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Abstract The objective of this study is to investigate spher-
ically symmetric radiating stars undergoing gravitational col-
lapse, in higher dimensional general relativity, inclusive of
acceleration, expansion, shear, an electromagnetic field and
a cosmological constant. Methods that can be used to obtain
exact solutions to the boundary condition with/without a lin-
ear equation state are studied. Two distinct approaches are
investigated. In the first approach, the boundary condition is
expressed as a Riccati equation in terms of one of the depen-
dent variables, and restrictions are placed to obtain new exact
solutions. In the second approach, transformations that map
the boundary condition into a new Riccati equation are inves-
tigated. The resulting new transformed equation is solved, by
placing restrictions on the coefficients, to obtain new exact
models. Special properties of the transformation are shown
when appropriate restrictions on the parameters of the trans-
formation are placed. This allows the order of the boundary
condition to be reduced from a second order partial differ-
ential equation into a first order partial differential equation.
The versatility of the transformation on other equations is
exhibited when new solutions to the system of equations
consisting of both the boundary condition and equation of
state are obtained. When the dimension is set to four, some
known solutions are recovered. It is shown that horizons can
be identified by using a special case of the transformation.
Our results elucidates the importance of the use of transfor-
mations that map the coordinates of differential equations
into new and different coordinate systems.
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1 Introduction

Only approximately 4.9% of the known universe can be
explained with known physical theories, and on the quantum
scale the theories of general relativity and quantum physics
do not reconcile [1]. As a result there is an abundance of
research that focuses on modified gravity theories in efforts
to better understand the universe. Some modified gravity the-
ories, such as the Kaluza-Klein theory [2], Lovelock gravity
theories [3] and higher dimensional Einstein gravity theo-
ries, involve introducing extra dimensions to the three spatial
and one temporal dimensions in general relativity. The inclu-
sion of extra dimensions has been inspired and influenced by
string theory which requires more than four dimensions. A
summary of some of the modified gravity theories can be
found in [4]. Higher dimensions are likely to have existed in
the early universe and compactification has led to the present
observed four dimensions. There is no conclusive evidence
that additional dimensions survive in the late universe. How-
ever, it is known that higher dimensions affect the geometry
of spacetime and the matter distribution. For a recent study
of the energy conditions in higher dimensions see the treat-
ment of Brassel et al. [5], which shows the effect on physical
quantities in higher dimensional astrophysical fluids. As a
result of this, it is plausible to consider all possible scenar-
ios until there is conclusive observational evidence. There
are current research projects that attempt to discover addi-
tional dimensions. Examples of these experiments include
the Compact Muon Solenoid (CMS) experiment [6] and A
Toroidal Large Hadron Collider ApparatuS (ATLAS) exper-
iment [7] at the Large Hadron Collider in CERN. These two
experiments search for “Z” and “W” like particles, gravitons
and quantum black holes.

The number of dimensions affects physical features of
astrophysical objects in higher dimensional general relativity.
Arbañil and Malheiro [8] studied the effect extra dimensions
have on equilibrium configurations and radial pulsations of
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compact objects, Harko and Mak [9] investigated the effect
dimensionality has on the upper limits of radius and mass
in a charged anisotropic fluid sphere, and Burikham et al.
[10] showed that for a stable spherically symmetric com-
pact object in higher dimensions there is a minimum and
maximum mass to radius ratio. In this paper we will look
at a model of a spherically symmetric radiating star under-
going gravitational collapse in higher dimensional general
relativity. Studying effects of higher dimensions on radiat-
ing stars should reveal insights as to how dimensions affect
certain features, such as the gravitational potential functions,
in higher dimensional general relativity. Maharaj and Bras-
sel [11] showed that the gravitational collapse of a radiating
object is affected by dimension. Our interest is in modelling
a radiating star in higher dimensions.

There are three fundamental components that are impor-
tant in the modelling of radiating stars: the interior space-
time, the exterior spacetime and the junction condition. The
Vaidya metric [12] models the exterior spacetime of a radi-
ating star and has several applications in astrophysics. It was
extended to higher dimensions by Iyer and Vishveshwara
[13]. The Vaidya metric in higher dimensions was extended
to include an electromagnetic field by Chatterjee et al. [14],
and extended to include the cosmological constant by Saa
[15]. The interior manifold for superdense stars in higher
dimensions was studied by Patel and Singh [16].

Static stars have no heat flux since the pressures at the
boundary are zero. Static stars in higher dimensional gen-
eral relativity with a Vaidya-Tikekar metric were studied by
Paul [17] and Chattopadhyay et al. [18]. The Vaidya exte-
rior caters for non-static stars when heat flux is present.
The presence of heat flux complicates the model, as this
results in a boundary condition that relates the pressure and
heat flux. This boundary condition has to be solved to com-
plete the model of the radiating star. There are few models
of the boundary condition with a Vaidya exterior for stars
in higher dimensions. Studies of the boundary condition in
higher dimensions with the presence of heat flux is an under-
developed area. The junction condition in four dimensions
for radiating stars exclusive of shear was first obtained by
Santos [19]. The junction condition in higher dimensions for
a shear-free interior line element exclusive of charge with
a Vaidya exterior was studied by various authors [20–22].
Maharaj and Brassel [11] obtained the junction condition in
higher dimensions for a charged shearing composite matter
interior spacetime with a generalised Vaidya exterior space-
time. The generalised Vaidya solution has been studied in
other alternative gravity theories such as Lovelock gravity
[23,24]. The boundary condition for stars with heat flux in
some higher dimensional modified theories of gravity such
as F(r, t) gravity, Gauss-Bonnet gravity or Lovelock gravity
are currently unknown [25]. Our main interest is to model
a radiating star with barotropic matter in the interior. The

inclusion of scalar fields would lead to a new model with
additional scalar wave equations. This would describe boson
stars, quark or quark-diquark stars [26]. This is an interesting
problem to consider, and we will pursue this in future work.

Higher dimensional general relativity reduces to four
dimensional general relativity when constraints on dimen-
sions are imposed. There are several distinct approaches that
were used to obtain exact solutions to the four dimensional
junction condition which include: performing a Lie symme-
try analysis on the junction condition [27–34], treating the
junction condition as a Riccati equation [35–37], and using
transformations to transform the junction condition to dif-
ferent coordinates that results in the junction condition been
expressed as a new, simpler, Riccati equation [38–42].

The main intention of this paper is to obtain exact solutions
to the boundary condition of a star with a shearing interior line
element and a Vaidya exterior in higher dimensions. There are
currently no solutions to this boundary condition. Searching
the databases of Scopus, arxiv and google scholar using the
parameters “higher dimensions” and “boundary condition”
or “higher dimensions” and “junction condition”, we find
no papers that presented solutions of the boundary condition
with shear. This adds to the novelty of the study as find-
ing such solutions has physical significance. There are some
solutions to the shear-free models with a Vaidya exterior in
higher dimensions. These simpler shear-free cases are con-
tained in [20–22]. The physical significance is enhanced by
introducing a linear equation of state to the model. There are
currently no known solutions to the boundary condition that
admit an equation of state, in such stars inclusive and exclu-
sive of shear in higher dimensions. Searching the databases
of Scopus, arxiv and google scholar using the parameters
“higher dimensions”, “boundary condition” and “equation
of state” or “higher dimensions”, “junction condition” and
“equation of state” we find no such solutions.

The boundary condition we are solving has not been
solved before; therefore any method to obtain solutions to
such an equation will be new. Here, we use a systematic
approach to solve this equation, by using two methods that
involve treating the equation as a Riccati equation. It is impor-
tant to note that both of these methods are successful in
obtaining exact solutions on the different analytic versions of
the four dimensional boundary condition. The first method
we use is fairly simple, and is included in this paper to high-
light the importance of the second method we use. In the
first approach, we express the higher dimensional boundary
condition as a Riccati equation; and in the second method we
use a transformation, introduced by Naidoo et al [42], to get
a new simpler Riccati equation. There were numerous trans-
formations used on the different analytic forms of the four
dimensional boundary condition to simplify and obtain exact
solutions to the equation. However, we only need to utilise
the transformation by Naidoo et al [42], as all the trans-
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formations previously used [38–41] are contained therein.
The transformation has special features when used on the
four dimensional boundary condition; we aim to investigate
how these features are translated through higher dimensions.
This allows us to obtain insights into the higher dimensional
boundary condition, which highlights the significance of this
approach. The transformation has not been used on any of the
higher dimensional boundary conditions before, and further
adds to the novelty of this study. We also obtain solutions
to the boundary condition that admits a linear equation of
state using the transformation. By using approaches estab-
lished earlier to solve the four dimensional boundary con-
dition, to solve the higher dimensional boundary condition
we are able to identify how successful these methods are in
obtaining solutions to different types of equations. The effect
dimension has on these approaches is clearly evident.

This paper is divided as follows: in Sect. 2 we describe
our model for the radiating star in higher dimensions. We
express the higher dimensional boundary condition as a Ric-
cati equation, and obtain solutions in Sect. 3. In Sect. 4 we
apply the transformation listed in [43] to the higher dimen-
sional junction condition. We obtain exact solutions to the
transformed equations by restricting the boundary to a linear
equation in Sect. 5. In Sect. 6 we obtain exact solutions by
restricting the boundary condition to a Bernoulli equation. In
Sect. 7 we show how we can reduce the order of the junction
condition from a second order partial differential to a first
order partial differential equation by placing restrictions on
arbitrary parameters. In Sect. 8 we introduce an equation of
state and obtain exact solutions to the system of partial dif-
ferential equations consisting of both an equation of state and
junction condition in higher dimensional general relativity.
We show how the presence of horizons may be identified by
using a special case of the transformation in Sect. 9. Finally,
in Sect. 10, we provide a discussion of the results obtained
in this paper.

2 Model

The interior line element of a spherically symmetric n-
dimensional spacetime is given by

ds2 = −A2dt2 + B2dr2 + Y 2d�2
n−2, (1)

where A, B and Y are arbitrary functions of r and t , and

d�2
n−2 =

n−2∑

i=1

⎛

⎝
i−1∏

j=1

sin2 (
θ j

)
⎞

⎠ (dθi )
2 . (2)

When Y = r B the shear-free line element is regained. The
comoving fluid n-velocity

ua =
(

1

A
, 0, . . . , 0

)
, (3)

is a timelike and unit vector. Then, we obtain the fluid n-
acceleration as

u̇a =
(

0,
Ar

AB2 , 0, . . . , 0

)
, (4)

the expansion scalar as

� = 1

A

(
Bt

B
+ (n − 2)

Yt
Y

)
, (5)

and the magnitude of the shear scalar as

σ = 1√
n − 1

1

A

(
Yt
Y

− Bt

B

)
, (6)

where subscripts denote partial differentiation. We note that
the vorticity vanishes.

The energy momentum tensorT that describes the interior
matter field is given by

Tab = (ρ + p)uaub + pgab + qaub + qbua + πab + Eab,

(7)

where ρ represents the density, p represents the isotropic
pressure, q represents the heat flux, π represents the
anisotropic stress and the tensor E represents the electro-
magnetic field tensor. The heat flux q and anisotropic stress
tensor π can be defined respectively as

qa =
(

0,
1

B
q, 0, . . . , 0

)
, (8a)

πab = (
p‖ − p⊥

) (
nanb − 1

n − 1
hab

)
, (8b)

where p‖, p⊥, n and h represent the radial pressure, tangen-
tial pressure, unit spacelike vector and the projection tensor,
respectively. The isotropic pressure can be written in terms
of the radial and tangential pressures via

p = 1

n − 1

(
p‖ + (n − 2) p⊥

)
. (9)

The pressure is isotropic when p‖ = p⊥ = p.
The Einstein–Maxwell equations can be expressed as [11]

Gab = κnTab − 	gab, (10a)

Fab;c + Fbc;a + Fca;b = 0, (10b)

Fab;b = An−2 J
a, (10c)

where the tensorsG andF are the Einstein tensor and Faraday
tensor respectively, and J represents the current. Note that we
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have included the cosmological constant 	. The coupling
constant κn is given by

κn = 2 (n − 2) π
n−1

2

(n − 3)
( n−1

2 − 1
)! , (11)

and An−2 represents the surface of the n − 2 sphere which
is given by

An−2 = 2π
n−1

2



( n−1

2

) , (12)

where 
 represents the gamma function. The Faraday tensor
and electromagnetic current can be respectively defined as

Fab = �b;a − �a;b, (13a)

Ja = ζua, (13b)

where �a is the electromagnetic n-potential, and ζ is the
proper charge density. The electromagnetic field tensor E in
n dimensions can be written as

Eab = 1

An−2

(
Fa

cFbc − 1

4
Fcd Fcd gab

)
. (14)

In spherical symmetry the n-potential can be chosen as

�a = (ϕ(r, t), 0, . . . , 0) . (15)

Then Maxwell’s equations (10b) and (10c) give the con-
straints

ϕrr −
(
Ar

A
+ Br

B
− (n − 2)

Yr
Y

)
ϕr

= An−2ζ AB
2, (16a)

ϕr t −
(
At

A
+ Bt

B
− (n − 2)

Yt
Y

)
ϕr = 0. (16b)

The system (16) can be solved to obtain

ϕr = AB

Yn−2 Q, (17a)

Q = An−2

∫ r

ζ BYn−2dr, (17b)

where Q is a function of r and gives the total charge within
the star. The Einstein–Maxwell field equations, with the cos-
mological constant 	 in n dimensions, are given by

κnρ = n − 2

A2

BtYt
BY

− 	 + (n − 2) (n − 3)

2

×
(

1

Y 2 + Y 2
t

A2Y 2

)

−n − 2

B2

(
Yrr
Y

+ n − 3

2

Y 2
r

Y 2

− BrYr
BY

)
− κn

2An−2

Q2

Y 2n−4 , (18a)

κn

(
p + n − 2

n − 1
�

)
= n − 2

A2

(
AtYt
AY

− Ytt
Y

− n − 3

2

Y 2
t

Y 2

)

+n − 2

B2

(
n − 3

2

Y 2
r

Y 2 + ArYr
AY

)

− (n − 2) (n − 3)

2

1

Y 2 + 	

+ κn

2An−2

Q2

Y 2n−4 , (18b)

κn

(
p − 1

n − 1
�

)
= 1

B2

(
Arr

A
− Ar Br

AB
+ (n − 3)

ArYr
AY

− (n − 3)
BrYr
BY

+ (n − 3)
Yrr
Y

)

− 1

A2

(
Btt

B
− At Bt

AB
− (n − 3)

AtYt
AY

+ (n − 3)
Ytt
Y

)
− (n − 3) (n − 4)

2Y 2

×
(
Y 2
t

A2 − Y 2
r

B2 + 1

)

− κn

2An−2

Q2

Y 2n−4 + 	, (18c)

κnq = (2 − n)
1

AB

×
(
BtYr
BY

+ ArYt
AY

− Yrt
Y

)
, (18d)

ζ = 1

An−2

Qr

BYn−2 , (18e)

where we have introduced the degree of anisotropy � given
by

� = p‖ − p⊥. (19)

The generalised Vaidya metric in n dimensions describes
the exterior spacetime and is given by

ds2 = −
(

1 − 2

n − 3

m(v, r̄)

r̄ n−3

)
dv2 − 2dvdr̄

+ r̄2d�2
n−2,

(20)

where m(r̄), v and r̄ represents the mass at infinity,
retarded time and radial coordinates respectively. The quan-
tity m(v, r̄) is the mass function. When m(v, r̄) = m(v), the
generalised Vaidya exterior reduces to the Vaidya exterior.
The matching of the interior metric (1) to the exterior met-
ric (20) was completed by Maharaj and Brassel [11] for a
composite matter distribution. For this case the generalised
external atmosphere contains a null string fluid component.
Another physically interesting case corresponds to the sit-
uation where the exterior atmosphere contains the electro-
magnetic charge Q and the cosmological constant 	 in n
dimensions. For this case the mass function in n dimensions
is given by

123



Eur. Phys. J. C (2023) 83 :160 Page 5 of 17 160

m(v, r̄) = m(v) − κnQ2

2 (n − 2)An−2r̄ n−3

+ (n − 3)	r̄ n−1

(n − 2) (n − 1)
.

(21)

All cases in four dimensions with Q and 	 studied previously
are contained in the mass function (21). We have extended the
treatment in [11] to also include the cosmological constant in
higher dimensions. Then matching the interior and exterior
metrics and extrinsic curvatures at the boundary of the star,
with the Vaidya exterior, yields the junction condition as

(p)� = (q)� , (22)

where the hypersurface � represents the boundary of the star.
We substitute (18) into (22) to express the junction con-

dition as the partial differential equation

(ABY )−1
(
(n − 2)

(
−2A2Y (Yr (Ar + Bt )

−BYrt ) + AB
(
B

(
(n − 3)Y 2

t + 2YYtt
)

−2ArYYt ) − 2At B
2YYt + (n − 3)A3

(
B2

−Y 2
r

)))
+ (n − 3)−1

(
2A2BY

(
(n − 2)Q2Y 4−2n

+2	(n − 3)
) )

= 0. (23)

There are currently no known solutions to the boundary con-
dition (23) when n > 4. It is clear that the presence of charge
Q and cosmological constant 	 in the boundary condition
(23) affects the evolution of the radiating star together with
the dimension n. There are various types of radiating mod-
els that are contained in the generalised junction condition
(23). By placing appropriate restrictions the following types
of models can be regained from (24): geodesic, neutral mat-
ter, charged matter, matter with the cosmological constant 	,
and the general matter distribution (7). In addition, when we
set n = 4 we regain the four dimensional junction condition.
In particular, when n = 4 we regain the results of Naidoo et
al [42].

In our investigations we have incorporated charge and
the cosmological constant. Charge is an important quantity
especially in the early stages of stellar evolution. Abebe and
Maharaj [28] used a Lie symmetry analysis to study the effect
of charge on the four dimensional junction condition. Mod-
els for the charged composite matter junction condition in
four dimensions were also studied by Maharaj and Brassel
[44], who later extended this study to include higher dimen-
sions [11]. Introducing charge to a stellar model is difficult
to model as it involves adding Maxwell equations to the Ein-
stein field equations. The presence of charge in the junction
condition affects the rate of gravitational collapse. The effect
charge has on a higher dimensional charged shear-free rel-
ativistic fluids with heat flux can be found in [45]. Charge

can be removed from the n dimensional junction condition
by setting Q = 0 to obtain the neutral junction condition.

In 1998 it was independently observed by two different
experiments, the Supernova Cosmology Project [46] and The
High-Z Supernova Search Team [47], that the universe is
expanding at an accelerating rate. The accelerated expansion
of the universe implies that the cosmological constant 	,
which represents the background energy density of space-
time, on a cosmological scale could be a strictly positive
number [48]. A negative cosmological constant could exist
on the astronomical scale, and an example of this is the anti-
de Sitter spacetime. The inclusion of a cosmological con-
stant can modify the features of certain types of stars. For
example, in four dimensions, it was shown by Largani and
Álvarez-Castillo [49] that different values of the cosmolog-
ical constant affect the mass features of twin compact stars.
Afifah and Sulaksono [50] showed, using numerical meth-
ods, that the value of the cosmological constant is inversely
proportional to the mass of neutron stars. Gibbons et al. [51]
investigated higher dimensional rotating black holes with a
cosmological constant. The cosmological constant can be
related to the concept of dark energy, which is a repulsive
force. It is therefore important to consider both cases for the
cosmological constant, 	 = 0 and 	 �= 0.

We consider the general case for a radiating star incorpo-
rating all dimensions n ≥ 4, the charge Q and the cosmo-
logical constant 	. The junction condition in higher dimen-
sional general relativity (24) can be reduced to the classic four
dimensional junction condition in general relativity when
n = 4.

3 Original Riccati equation

We express (23) in the compact form

Bt − L1B
2 − L2B − L3 = 0, (24)

where

L1 = 1

2Yr

(
−2AtYt

A2 + 1

AY

(
(n − 3)Y 2

t + 2YYtt
)

+ A

Y

(
n − 3 − Q2Y 6−2n

n − 3
− 2	Y 2

n − 2

))
, (25a)

L2 = 1

AYr
(AYrt − ArYt ) , (25b)

L3 = −Ar − (n − 3)AYr
2Y

. (25c)

In the form (24) we note that the junction condition is a Ric-
cati equation in the potential B. Expressing the equation as a
Riccati equation allows us to identify restrictions that can be
placed resulting in either a linear equation, Bernoulli equa-
tion or a simpler Riccati equation. We obtain these restric-
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tions by setting either L1, L2 or L3 to zero in (24). The
studies conducted by [35–37] treated the different analytical
versions of the four dimensional boundary condition as Ric-
cati equations in one of the dependent variable and obtained
exact solutions using the approach described above.

3.1 Linear equation

When L1 = 0 (24) is a linear equation in B. We set L1 = 0
and solve to obtain

A = (n − 3)
√

(n − 2)(n − 1)YtY
n (−(n − 2)

×(n − 1)Q2Y 6 + (n − 3)2Yn ((n − 2)

×(n − 1)R1Y
3 + 2	Yn+2 − ((n − 2)

×(n − 1)Yn)))−1/2
, (26)

where R1 is an arbitrary function of r . We substitute (26)
into (24) and solve to find

B = exp

(∫ t

1
℘1dw

)(∫ t

1
℘2dw̄ + R2

)
, (27)

where w and w̄ are dummy variables, R2 is an arbitrary
function of r and

℘1 = −
(

2Yr
(
(n − 2)(n − 1)Q2Y 6

+(n − 3)2Yn
(
Yn

(
−2	Y 2 + n2

−3n + 2) − (n − 2)(n − 1)R1Y
3
)))−1

×
(
YYw

(
(n − 3)2(n − 2)(n − 1)Yn+1 (

R′
1Y

−(n − 3)R1Yr ) + 2(n − 2)(n − 1)QY 4

× (
(n − 3)QYr − Q′Y

)

+4	(n − 3)2YrY
2n

))
, (28a)

℘2 =
(

2
(
(n − 2)(n − 1)Q2Y 6 + (n − 3)2Yn

×
(
Yn

(
−2	Y 2 + n2 − 3n + 2

)
− (n − 2)

×(n − 1)R1Y
3
)) (

−(n − 2)(n − 1)Q2Y 6

+(n − 3)2Yn
(
(n − 2)(n − 1)R1Y

3 + 2	Yn+2

− (
(n − 2)(n − 1)Yn)))1/2

)−1
((n − 3)

×√
n − 2

√
n − 1Yn−1

(
(n − 3)2Yn

×
(
Yn

(
2YYrw̄

(
2	Y 2 − n2 + 3n − 2

)

−Yw̄Yr ((n − 3)(n − 2)(n − 1)

−2	(n − 5)Y 2
))

+ (n − 2)(n − 1)Y 3

× (
Yw̄

(
2(n − 3)R1Yr − R′

1Y
) + 2R1YYrw̄

))

+2(n − 2)(n − 1)QQ′Yw̄Y
7 − (n − 2)

×(n − 1)Q2Y 6 (3(n − 3)Yw̄Yr + 2YYrw̄)
)

× exp

(
−

∫ w̄

1
℘1dw

))
. (28b)

In (28a) Y is a function of r and w, and in (28b) Y is a
function of r and w̄. The solution set (26) and (27) is a new
solution to the higher dimensional boundary condition (24).
When n = 4 we recover the results of Mahomed et al. [52].

3.2 Bernoulli equation

A Bernoulli equation can be obtained by setting L3 = 0. We
set L3 = 0 and solve to obtain

− Ar − (n − 3)AYr
2Y

= 0. (29)

We solve (29) to get

A = T1Y
3−n

2 , (30)

where T1 is an arbitrary function of t . We substitute (30) into
(24) and solve to obtain

B = YrY
n−3

2

− ∫ t
1 ℘3dw + R2

, (31)

where w is a dummy variable and

℘3 = T1
(−2	Y 2 + n2 − 5n + 6

)

2(n − 2)Y
+ Q2T1Y 5−2n

6 − 2n

+Yn−4
(
(n − 3)T1Y 2

w + Y
(
T1Yww − YwT ′

1

))

T1
2 .

(32)

In (32) Y is a function of r and w, and T1 is a function of
w. The solution set (30) and (31) is a new solution to the
higher dimensional boundary condition (24). When n = 4
we recover the results of Mahomed et al. [52].

3.3 Special Riccati equation

A special Riccati equation can be obtained by settingL2 = 0.
We set L2 = 0 and solve to find

A = T1Yt , (33)

where T1 is an arbitrary function of t . We set Q = 	 = 0
and let

Y = R1T2, (34)

where R1 is an arbitrary function of r and T2 is an arbitrary
function of t . Then (24) has the form

Bt − L1B
2 − L3 = 0, (35)
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where

L1 = (n − 3)
(
T 3

1 + T1
)
T ′

2 − 2T2T ′
1

2T 2
1 T 2

2 R′
1

, (36a)

L3 = −1

2
(n − 1)T1R′

1T ′
2 . (36b)

We can solve (35) for specific values of T1. We set T1 = 1 in
(35) and solve to obtain

B = T2R′
1℘4

2(n − 3)
, (37)

where

℘4 = 2
√
n − 3

√
n − 1

√
2(n − 4)n + 7R2√

(n − 3)(n − 1)
(
T

√
2(n−4)n+7

2 + R2

)

−
√
n − 3

√
n − 1

√
2(n − 4)n + 7√

(n − 3)(n − 1)
+ 1, (38)

where R2 is an arbitrary function of r . The solution set (33),
(34) and (37), when 	 = Q = 0 and T1 = 1, is a new
solution to (24) when n ≥ 4.

4 Transformed Riccati equation

Transformations can be useful as they can provide a differ-
ent coordinate system in which a differential equation under
study may be simplified. Here, we use the transformation

H =
(

α
Yr
B

+ β
Yt
A

)
F + G, (39)

where F and G are arbitrary functions of r , t , A and Y ,
first used in [42] for four dimensions but now applied in
the n dimensional case. The parameters α and β are arbi-
trary. We have chosen to use the transformation (39) since the
higher dimensional junction condition (23) can be expressed
as the Riccati equation (24). The transformations included
in [38–42] (which are all contained in (39)) transform the
four dimensional junction condition, which is also a Ric-
cati equation in one of the gravitational potential functions,
into a new Riccati equation which yielded new solutions to
the Einstein and Einstein–Maxwell field equations. We will
show that these transformations have a similar effect on the
higher dimensional junction condition (24). We rewrite (39)
in terms of B to obtain

B = − αAYrF
βYtF + A(G − H)

. (40)

We substitute (40) into (24) to obtain thenewRiccati equation
in H as

Ht − L4H
2 − L5H − L6 = 0, (41)

where

L4 = 1

2αYYrF
(2ArY + (n − 3)AYr ) , (42a)

L5 = 1

αAYYrF
(A (Yr (αY (AtFA + YtFY + Ft )

−β(n − 3)YtF) − 2ArYG) + (α

−2β)ArYYtF − (n − 3)A2YrG
)

, (42b)

L6 = 1

2α

(
2

(
G

(
β(n − 3)Ft

Y

− 1

F (α (AtFA + YtFY + Ft ))

)

+ ArG2

YrF
+ α (AtGA + YtGY + Gt )

)

− 1

A

(
2(α − 2β)ArYtG

Yr

+ (α − β)F
(
(n − 3)(α + β)Y 2

t + 2αYYtt
)

Y

)

+2(α − β)YtF (αAtYr − βArYt )

A2Yr

+ A

(n − 3)YF
(
α2F2

(
Q2Y 6−2n

+(n − 3)

(
2	Y 2

n − 2
− n + 3

))
+ (n − 3)2G2

))
.

(42c)

We note that (24) and (41) are both Riccati equations. Equa-
tion (41) is the higher dimensional generalisation of the
boundary condition generated by Naidoo et al [42]. When
n = 4 we regain the Riccati equation of [42]. The Riccati
equation (41) is the fundamental equation of interest in this
paper. The master equation (41) possesses two distinctive fea-
tures. The first feature is that (41) contains only one second
order term, Ytt , while Eq. (24) has the two second order terms
Yrt and Ytt . Our transformation (39) removed the term Yrt
thereby simplifying (24). The second feature is the insertion
of new terms containing FA, FY , GA, and GY , which change
the appearance of the Riccati equation (24). The appearance
of the new terms allows for the generation of new exact solu-
tions. It is interesting that these two features of the trans-
formation are maintained regardless of dimension n. This is
true even though the transformation (39) has no dependence
on the dimension n. This suggests the existence of a geo-
metric property of the differential equation (24) that does not
change with dimension n. The use of the transformation (39)
allowed us to obtain a new Riccati equation.

5 Linear equation: L4 = 0

We set
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2Ar

YrF
+ (n − 3)A

YF = 0, (43)

to obtain

A = T1Y
3−n

2 , (44)

where T1 is a function of t . Due to the relationship (44), we
can write F and G as

F = F (r, t,Y ) , (45a)

G = G (r, t,Y ) , (45b)

to ensure the solutions we obtain are not implicit. We substi-
tute (44) and (45) into (41) to obtain the linear equation

Ht − L5H − L6 = 0, (46)

where

L5 = 1

F (YtFY + Ft ) − 1

2Y
(n − 3)Yt , (47a)

L6 = Gt + 1

2

(
1

(n − 3)(n − 2)T1
2

(
FY− 5

2 (n+1)

×
(
α(n − 2)Q2T1

3Y 9 + (n − 3)Y 2n

×
(
αT1

3Y 3
(

2	Y 2 − (n − 3)(n − 2)
)

−2(n − 2)(α − β)Yn
(
(n − 3)T1Y

2
t

+Y
(
T1Ytt − YtT ′

1

) ) ) ) )
− 1

F (2 (YtFY

+Ft

)
G
)

+ 1

Y
(Yt (2YGY

+(n − 3)G
) ) )

. (47b)

We solve (46) to obtain

H = FY
3−n

2

(∫ t

1
℘5dw + R1

)
, (48)

where w is a dummy variable and

℘5 = − 1

2(n − 2)Y

(
αT1

(
−2	Y 2 + n2 − 5n + 6

))

+ 1

2(n − 3)

(
αQ2T1Y

5−2n
)

+ 1

T1
2

(
(α − β)Yn−4 (

Y
(
YwT ′

1 − T1Yww

)

−(n − 3)T1Y
2
w

))
− 1

F2

(
(YwFY + Fw)GY n−3

2

)

+ 1

2F
(
Y

n−5
2 (2Y (YwGY + Gw)

+(n − 3)YwG)) . (49)

In the above, note that R1 is a function of r , and Y is a
function of r and w, T1 is a function of w, and F and G are
functions of r , w and Y .

We have to reverse the transformation (39), and transform
the solution (48) back to the original coordinate system. This

is done by using (40), (44), (45), and (48) to express the
gravitational potential function B as

B = −αT1YrFY
n+3

2

(
F

(
βYtY

n

−T1Y
3
(∫ t

1
℘1dw + R1

))

+T1GY
n+3

2

)−1

.

(50)

It is important to note that the original coordinate system
is the generic coordinate system that most researchers use.
The n dimensional solution reduces to the four dimensional
solution of Naidoo et al. [42] when n = 4 in (44) and (50).
The earlier result of Mahomed et al. [41] is regained when
n = 4, F = 1 and G = 0. An important feature of the trans-
formation (39) is observed in the B gravitational potential
functions (31) and (50). The restrictions and gravitational
potential functions (29) and (44) are the same, however the
gravitational potential function B given in (31) and (50) are
different. The same restriction under different coordinates
has resulted in different solution sets. This is a direct conse-
quence of the complexity of the transformation (39) which
involves arbitrary functions of the potential functions A and
Y . The use of the transformation has revealed new insights
as it allowed us to obtain a different gravitational potential
function B for the same gravitational potential function A.

The results obtained in this section can be summarised in
the following theorem:

Theorem 1 When (44)holds, the higher dimensional bound-
ary condition for a general relativistic radiating star with
charge and cosmological constant reduces to a linear equa-
tion with general solution given by (48) and F = F (r, t, Y )

and G = G (r, t,Y ).

We note that explicit forms for the potentials A and B have
been provided. A suitable choice of the potential Y and the
charge Q yields functional forms for A and B.

Corollary 1.1 Known solutions with accelerating particle
trajectories in dimension n = 4 are contained in this class
of models.

6 Bernoulli equation: L6 = 0

We impose the restriction

1

2α

(
2

(
G

(
β(n − 3)Ft

Y

− 1

F (α (AtFA + YtFY + Ft ))

)

+ ArG2

YrF
+ α (AtGA + YtGY + Gt )

)
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− 1

A

(
2(α − 2β)ArYtG

Yr

+ (α − β)F
(
(n − 3)(α + β)Y 2

t + 2αYYtt
)

Y

)

+2(α − β)YtF (αAtYr − βArYt )

A2Yr

+ A

(n − 3)YF
(
α2F2

(
Q2Y 6−2n

+(n − 3)

(
2	Y 2

n − 2
− n + 3

))

+(n − 3)2G2
))

= 0, (51)

on (41) to obtain the Bernoulli equation

Ht − L4H
2 − L5H = 0, (52)

where

L4 = 1

2αYYrF
(2ArY + (n − 3)AYr ) , (53a)

L5 = 1

αAYYrF
(A (Yr (αY (AtFA + YtFY + Ft )

−β(n − 3)YtF) − 2ArYG)

+(α − 2β)ArYYtF −
(
(n − 3)A2YrG

))
. (53b)

We cannot obtain the general solution to (51). However we
can obtain solutions to (51) by imposing further restrictions
(See later.). We can solve (52) to obtain

H =
exp

(∫ t
1 ℘6dw

)

− ∫ t
1 exp

(∫ w̄

1 ℘6dw
)

℘7dw̄ + R1

, (54)

where w and w̄ are dummy variables and

℘6 = 1

αAYYrF
(A (Yr (αY (AwFA + YwFY + Fw)

−β(n − 3)YwF) − 2ArYG)

+(α − 2β)ArYYwF −
(
(n − 3)A2YrG

))
, (55a)

℘7 = 1

2αYYrF
(2ArY + (n − 3)AYr ) , (55b)

and R1 is a function of r . In (55a) A and Y are functions
of r and w, and F and G are functions of r , w, A(r, w) and
Y (r, w). In (55b) A and Y are functions of r and w̄, and F
is a function of r , w̄, A(r, w̄) and Y (r, w̄). We use (40) and
(54) to obtain the potential

B = −αAYrF

βYtF + A

(
G − exp

(∫ t
1 ℘6dw

)

− ∫ t
1 exp

(∫ w̄
1 ℘6dw

)
℘7dw̄+R1

) , (56)

subject to the restriction (51).

The n dimensional solution reduces to the four dimen-
sional solution by Naidoo et al. [42] when n = 4 in (56). It is
still necessary to show that the condition (51) is integrable,
as will be demonstrated below.

6.1 Solution I

We set

F = F(r, t), (57a)

G = 0, (57b)

β = 0, (57c)

Y = (k1R2T1 + k2R3)
k3 , (57d)

where R2 and R3 are arbitrary functions of r , T1 is an arbi-
trary function of t , and k1, k2 and k3 are arbitrary constants.
We use the restrictions in (57) to write the condition (51) as

2k1k3R2T ′
1 At (k1R2T1 + k2R3)

2k3−1

+A3
(

1

n − 3

(
Q2(k1R2T1

+k2R3)
6k3

(
(k1R2T1 + k2R3)

k3
)−2n

)

+ 1

n − 2

(
2	(k1R2T1 + k2R3)

2k3
)

− n + 3

)

+k1k3R2A(k1R2T1 + k2R3)
2k3−2 (k1(−nk3 + k3

+2)R2T ′2
1 − 2T ′′

1 (k1R2T1 + k2R3)
)

. (58)

We solve (58) to obtain

A =
((

−(n − 3)2(n − 2)(n − 1)k2
1k

2
3R2

2T ′2
1

×(k1R2T1 + k2R3)
nk3

×
(
(k1R2T1 + k2R3)

k3
)2n

) 1
2
)

×
(
(k1R2T1 + k2R3)

k3+2
(
(n − 2)(n − 1)Q2

×(k1R2T1 + k2R3)
(n+3)k3

+(n − 3)2
(
(k1R2T1 + k2R3)

k3
)2n

×
(
−2	(k1R2T1 + k2R3)

(n−1)k3

+(n − 2)(n − 1)
(
(n1R2T1 + k2R3)

(n−3)k3

−k2
1k

2
3R2

2R4

))))− 1
2
, (59)

where R4 is a function of r . We use (39), (54), (57) and (59)
to express the gravitational potential function B as

B = αk3F(k1R2T1 + k2R3)
k3−1 (

k1T1R′
2

+k2R′
3

)
exp

(
−

∫ t

1
℘8dw

)
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×
(

−
∫ t

1
exp

(∫ w̄

1
℘8dw

)
℘9dw̄ + R4

)
, (60)

where

℘8 = Fw

F − (
2(k1R2T1 + k2R3)

(
k1R′

2T1

+k2R′
3

) (
−(n − 2)(n − 1)Q2(k1R2T1

+k2R3)
(n+3)k3 + (n − 3)2 ((k1R2T1

+k2R3)
k3

)2n (
2	(k1R2T1 + k2R3)

(n−1)k3

−(n − 2)(n − 1) ((n1R2T1

+n2R3)
(n−3)k3 − k2

1k
2
3R2

2R4

))))−1

×
(
k1T ′

1

(
(n − 3)2

(
(k1R2T1 + k2R3)

k3
)2n

× (
R2

(
n2R′

3 (4	(k1R2T1

+k2R3)
(n−1)k3 + (n − 2)(n − 1) (2(k3

−1)(k1R2T1 + k2R3)
(n−3)k3 + k2

1k
2
3(−nk3

+k3 + 2)R2
2R4

))
+ (n − 2)(n − 1)k1k3T1

×
(

2R′
2(k1R2T1 + k2R3)

(n−3)k3

+k2
1k3R2

2

(
(−nk3 + k3 + 2)R4R′

2 + R2R′
4

)))

+k2R3

(
2R′

2(k1R2T1 + k2R3)
(n−3)k3

×
(
−2	(k1R2T1 + k2R3)

2k3 + (n − 3)n + 2
)

+(n − 2)(n − 1)k2
1k

2
3R3

2R′
4

))
− 2(n − 2)(n − 1)

×QR2Q
′(k1R2T1 + k2R3)

(n+3)k3+1

+2(n − 2)(n − 1)Q2(k1R2T1 + k2R3)
(n+3)k3

× (
R′

2((n − 2)k1k3R2T1 + k2R3)

+k2((n − 2)k3 − 1)R2R′
3

)))
, (61a)

℘9 =
(

2αk3F
(
k1R′

2T1 + k2R′
3

) (
(k1R2T1 + k2R3)

k3+2

×
(
(n − 2)(n − 1)Q2(k1R2T1 + k2R3)

(n+3)k3

+(n − 3)2
(
(k1R2T1 + k2R3)

k3
)2n

×
(
−2	(k1R2T1 + k2R3)

(n−1)k3

+(n − 2)(n − 1) ((k1R2T1

+k2R3)
(n−3)k3 − k2

1k
2
3R2

2R4

))))
3/2

)−1

×
(
(k1R2T1 + k2R3)

2
(
−(n − 3)2(n − 2)(n

−1)k2
1k

2
3R2

2T ′2
1 (k1R2T1 + k2R3)

nk3

×
(
(k1R2T1 + k2R3)

k3
)2n

)1/2

×
(

1

R2

(
(n − 3)2

(
(k1R2T1 + k2R3)

k3
)2n

× (
R2

(
k2R′

3 (−2	((n − 3)k3 − 2)(k1R2T1

+k2R3)
(n−1)k3 + (n − 2)(n − 1)

×
(
((n − 1)k3 − 2)(k1R2T1 + k2R3)

(n−3)k3

+2k2
1k

2
3(−nk3 + 2k3 + 1)R2

2R4

))

+k1k3T1
(−2	(n − 3)R′

2(k1R2T1

+k2R3)
(n−1)k3 + (n − 2)(n − 1) ((n

−1)R′
2(k1R2T1 + k2R3)

(n−3)k3

+k2
1k3R2

2

(
2(−nk3 + 2k3 + 1)R4R′

2

+R2R4)))) + k2R3
(
2R′

2(k1R2T1

+k2R3)
(n−3)k3

(
−2	(k1R2T1 + k2R3)

2k3

+(n − 3)n + 2) + (n − 2)(n

−1)k2
1k

2
3R3

2R′
4

)))
− 2(n − 2)(n − 1)

×QQ′(k1R2T1 + k2R3)
(n+3)k3+1

+ 1

R2

(
(n − 2)(n − 1)Q2(k1R2T1

+n2R3)
(n+3)k3

(
R′

2((3n − 7)k1k3R2T1

+2k2R3) + k2((3n − 7)k3 − 2)R2R′
3

))))
. (61b)

In (61a) Y and F are functions of r and w; in (61b) Y and F
are functions of r and w̄.

This n dimensional solution reduces to the four dimen-
sional solution of Naidoo et al. [42] when n = 4 in (59) and
(60). The earlier result of Thirukkanesh and Maharaj [38]
arises when n = 4, k1 = k2 = 1, T1 = t and k3 = 2

3 .

6.2 Solution II

We set

F = F(r, t,Y ), (62a)

G = 0, (62b)

β = 0, (62c)

in (51) to obtain the restriction

2AtYt + A

(
1

Y

(
A2

(
Q2Y 6−2n

n − 3
+ 2	Y 2

n − 2

−n + 3

)
− (n − 3)Y 2

t

)
− 2Ytt

)
= 0. (63)

We solve (63) to obtain

A = (n − 3)
√

(n − 2)(n − 1)YtY
n (−(n − 2)(n

−1)Q2Y 6 + (n − 3)2Yn ((n − 2)(n − 1)

×R2Y
3 + 2	Yn+2 − ((n − 2)
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×(n − 1)Yn)))− 1
2 , (64)

where R2 is a function of r . We use (40), (54), (62) and (64)
to express the gravitational potential B as

B = αYrF exp

(
−

∫ t

1
℘10dw

)

×
(

−
∫ t

1
exp

(∫ w̄

1
℘10dw

)
℘11dw̄ + R2

)
, (65)

where

℘10 =
(

2Yr
(
(n − 2)(n − 1)Q2Y 6 + (n − 3)2Yn

(
Yn

(
−2	Y 2 + n2 − 3n + 2

)
− (n − 2)(n

−1)R2Y
3
)))−1 (

Yw

(
(n − 3)2(n − 2)(n

−1)Yn+2 (
(n + 3)R2Yr + R′

2Y
) − 2(n − 2)

×(n − 1)QY 5 (
Q′Y + 3QYr

) − 2(n

−3)2YrY
2n−1 ((n − 2)(n − 1)n − 2	(n

+1)Y 2
)))

+ 1

F (YwFY + Fw)

+ nYw

Y
+ Yrw

Yr
, (66a)

℘11 =
(

2αYrF
(
(n − 2)(n − 1)Q2Y 6 + (n − 3)2Yn

×
(
Yn

(
−2	Y 2 + n2 − 3n + 2

)
− (n − 2)(n

−1)R2Y
3
)) (

−(n − 2)(n − 1)Q2Y 6

+(n − 3)2Yn
(
(n − 2)(n − 1)R2Y

3

+2	Yn+2 − (
(n − 2)(n − 1)Yn)))1/2

)−1

×
(
(n − 3)

√
(n − 2)(n − 1)Yn−1

(
(n − 3)2Yn

×
(
Yn

(
2YYrw̄

(
−2	Y 2 + n2 − 3n + 2

)

+Yw̄Yr ((n − 3)(n − 2)(n − 1)

−2	(n − 5)Y 2
))

+ (n − 2)(n − 1)Y 3

× (
Yw̄

(
R′

2Y − 2(n − 3)R2Yr
) − 2R2YYrw̄

))

−2(n − 2)(n − 1)QQ′Yw̄Y
7 + (n − 2)(n − 1)

×Q2Y 6 (3(n − 3)Yw̄Yr + 2YYrw̄)
))

. (66b)

The n dimensional solution reduces to the four dimen-
sional case of Naidoo et al. [42] when n = 4 in (64) and
(65). Observe that the result of Mahomed et al. [41] can be
regained when n = 4. Their potential A is obtained when
n = 4 in (64), and in addition their potential B is regained
when n = 4 and F = 1 in (65).

The condition (51) would be difficult to obtain without the
use of the transformation (39), due to the dependence of the
arbitrary functions F and G. The restriction L6 is different
from L1, L2 and L3: hence setting L6 = 0 results in a new
restriction not obtained by setting eitherL1,L2 orL3 to zero.
This new restriction produces new solutions. The restriction
(51) has to be solved to obtain solutions to (41). The transfor-
mation (51) allowed us to easily identify new restrictions that
leads to simplification by treating (41) as a Riccati equation.

The results obtained in this section can be summarised in
the following.

Theorem 2 When the higher dimensional boundary condi-
tion for a general relativistic radiating star with charge and
a cosmological constant in higher dimensions is restricted to
the Bernoulli equation (52) it can be solved in general with
F = F (r, t, A,Y ) and G = G (r, t, A,Y ). The potential B
is found explicitly and the potentials A and Y satisfy a con-
straint equation which can be solved in terms of charge Q
and the cosmological constant 	.

Corollary 2.1 Known solutions when n = 4 are contained
as special cases with F = F (r, t) and G = G (r, t) for
accelerating particles.

7 Reduction of order

The boundary condition (23) (or its equivalent (24)) is a non-
linear equation with second order partial derivatives. Clearly
it is desirable if a first order equation is attainable from (23)
as in the treatments of Ivanov [39,40], Mahomed et al. [41]
and others. In this section we explore a transformation that
reduces the order of (24) from a second order equation to a
first order equation. This is done by removing the Yrt and Ytt
terms from (24) in n dimensions.

We set α = β = 1 in (39) to obtain

H =
(
Yt
A

+ Yr
B

)
F + G. (67)

From (67) we obtain the explicit form of the potential

B = − AYrF
YtF + AG − AH

. (68)

We substitute (68) into (24) to obtain a first order equation,
which we express as

Ht − L4H
2 − L5H − L6 = 0, (69)

where

L4 = 1

2YYrF
(2ArY + (n − 3)AYr ) , (70a)

L5 = 1

AYYrF
(A (Yr (Y (AtFA + YtFY + Ft )

−(n − 3)YtF) − 2ArYG) − ArYYtF
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−
(
(n − 3)A2YrG

))
, (70b)

L6 = G
(

1

Y
((n − 3)Yt )

− 1

F (AtFA + YtFY + Ft )

)

+ ArG2

YrF
+ AtGA + ArYtG

AYr

+ 1

2(n − 3)YF
(
A

(
F2

(
Q2Y 6−2n

+(n − 3)

(
2	Y 2

n − 2
− n + 3

))

+(n − 3)2G2
))

+ YtGY + Gt . (70c)

The equation (69) is a new Riccati equation in H in which
the second order terms Yrt and Ytt have been eliminated.
Thus the transformation (67) reduces the order of (24) from
a second order equation partial differential equation into a
first order partial differential equation. This is an interesting
feature as Lie symmetries can be used to reduce the order of
ordinary differential equations [53]. There are currently no
known methods for reducing the order of partial differential
equations. It is therefore interesting that the ad hoc transfor-
mation reduces the order of the partial differential equation
(24) in four and higher dimensions. This suggests that there
is a property yet to be identified in the geometric structure of
the partial differential equation that is persistent, regardless
of dimension that allows the transformation (67) to reduce
the order of (24). This is a remarkable result as the reduc-
tion of order of partial differential equations is a relatively
unexplored area of research.

When we set n = 4, F = 1 and G = 0 we regain
the Ivanov [40] result. When n = 4 the case of Naidoo
et al. [42] arises. Given the dependence of our functions
F = F(r, t, A,Y ) and G = G(r, t, A,Y ), we have gen-
eralised the Ivanov [40] transformation and maintained the
reduction to a first order equation. We now demonstrate
that the first order equation (69) admits exact solutions in
n dimensions.

7.1 Bernoulli equation

We impose the restriction

G
(

1

Y
((n − 3)Yt ) − 1

F (AtFA + YtFY + Ft )

)

+ ArG2

YrF
+ AtGA + ArYtG

AYr
+ 1

2(n − 3)YF

×
(
A

(
F2

(
Q2Y 6−2n + (n − 3)

(
2	

n − 2
Y 2 − n

+3

) )
+ (n − 3)2G2

))
+ YtGY + Gt = 0, (71)

on (69) to obtain the Bernoulli equation

Ht − L4H
2 − L5H = 0, (72)

where

L4 = 1

2YYrF
(2ArY + (n − 3)AYr ) , (73a)

L5 = 1

AYYrF
(A (Yr (Y (AtFA + YtFY + Ft )

−(n − 3)YtF) − 2ArYG) − ArYYtF
−

(
(n − 3)A2YrG

))
. (73b)

We cannot obtain the general solution to the restriction
(71); however, particular solutions to (71) do exist (See later.).
We solve (72), subject to the restriction (71), to obtain

H =
exp

(∫ t
1 ℘12dw

)

− ∫ t
1 exp

(∫ w̄

1 ℘12dw
)

℘13dw̄ + R1

. (74)

In (74) we have defined

℘12 = 1

AYYrF
(A (Yr (Y (AwFA + YwFY + Fw)

−(n − 3)YwF) − 2ArYG) − ArYYwF
−

(
(n − 3)A2YrG

))
, (75a)

℘13 = 1

2YYrF
(2ArY + (n − 3)AYr ) , (75b)

and w and w̄ are dummy variables and R1 is an arbitrary
function of r . In (75a)F andG are functions of r , w, A(r, w),
and Y (r, w). In (75b) F is a function of r , w̄, A(r, w̄) and
Y (r, w̄). We utilise (68) and (74) to express the potential
function B as

B = − AYrF

YtF + A

(
G − exp

(∫ t
1 ℘12dw

)

− ∫ t
1 exp

(∫ w̄
1 ℘12dw

)
℘13dw̄+R1

) . (76)

The n dimensional solution reduces to the four dimensional
solution by Naidoo et al. [42] when n = 4 in (76).

We now show that exact solutions to restriction (71) exist.
We set

F = F (r, t, A,Y ) , (77a)

G = 0, (77b)

in the restriction (71) to obtain the algebraic equation

Q2Y 6−2n + (n − 3)

(
2	Y 2

n − 2
− n + 3

)
= 0. (78)

The general solution to (78) is unknown. However, specific
solutions to (78) can be obtained by placing appropriate
restrictions. When n = 4 then Y can be found explicitly
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as shown by Naidoo et al. [42]. If 	 = 0 then (78) can be
solved for all n to give

Y =
(

(n − 3)2

Q2

) 1
6−2n

. (79)

When 	 �= 0 we cannot solve (78) in general for all values of
n; however, the particular spacetime dimension n = 5 leads
to

4

3
	Y 6 − 4Y 4 + Q2 = 0. (80)

Equation (80) is a cubic equation in Y 2. We solve (80) to
obtain

Y 2 = 1

2
	

(
3
√

−3	2Q2 +
√

9	4Q4 − 48	2Q2 + 8

+ 4

3
√

−3	2Q2 + √
9	4Q4 − 48	2Q2 + 8

+2

)
. (81)

This result can be summarised in the following.

Theorem 3 The higher dimension boundary condition with
charge and a cosmological constant can be written as a
first order differential equation in all potential functions, if
we apply the transformation (which is a generalisation of
Ivanov’s horizon function [40])

H =
(
Yt
A

+ Yr
B

)
F + G, (82)

where F = F(r, t, A,Y ) and G = G(r, t, A,Y ).

Corollary 3.1 Known transformations, where the boundary
condition is a first order equation, with n = 4, F = 1 and
G = 0 are recovered as special cases.

8 Equation of state

There are nine dependent variables, ρ, p‖, p⊥, q, ζ , A, B,
Y and Q, in the system of Einstein–Maxwell field equations
(18) with five equations. However (18e) allocates a relation-
ship between ζ and Q. Thus if one of the ζ or Q is specified
then the number of dependent variables in (18) is reduced to
seven: ρ, p‖, p⊥, q, A, B and Y , with four Eqs. (18a), (18b),
(18c) and (18d). The condition for isotropic pressure (9) and
the boundary condition (22) are imposed on the system of
Einstein–Maxwell field equations (18) which increases the
number of equations to six. Since the number of dependent
variables are not equal to the number of equations, the system
is open. Additional equations are required to close the sys-
tem of Einstein–Maxwell field equations (18). This can be
done by specifying values for A, B or Y which is done when

we solve the differential equation representing the boundary
condition (24). Another way to close the Einstein–Maxwell
field equations (18) is to add an equation of state.

Equations of state add to the physical reasonableness of
theoretical models, as they relate to observations. There are
different types of equations of state that add to the phys-
ical relevance of stellar models by dictating a relationship
between the pressure and density. Some of the different
types of equation of states in astrophysical scenarios can be
found in [54]. An equation of state in an astrophysical sce-
nario, relating the radial pressure and energy density, can be
expressed as

p‖ = p‖(ρ). (83)

We only consider p‖ in (83) as the tangential pressure p⊥ in
stars is small [55]. In this paper we supplement the boundary
condition in higher dimensions (24) with the linear equation
of state given by

p‖ = νρ, (84)

where ν is an arbitrary constant. The equation of state (84)
is the simplest form (83) can take when pressure is non-zero.
The value of the parameter ν is required to be carefully cho-
sen, as it describes the matter type of the model. We construct
the nonlinear partial differential that describes a linear equa-
tion of state by substituting the pressure and density expres-
sions given by Eqs. (18a) and (18b) respectively, from the
system of Einstein–Maxwell field equations, into the linear
equation of state (84) to obtain

−2(n − 3)At B2Yt
A

− 2(n − 3)Ar AYr

+ 1

BY

(
A2

(
2ν(n − 3)BrYYr + (ν + 1)B3

×
(

(n − 3)

(
−2	Y 2

n − 2
+ n − 3

)
− Q2Y 6−2n

)

+(n − 3)B
(
−

(
(ν + 1)(n − 3)Y 2

t

)

−2νYYrr

) ) )
+ 1

Y
(n − 3)B

(
2Y (νBtYt + BYtt )

+(ν + 1)(n − 3)BY 2
t

)
= 0. (85)

Few solutions are known in the spacetime dimension n = 4,
where both the boundary condition (24) and linear equation
of state (85) are satisfied in the presence of charge Q and
cosmological constant 	. Some results in this regard are
presented in Naidoo et al. [42]. In the absence of 	 or Q
particular models of the boundary condition were obtained
by Govinder and Govender [31], Abebe et al. [34] and Abebe
and Maharaj [28,56] with a barotropic equation of state. The
presence of Q and 	 leads to more complex gravitational
interactions. Equations (24) and (85) are generalisations of
the result of Naidoo et al. [42] to higher dimensions. Note that
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Table 1 Physical features for the boundary condition with an equation of state p‖ = νρ for Model I

Matter variables

ρ = (n − 2)π
1
2 − n

2 (n − 3)
2ν

(ν−1)(n−3)
+1

(ν(n − 2))
2

ν−1 


(
n − 1

2

)
Q

ν−(ν+1)n+3
(ν−1)(n−3)

(∫ t

1
T1(w)dw

) 2
ν−1

(2(ν − 1))−1

p‖ = ν
ν+1
ν−1 (n − 2)π

1
2 − n

2 (n − 3)
2ν

(ν−1)(n−3)
+1




(
n − 1

2

)
Q

ν−(ν+1)n+3
(ν−1)(n−3)

(
(n − 2)

(∫ t

1
T1(w)dw

)) 2
ν−1

(2(ν − 1))−1

p⊥ = (n − 3)3π
1
2 − n

2 


(
n − 3

2

) (
Q

n − 3

)− 2
n−3

(
(n − 2)

(
−(n − 3)

2
(ν−1)(n−3)

)
(ν(n − 2))

2
ν−1 Q− 2(n−2)

(ν−1)(n−3)
−1

×
(∫ t

1
T1(w)dw

) 2
ν−1 + 2n − 6

)
(8(2 − n))−1

q = π
1
2 − n

2
n − 3

2
!(n − 3)

−ν+(ν−1)n+3
(ν−1)(n−3) (ν(n − 2))

ν+1
ν−1 Q

ν−(ν+1)n+3
(ν−1)(n−3)

(∫ t

1
T1(w)dw

) 2
ν−1

(2(ν − 1))−1

Kinematical quantities

u̇a = (n − 3)
− ν−νn+n−3

(ν−1)(n−3) (ν(n − 2))
2

ν−1 (ν(n − 1) + n − 3)Q− 2(ν+n−3)
(ν−1)(n−3)

(∫ t

1
T1(w)dw

) 2
ν−1 (

2(ν − 1)Q′)−1

θ = (n − 3)
ν

(ν−1)(n−3) (ν(n − 2))
ν

ν−1 Q
ν−(ν+1)n+3
2(ν−1)(n−3)

(∫ t

1
T1(w)dw

) 1
ν−1

(1 − ν)−1

σ = (n − 3)
ν

(ν−1)(n−3) (ν(n − 2))
ν

ν−1 Q
ν−(ν+1)n+3
2(ν−1)(n−3)

(∫ t

1
T1(w)dw

) 1
ν−1 (

(1 − ν)
√
n − 1

)−1

the charge Q is a function of r only, and the functions A, B
and Y are functions of r and t . An added complication is the
appearance of the parameter n in higher dimensions. There
are currently no known solutions to the boundary condition
(24) that admits an equation of state (85) when n > 4.

In spite of the issues mentioned above it is possible to
obtain exact solutions satisfying both (24) and (85). For con-
venience we set 	 = 0 and present two classes of exact
solutions. They are valid for all spacetime dimensions n ≥ 4.
The solutions found have been obtained by considering spe-
cial cases of the transformation (39) on (85) and on special
cases of (41) to obtain solutions.

8.1 Model I

The line element is given by

ds2 = −
(
ν− ν

ν−1 (n − 3)
− ν

(ν−1)(n−3) (n − 2)−
ν

ν−1

×T1Q
ν(n−1)+n−3
2(ν−1)(n−3)

×
(∫ t

1
T1(w)dw

)− ν
ν−1

)2

dt2

+
(
ν

1
1−ν (n − 3)

2ν−νn+n−3
(ν−1)(n−3) (n − 2)

1
1−ν

×Q′Q− −5ν+(ν−3)n+9
2(ν−1)(n−3)

×
(∫ t

1
T1(w)dw

) 1
1−ν

)2

dr2

+
(
(n − 3)

1
3−n Q

1
n−3 dφ2

)
, (86)

where T1 = T1(t). In this case ν �= 1 and we have a linear
equation of state. This model is also new when n = 4. The
kinematical quantities and matter variables corresponding to
(86) are given in Table 1.

8.2 Model II

The metric has the form

ds2 = −
(

1√
QJ1

)2

dt2

+
(
(n − 3)

1
3−n −1Q

1
n−3 − 1

2 Q′J −1
1

)2
dr2

+
(
(n − 3)

1
3−n Q

1
n−3

)2 (
dθ2 + sin2 θ dφ2

)
, (87)

where J1 = J1

(
t − (n − 3)

1
3−n Q

1
n−3 +1 (n − 2)−1

)
. In this

case ν = 1, and the equation of state is stiff. This model is
also new when n = 4. The relevant kinematical quantities
and matter variables to (87) are given in Table 2.

9 The horizon function

The horizon function of Ivanov [40] is regained when we
substitute

α = β = 1, (88a)
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Table 2 Physical features for the boundary condition with an equation
of state p‖ = ρ

Matter variables

ρ = 1

4
(n − 3)

1
n−3 +2π

1
2 − n

2 


(
n − 3

2

)
Q

1
3−n J1J ′

1

p‖ = 1

2
(n − 3)

1
n−3 +1π

1
2 − n

2 


(
n − 1

2

)
Q

1
3−n J1J ′

1

p⊥ = (n − 3)
2

n−3 +3π
1
2 − n

2 


(
n − 1

2

)
Q− 2

n−3 (2(2 − n))−1

q = 1

2
(n − 3)

1
n−3 +1π

1
2 − n

2 


(
n − 1

2

)
Q

1
3−n J1J ′

1

Kinematical quantities

u̇a = (n − 3)
1

n−3 +1Q
1

3−n J1

(
2QJ ′

1 − (n − 3)
1

n−3 +1Q
1

3−n J1

)

(
2Q′)−1

θ = −√
QJ ′

1

σ = −
√

Q

n − 1
J ′

1

F = 1, (88b)

G = 0, (88c)

in (39) to obtain

H = Yr
B

+ Yt
A

. (89)

Ivanov [40] showed that the presence of a horizon is
implied in the four dimensional boundary condition when H
approaches zero. We can extend this to higher dimensions.
When Q = 	 = 0 the mass function can be expressed as

m(v) = n − 3

2
Yn−3

(
1 + Yt

A2 − Y 2
t

B2

)
. (90)

Using (89) we express (90) as

2

n − 3

m(v)

Yn−3 − 1 = 2Yr
A

H − H2. (91)

As H approaches zero the presence of a horizon is implied,
as this results in a singularity in the line element (21).

10 Discussion

There are currently no known solutions to the higher dimen-
sional shearing boundary condition (24). There is clearly a
need to obtain solutions to (24), which may be shearing, in
higher dimensions to understand the gravitational dynam-
ics. We investigated two methods to solve the higher dimen-
sional boundary condition (23) with Riccati equations been
an underlying theme. In the first approach we rewrote (23)

as the Riccati equation (24). This allowed us to place restric-
tions on L1, L2 and L3 which allowed us to express (24) as
a linear, Bernoulli or simpler Riccati equation. This simpli-
fication allowed us to solve the resultant equations to obtain
exact solutions to (24). When n = 4 some of the results
obtained using this approach reduce to results obtained by
Mahomed et al. [52]. In the second approach we studied
the effects the generalised transformation (39) has on the
n dimensional boundary condition (24). The transformation
mapped the n dimensional boundary condition (24) into a
new Riccati equation (41). When n = 4 we regain the results
of Naidoo et al [42] and earlier investigations. The transfor-
mation (39) introduced a dependence on the new functions
F(r, t, A,Y ) and G(r, t, A,Y ). We obtained exact solutions
to the n dimensional boundary condition that depend on the
functions F and G in Sects. 4, 5, 6 and 7, by placing restric-
tions on L4 and L6. We obtained different solution sets to
the boundary condition (24) using two different approaches.
Our treatment has highlighted the role of Riccati equations
in describing radiating stars in higher dimensional general
relativity.

There are interesting features of (67) that highlight the
importance of using transformations to solve differential
equations. The importance of the transformation is seen
when:

• The same restriction (30) and (31) result in the different
solutions (31) and (50) which both satisfy (24).

• Setting L6 to zero results in a new restriction that cannot
be obtained by setting L1, L2 or L3 to zero, allowing for
new solutions.

• The transformation (67) reduces the order of the bound-
ary condition (24) from a second order nonlinear partial
differential equation into a first order nonlinear partial
differential Eq. (69).

• It allowed for solutions to be obtained that admitted an
equation of state.

• Horizons can be identified when the limit of H approaches
zero in the transformation (89).

We have related the pressure to the energy density by
including a linear equation of state p‖ = νρ. We obtained
new exact solutions to the boundary condition (24) that admit
a linear equation of state, using special cases of the transfor-
mation (39). The use of the transformation to obtain solutions
to the system of equations consisting of (24) and (85) shows
the versatility of the transformation. The line elements can
be written explicitly. The physical features (that provide a
description for the kinematical quantities and matter vari-
ables) for each of the two models are listed in Tables 1 and
2. It can be seen in Tables 1 and 2 how dimension n, charge
Q and the equation of state parameter ν affects the evolution
of the different models of the radiating star.
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There are currently no known methods to reduce the
order of partial differential equations. The transformation
(67) reduces the order of the partial differential Eq. (24). It
will be interesting to identify what geometric property of the
transformation allows it to behave in such a way. This will
provide insight into how one can reduce the order of par-
tial differential equations. We will investigate the geometric
properties of (67) in future studies. Riccati equations fre-
quently arise in spherically symmetric stars; it would also be
interesting to investigate systems with axial and cylindrical
symmetry to determine if Riccati or other standard nonlinear
equations arise.
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