Fig. 28. There is a double inversion point radius
r ±T, while on the equatorial plane there is there is one only
inversion point, within the condition � > �−

γ > M , that is
for σ = 1 : � > �−

γ , r = r +T.

The co-rotating inversion point is confined in the ergore-
gion ]r−

ε , r+
ε [, in fact there is for � > 0 and s = −1

σ = σᵀ : (� ≥ �β, r ∈]0, 2M[)
or (� > �−

γ ,∈]0, rb]),
�β ≡ 2a

2 − r
, rb ≡ 2(� − a)

�
(C10)

– Fig. 28.

or alternatively σ = σᵀ : � ≥ �β > �−
γ ,

0 < rᵀ ≤ rb < 2M. (C11)

Here however we consider also the case s = +1. The
choice of s sign is related to the sing of (ut , uφ) and (E,L).
In the following we drop the notation ᵀ while still intending
all the quantities being evaluated at the inversion point. We
consider the normalization condition with κ = {0,−1} and
(uφ = 0, ut > 0), introducing the following quantities

ṫ[u] ≡
√

�

� − 2r
; θ̇2[u] ≡ r

[
(r − 2)ṫ2 − r

] − a2(σ − 1)
(
ṫ2 − 1

)
�2 , θ̇2[y] ≡ (r − 2)ṫ2

r3 , θ̇2[g] ≡ ṫ2 (� − 2r)

�2 ;

ṙ[u] ≡ −�
[
a4(σ − 1)2θ̇2 + a2(σ − 1)

[
ṫ2 − 2r2θ̇2 − 1

] + r4θ̇2 + r2 − (r − 2)r ṫ2
]

�2 ;

ṙ2[x] ≡ −�
[
a4(σ − 1)2θ̇2 + a2(σ − 1)

[
ṫ2 − 2r2θ̇2

] + r4θ̇2 − (r − 2)r ṫ2
]

�2 . (C12)
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Fig. 28 Fluid specific angular
momentum �±

aσ of Eq. (C7) as
function the NS spin – mass
ratio a/M for different planes
σ ≡ sin2 θ . Right panel is a
close-up view of the left panel.
Spins {a0, a1, a2} are defined in
Table 2

Fig. 29 Analysis of inversion plane σᵀ with fluid specific angular
momentum �−, including co-rotating motion �− > 0 and counter-
rotating fluids with � = �− < 0 for spin a ∈]M, a2[ and orbital range
for the definition of � in ]r−

0 , r+
0 [−]r−

δ , r+
δ [. Left panel: momentum �−

on the geodesic radii are shown as function of the NS spin-mass ratios.
Reference value � = �−

γ = a is shown, function �β of Eqs. (C10) on

the geodesic structure (relative to fluid momentum �− is also shown.
Right panel: radius rb is plotted on different momenta according to the
colors definitions of the right left panel. Spins {a0, a1, a2} are defined
in Table 2. Black curves are radii r−

0 < r−
δ < r+

δ < r+
0 as functions of

the NS spin a/M

For photon-like particles there is ṙ2 = ṙ2[x],L = L[g], E =
E[g] with

s < 0, (σ = σ+
ε , r = r−

ε , θ̇2 = 0),

(σ ∈]σ+
ε , 1[, (r = r±

ε , θ̇2 = 0),

(σ = 1, r = 2, θ̇2 = 0);
s ≥ 0 : (σ ∈ [0, σ+

ε [, θ̇2 ∈ [0, θ̇2[g]]),
(σ = σ+

ε , (r ∈]0, r−
ε [∪r > r−

ε ,

θ̇2 ∈ [0, θ̇2[g]]), (r = r−
ε , θ̇2 = 0);

(σ ∈]σ+
ε , 1[, (r ∈]0, r−

ε [∪r > r+
ε , θ̇2 ∈ [0, θ̇2[g]]),

(r = r±
ε , θ̇2 = 0); (C13)

(σ = 1, (r = 2, θ̇2 = 0);
(r > 2, θ̇2 ∈ [0, θ̇2[y]])). (C14)

For time-like particles there is ṙ2 = ṙ[u],L = L[g], E = E[g]
with

s ≥ 0 :
(σ ∈ [0, σ+

ε [, (ṫ = ṫ[u], θ̇2 = 0);
(ṫ > ṫ[u], θ̇2 ∈ [0, θ̇2[u]]);
(σ = σ+

ε , (r �= r−
ε , (ṫ = ṫ[u], θ̇2 = 0);

(ṫ > ṫ[u], θ̇2 ∈ [0, θ̇2[u]]);
σ ∈]σ+

ε , 1], ((r ∈]0, r−
ε [∪r > r+

ε ,

(ṫ = ṫ[u], θ̇2 = 0); (ṫ > ṫ[u], θ̇2 ∈ [0, θ̇2[u]]).

The flow inversion points at s = +1 and s = −1 are
in separated orbital regions and therefore distinguishable.
Considering also the normalization condition, with uφ =
ur = uθ = 0 (stand still condition), there is (E ≥ 0,L ≤
0, � ≤ 0, uφ = 0) with (E(x),L(x), �(x) = L(x)/E(x), ut(x))
for: (s < 0, k < 0, a > 1) : (σ ∈]0, σ+

ε [, r > 0), (σ =
σ+

ε , r �= r−
ε ), (σ ∈]σ+

ε , 1], (r ∈]0, r−
ε [∪r > r+

ε ). There
is (s > 0, k > 0, a > 1) : σ ∈]σ+

ε , 1], r ∈]r−
ε , r+

ε [.
Where ut(x) ≡ √

k (2r/(2r − �) − 1), E(x) = ks/ut ,L(x) ≡
−2arσut/�. The case � = 0 is possible only for L = 0
and σ = 0 (on the BH axis) where E = ut�/(a2 + r2)

Considering also the normalization and the stand still con-
dition, the case � = 0 is possible for any s and κ only for
L = 0 and σ = 0 (on the rotational axis), where E = κs/ut ,

ut =
√

−κ(a2 + r2ᵀ)/�ᵀ.

Let us define:

E� ≡ ˙tᵀ
[

1 − 2rᵀ
�ᵀ

]
, L� = −2arᵀσᵀ ṫᵀ

�ᵀ
, (C15)

For s = −1 there are no inversion for points for time-
like or photon-like particles with (L < 0, E < 0). There are
however spacelike solutions (at ut > 0), in the ergoregion
with (ṙ2

ᵀ = ṙ2
J ,L = L�, E = E�) for

σᵀ ∈]σ+
ε , 1], rᵀ ∈]r−

ε , r+
ε [,

(ṫᵀ ∈]0, ṫ−� [, θ̇2
ᵀ ∈ [0, θ̇2

J ]);
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(ṫᵀ = ṫ−� , θ̇2 = 0), (C16)

where

ṫ−� ≡
√

2rᵀ
2rᵀ − �2ᵀ

− 1; θ̇2
J ≡ rᵀ

[
(rᵀ − 2)ṫ2

ᵀ + rᵀ
] − a2(σᵀ − 1)

(
ṫ2
ᵀ + 1

)
�2ᵀ

;

ṙ2
J ≡ −�ᵀ

[
a4(σᵀ − 1)2θ̇2

ᵀ + a2(σᵀ − 1)
(
ṫ2
ᵀ + 1 − 2r2

ᵀθ̇2
ᵀ
) + r4

ᵀθ̇2
ᵀ − rᵀ

[
(rᵀ − 2)ṫ2

ᵀ + rᵀ
]]

�2ᵀ
. (C17)
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