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Abstract Minimal and maximal uncertainties of position
measurements are widely considered possible hallmarks of
low-energy quantum as well as classical gravity. While Gen-
eral Relativity describes interactions in terms of spatial cur-
vature, its quantum analogue may also extend to the realm
of curved momentum space as suggested, e.g. in the context
of Relative Locality in Deformed Special Relativity. Draw-
ing on earlier work, we show in an entirely Born recipro-
cal, i.e. position and momentum space covariant, way that
the quadratic Generalized Extended Uncertainty principle
can alternatively be described in terms of quantum dynam-
ics on a general curved cotangent manifold. In the case of
the Extended Uncertainty Principle the curvature tensor in
position space is proportional to the noncommutativity of
the momenta, while an analogous relation applies to the cur-
vature tensor in momentum space and the noncommutativity
of the coordinates for the Generalized Uncertainty Princi-
ple. In the process of deriving this map, the covariance of
the approach constrains the admissible models to an interest-
ing subclass of noncommutative geometries which has not
been studied before. Furthermore, we reverse the approach
to derive general anisotropically deformed uncertainty rela-
tions from general background geometries. As an example,
this formalism is applied to (anti)-de Sitter spacetime.

1 Introduction

As the field of quantum gravity has been maturing, it has
outlined a vast landscape of paths towards a final theory (see
[1,2] for recent broad reviews). However, as of yet none of
the proposed approaches has provided decisively convincing
evidence in its favour. The main reason for this continuing
dissent lies in the absence of experimental input caused by
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the seeming inaccessibility of the relevant scale, the Planck
length l p.

In the wake of the continuously increasing precision in
observations and experiments as well as control over quan-
tum phenomena, though, the prospect of a meaningful phe-
nomenology of quantum gravity appears ever more feasible
[3] (see [4,5] for recent reviews). Among the manifold cur-
rents in the field, the minimal length paradigm figures as the
oldest and continues to be of great importance. Over the time
it has been motivated from String theory [6–10], Loop quan-
tum gravity [11–14], Asymptotic Safety [15], noncommu-
tative geometry [16–18] as well as Hořava-Lifshitz gravity
[19–21], but also derived from general arguments combining
gravity and quantum theory [22–33]. Indeed, it is underlying
the aforementioned LIV [34] as well as Deformed Special
Relativity (DSR) [35,36] (see [37,38] for recent reviews)
and within single particle quantum mechanics the General-
ized Uncertainty Principle (GUP) [39–47] (see [48] for a
review).

The latter effect which is investigated the present paper
posits the minimal length as an epistemological obstruction
to precise measurements, not as a fundamental discreteness
[49], by modifying Heisenberg’s famous relation as (here
understood perturbatively in one dimension)

ΔxΔp ≥ h̄

2

[
1 +

(
lUVΔp

h̄

)2
]

, (1)

with the minimal length lUV, supposedly related to the Planck
scale, and the fundamental uncertainties of position and
momentum measurements Δx and Δp, respectively.

However, the quantum mechanical formalism (as well as
the Hamiltonian one) enjoys a symmetry [50] with respect
to the exchange of positions and momenta (x̂ ↔ − p̂),
dubbed Born reciprocity, whose preservation implies that a
correction of this kind must be complemented by a position-
dependent counterpart, resulting in the Generalized Extended
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Uncertainty principle (GEUP) [51–54]

ΔxΔp ≥ h̄

2

[
1 +

(
lUVΔp

h̄

)2

−
(

Δx

lIR

)2
]

, (2)

with an additional maximal length lIR. As a matter of fact, the
mixing of IR and UV effects, i.e. such acting on large and
short distance scales, constitutes another widely suspected
feature of quantum gravity [55] – and indeed, the cosmolog-
ical horizon, predicted by General Relativity, can be under-
stood as a limit to distance measurements akin to a maximal
length.

The position-dependent corrections leading to so called
Extended Uncertainty Principles (EUPs) were shown to be
related to spatial curvature in a recent series of papers [56–
60]. While those works do not employ the usual uncertainty
relations and alternative ways of introducing an inequality of
the type (2) exist [61–63], the most common approach also
pursued in this article consists in modifying the underlying
algebra of observables.

In this context, the present author has shown in an ear-
lier piece [64] (see also [65]) that theories of single particles
obeying a GUP in flat space can be mapped onto the dynam-
ics of an ordinary particle on nontrivial momentum space,
albeit with a somewhat idiosyncratic, non-momentum space-
covariant kinetic Hamiltonian which simplified the general
treatment. For the quadratic GUP, the resulting curvature in
momentum space is proportional to the noncommutativity of
the coordinates in the original theory. Similar results have
also been obtained in [66,67]. Apart from that, the concept
of curved momentum spaces has been among the hot topics
of quantum gravity phenomenology since the field’s infancy
[68–81].

In the present paper, we modify this analysis such that the
resulting Hamiltonian in the dual theory is covariant in posi-
tion as well as momentum space, by assuming the kinetic
part of the Hamiltonian to be proportional to the squared
geodesic distance to the origin in momentum space as sug-
gested in [71,77,80]. Correspondingly, in a fully reciprocal
theory, the potential of the isotropic harmonic oscillator has to
be proportional to the squared geodesic distance to the origin
in position space, which serves as an additional constraint.
Further treating both positions and momenta on exactly recip-
rocal footing during the entire analysis and working pertur-
batively with the quadratic GEUP, we obtain an map from the
GEUP-deformed theory to the quantum dynamics of an ordi-
nary particle on a nontrivial cotangent manifold, analogous
to the less general result of [64,65]. The covariance of the
approach, however, restricts the admissible GEUP-models
to an interesting subclass, whose GUP-sector, for example,
apparently does not feature a minimal length but noncom-
mutative coordinates.

Furthermore, in the EUP-limit (vanishing minimal length),
the metric is solely position-dependent and the Riemann
tensor results proportional to the noncommutativity of the
momenta in the original theory, while the same occurs to the
curvature tensor in momentum space and the noncommuta-
tivity of the coordinates in the GUP-limit (infinite maximal
length). This fact is, again, in line with [64,65], underscoring
the robustness of the result.

Finally, we reverse the formalism, thus deriving general
anisotropic GEUP-algebras (see [82,83]) in terms of the
background curvature tensors. This result is applied to (anti-
)de Sitter geometries at the relativistic level. There is an inter-
esting connection of these findings to momentum gauge fields
[84] which is studied further in [85].

The paper is organized as follows: First, we introduce
deformed Heisenberg algebras and explain how to work
with them in Sect. 2. We further use Sect. 3 to outline in
rather general terms how the mentioned map is to be imple-
mented. Sect. 4 is devoted to the perturbative application to
the quadratic GEUP. The formalism is applied inversely in
Sect. 5. Finally, we wrap up and discuss the findings in Sect. 6.

2 Deformed Heisenberg algebras

Instead of the common case known from textbook quantum
mechanics, we assume that the physical position and momen-
tum operators satisfy the deformed algebra

[x̂ i , x̂ j ] = i h̄θ i j (x̂, p̂), (3a)

[ p̂i , p̂ j ] = i h̄θ̃ i j (x̂, p̂), (3b)

[x̂ i , p̂ j ] = i h̄ f ij (x̂, p̂), (3c)

with the sufficiently well-behaved functions θ i j , θ̃i j and f ij ,
for which the Jacobi identities imply that

[x̂ [i , θ jk]] = 0, (4a)

[ p̂[i , θ̃ jk]] = 0, (4b)

[θ i j , p̂k] = 2[ f [i
k , x̂ j]], (4c)

[θ̃i j , x̂ k] = 2[ f k[ j , p̂i]], (4d)

such that noncommutativity of the coordinates θ i j as well as
the noncommutativity of the momenta θ̃i j are entirely con-
tingent on f ij .

According to the usual approach followed in the context
of the GUP/EUP, the Hamiltonian of the system in question
has to be expressed in terms of physical variables, i.e. for a
single particle of mass m

H = p̂2

2m
+ V (x̂ i , δi j ), (5)
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with the flat metric δi j , the squared physical momentum oper-
ator p̂2 = p̂i p̂ jδ

i j and the potential V . In the case of an
harmonic oscillator, for example, the potential can be chosen
to be of the form

VHO = mωh̄2

2
x̂2, (6)

such that it measures the squared distance from the origin.
An often pursued way to make sense of modified alge-

bras of the kind (3c) consists in finding a set of canoni-
cal phase space variables [86], which the physical ones can
be comprised of, and further constructing a Hilbert space
within which the resulting Hamiltonian is Hermitian. This
algorithm is equivalent to finding an explicit representation
of the algebra. Along these lines, we define the new phase
space coordinates noncanonically related to the physical ones
X̂ = X̂(x̂, p̂), P̂ = P̂(x̂, p̂), which satisfy the Heisenberg
algebra

[X̂ i , X̂ j ] = [P̂i , P̂j ] = 0, [X̂ i , P̂j ] = i h̄δij . (7)

Then, the Hamiltonian can be expressed in terms of the said
new variables as

H = p̂2(X̂ , P̂)

2m
+ V [x̂ i (X̂ , P̂), δi j ]. (8)

As those can be represented in the usual way, the only ingredi-
ent left in the specific situation consists in finding the appro-
priate measure to make the resulting Hamiltonian Hermitian.
As this can be quite demanding in the general case (3c), a
formalism of the type introduced in [87] may be beneficial.

3 Reinterpretation in terms of the curved cotangent
bundle

It has recently been shown that the theory of a single particle
obeying a general GUP can be mapped onto the dynamics of
an ordinary particle moving on a curved momentum space
[64,65]. The underlying derivation was based on the asser-
tion that the correct extrapolation of the kinetic part of the
Hamiltonian from flat to curved momentum space is of the
form

ˆ̃Hkin = 1

2m
gi j (P̂)P̂i P̂j , (9)

with the momentum-dependent metric gi j . However, this
expression is not covariant in momentum space. In the truly
reciprocal formulation pursued in the present work, covari-
ance in position space has to be complemented by covariance
in momentum space. Correspondingly, from the viewpoint of

reciprocity and in line with the formalism of Relative Locality
[70,88], it is more natural to define the free-particle Hamil-
tonian as

Ĥkin ≡ σ̂ 2
P (P̂)

2m
, (10)

with the geodesic distance from the origin in momentum
space σ̂P . Its classical counterpart, defined as [89]

σP ≡
∫ P

O
ds, (11)

i.e. the distance along the shortest geodesic (with ds being the
corresponding line element) connecting the point in momen-
tum space P to the origin O , contains just as much informa-
tion about the underlying manifold as the metric, which may,
for example, be reconstructed from the differential version
of Eq. (11)

gi j
∂σP

∂Pi

∂σP

∂Pj
= 1. (12)

Indeed, it has been recently pointed out that the dynamics
derived from the classical limit of Hamiltonians of the form
(10) yield the correct geodesics as solutions to the ensuing
equations of motion even when both position and momentum
space are curved [71,77,80] which rightly qualifies it as the
kinetic energy.

A reinterpretation of the GUP in terms curvature in the
cotangent bundle may therefore be based on the identification

σ̂ 2
P = δi j p̂i (P̂) p̂ j (P̂). (13)

When transitioning from the GUP to the GEUP, this relation
can be kept as it is such that it becomes

σ̂ 2
P = δi j p̂i (X̂ , P̂) p̂ j (X̂ , P̂). (14)

However, it has to be complemented by an analogous con-
struction in position space. Bearing in mind the principle of
reciprocity, there is no freedom choice in that matter – the
missing piece must be the equality

σ̂ 2
X = δi j x̂

i (X̂ , P̂)x̂ j (X̂ , P̂), (15)

with the geodesic distance operator in position space σ̂X ,
whose classical limit is defined analogously to Eq. (11). By
analogy with Eq. (12), this quantity can be related to the
metric as

gi j
δσX

δXi

δσX

δX j
= 1, (16)
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where the positional derivative, which is modified by the
curvature in the cotangent manifold, is defined as δ/δXi =
∂/∂Xi + Ni j∂/∂Pj , with the nonlinear connection N ji (for
an exhaustive treatment of this subtlety consult [90,91]).

Thus, the whole formalism is severely constrained by Eqs.
(3c), (4), (7), (14) and (15) and its consistency is not guar-
anteed a priori. Therefore, it is instructive to investigate a
prominent example.

4 Perturbative quadratic GEUP

From the phenomenological viewpoint, it is often sufficient
to consider a perturbative version of the GEUP, which may be
understood as an expansion in the origins of position as well
as momentum space. In this context, momentum-dependent
corrections to the Heisenberg algebra become important at
high energies or small distances, i.e. in the UV. This is why,
they represent the minimal length paradigm, embodied by
the GUP in the phenomenology of quantum gravity. Position-
dependent modifications, in turn, gain relevance at large dis-
tances, i.e. in the IR, the regime of classical General Rela-
tivity. In particular, they, summarized under the term EUP,
are understood to model a maximal length implied by the
existence of the cosmological horizon.

4.1 Algebra

Usually, the combination of the said modifications can be
parameterized with the help of the dimensionless coefficients
α, α′, β and β ′ as

[x̂ i , p̂ j ] = i h̄
[
δij

(
1 + α x̂2/ l2IR + βl2p p̂

2/h̄2
)

+α′ x̂ i x̂ j/ l2IR + β ′l2p p̂i p̂ j/h̄
2
]
, (17)

where lIR and l p denote a relevant length scale in the infrared
(such as the radius of the horizon) and the Planck length,
respectively. Correspondingly, the noncommutativities of the
coordinates and momenta read approximately

[x̂ i , x̂ j ] � i h̄(2β − β ′)l2p ĵ j i/h̄2 ≡ i h̄θ ĵ j i , (18)

[ p̂i , p̂ j ] � i h̄(2α − α′) ĵ j i/ l2IR ≡ i h̄θ̃ ĵ j i , (19)

with the modified angular momentum operator ĵi j = 2x̂[i p̂ j]
which, importantly, does not correspond to the generator of
rotations (c.f. [92]) and where we introduced the noncommu-
tativities in position and momentum space θ and θ̃ , respec-
tively. Given this algebra, we can study the equivalent repre-
sentation in terms of the curved cotangent bundle.

4.2 Transformation

A general noncanonical transformation of interest to this
work will be of the form (x̂ i , p̂ j ) → (X̂ i , P̂j )

x̂ i = [1 + cα X̂
2/ l2IR + c′

βl
2
p P̂

2]X̂ i + c′′
βl

2
p P̂

i P̂j X
j , (20)

p̂i = [1 + cβ l
2
p P̂

2 + c′
α X̂

2/ l2IR]X̂ i + c′′
α X̂i X̂

j Pj/ l
2
IR, (21)

where we abbreviated the quantities X̂2 = δi j X̂ i X̂ j and
P̂2 = δi j P̂i P̂j and introduced the α- and β-dependent
dimensionless constants cα, c′

α ,c′′
α , cβ, c′

β and c′′
β, respec-

tively,
However, the formalism introduced in Sect. 3 puts severe

constraints on the representable models. In particular, the
covariance of the construction with respect to diffeomor-
phisms in position and momentum space requires that there
is an infinite number of equivalently admissible transforma-
tions (21), characterized by the gauge-parameters gα and gβ .
These label equivalent representations of the GEUP which
are related by diffeomorphisms (X̂ i , P̂j ) → (X̂ ′i , P̂ ′

j ) in
position and momentum space

X̂ ′i = [1 + (g′
α − gα)X̂2/ l2IR]X̂ i , P̂ ′

i = ∂ X̂ j

∂ X̂ ′i P̂j , (22)

P̂ ′
i = [1 + (g′

β − gβ)l2p P̂
2]P̂i , X̂ ′i = ∂ P̂j

∂ P̂ ′
i

X̂ j , (23)

respectively.
Along the lines of Sect. 3, Eqs. (3c), (4), (7), (14) and

(15) provide six conditions for the six constants numbers in
Eq. (21). However, the system of equation is only consistent
if the gauge-parameters remain undetermined. Then, it does
not come as a surprise that the model parameters have to be
constrained as β ′ = −β, α′ = −α instead. Thus, the algebra
of the physical variables reads

[x̂ i , p̂ j ] = i h̄
[
δij + βl2p

(
p̂2δij − p̂i p̂ j

)
/h̄2

+α
(
x̂2δij − x̂ i x̂ j

)
/ l2IR

]
, (24)

and the noncommutativities become θ = 3βl2p/h̄
2 and θ̃ =

3α/ l2IR.

This choice of parameters will be made for the remainder
of this work. Although it has (to the knowledge of the author)
not been considered yet in the literature, the model has some
remarkable properties which will be dealt with below.

The solution of the system of equations reads in terms of
the gauge-parameters

cα = gα, c′
α = α − gα, c′′

α = −(2gα + α), (25)

cβ = gβ, c′
β = β − gβ, c′′

β = −(2gβ + β). (26)
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Given the noncanonical transformation(s) and the constraints
on model parameters, it is possible to analyse the dual theory
on the curved cotangent bundle.

4.3 Curvature

In accordance with Eqs. (14) and (15), the fully covariant
harmonic potential energy and the kinetic energy operators
are proportional to

σ̂ 2
x �

[
1 + 2gα X̂

2/ l2IR + (β − gβ)l2p P̂
2/h̄2

]
X̂2

+ (β − gβ)l2p X̂
i P̂2 X̂i/h̄

2

− (2gβ + β)l2p{X̂ i , P̂i P̂j X̂
j }/h̄2, (27)

σ̂ 2
p �

[
1 + 2gβl

2
p P

2/h̄2 + (α − gα)X̂2/ l2IR

]
P̂2

+ (α − gα)P̂i X̂
2 P̂i/ l2IR

− (2gα + α){P̂i , X̂ i X̂ j P̂j }/ l2IR. (28)

Turning to commuting variables for the moment, the “clas-
sical” analogues of these quantities,1 the geodesic distances
from the origin in position and momentum space, read

σ 2
x �

[
1 + 2gα X̂

2/ l2IR + 2(β − gβ)l2p P̂
2/h̄2

]
X2

− (2gβ + β)l2p
(
Pi X

i
)2

/h̄2, (29)

σ 2
p �

[
1 + 2gβl

2
p P

2/h̄2 + 2(α − gα)X2/ l2IR

]
P2

− (2gα + α)
(
Pi X

i
)2

/ l2IR. (30)

Using Eqs. (12) and (16), the latter of which is simplified due
to the nonlinear connection dropping out from the perturba-
tive point of view, they can be understood as being derived
from the metric

gi j =
[
1 + 2(β − gβ)l2p P

2/h̄2 − 2(α − gα)X2/2
IR

]
δi j

− 2(2gβ + β)l2p Pi Pj/h̄
2

+ 2(2gα + α)Xi X j/
2
IR. (31)

Setting β = β ′ = 0 corresponding to pure EUP-corrections,
i.e. a solely position-dependent metric as in usual curved
spaces, the ensuing Riemann tensor Rik jl becomes

Rik jl � 6α

l2IR

(
gi j gkl − gil gk j

) ∝ 2θ̃ . (32)

1 The classical limit of the GUP is highly nontrivial, which can be
understood heuristically through the disappearance of the length scale
l p as h̄ → 0. For an in-depth analysis see [93,94].

The case α = α′ = 0, the GUP, can be treated by complete
analogy with the preceding example (for a more in-depth
treatment of this matter see [64,65]), thus implying that the
curvature tensor in momentum space Sik jl equals

Sik jl � 6βl2p
h̄2

(
gi j gkl − gil gk j

)
∝ 2θ. (33)

Both clearly indicate a space of constant curvature, which
should be expected to lowest order in a newly introduced
length scale. Furthermore, the parameters gα and gβ do not
feature in the curvature tensors at all, corroborating the char-
acterization of them being pure gauge.

In accordance with the results obtained in [64,65], the
scalar curvature in momentum space is proportional to the
noncommutativity in of the coordinates in the original theory.
An analogous relation is found for the curvature in position
space and the noncommutativity of the momenta.

This does not come as a surprise because assuming β =
−β ′ (as well as α = 0 here) the representation in [64,65] is
just one coordinatization of the results presented here. More-
over, the Born reciprocity of quantum mechanics dictates that
modifications in position space behave analogously to those
in momentum space. It remains to be analysed which conse-
quences this particular choice of model parameters entails.

4.4 Peculiarities of the model

In order to translate the GEUP to the language of the curved
cotangent manifold in a covariant way, we had to impose
the constraint β = −β ′. This choice has some remarkable
properties which are summarized in the present section.

• In one dimension, the commutator (24) reduces to the
canonical one, i.e. the model is indistinguishable from
quantum mechanics. This squares well with the fact that
one-dimensional spaces cannot exhibit intrinsic curva-
ture, while the model at hand necessarily implies a curved
momentum space if β 	= 0.

• Going hand in hand with the trivial one-dimensional
limit, the usual limitations on length measurements are
more subtle in the given model. For example, along the
i th axis and for α = 0 and β > 0 (i.e. the usual GUP),
we obtain

Δx (i)Δp(i) ≥ h̄

2

⎛
⎝1 + βl2p

h̄2

∑
j 	=i

Δp2
j

⎞
⎠ , (34)

where the parentheses indicate indices which are not
summed over. Clearly, the right-hand side of the uncer-
tainty relation does not harbour any explicit dependence
ΔpN , but the momentum uncertainties along other direc-
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tions. In general, it is possible to imagine arbitrarily
squeezed states such that ΔpN ′ 	= ΔpN ′(ΔpN ). Then,
the correction to the uncertainty relation amounts to a
simple rescaling of Planck’s constant h̄. Thus, there is
no minimal length per se; rather, the quantumness of
phenomena along one axis depends on the resolution of
momenta along the other ones.

• As the coordinates continue being noncommutative, they
still satisfy an uncertainty relation of the form

ΔxiΔx j ≥ 3βl2p
2h̄

〈 ĵ j i 〉. (35)

This implies a minimal area, provided the system under
study has nonvanishing angular momentum.

In short, the fate of the minimal length (and by analogy for
α 	= 0 the minimal momentum) is unclear and merits further
study.

To summarize, in the present section we have found the
cotangent manifold geometry given a perturbative GEUP.
Importantly, however, this construction not only applies one
way: Given a geometry, we can find the dual description in
terms of a GEUP. This is the matter of the next section.

5 Reverse engineering GEUPs

Curiously, the results (32) and (33) indicate that the modified
commutator between positions and momenta (24) underlying
the GUP (α = 0) may be written as

[x̂ i , p̂ j ] � i h̄
(
δij + S kil

j pk pl/6
)

. (36)

Similarly, according to Eq. (33) the noncommutativity of the
coordinates is dependent on the curvature in the dual theory.
An analogous relation can be written down on the EUP-side
(β = 0).

This begs the question whether the form of the commuta-
tors is of general nature. In order to check this idea, we follow
the approach presented in Sect. 3 inversely. Afterwards, we
apply the result to relativistic spacetime, in particular (anti-
)de Sitter geometry.

5.1 Ansatz

Assume, for the moment, the background space to be
described by the metric gi j (p), given in normal coordinates,
and its associated Levi-Civita connection. Then, the geodesic
distance from the origin (in momentum space) is given as
σ̂ 2
p = P̂2, while in position space we obtain

σ̂ 2
x = δi j e

i
k(P̂)X̂ ke jl (P̂)X̂ l , (37)

with the vielbein eij (P̂) = eij ( p̂). Thus, the noncanonical
transformation towards the GUP-model can be found non-
perturbatively, reading simply

x̂ i = eij X̂
i , p̂i = P̂i . (38)

As a result, we obtain the modified algebra

[x̂ i , p̂ j ] = i h̄eij ( p̂), (39)

[x̂ i , x̂ j ] = 2i h̄e[i
k ∂̇ |k|e j]l (e−1)lm( p̂)x̂m, (40)

[ p̂i , p̂ j ] = 0, (41)

with the partial derivative in momentum space ∂̇ i =
∂/∂ p̂i .This is a completely general result, however only
applying to normal coordinates.

In order to obtain an explicit results, we expand the back-
ground in terms of Riemann normal coordinates centered in
the origin on momentum space, such that

eij � δij + S kil
j

∣∣∣
p=0

p̂k p̂l/6, (42)

where the correction is positive because the metric in momen-
tum space is the inverse of the metric in position space. Thus,
the algebra can be approximated as

[x̂ i , p̂ j ] � i h̄

(
δij + S kil

j

∣∣∣
p=0

p̂k p̂l/6

)
, (43)

[x̂ i , x̂ j ] � i h̄
(
S jikl + Sk[i j]l

)∣∣∣
p=0

ĵkl/6, (44)

[ p̂i , p̂ j ] = 0, (45)

where we used the symmetries of the Riemann tensor. Indeed,
for a curvature tensor of the form (33), we obtain the GUP-
side of the algebra (24). However, the GUP implied here is of
more general scope, encompassing also anisotropic models
(for more about these see [82,83]).

Similarly, the quantum dynamics of a particle moving on
a curved position space can alternatively be described by the
EUP-deformed algebra

[x̂ i , p̂ j ] � i h̄
(
δij + Ri

k jl

∣∣∣
x=0

x̂ k x̂ l/6
)

, (46a)

[x̂ i , x̂ j ] = 0, (46b)

[ p̂i , p̂ j ] � i h̄
(
Ri jkl + Rk[i j]l

)∣∣
x=0 ĵ kl/6. (46c)

By analogy with the GUP, on a background curved as in Eq.
(32), we exactly recover the algebra including (24) for β = 0.

Thus, we are in the position to provide a full derivation of
EUPs under the assumption of a curved four-dimensional
background.
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5.2 General EUP from spacetime curvature

Ultimately, uncertainty relations in nonrelativistic single par-
ticle quantum mechanics have to be derivable from relativis-
tic models. In this section, we show that a general EUP can
be derived given an arbitrary spacetime M and a geometry
on top.

The approach developed for nonrelativistic GEUPs in the
preceding section can equivalently be applied to relativistic
algebras. However, in this case its interpretability in terms
of uncertainty relations is questionable; there are no rela-
tivistic uncertainty relations, even though there is no scarcity
in ansätze [60,95,96]. The decisive reason behind this issue
lies in there being no time operator in quantum mechanics,
another problem that does not lack attempted solutions [97–
99]. Anyway, there is no harm in dealing with the underlying
algebras on an abstract level.

In that vein, we can express the result of the preceding sec-
tion in terms of Riemann normal coordinates in Minkowskian
signature as

[x̂μ, p̂ν] � i h̄
(
δμ
ν + Rμ

ρνσ

∣∣
x=0

x̂ρ x̂σ /6
)

, (47a)

[x̂μ, x̂ν] = 0, (47b)

[ p̂μ, p̂ν] � i h̄
(
Rμνρσ + Rρ[μν]σ

)∣∣
x=0 ĵρσ /6. (47c)

Given the abstractness of this expression, it is instructive to
demonstrate its consequences in terms of a simple explicit
example.

(Anti)-de Sitter space

As (anti)-de Sitter space is maximally symmetric, in the ori-
gin of Riemann normal coordinates the Riemannian curva-
ture tensor can be expressed as

Rμρνσ |xμ=0 = Λ

3

(
δμνδρσ − δμσ δρν

)
, (48)

with the cosmological constant Λ which is (negative) positive
for (anti-) de Sitter space. As a result, we obtain the algebra

[x̂μ, p̂ν] � i h̄

[
δμ
ν

(
1 + Λ

18
x̂2

)
− Λ

18
x̂μ x̂ν

]
, (49a)

[x̂μ, x̂ν] = 0, (49b)

[ p̂μ, p̂ν] � i h̄Λ ĵνμ/6. (49c)

Note that this algebra is still coordinate dependent, while the
Hamiltonian is coordinate invariant. For example, we may
apply the coordinate rescaling x̂ν → √

2x̂μ, p̂μ → p̂μ/
√

2
to bring the commutation relations more in line with the usual

way they are presented such that

[x̂μ, p̂ν] � i h̄

[
δμ
ν

(
1 + Λ

9
x̂2

)
− Λ

9
x̂μ x̂ν

]
, (50a)

[x̂μ, x̂ν] = 0, (50b)

[ p̂μ, p̂ν] � i h̄Λ ĵνμ/3. (50c)

Clearly, this result is not exactly the position space analogue
of Snyder-space, which, however, is not required for consis-
tency.

6 Discussion

Modified Heisenberg algebras play a significant rôle in the
modern discussion on quantum gravity phenomenology. In
this paper we have presented a map that provides an alterna-
tive description of a nonrelativistic quantum particle obeying
a quadratic GEUP, which contains position- and momentum-
dependent corrections embodying classical (maximal length)
and quantum (minimal length) gravity effects, in terms of
the quantum dynamics of an ordinary particle on a gener-
ally curved phase space. In so doing, we have consistently
respected the Born reciprocal symmetry of the undeformed
quantum theory implying results which are covariant in posi-
tion as well as momentum space. This has been achieved by
reinterpreting the kinetic term of the Hamiltonian and the
harmonic oscillator potential as proportional to the squared
geodesic distances to the origins in momentum and position
space, respectively.

In comparison to earlier results [64,65], the covariant
nature of the results presented here leads to constraints on
admissible GEUPs for description in terms of the curved
cotangent manifold. Somewhat reminiscently of Loop Quan-
tum Gravity and in contrast to conventional approaches, its
GUP-sector does not exhibit a minimal length but noncom-
mutative coordinates; as is to be expected of curvature effects,
its consequences cannot be restricted to solely one dimen-
sion. Therefore, this model arguably merits further consider-
ation in the future in its own right.

We have further found that, on the one hand, the case of
pure EUP-corrections results in a solely position-dependent
metric and a Riemann tensor that is proportional to the non-
commutativity of the momenta in the original theory. On the
other hand, the pure minimal-length limit, implying a GUP,
yields the same behaviour for the curvature tensor in momen-
tum space and the noncommutativity of the coordinates as
expected by Born reciprocity.

As a further application, we have reversed the formalism
to derive GUPs and EUPs from general geometries on curved
phase space. Thus, we have expressed the widely considered
isotropic as well as the more general anisotropic models in
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terms of curvature tensors. Moreover, we have considered
relativistic curved position spaces and their corresponding
relativistic EUPs by analogy. To provide an example, we
have applied the formalism to (anti-)de Sitter spacetimes.

Note that all derivations in the present work have been
performed at first perturbative order. Whether this behaviour
persists to higher order in the perturbative expansion will be
the subject of future work.

Acknowledgements The author thanks P. Bosso and L. Petruzziello for
insightful discussions. His work was supported by the Polish National
Research and Development Center (NCBR) project ”UNIWERSYTET
2.0. – STREFA KARIERY”, POWR.03.05.00-00-Z064/17-00 (2018-
2022). Moreover, he would like to acknowledge the contribution of the
COST Action CA18108.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This work does
not refer to data because it is a theoretical piece consisting of con-
ceptual ideas and their mathematical implications. No comparison to
observation is made.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

References

1. C. Kiefer, Quantum Gravity: Third EditionInternational Series of
Monographs on Physics (OUP Oxford, Oxford, 2012)

2. R. Loll, G. Fabiano, D. Frattulillo, F. Wagner, PoS
CORFU2021, 316 (2022). https://doi.org/10.22323/1.406.
0316. arXiv:2206.06762

3. G. Amelino-Camelia, Lect. Notes Phys. 541, 1 (2000).
arXiv:gr-qc/9910089

4. A. Addazi et al., Prog. Part. Nucl. Phys. 125, 103948 (2022).
arXiv:2111.05659

5. G. Amelino-Camelia, Living Rev. Rel. 16, 5 (2013).
arXiv:0806.0339

6. D. Amati, M. Ciafaloni, G. Veneziano, Phys. Lett. B 197, 81 (1987)
7. D. Amati, M. Ciafaloni, G. Veneziano, Phys. Lett. B 216, 41 (1989)
8. D.J. Gross, P.F. Mende, Nucl. Phys. B 303, 407 (1988)
9. D.J. Gross, P.F. Mende, Phys. Lett. B 197, 129 (1987)

10. K. Konishi, G. Paffuti, P. Provero, Phys. Lett. B 234, 276 (1990)
11. M. Maggiore, Phys. Rev. D 49, 5182 (1994). arXiv:hep-th/9305163
12. G.M. Hossain, V. Husain, S.S. Seahra, Class. Quant. Grav. 27,

165013 (2010). arXiv:1003.2207
13. B. Majumder, S. Sen, Phys. Lett. B 717, 291 (2012).

arXiv:1207.6459

14. F. Girelli, F. Hinterleitner, S. Major, SIGMA 8, 098 (2012).
arXiv:1210.1485

15. R. Ferrero, M. Reuter, JHEP 08, 040 (2022). https://doi.org/10.
1007/JHEP08(2022)040. arXiv:2203.08003

16. M.V. Battisti, S. Meljanac, Phys. Rev. D 79, 067505 (2009).
arXiv:0812.3755

17. S. Pramanik, S. Ghosh, Int. J. Mod. Phys. A 28, 1350131 (2013).
arXiv:1301.4042

18. M. Chaichian, K. Nishijima, A. Tureanu, Phys. Lett. B 633, 129
(2006). arXiv:hep-th/0511094

19. Y.S. Myung, Phys. Lett. B 679, 491 (2009). arXiv:0907.5256
20. Y.S. Myung, Phys. Lett. B 678, 127 (2009). arXiv:0905.0957
21. M. Eune, W. Kim, Phys. Rev. D 82, 124048 (2010).

arXiv:1007.1824
22. C.A. Mead, Phys. Rev. B 135, 849 (1964)
23. C.A. Mead, Phys. Rev. 143, 990 (1966)
24. T. Padmanabhan, Class. Quant. Grav. 4, L107 (1987)
25. Y.J. Ng, H. Van Dam, Mod. Phys. Lett. A 9, 335 (1994)
26. M. Maggiore, Phys. Lett. B 304, 65 (1993). arXiv:hep-th/9301067
27. G. Amelino-Camelia, Mod. Phys. Lett. A 9, 3415 (1994).

arXiv:gr-qc/9603014
28. L.J. Garay, Int. J. Mod. Phys. A 10, 145 (1995).

arXiv:gr-qc/9403008
29. R.J. Adler, D.I. Santiago, Mod. Phys. Lett. A 14, 1371 (1999).

arXiv:gr-qc/9904026
30. F. Scardigli, Phys. Lett. B 452, 39 (1999). arXiv:hep-th/9904025
31. S. Capozziello, G. Lambiase, G. Scarpetta, Int. J. Theor. Phys. 39,

15 (2000). arXiv:gr-qc/9910017
32. A. Camacho, Gen. Rel. Grav. 34, 1839 (2002).

arXiv:gr-qc/0206006
33. X. Calmet, M. Graesser, S.D.H. Hsu, Phys. Rev. Lett. 93, 211101

(2004). arXiv:hep-th/0405033
34. D. Colladay, V.A. Kostelecky, Phys. Rev. D 58, 116002 (1998).

arXiv:hep-ph/9809521
35. G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002).

arXiv:gr-qc/0012051
36. J. Magueijo, L. Smolin, Phys. Rev. Lett. 88, 190403 (2002).

arXiv:hep-th/0112090
37. M. Arzano, J. Kowalski-Glikman,Deformations of Spacetime Sym-

metries: Gravity, Group-Valued Momenta, and Non-Commutative
Fields, Lecture Notes in Physics, vol. 986. (Springer, Berlin, Hei-
delberg, 2021)

38. A. Bevilacqua, J. Kowalski-Glikman, PoS CORFU2021, 322
(2022). https://doi.org/10.22323/1.406.0322. arXiv:2203.04091

39. M. Maggiore, Phys. Lett. B 319, 83 (1993). arXiv:hep-th/9309034
40. A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995).

arXiv:hep-th/9412167
41. A. Kempf, J. Phys. A 30, 2093 (1997). arXiv:hep-th/9604045
42. S. Benczik et al., Phys. Rev. D 66, 026003 (2002).

arXiv:hep-th/0204049
43. S. Das, S. Pramanik, Phys. Rev. D 86, 085004 (2012).

arXiv:1205.3919
44. L. Buoninfante, G. Lambiase, G.G. Luciano, L. Petruzziello, Eur.

Phys. J. C 80, 853 (2020). arXiv:2001.05825
45. L. Petruzziello, F. Illuminati, Nature Commun. 12, 4449 (2021).

arXiv:2011.01255
46. P. Bosso, Class. Quant. Grav.38, 075021 (2021). arXiv:2005.12258
47. P. Bosso, G.G. Luciano, Eur. Phys. J. C 81, 982 (2021).

arXiv:2109.15259
48. S. Hossenfelder, Living Rev. Rel. 16, 2 (2013). arXiv:1203.6191
49. A. Hagar, Discrete or Continuous?: The Quest for Fundamental

Length in Modern Physics (Cambridge University Press, Cam-
bridge, 2014)

50. M. Born, Proc. R. Soc. Lond. Ser. A 165, 291 (1938)
51. C. Bambi, F.R. Urban, Class. Quant. Grav. 25, 095006 (2008).

arXiv:0709.1965

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.22323/1.406.0316
https://doi.org/10.22323/1.406.0316
http://arxiv.org/abs/2206.06762
http://arxiv.org/abs/gr-qc/9910089
http://arxiv.org/abs/2111.05659
http://arxiv.org/abs/0806.0339
http://arxiv.org/abs/hep-th/9305163
http://arxiv.org/abs/1003.2207
http://arxiv.org/abs/1207.6459
http://arxiv.org/abs/1210.1485
https://doi.org/10.1007/JHEP08(2022)040
https://doi.org/10.1007/JHEP08(2022)040
http://arxiv.org/abs/2203.08003
http://arxiv.org/abs/0812.3755
http://arxiv.org/abs/1301.4042
http://arxiv.org/abs/hep-th/0511094
http://arxiv.org/abs/0907.5256
http://arxiv.org/abs/0905.0957
http://arxiv.org/abs/1007.1824
http://arxiv.org/abs/hep-th/9301067
http://arxiv.org/abs/gr-qc/9603014
http://arxiv.org/abs/gr-qc/9403008
http://arxiv.org/abs/gr-qc/9904026
http://arxiv.org/abs/hep-th/9904025
http://arxiv.org/abs/gr-qc/9910017
http://arxiv.org/abs/gr-qc/0206006
http://arxiv.org/abs/hep-th/0405033
http://arxiv.org/abs/hep-ph/9809521
http://arxiv.org/abs/gr-qc/0012051
http://arxiv.org/abs/hep-th/0112090
https://doi.org/10.22323/1.406.0322
http://arxiv.org/abs/2203.04091
http://arxiv.org/abs/hep-th/9309034
http://arxiv.org/abs/hep-th/9412167
http://arxiv.org/abs/hep-th/9604045
http://arxiv.org/abs/hep-th/0204049
http://arxiv.org/abs/1205.3919
http://arxiv.org/abs/2001.05825
http://arxiv.org/abs/2011.01255
http://arxiv.org/abs/2005.12258
http://arxiv.org/abs/2109.15259
http://arxiv.org/abs/1203.6191
http://arxiv.org/abs/0709.1965


Eur. Phys. J. C (2023) 83 :154 Page 9 of 9 154

52. S. Mignemi, Mod. Phys. Lett. A 25, 1697 (2010). arXiv:0909.1202
53. S. Ghosh, S. Mignemi, Int. J. Theor. Phys. 50, 0911 (1803).

arXiv:2011.5695
54. R. N. Costa Filho, J. a. P. M. Braga, J. H. S. Lira, J. S. Andrade,

Phys. Lett. B 755, 367 (2016)
55. S. Minwalla, M. Van Raamsdonk, N. Seiberg, JHEP 02, 020 (2000).

arXiv:hep-th/9912072
56. T. Schürmann, Found. Phys. 48, 716 (2018). arXiv:1804.02551
57. M.P. Dabrowski, F. Wagner, Eur. Phys. J. C 79, 716 (2019).

arXiv:1905.09713
58. M.P. Dabrowski, F. Wagner, Eur. Phys. J. C 80, 676 (2020).

arXiv:2006.02188
59. L. Petruzziello, F. Wagner, Phys. Rev. D 103, 104061 (2021).

arXiv:2101.05552
60. F. Wagner, Phys. Rev. D 105, 025005 (2022). arXiv:2111.15583
61. M.J. Lake et al., Class. Quant. Grav. 36, 155012 (2019).

arXiv:1812.10045
62. M.J. Lake, M. Miller, S.-D. Liang, Universe 6, 56 (2020).

arXiv:1912.07094
63. M. J. Lake, (2020). arXiv:2008.13183
64. F. Wagner, Phys. Rev. D 104, 126010 (2021). arXiv:2110.11067
65. F. Wagner, Curved momentum space equivalent to the linear and

quadratic Generalized Uncertainty Principle, in 9th Meeting on
CPT and Lorentz Symmetry, (2022). arXiv:2207.02915

66. R. Singh, D. Kothawala, Phys. Rev. D 105, L101501 (2022).
arXiv:2110.15951

67. G. Gubitosi, F. Lizzi, J.J. Relancio, P. Vitale 2112, 11401 (2021)
68. J. Kowalski-Glikman, S. Nowak, Int. J. Mod. Phys. D 12, 299

(2003). arXiv:hep-th/0204245
69. J. Kowalski-Glikman, Phys. Lett. B 547, 291 (2002).

arXiv:hep-th/0207279
70. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, L. Smolin,

Phys. Rev. D 84, 084010 (2011). arXiv:1101.0931
71. C. Pfeifer, J.J. Relancio, Eur. Phys. J. C 82, 150 (2022).

arXiv:2103.16626
72. L. Freidel, R.G. Leigh, D. Minic, Phys. Lett. B 730, 302 (2014).

arXiv:1307.7080
73. L. Freidel, R.G. Leigh, D. Minic, Int. J. Mod. Phys. D 23, 1442006

(2014). arXiv:1405.3949
74. L. Freidel, R.G. Leigh, D. Minic, JHEP 06, 006 (2015).

arXiv:1502.08005

75. J.M. Carmona, J.L. Cortés, J.J. Relancio, Phys. Rev. D 100, 104031
(2019). arXiv:1907.12298

76. J.J. Relancio, S. Liberati, Phys. Rev. D 101, 064062 (2020).
arXiv:2002.10833

77. J.J. Relancio, S. Liberati, Universe 8, 136 (2022).
arXiv:2109.12336

78. J.J. Relancio, Phys. Rev. D 104, 024017 (2021). arXiv:2105.12573
79. J.M. Carmona, J.L. Cortés, J.J. Relancio, Universe 7, 99 (2021).

arXiv:2104.07336
80. J.J. Relancio, S. Liberati, Int. J. Geom. Meth. Mod. Phys. 19,

2250089 (2022). arXiv:2204.12832
81. S. A. Franchino-Viñas, J. J. Relancio, (2022). arXiv:2203.12286
82. A. H. Gomes, Class. Quant. Grav. 39(22), 225017 (2022). https://

doi.org/10.1088/1361-6382/ac9ae5. arXiv:2205.02044
83. A. H. Gomes, Constraining GUP Models Using Limits on SME

Coefficients, in 9th Meeting on CPT and Lorentz Symmetry,
(2022). arXiv:2206.03995

84. E. Guendelman, D. Singleton, (2022), arXiv:2206.02638
85. E. Guendelman, F. Wagner, (2022), arXiv:2208.00409
86. P. Bosso, Phys. Rev. D 97, 126010 (2018). arXiv:1804.08202
87. F. Wagner, (2021), arXiv:2112.06758
88. G. Amelino-Camelia, Symmetry 2, 230 (2010). arXiv:1003.3942
89. J.L. Synge, Relativity: The General Theory (North-Holland Publi-

cation Co., Amsterdam, 1960)
90. R. Miron, D. Hrimiuc, S. Hideo, S. Sabau, The Geometry of Hamil-

ton and Lagrange Spaces (“Springer, Dordrecht”, 2001)
91. R. Miron, Lagrangian and Hamiltonian Geometries (Applications

to Analytical Mechanics (Lambert Academic Publishing, Chisinau,
Moldova, 2012). arXiv:1203.4101

92. P. Bosso, S. Das, Annals Phys. 383, 416 (2017). arXiv:1607.01083
93. R. Casadio, F. Scardigli, Phys. Lett. B 807, 135558 (2020).

arXiv:2004.04076
94. O.I. Chashchina, A. Sen, Z.K. Silagadze, Int. J. Mod. Phys. D 29,

2050070 (2020). arXiv:1902.09728
95. S. Kudaka, S. Matsumoto, J. Math. Phys. 40, 1237 (1999)
96. V. Todorinov, P. Bosso, S. Das, Ann. Phys. 405, 92 (2019).

arXiv:1810.11761
97. L. Susskind, J. Glogower, Phys. Phys. Fizika 1, 49 (1964)
98. J. Kijowski, Rept. Math. Phys. 6, 361 (1974)
99. J. G. Muga, R. Sala Mayato, Time in quantum mechanics Vol 1 2

ed (Springer, Germany, 2008)

123

http://arxiv.org/abs/0909.1202
http://arxiv.org/abs/2011.5695
http://arxiv.org/abs/hep-th/9912072
http://arxiv.org/abs/1804.02551
http://arxiv.org/abs/1905.09713
http://arxiv.org/abs/2006.02188
http://arxiv.org/abs/2101.05552
http://arxiv.org/abs/2111.15583
http://arxiv.org/abs/1812.10045
http://arxiv.org/abs/1912.07094
http://arxiv.org/abs/2008.13183
http://arxiv.org/abs/2110.11067
http://arxiv.org/abs/2207.02915
http://arxiv.org/abs/2110.15951
http://arxiv.org/abs/hep-th/0204245
http://arxiv.org/abs/hep-th/0207279
http://arxiv.org/abs/1101.0931
http://arxiv.org/abs/2103.16626
http://arxiv.org/abs/1307.7080
http://arxiv.org/abs/1405.3949
http://arxiv.org/abs/1502.08005
http://arxiv.org/abs/1907.12298
http://arxiv.org/abs/2002.10833
http://arxiv.org/abs/2109.12336
http://arxiv.org/abs/2105.12573
http://arxiv.org/abs/2104.07336
http://arxiv.org/abs/2204.12832
http://arxiv.org/abs/2203.12286
https://doi.org/10.1088/1361-6382/ac9ae5
https://doi.org/10.1088/1361-6382/ac9ae5
http://arxiv.org/abs/2205.02044
http://arxiv.org/abs/2206.03995
http://arxiv.org/abs/2206.02638
http://arxiv.org/abs/2208.00409
http://arxiv.org/abs/1804.08202
http://arxiv.org/abs/2112.06758
http://arxiv.org/abs/1003.3942
http://arxiv.org/abs/1203.4101
http://arxiv.org/abs/1607.01083
http://arxiv.org/abs/2004.04076
http://arxiv.org/abs/1902.09728
http://arxiv.org/abs/1810.11761

	Reinterpreting deformed Heisenberg algebras
	Abstract 
	1 Introduction
	2 Deformed Heisenberg algebras
	3 Reinterpretation in terms of the curved cotangent bundle
	4 Perturbative quadratic GEUP
	4.1 Algebra
	4.2 Transformation
	4.3 Curvature
	4.4 Peculiarities of the model

	5 Reverse engineering GEUPs
	5.1 Ansatz
	5.2 General EUP from spacetime curvature
	(Anti)-de Sitter space


	6 Discussion
	Acknowledgements
	References




