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Abstract By the supersymmetrization of a simple alge-
braic technique proposed in Lukierski and Tolstoy (Eur Phys
J C 77:226, 2017) we obtain the complete classification
of all basic (nonisomorphic) quantum deformations for the
orthosymplectic Lie superalgebra osp(1|2; C) and its pseu-
doreal and real forms in terms of the classical r -matrices.
In particular, we prove that pseudoreal compact form has
only one quantum deformation (standart q-analog), and the
D = 3, N = 1 Lorentz supersymmetry, which is the non-
compact real form of osp(1|2; C), has four different Hopf-
algebraic quantum deformations: two standard q-analogs,
and two (Jordanian and super-Jordanian) twist deformations.
All basic Hopf-algebraic quantum deformations are pre-
sented in the explicit form.

1 Introduction

The search for quantum gravity is linked with studies of
noncommutative space-times and quantum deformations
of space-time symmetries. The considerations of simple
dynamical models in quantized gravitational background
(see e.g. [2–4]) indicate that the presence of quantum grav-
ity effects generates noncommutativity of space-time coordi-
nates, and as well the well-known Lie-algebraic space-time
symmetries (e.g. Euclidean, Lorentz, Poincare) are modified
into respective quantum symmetries, described by nonco-
commutative Hopf algebras, named quantum deformations
or quantum groups [5]. Therefore, studding all aspects of
the quantum deformations in details is an important issue in
particular in the search of quantum gravity models and their
quantum superextensions (SUGRA).

For classifications, constructions and applications of
quantum Hopf deformations of an universal enveloping alge-
bra U (g) of a Lie superalgebra g (g = g0̄ ⊕ g1̄, as a linear
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space, with a linear Z2-grading function deg(·): deg(ga) =
a ∈ {0̄, 1̄}) Lie bisuperalgebras (g, δ) play an essential
role (in analogy to the case of Lie algebras (see e.g. [5,6]
and [7,8])), where the cobracket δ is a linear super-skew-
symmetric map:

g → g ∧ g = g0̄ ∧ g0̄ ⊕ g1̄ ∧ g1̄ ⊕ g0̄ ∧ g1̄, (1.1)

which conserves the grading function deg(·):
δ(g0̄) ∈ g0̄ ∧ g0̄ ⊕ g1̄ ∧ g1̄, δ(g1̄) ∈ g0̄ ∧ g1̄. (1.2)

provided that

deg(ga ∧ gb) = deg(ga) + deg(gb) = a + b = c mod 2

(1.3)

for a, b, c ∈ {0̄, 1̄}. In the general case x = x0̄ + x1̄ we use
the linearity of δ(x) in the argument x . It should be noted also
that the superskew-symmetric bilinear space g∧ g is defined
as follows:

xa ∧ yb := xa ⊗ yb − (−1)ab yb ⊗ xa (1.4)

for all homogeneous elements xa ∈ ga , yb ∈ gb (a, b ∈
{0̄, 1̄}). In case of general elements x = x0̄ + x1̄ and y =
y0̄ + y1̄ we use the bilinearity of x ∧ y.

Moreover the cobracket δ satisfies the relations consisted
with the superbracket [[·, ·]] in the Lie superalgebra g:

δ([[x, y]]) = [[�0(x), δ(y)]] + [[δ(x),�0(y)]]
= [x, δ(y)]S + [δ(x), y]S (x, y ∈ g), (1.5)

(δ ⊗ id)δ(xa) + grcycle = 0, (1.6)

for any homogeneous element xa ∈ ga, a ∈ {0̄, 1̄}. Here
�0(·) is a trivial (non-deformed) coproduct

�0(x) = x ⊗ 1 + 1 ⊗ x, (1.7)

and the symbol [·, ·]S means the graded Schouten bracket
(3.2). The first relation (1.5) is a condition of the 1-cocycle
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and the second one (1.6) is the co-Jacobi identity. The Lie
bisuperalgebra (g, δ) is a correct infinitesimalization of the
quantum Hopf deformation ofU (g) and the operation δ is an
infinitesimal part of difference between a coproduct � and an
opposite coproduct �̃ in the Hopf algebra, δ(x) = h−1(� −
�̃) mod h, where h is a deformation parameter. Any two
Lie bialgebras (g, δ) and (g, δ′) are isomorphic (equivalent)
if they are connected by a g-automorphism ϕ satisfying the
condition

δ(x) = (ϕ ⊗ ϕ)δ′(ϕ−1(x)) (1.8)

for any x ∈ g.
Of our special interest here are the quasitriangular Lie

bisuperalgebras (g, δ(r)):=(g, δ, r ), where the cobracket δ(r)

is given by the classical r -matrix r ∈ g ∧ g as follows:

δ(r)(x) = [[�0(x), r ]] = [x, r ]S . (1.9)

Because the co-bracket δ(r) conserves the grading value then
from (1.9) we see that the r -matrix r is even one, deg(r) = 0̄,
i.e.

r ∈ g0̄ ∧ g0̄ ⊕ g1̄ ∧ g1̄. (1.10)

Moreover it is easy to see also from (1.8) and (1.9) that two
quasitriangular Lie bisuperalgebras (g, δ(r)) and (g, δ(r ′))
are isomorphic iff the classical r-matrices r and r ′ are iso-
morphic, i.e.

(ϕ ⊗ ϕ)r ′ = r. (1.11)

Therefore for a classification of all nonequivalent quasitri-
angular Lie bisuperalgebras (g, δ(r)) of the given Lie super-
algebra g we need to find all nonequivalent (nonisomorphic)
classical r -matrices. Because nonequivalent quasitriangular
Lie bisuperalgebras uniquely determine non-equivalent qua-
sitriangular quantum deformations (Hopf algebras) of U (g)

therefore the classification of all nonequivalent quasitriangu-
lar Hopf superalgebras is reduced to the classification of all
nonequivalent classical r -matrices.

Let g∗ := (g, ∗) be a real or pseudoreal,1 form of a clas-
sical complex Lie superalgebra g, where ∗ is an antilinear
involutive or semiinvolutive antiautomorphism of g, then the
bisuperalgebra (g∗, δ(r)) is real iff the classical r-matrix r
is ∗-anti-real (∗-anti-Hermitian).2 Indeed, the condition of
∗-reality for the bisuperalgebra (g∗, δ) means that

δ(x)∗⊗∗ = δ(x∗). (1.12)

Applying this condition to the relations (1.9) we obtain that

r∗⊗∗ = −r, (1.13)

1 See Sect. 2 where a pseudoreality condition for the superalgebra
osp∗(1|su(2)) is considered.
2 All bialgebras over the simple complex and real Lie algebras are qua-
sitriangular, due to Whitehead lemma (see e.g. [9]). It is more likely that
the Whitehead lemma is valid also for all classical Lie superalgebras.

i.e. the r -matrix r is ∗-anti-Hermitian.
Recently in the paper [1] there were investigated the quan-

tum deformations of the complex Lie algebra sl(2; C) 	
o(3; C) and its real forms su(2) 	 o(3), sl(2; R) 	 o(2, 1)

and su(1, 1) 	 o(2, 1). Namely, firstly it was obtained the
complete classifications of the nonequivalent (nonisomor-
phic) classical r -matrices (bialgebras) for all these Lie alge-
bras and then Hopf deformations corresponding to these bial-
gebras were presented in explicit form. In particular, it was
shown that D = 3 Lorentz symmetry o(2, 1) (	 sl(2; R) 	
su(1, 1)) has two standard q-deformations and one Jorda-
nian.

In this work we would like to present some superanalog of
these results, namely we first give the complete classifications
of the nonequivalent (nonisomorphic) classical r -matrices
for complex Lie superalgebra osp(1|2; C) (which is a mini-
mal supersymmetric extension of the Lie algebra sl(2; C)),
and its pseudoreal osp∗(1|su(2))3 and real osp†(1|sl(2; R)),
osp†(1|su(1, 1)) forms. In particular, it will be shown that
N = 1, D = 3 Lorentz supersymmetry,

osp†(1|o(2, 1)) 	 osp†(1|sl(2; R)) 	 osp†(1|su(1, 1)),

(1.14)

has two nonequivalent standard q-deformations and two
nonequivalent (Jordanian and super-Jordanian) twist defor-
mations. Moreover it will be shown that each real form
osp∗(1|o(3)) and osp†(1|o(2, 1)) has four variants of the
deformation in accordance with how the super-involutions ∗
and † are extended on all universal enveloping superalgebra
U (osp(1|2; C)) and its tensor square (see Sect. 4). The iso-
morphic Lie superalgebras (1.14) and their quantum defor-
mations play very important role in physics as well as in
mathematical considerations, so the structure of these defor-
mations should be understood with full clarity. It should
be noted also that the importance of osp†(1|o(2, 1)) and
its deformations follows also from the unique role of the
osp†(1|o(2, 1)) superalgebra as the lowest-dimensional rank
one noncompact simple classical Lie superalgebra.

In this paper we investigate the quantum deformations
of D = 3, N = 1 Lorentz supersymmetry. Firstly, fol-
lowing [1,10], we obtain the complete classifications of the
nonequivalent (nonisomorphic) classical r -matrices for com-
plex Lie superalgebra osp(1|2; C) and its pseudoreal and real
forms osp∗(1|su(2)), osp†(1|sl(2; R)) and osp†(1|su(1, 1))

with the help of explicit formulas for the automorphisms of
these Lie superalgebras in terms of the Cartan-Weyl bases.
In the case of osp(1|2; C) there are three nonequivalent
classical r -matrices - one standard form and two Jorda-
nian and super-Jordanian ones. For the pseudoreal super-
algebra osp∗(1|su(2)) there is only the standard classical

3 It should be noted that the compact forms for all superalgebras of the
classical series osp(1|2m; C) (m = 1, 2, . . .) are pseudoreal.
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r -matrix. For the real case osp†(1|su(1, 1)) we obtained
four noneqvivalent r -matrices - standard, quasi-standard,
quasi-Jordanian and quasi-super-Jordanian ones. In the real
case of osp†(1|sl(2; R)) we find also four nonequivalent
r -matrices - standard, quasi-standard, Jordanian and super-
Jordanian ones. Then using isomorphisms osp†(1|o(2, 1)) 	
osp†(1|su(1, 1)) 	 osp†(1|sl(2; R)) we express these r -
matrices in terms of the Cartesian basis of the D = 3,
N = 1 Lorentz superalgebra osp†(1|o(2, 1)) and we see
that two systems with four r -matrices for osp†(1|su(1, 1))

and osp†(1|sl(2; R)) superalgebras coincides. Thus we
obtain that the isomorphic Lie algebras osp†(1|su(1, 1)) and
osp†(1|sl(2; R)) have the isomorphic systems of their quasi-
triangular Lie bealgebras. In the case of osp†(1|o(2, 1)) we
obtain that the D = 3, N = 1 Lorentz superalgebra has
two standard q-deformations and two Jordanian and super-
Jordanian ones. These Hopf deformations are presented in
explicit form in terms of the quantum Cartan-Weyl gen-
erators for the quantized universal enveloping algebras of
osp†(1|su(1, 1)) and osp†(1|sl(2; R)). It should be noted that
the full list of the nonequivalent classical r -matrices for the
complex Lie superalgebra osp(2|1; C) was obtained previ-
ously in [11] where the authors used a technique of com-
puter algebraic computations. However, the complete list of
the nonequivalent classical r -matrices and their Hopf quan-
tizations for the real D = 3, N = 1 Lorentz superalgebra
osp†(1|o(2, 1)) has not been presented in the literature, but
some examples of such r -matrices and their quantizations
were already considered (for example, see [12–15]).

The isomorphic Lie superalgebras osp†(1|o(2, 1)),
osp†(1|sl(2; R)), osp†(1|su(1, 1)) and their quantum defor-
mations play very important role in physics as well as in
mathematical considerations, so the structure of these defor-
mations should be understood with full clarity. For example,
since the real superalgebra osp†(1|sl(2; R)) can be used as
D = 1, N = 1 superconformal symmetry then the obtained
results in this case allow us to interpret as deformations of
N = 1 superconformal mechanics [15]. In mathematics and
mathematical physics the importance of osp†(1|o(2, 1)) and
its deformations follows also from the unique role of the
osp†(1|o(2, 1)) algebra as the lowest-dimensional rank one
noncompact simple Lie superalgebra, endowed only with
unitary infinite-dimensional representations.

The plan of this paper is the following. In Sect. 2 we con-
sider the complex Lie superalgebraosp(1|2; C) and its all real
forms: osp∗(1|o(3)) 	 osp∗(1|su(2)), osp†(1|o(2, 1)) 	
osp†(1|su(1, 1)) 	 osp†(1|sl(2; R)). In Sect. 3 we clas-
sify all classical r -matrices for the complex Lie superal-
gebra osp(1|2; C) and in Sect. 4 all classical r -matrices
for its real forms: osp∗(1|su(2)), osp†(1|su(1, 1)) and
osp†(1|sl(2; R)). In Sect. 5 we provide the explicit isomor-
phisms between the osp†(1|su(1, 1)), osp†(1|sl(2; R)) and
osp†(1|o(2, 1)) bialgebras. In Sect. 6 all four Hopf-algebraic

quantizations (explicit quantum deformations) of the real
D = 3 Lorentz supersymmetry are presented in detail: quan-
tized bases, coproducts and universal R-matrices are given.
In Sect. 7 we present short summary and outlook.

2 Complex Lie superalgebra osp(1|2;C) and its real
forms

The Lie superalgebra osp(1|2; C) is a initial element of infi-
nite orthosymplectic series osp(m|2n; C) (m, n = 1, 2, . . .).
Each orthosymplectic Lie superalgebra osp(m|2n; C), as a
linear space, is a direct sum of two graded (even and odd)
components: osp(m|2n; C) = osp(m|2n; C)0 ⊕ osp(m|2n;
C)1, where the even part osp(m|2n; C)0 is a direct sum of the
orthogonal and symplectic Lie algebras: osp(m|2n; C)0 =
o(m; C)⊕ sp(2n; C), and moreover [osp(m|2n; C)0, osp(m
|2n; C)1] = osp(m|2n; C)1, {osp (m|2n; C)1, osp(m|2n;
C)1} = osp(m|2n; C)0.

In the case of osp(1|2; C) the even part has the form
osp(1|2; C)0 = o(1; C) ⊕ sp(2; C) where o(1; C) is null-
algebra o(1; C) 	 {0} and sp(2; C) 	 sl(2; C) 	 o(3; C).
Let {E±, H} be a Cartan-Weyl (CW) basis of sl(2; C) 	
o(3; C) with the standard relations:

[H, E±] = ±E±, [E+, E−] = 2H, (2.1)

then in the odd two-dimensional space osp(1|2; C)1 one can
choose the basis (v+, v−) satisfying the relations(see, for
example, [16–18]):

[H, v±] = ±1

2
v±, [E∓, v±] = v∓, [E±, v±] = 0,

(2.2)

{v±, v±} = ±1

2
E±, {v+, v−} = −1

2
H. (2.3)

The the CW generators H, E± of sl(2; C) 	 o(3; C) is
related with the Cartesian basis Ii (i = 1, 2, 3) as follows:

H = ı I3, E± = ı I1 ∓ I2. (2.4)

For convenience we set also

v1 := v+, v2 := v−. (2.5)

In terms of the generators {Ii , vα|i = 1, 2, 3;α = 1, 2}
the defining relations (2.1)–(2.3) take the form:

[Ii , I j ] = εi jk Ik, [Ii , vα] = − ı

2
(σi )βαvβ,

{v1, v1} = 1

2
(ı I1 − I2), {v1, v2} = − ı

2
I3,

{v2, v2} = −1

2
(ı I1 + I2),

(2.6)

where σi , (i = 1, 2, 3) are the 2 × 2 Pauli matrices, and
(α, β = 1, 2).
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It is well known that the Lie algebra o(3; C) 	 sl(2; C),
which is a subalgebra of the superalgebra osp(1|2; C), has
two real forms: compact o(3) 	 su(2), and noncompact
o(2, 1) 	 sl(2; R) 	 su(1, 1). These real forms of the sub-
algebra o(3; C) 	 sl(2; C) are raised up to the odd part
osp1(1|2; C), that is to the whole superalgebra osp(1|2; C).

I. The compact pseudoreal superalgebra osp∗(1|o(3)) 	
osp∗(1|su(2)).
In terms of the generators {Ii , vα|i = 1, 2, 3;α = 1, 2} this
form is defined by the following conjugation:

I ∗
i = −Ii , v∗

1 = εv2, v∗
2 = −εv1, (2.7)

where ε = 1 if the conjugation (∗) of the Lie superbracket is
graded, i.e.

[[xa, xb]]∗ = (−1)ab[[x∗
b , x

∗
a ]] (graded), (2.8)

and ε = ı if the conjugation (∗) of the Lie superbracket is
not graded, i.e.

[[xa, xb]]∗ = [[x∗
b , x

∗
a ]] (ungraded), (2.9)

for all homogeneous elements xa ∈ ga , xb ∈ gb (g :=
osp(1|2; C)). We see that the conjugation (∗) prolonged to the
odd generators vα is an antilinear antiautomorphism of four
order provided that (v∗

α)∗ = −vα which define pseudoreal
condition (see [16–18]).

Therefore this form is called pseudoreal and in terms
of the Cartesian generators (2.6)–(2.7) it is denoted by
osp∗(1|o(3)). In terms of the CW generators H := ı I3, E±
:= ı I1 ∓ I1, v+ := v1, v− := v2 this pseudoreal form
osp∗(1|o(3)) denoted also by osp∗(1|su(2)), is given as fol-
lows

H∗ = H, E∗± = E∓, v∗± = ±εv∓. (2.10)

II. The noncompact real form osp†(1|o(2, 1)) 	 osp†

(1|sl(2; R)) 	 osp†(1|su(1, 1)).
In theorems of the generators {Ii , vα|i = 1, 2, 3;α =

1, 2} this form is defined by the following conjugation:

I †
i = (−1)i−1 Ii , v

†
1 = εv1 v

†
2 = εv2, (2.11)

where ε = 1 if (†) is the graded conjugation, and ε = ı if (†)
is the ungraded conjugation.4 We see that the conjugation (†)
prolonged to the odd generators vα is an antilinear antiauto-
morphism of second order, that is (v∗

α)∗ = vα . Therefore this
form is called real, and it is denoted by osp†(1|o(2, 1)).

If we introduce the CW generators

H := ı I3, E± := ı I1 ∓ I2, v+ := v1, v− := v2, (2.12)

where the Cartesian generators {Ii , vα|i = 1, 2, 3;α = 1, 2}
satisfy the conjugation (2.11), then the real condition is given

4 See (2.8), (2.9), where the conjugation (∗) is replaced by (†).

as follows

H† = −H, E†
± = −E±, v

†
± = εv±. (2.13)

In terms of the given CW basis the real form osp†(1|o(2, 1))

is also denoted by osp†(1|sl(2; R)).
We can also introduce an alternative CW basis H ′, E ′±, v′±

in osp†(1|o(2, 1)) which are expressed in terms of the Carte-
sian generators Ii , vα (i = 1, 2, 3;α = 1, 2) and the CW
generators H, E±, v± as follows:

H ′ = ı I2 = − ı

2

(
E+ − E−

)
,

E ′± = ı I1 ± I3 = ∓ı H + 1

2

(
E+ + E−

)
,

v′+ = 1√
2

(
v+ + ıv−

)
, v′− = 1√

2

(
ıv+ + v−

)
. (2.14)

The CW basis H ′, E ′±, v′± satisfy the defining relations
(2.1)–(2.3), and it has the conjugation properties:

(H ′)† = H ′, (E ′±)† = −E ′∓, (v′±)† = −ıεv′∓. (2.15)

The real superalgebra osp†(1|o(2, 1)) in terms of the CW
basis H ′, E ′±, v′± will be also denoted by osp†(1|su(1, 1)).

It should be noted that in the case of osp†(1|su(1, 1))

the Cartan generator H ′ is compact while for the case
osp†(1|sl(2, R)) the Cartan generator H is noncompact.

It should be noted also that the Casimir element of two
order, that is a osp(1|2; C)-invariant element of the universal
enveloping superalgebra U (osp(1|2; C)):

C2 := v+v− − v−v+ + 1

2
E+E− + 1

2
E−E+ + H2

= 2v+v− + E+E− + H2 − 1

2
H (2.16)

satisfy the reality condition

C�

2 = C2 (� = ∗, †) (2.17)

with respect to all conjugations (2.10), (2.13) and (2.15) pro-
vided that these conjugations act on the product of two homo-
geneous elements xa and yb by the formulas (2.8), (2.9),
where the superbracket [[xa, xb]] should be replaced on the
usual product xaxb.

3 Classical r-matrices of the complex Lie superalgebra
osp(1|2;C)

In this section we obtain complete classification bialge-
bras (classical r -matrices) for the complex Lie superalge-
bra osp(1|2; C) and then in Sect. 4 we classify its real
forms osp∗(1|o(3)) and osp†(1|o(2, 1)) using the isomor-
phisms: osp(1|o(3; C)) 	 osp(1|sl(2; C)), osp∗(1|o(3)) 	
osp∗(1|su(2)), osp†(1|o (2, 1)) 	 osp†(1|sl(2; R)) 	
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osp†(1|su(1, 1)). In Sect. 5 we explicitly find out an isomor-
phism between osp†(1|su(1, 1)) and osp†(1|sl(2; R)) bial-
gebras and fix on the basis osp†(1|o (2, 1)) bialgebra in such
forms which are convenient for quantizations.

By the definition any classical r -matrix of arbitrary com-
plex or real Lie superalgebra g = g0̄ ⊕ g1̄, r ∈ g0̄ ∧ g0̄ ⊕
g1̄ ∧g1̄, satisfy the classical Yang–Baxter equation (CYBE):

[r, r ]S = 	̃. (3.1)

Here [·, ·]S is the graded Schouten bracket which for any
monomial skew-symmetric even two-tensors r1 = xa ∧ ya
and r2 = ub ∧ vb (xa, ya ∈ ga ; ub, vb ∈ gb; a, b,∈ {0̄, 1̄})
is given by

[xa ∧ ya, ub ∧ vb]S
:= xa ∧ ([[ya, ub]] ∧ vb + (−1)abub ∧ [[ya, vb]]

)

−(−1)a ya ∧ ([[xa, ub]] ∧ vb + (−1)abub ∧ [[xa, vb]]
)

= [ub ∧ vb, xa ∧ ya]S (3.2)

and 	̃ is the g-invariant element, 	̃ ∈ (
3∧ g)g, that in the case

of g := osp(1|2; C) looks as follows:

	̃ = γ	(osp(1|2; C))

= γ (4E− ∧ H ∧ E+ + 4v− ∧ v+ ∧ H
+2v− ∧ v− ∧ E+ − 2v+ ∧ v+ ∧ E−),

(3.3)

where γ ∈ C.
We have already mentioned that a classical r -matrix r is

an even two-tensor, i.e.:

r ∈ V0̄ := osp0̄(1|2; C) ∧ osp0̄(1|2; C)

⊕osp1̄(1|2; C) ∧ osp1̄(1|2; C).

(3.4)

As a basis in the linear space V0 we can take the following
two-tensors:

r0 := 2v+ ∧ v− + E+ ∧ E−,

r± := ±v± ∧ v± ± E± ∧ H,
(3.5)

r̄0 := E+ ∧ E−, r̄± := ±E± ∧ H. (3.6)

The following propositions are valid:

(i) Any linear combination of the elements (3.5) is a classical
r -matrix, namely, if

r := β+r+ + β0r0 + β−r− (3.7)

for ∀β+, β0, β− ∈ C, then we have

[r, r ]S = (β2
0 + β+β−)	(osp(1|2; C))

≡ γ	(osp(1|2; C)).
(3.8)

(ii) Any linear combination of the elements r̄0, r̄±:

r̄:=β+r̄+ + β0r̄0 + β−r̄− (3.9)

for β2
0 + β+β− = 0 satisfies the homogeneous CYBE,

i.e. [r̄ , r̄ ]S = 0.
(iii) Any classical r -matrix of osp(1|2; C) is presented only

in the form (3.7) or (3.9).

Firstly we prove the proposition (i). Let (3.7) be an
arbitrary linear combination of the elements (3.5). Because
all basis elements (3.5) are classical r -matrices, moreover
[r±, r±]S = 0, as well as the Schouten brackets of the ele-
ments r± with r0 are also equal to zero, [r±, r0]S = 0, and
we have

[r, r ]S = 2β+β−[r+, r−]S + β2
0 [r0, r0]S

= (β2
0 + β+β−)	(osp(1|2; C))

≡ γ	(osp(1|2; C)).

(3.10)

Thus the arbitrary element (3.7) is a classical r -matrix.
In the case of the proposition (ii) we have [r̄±, r̄±]S = 0,

[r̄±, r̄0]S = 0, and the Schouten bracket for the arbitrary
vector (3.9) looks as follows:

[r̄ , r̄ ]S = 2β+β−[r̄+, r̄−]S + β2
0 [r̄0, r̄0]S

= (β2
0 + β+β−)	(sl(2; C))

≡ γ 	(sl(2; C)),

(3.11)

where 	(sl(2; C) is the sl(2; C)-invariant element (the first
term in the parenthesis on the right-hand side of (3.3)).
Because 	(sl(2; C)) �= 	̃(osp(1|2; C)), therefore it should
be γ := β2

0 + β+β− = 0 so the element r̄ satisfies the
homogeneous CYBE (3.8).

Finally we prove the proposition (iii). Let us consider a
general two-tensor rg which is a sum of the two-tensors (3.7)
and (3.9)

rg = r + r̄ = β+r+ + β0r0 + β−r−
+β ′+r̄+ + β ′

0r̄0 + β ′−r̄−
(3.12)

with arbitrary coefficients β±, β0, β
′±, β ′

0 ∈ C. It is not too
difficult to see that the two-tensor (3.12) is a non-zero classi-
cal r -matrix of osp(1|2; C) if and only if |β+|+|β0|+|β−| �=
0 and β ′+ = β ′

0 = β ′− = 0 or |β ′+| + |β ′
0| + |β ′−| �= 0 and

β+ = β0 = β− = 0 provided that β ′
0

2 + β ′+β ′− = 0. Indeed,
let us calculate the Schouten bracket of rg;
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[rg, rg]S = [r, r ]S + [r̄ , r̄ ]S + 2[r, r̄ ]S
= (β2

0 + β+β−)	(osp(1|2; C))

+(β ′
0

2+β ′+β ′−)	(sl(2; C))+2β+β ′+[r+, r̄+]S
+2(β+β ′

0[r+, r̄0]S + β0β
′+[r0, r̄+]S)

+2
(
β+β ′−[r+, r̄−]S + β0β

′
0[r0, r̄0]S

+β−β ′+[r−, r̄+]S
) + 2(β−β ′

0[r−, r̄0]S
+β0β

′−[r0, r̄−]S) + 2β−β ′−[r−, r̄−]S,
(3.13)

where all the Schouten brackets [ri , r̄ j ]S , (i, j = ±, 0),
are different5 and each of them has the weight (i1 +
j1) with respect to the adH -action, adH ([ri , r̄ j ]S) ≡
[H, [ri , r̄ j ]S]S = (i1+ j1)[ri , r̄ j ]S , for example, the first and
the last Schouten brackets [r±, r̄±]S have the weight ±2. The
two-tensor (3.12) will be a classical r -matrix of osp(1|2; C)

if its Schouten bracket (3.13) is osp(1|2; C)-invariant, i.e.

[x, [rg, rg]S]S = 0 (∀x ∈ osp(1|2; C)). (3.14)

Applying this condition to the right-hand side of (3.13) for
x = H first and then for x = E+, and finally for x = v+ we
obtain the following quadratic equations:

β±β ′± = 0, β±β ′
0 = 0, β0β

′± = 0,

2β±β ′∓ + β0β
′
0 = 0, β ′

0
2 + β ′+β ′− = 0.

(3.15)

It is easy to see that if β+ �= 0 then β ′+ = β ′− = β ′
0 =

0. The other two cases β− �= 0 and β0 �= 0 are similar.
Thus the general two-tensor (3.12), where at least one of the
coefficients β±, β0 is not zero, will be a classical r -matrix
if it has the form (3.7). It is evident that a similar result is
obtained if we replace βi � β ′

i (i = ±, 0) provided that

β ′
0

2 +β ′+β ′− = 0, that is the general two-tensor (3.12), where
at least one of the coefficients β ′±, β ′

0 is not zero, will be a
classical r -matrix if it has the form (3.9).

We shall call the parameter γ = β2
0 + β+β− in (3.8)

the γ -characteristic of the classical r -matrix (3.7). It is evi-
dent that the γ -characteristic of the classical r -matrix r is
invariant under the ospl(1|2; C)-automorphisms, i.e. any two
r -matrices r and r ′, which are connected by a osp(1|2; C)-
automorphism, have the same γ -characteristic, γ = γ ′.

There are two types of explicitosp(1|2; C)-automorphisms.
First type connecting the classical r -matrices with zero γ -
characteristic is given by the formulas:

ϕ0(E+) = χ(β̃+E+ − 2β̃0 H + β̃−E−),

ϕ0(E−) = χ−1(β̃−E+ − 2κβ̃0 H + β̃+E−),

ϕ0(H) = β̃0 E+ + (κβ̃+ + β̃−) H + κβ̃0 E−,

ϕ0(v+) = √
χ

(√
β̃+v+ +

√
β̃−v−

)
,

ϕ0(v−) = √
χ−1

(√
β̃−v+ + κ

√
β̃+v−

)
,

(3.16)

5 Moreover, they are linearly independent elements.

where χ is a non-zero rescaling parameter (including χ = 1),
κ takes two values +1 or −1, and the parameters β̃i (i =
+, 0,−) satisfy the conditions:

γ := β̃2
0 + β̃+β̃− = 0, κβ̃+ − β̃− = 1. (3.17)

Let us consider two independent pair {r, r ′} and {r̄ , r̄ ′} of the
general r -matrices with zero γ -characteristics:

r := β+r+ + β0r0 + β−r−,

r ′ := β ′+r+ + β ′
0r0 + β ′−r−,

(3.18)

r̄ := β+r̄+ + β0r̄0 + β−r̄−,

r̄ ′ := β ′+r̄+ + β ′
0r̄0 + β ′−r̄−,

(3.19)

where γ = β2
0 + β+β− = 0 and γ = β

′2
0 + β ′+β ′− = 0.

Moreover, we suppose that the parameters β± and β ′± satisfy
the additional relations:

κβ+ − β− = χβ ′+ − χ−1κβ ′− �= 0, (3.20)

where the parameters κ and χ are the same as in (3.16).
One can check that the following formula are valid:

r = (ϕ0 ⊗ ϕ0)r
′, (3.21)

r̄ = (ϕ0 ⊗ ϕ0)r̄
′, (3.22)

where ϕ0 is the osp(1|2; C)-automorphism (3.16) with the
following parameters:

β̃0 = β0(χβ ′+ + χ−1κβ ′−) − β ′
0(κβ+ + β−)

(κβ+ − β−)(χβ ′+ − χ−1κβ ′−)
,

β̃+ = κ(κβ+ + β−)(χβ ′+ + χ−1κβ ′−) + 4β0β
′
0

2(κβ+ − β−)(χβ ′+ − χ−1κβ ′−)
+ κ

2
,

β̃− = (κβ+ + β−)(χβ ′+ + χ−1κβ ′−) + 4κβ0β
′
0

2(κβ+ − β−)(χβ ′+ − χ−1κβ ′−)
− 1

2
.

(3.23)

It is easy to check that the formulas (3.23) satisfy the condi-
tion β̃2

0 + β̃+β̃− = 0.
Let us assume in (3.23) that the parameters β ′

0 and β ′− are
equal to zero. Then the general classical r -matrix r , satisfying
the homogeneous CYBE, is reduced to usual Jordanian form
by the automorphism ϕ0 with the parameters:

β̃0 = β0

κβ+ − β−
, β̃± = β±

κβ+ − β−
. (3.24)

Second type of osp(1|2; C)-automorphism connecting the
classical r -matrices with non-zero γ -characteristic is given
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as follows

ϕ1(E+) = χ

2

(
(β̃0 + 1) E+ + 2β̃−H − β̃2−

β̃0 + 1
E−

)
,

ϕ1(E−) = χ−1

2

( −β̃2+
β̃0 + 1

E+ + 2β̃+H + (β̃0 + 1)E−
)

,

ϕ1(H) = 1

2

(
− β̃+E+ + 2β̃0H − β̃−E−

)
,

ϕ1(v+) =
√

χ

2

(√
β̃0 + 1v+ + β̃−√

β0 + 1
v−

)
,

ϕ1(v−) =
√

χ−1

2

(
β̃+√

β0 + 1
v+ +

√
β̃0 + 1v−

)
,

(3.25)

where χ is a non-zero rescaling parameter, and β̃2
0 +β̃+β̃− =

1.
Let us consider two general r -matrices with non-zero γ -

characteristics:

r := β+r+ + β0r0 + β−r−,

r ′ := β ′+r+ + β ′
0r0 + β ′−r−,

(3.26)

where the parameters β±, β0 and β ′±, β ′
0 can be equal to zero

provided that γ = β2
0 + β+β− = γ ′ = (β ′

0)
2 + β ′+β ′− �=

0, i.e. both r -matrices r and r ′ have the same non-zero γ -
characteristic γ = γ ′ �= 0.

One can check the following relation:

r = (ϕ1 ⊗ ϕ1)r
′, (3.27)

where ϕ1 is the osp(1|2; C)-automorphism (3.25) with the
parameters:

β̃0 = (β0 + β ′
0)

2 − (β+ − χβ ′+)(β− − χ−1β ′−)

(β0 + β ′
0)

2 + (β+ − χβ ′+)(β− − χ−1β ′−)
,

β̃± = 2(β0 + β ′
0)(β± − χ±1β ′±)

(β0 + β ′
0)

2 + (β+ − χβ ′+)(β− − χ−1β ′−)
.

(3.28)

It is easy to check that the formulas (3.28) satisfy the condi-
tion β̃2

0 + β̃+β̃− = 1.
If we assume in (3.26) that the parameters β ′± are equal

to zero then the general classical r -matrix r , satisfying the
non-homogeneous CYBE, is reduced to the usual standard
form by the automorphism ϕ1, (3.25), with the following
parameters:

β̃0 = β0

β ′
0
, β̃± = β±

β ′
0
. (3.29)

Finally for osp(1|2, C) we get the following result:
For the complex Lie superalgebra osp(1|2, C) there exists

up to osp(1|2, C) automorphisms three solutions of CYBE,
namely Jordanian rJ , super-Jordanian rs J and standard rst :

rJ = βE+ ∧ H, [rJ , rJ ]S = 0, (3.30)

rs J = β1(E+ ∧ H + v+ ∧ v+),

[rs J , rs J ]S = 0,
(3.31)

rst = β0(E+ ∧ E− + 2v+ ∧ v−),

[rst , rst ]S = β2
0	,

(3.32)

where the complex parameters β and β1 can be removed by
the rescaling osp(1|2, C)-automorphism: ϕ(E+) = β−1E+,
ϕ(E−) = βE−, ϕ(v+) = √

β−1 v+, ϕ(v−) = √
β v−,

ϕ(H) = H ; the parameter β0 = eıφ |β0| for |φ| ≤ π
2 is

effective.
So, we obtained the full classification of all nonequiva-

lent quasitriangular Lie bisuperalgebras (osp(1|2, C), δ(r))
in terms of all nonequivalent (nonisomorphic) classical r -
matrices (3.30)–(3.32). It should be noted that the classical
r -matrices for the complex Lie superalgebra osp(1|2, C) was
obtained previously in [11] where the authors used a tech-
nique of computer algebraic computations.

4 Classical r-matrices of osp(1|2;C) real forms

The coproduct �0 (1.7), which is a homomorphism g
�0−→

g ⊗ g for any complex Lie superalgebra g (and g =
osp(1|2; C) particularly), can be induced on all the universal

enveloping superalgebra U (g)
�0−→ U (g) ⊗ U (g) using the

linearity and multiplicativity:

�0(X + Y ) = �0(X) + �0(Y ),

�0(XY ) = �0(X)�0(Y )
(4.1)

for ∀ X,Y ∈ U (g). These relations can be used to lift the
�-conjugation, (� = ∗, †), from U (g) to the tensor prod-
uct U (g) ⊗ U (g). It should be noted that the coproduct
�0 and the �-conjugation preserve the Z2-grading deg(·):
deg(�0(Xa)) = deg(X�

a ) = deg(Xa) = a ∈ {0̄, 1̄} for any
homogeneous element Xa ∈ U (g) = U (g)0̄ ⊕U (g)1̄. There
are two reality conditions for the coproduct �0:

�0((Xa)
�) = (�0(Xa))

�⊗�, (4.2)

�0((Xa)
�) = (�0(Xa))

�⊗̃�

:= (τ�0(Xa))
�⊗� = τ(�0(Xa))

�⊗�
(4.3)

for any homogeneous element Xa ∈ U (g), a ∈ {0̄, 1̄}.
Here τ is a superpermutation linear operator (the superflip)
in U (g) ⊗U (g):

τ(Xa ⊗ Yb) = (−1)ab(Yb ⊗ Xa) (4.4)

for all homogeneous elements Xa,Yb ∈ U (g), a, b ∈ {0̄, 1̄}.
We note also that the definition of the Hopf superalgebra
differs from that of the usual Hopf algebra by the supermul-
tiplication of tensor product:

(Xa ⊗ Yb)(Vc ⊗ Wd) = (−1)bc(XaVc ⊗ YbWd) (4.5)

for all homogeneous elements Xa,Yb, Vc,Wd ∈ U (g),
a, b, c, d ∈ {0̄, 1̄}. The conjugation � ⊗ � in (4.2) (cor-
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respondingly �⊗̃� in (4.3)) will be named direct (corre-
spondingly superflipped) one.

From the reality condition (4.2) we find that:

i f (XaYb)� = (−1)abY�

b X�

a (graded) then
(Xa ⊗ Yb)�⊗� = (X�

a ⊗ Y�

b ) (ungraded),
(4.6)

and:

i f (XaYb)� = Y�

b X�

a (ungraded) then
(Xa ⊗ Yb)�⊗� = (−1)ab(X�

a ⊗ Y�

b ) (graded).
(4.7)

From the reality condition (4.3) we find that:

i f (XaYb)� = (−1)abY�

b X�

a (graded) then

(Xa ⊗ Yb)�⊗̃� = (−1)ab(Y�

b ⊗ X�

a ) (graded),
(4.8)

and:

i f (XaYb)� = Y�

b X�

a (ungraded) then

(Xa ⊗ Yb)�⊗̃� = (Y�

b ⊗ X�

a ) (ungraded).
(4.9)

Next, we will use only the direct conjugation type (4.2),
(4.6), (4.7) in the tensor productU (g)⊗U (g) since the results
for the cases (4.8), (4.9) can be obtained from the cases (4.6),
(4.7) using the superflip (4.4) explicitly.

The general non-reduced expression of the classical r -
matrix (3.7) (and also (3.9)) is convenient for the application
of reality conditions:

r�⊗� = β∗+r
�⊗�

+ + β∗
0r

�⊗�

0 + β∗−r
�⊗�

− = −r, (4.10)

where � is the conjugation associated with corresponding
real form (� = ∗, †), and β∗

i (i = +, 0,−) means the com-
plex conjugation of the number βi . Moreover, if r -matrix is
anti-real (anti-Hermitian), i.e. it satisfies the condition (4.10),
then its γ -characteristic is real. Indeed, applying the conju-
gation � to CYBE (3.8) we have for the left-side:

[r, r ]�⊗�⊗�

S = −[r�⊗�, r�⊗�]S = −[r, r ]S = −γ	

(4.11)

and for the right-side:

(γ	)�⊗�⊗� = −γ ∗	 (4.12)

for all real forms osp∗(1|su(2)), osp†(1|su(1, 1)), osp†(1|su
(2; R)). It follows that the parameter γ is real, γ ∗ = γ .

I.The compact pseudoreal real form osp∗(1|su(2)) (H∗ =
H , E∗± = E∓, v∗± = ±εv∓).

It is not difficult to see that in the case of the grade (ε = 1)
and ungrade (ε = ı) conjugations the basic two-tensors (3.5)
and (3.6) have the following reality properties

r∗⊗∗
0 = −r0, r∗⊗∗± = −r∓, (4.13)

r̄∗⊗∗
0 = −r̄0, r̄∗⊗∗± = −r̄∓, (4.14)

In this case it follows from (4.10) that

β∗
0 = β0, β∗± = β∓. (4.15)

If in (3.7) and (3.9) γ = β2
0 + β+β− = 0 then under condi-

tions (4.15) we have β0β
∗
0 + β±β∗± = 0 and it follows that

β0 = β+ = β− = 0, i.e. any classical r-matrix, which sat-
isfies the homogeneous CYBE and the osp∗(1|su(2)) reality
condition, is equal zero.

If in (3.7) γ = β2
0 + β+β− �= 0 we have three

osp∗(1|su(2)) real classical r -matrices:

r1 = β0r0, r2 = β+r+ + β∗+r−,

r3 = β ′+r+ + β ′
0r0 + β ′+

∗r−, (4.16)

where β0 and β ′
0 are real numbers and we use the condi-

tions (4.15). The r -matrices ri (i = 1, 2, 3) satisfy the non-
homogeneous CYBE

[ri , ri ]S = γi	, (4.17)

where all γi (i = 1, 2, 3) are positive: γ1 = β2
0 > 0, γ2 =

β+β∗+ > 0, γ3 = β ′
0
2 + β ′+β ′+

∗
> 0.

Let two general classical r -matrices (3.26) with non-zero
γ -characteristic be osp∗(1|su(2))-antireal, i.e. their param-
eters satisfy the reality conditions (4.15). It follows that the
functions (3.28) for χ = eıφ have the same conjugation prop-
erties, i.e. β̃∗

0 = β̃0, β̃∗± = β̃∓, and we obtain that the auto-
morphism (3.24) with such parameters is osp∗(1|su(2))-real,
i.e.:

ϕ1(E±)∗ = ϕ1(E
∗±) = ϕ1(E∓),

ϕ1(H)∗ = ϕ1(H
∗) = ϕ1(H),

ϕ1(v±)∗ = ϕ1(v
∗±) = ±εϕ1(v∓).

(4.18)

We see that the r -matrices r2 and r3 in (4.16) can be reduced
to the standard r -matrix rst := r1 using the formula (3.27).

It is easy to see that the standard r -matrix rst = r1 in (4.16)
effectively depends only on positive values of the parameter
α := β0. Indeed, we see that

α
(
ϕ(E+) ∧ϕ(E−) + 2ϕ(v+) ∧ ϕ(v−)

)

= −α(E+ ∧ E− + 2v+ ∧ v−),

(4.19)

where ϕ is the simple osp∗(1|su(2))-pseudoreal automor-
phism: ϕ(E±) = E∓, ϕ(H) = −H , ϕ(v±) = ıv∓, i.e. any
negative value of parameter α in rst can be replaced by the
positive one.

We obtain the following result:
For the compact pseudoreal form osp∗(1|su(2)) with the
graded (ε = 1) or ungraded (ε = ı) conjugation (∗), there
exists up to the osp∗(1|su(2))-automorphisms only one solu-
tion of CYBE and this solution is the usual standard super-
symmetric classical r-matrix rst :

rst = α(E+ ∧ E− + 2v+ ∧ v−),

[rst , rst ]S = γ	, (4.20)

where the effective parameter α is a positive number, and
γ = α2.
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II. The non-compact real form osp†(1|sl(2; R)) (H† =
−H , E†

± = −E±, v
†
± = εv∓).

It is not difficult to see that in the case of the grade (ε = 1)
and ungrade (ε = ı) conjugations the basic two-tensors (3.5)
and (3.6) have the following reality properties

r†⊗†
0 = r0, r†⊗†

± = r±, (4.21)

r̄†⊗†
0 = r̄0, r̄†⊗†

± = r̄±, (4.22)

In this case from (4.10) we obtain

β∗
0 = −β0, β∗± = −β±, (4.23)

i.e. all parameters βi (i = +, 0,−) are purely imaginary.
Consider the general r-matrices (3.7) and (3.9) with the

coefficients βi and β̄i (i = ±, 0) satisfying the condition
β2

0 +β+β− = 0 and (4.23) then we have six osp†(1|su(2; R))

solutions of the homogeneous CYBE:

r1 = β+r+, r2 = β−r−,

r3 = β ′+r+ + β ′
0r0 + β ′−r−, (4.24)

r̄1 = β+r̄+, r̄2 = β−r̄−,

r̄3 = β ′+r̄+ + β ′
0r̄0 + β ′−r̄−, (4.25)

where all parameters βi (i = +,−), β ′
i (i = +, 0,−) are

purely imaginary, and β ′
0
2 + β ′+β ′− = 0.

If the classical r -matrices (3.18) and (3.19) are osp†(1|sl
(2; R))-antireal, i.e. their parameters satisfy the reality con-
ditions (4.23), then for the real parameter χ all functions
(3.23) are real, i.e. β̃∗

0 = β̃0, β̃∗± = β̃±. We obtain that
the automorphism of the type (3.16) with such parameters is
osp†(1|sl(2; R))-real, i.e.:

ϕ
†
0(E±) = ϕ0(E

†
±) = −ϕ0(E±),

ϕ
†
0(H) = ϕ0(H

†) = −ϕ0(H),

ϕ
†
0(v±) = ϕ0(v

†
±) = εϕ0(v±).

(4.26)

It allows to reduce the r -matrices r2 and r3 in (4.24) to the
super-Jordanian r -matrix rs J := r1 and the r -matrices r̄2 and
r̄3 in (4.25) to the Jordanian r -matrix rJ := r̄1 by using the
formulas (3.21) and (3.22).

In the case β2
0 +β+β− �= 0 in (3.7) we have seven versions

ofosp†(1|sl(2; R))-real classical r -matrices. Five of them are
with negative values of γi , (i = 1, 2, . . . , 5):

r1 = β0r0, r2 = β+r+ + β0r0,

r3 = β0r0 + β−r−, r4 = β ′+r+ + β ′−r−,

r5 = β ′′+r+ + β ′′
0 r0 + β ′′−r−,

[ri , ri ]S = γi	 (i = 1, 2, . . . , 5),

(4.27)

where all parameters β are purely imaginary, and γ1 = γ2 =
γ3 = β2

0 < 0, γ4 = β ′+β ′− < 0, γ5 = β ′′
0 + β ′′+β ′′− < 0. The

remaining two r -matrices ri (i = 6, 7) have positive values

of γi :

r6 = β ′′′+ r+ + β ′′′− r−,

r7 = β ′′′′+ r+ + β ′′′′
0 r0 + β ′′′′− r−,

[ri , ri ]S = γi	
′ (i = 6, 7),

(4.28)

where γ6 = β ′′′+β ′′′− > 0 and γ7 = β ′′′′
0

2 + β ′′′′+ β ′′′′− > 0.
Let two classical r -matrices (3.26) be osp†(1|sl(2; R)-

real, i.e. with their parameters satisfying the reality condi-
tions (4.23). In such way the functions (3.28) for real χ are
real, i.e. β̃∗

0 = β̃0, β̃∗± = β̃±, and we obtain that the auto-
morphism (3.25) with such parameters is osp†(1|sl(2; R)-
real. We can conclude that for the case of the negative γ -
characteristics γi < 0 (i = 1, . . . , 5) all r -matrices ri
(i = 2, . . . , 5) in (4.27) are reduced to the standard formula
rst := r1 and in the case of the positive γ -characteristics
γi > 0 (i = 6, 7) the classical r -matrix r7 in (4.28) is reduced
to the quasi-standard r -matrix rqst := r6.

Let us show that the r -matrix rqst effectively depend only
on one positive parameter. Indeed, it is easy to see that

rqst = β ′′′+ r++ β ′′′− r− = ıα(λr++ λ−1r−)

= ıα
(
(ϕ ⊗ ϕ)r+ + (ϕ ⊗ ϕ)r−

)
,

(4.29)

whereϕ is theosp†(1|sl(2, R))-real automorphism:ϕ(E±) =
λ±1E±, ϕ(H) = H , ϕ(v±) = λ± 1

2 v±, and α :=
√

β ′′′+β ′′′− ∈
R

+, λ := −ı
√

β ′′′+ /β ′′′− ∈ R.
Finally we obtain the following result:

For the non-compact real form osp†(1|sl(2; R)) with graded
(ε = 1) or ungraded (ε = ı) conjugation (†), there exists up
to osp†(1|sl(2; R))-automorphisms four solutions of CYBE,
namely Jordanian rJ , super-Jordanian rs J , standard rst and
quasi-standard rqst :

rJ = ıβE+ ∧ H, [rJ , rJ ]S = 0, (4.30)

rs J = ıβ(E+ ∧ H + v+ ∧ v+),

[rs J , rs J ]S = 0,
(4.31)

rst = ıα(E+ ∧ E− + 2v+ ∧ v−),

[rst , rst ]S = −α2	,
(4.32)

rqst = ıα(E+ ∧ H + v+ ∧ v+
−E− ∧ H − v− ∧ v−),

[rqst , rqst ]S = α2	,

(4.33)

where β and α are positive numbers.
III. The non-compact real form osp†(1|su(1, 1)) (H ′† =

H ′, E ′±
† = −E ′∓, v′±

† = −ıεv′∓).
It is not difficult to see that in the case of the grade (ε = 1)
and ungrade (ε = ı) conjugations the basic two-tensors (3.5)
and (3.6) have the following reality properties

(r ′
0)

†⊗† = −r ′
0, (r ′±)†⊗† = r ′∓, (4.34)

(r̄ ′
0)

†⊗† = −r̄ ′
0, (r̄ ′±)†⊗† = r̄ ′∓, (4.35)
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where the primed basic two-tensors r ′
i and r̄ ′

i , (i ∈ {+,−, 0}),
are given the formulas (3.5) and (3.6) in which the generators
E±, H , v± are replaced by the primed generators E ′±, H ′,
v′±. In the given case it follows from (4.10) that

β∗
0 = β0, β∗± = −β∓. (4.36)

If β2
0 +β+β− = 0 in (3.7) and (3.9) then β0β

∗
0 −β±β∗± =

0, i.e. β± = ±e±ıφ |β0|, and we have the following two φ-
families of osp∗(1|su(1, 1)) homogeneous CYBE solutions:

r ′
φ := β0

(
eıφ

|β0|
β0

r ′+ + r ′
0 − e−ıφ |β0|

β0
r ′−

)
, (4.37)

r̄ ′
φ := β0

(
eıφ

|β0|
β0

r̄ ′+ + r̄ ′
0 − e−ıφ |β0|

β0
r̄ ′−

)
, (4.38)

where β0 is real. By using the osp∗(1|su(1, 1))-real rescaling

automorphism ϕ(E ′±) =
(
−ıeıφ

|β0|
β0

)±1
E ′±, ϕ(H ′) = H ′,

ϕ(v′±) =
(
−ıeıφ

|β0|
β0

)± 1
2
v± we can reduce the φ-families

(4.37) and (4.38) to r ′
qs J := β0(ır

′+ + r ′
0 + ır ′−) and r ′

q J :=
β0(ı r̄

′+ + r̄ ′
0 + ı r̄ ′−), respectively. Namely, we have

r ′
φ = β0

(
eıφ

|β0|
β0

r ′+ + r ′
0 − e−ıφ |β0|

β0
r ′−

)

= β0

(
ı(ϕ ⊗ ϕ)r ′+ + (ϕ ⊗ ϕ)r ′

0 + ı(ϕ ⊗ ϕ)r ′−)
)
.

(4.39)

The same formula is also valid for the classical r -matrix
r̄ ′
φ , (4.38). We shall call a osp∗(1|su(1, 1))-antireal r -matrix

of the form (4.37) (or (4.38)) as ”quasi-super-Jordanian” (or
”quasi-Jordanian”) if it can not be reduced to super-Jordanian
(or Jordanian) form by a su(1, 1)-real automorphism, but
after complexification of osp∗(1|su(1, 1)) it can be reduced
to super-Jordanian (or Jordanian) form by an appropriate
complex osp(1|sl(2, C)-automorphism. Thus all r -matrices
in the φ-families (4.37) (or (4.38)) are quasi-super-Jordanian
(or quasi-Jordanian) and they are connected with each other
by the osp∗(1|su(1, 1))-real rescaling automorphism. We
take r ′

qs J and r ′
q J as representatives of the φ-families (4.37)

and (4.38). It is easy to see that the r -matrices r ′
qs J and r ′

q J
effectively depend only on positive values of the parameter
β0. Indeed, we have

r ′
qs J = β0(ır

′+ + r ′
0 + ır ′−)

= −β0

(
ı(ϕ ⊗ ϕ)r ′++ (ϕ ⊗ ϕ)r ′

0+ ı(ϕ ⊗ ϕ)r ′−
)
,

(4.40)

whereϕ is the simpleosp∗(1|su(1, 1)) automorphismϕ(E±) =
E∓, ϕ(H) = −H , ϕ(v±) = v∓, i.e. any negative value of
parameter β0 in rqs J can be replaced by a positive one. The
same result is also valid for rq J .

In the case β2
0 + β+β− �= 0 in (3.7) we have four ver-

sions of osp∗(1|su(1, 1))-antireal classical r -matrices. Two

of them are characterized by positive value of γi , (i = 1, 2):

r ′
1 = β0r

′
0,

r ′
2 = β ′+r ′+ + β ′

0r
′
0 − β ′+

∗r ′−,

[r ′
i , r

′
i ]S = γi	 (i = 1, 2),

(4.41)

where β0 and β ′
0 are real (see (4.33)), and γ1 = β2

0 > 0,
γ2 = β ′

0β
′
0
∗ − β ′+β ′+

∗
> 0. The remaining two are with

negative values of γi , (i = 3, 4):

r ′
3 = β ′′+r ′+ − β ′′+

∗r ′−,

r ′
4 = β ′′′+ r ′+ + β ′′′

0 r ′
0 − β ′′′+

∗r ′−,

[r ′
i , r

′
i ]S = γi	 (i = 3, 4),

(4.42)

where β ′′′
0 is real (see (4.33)), and γ3 = −β ′′+β ′′+

∗
< 0,

γ4 = β ′′′
0 β ′′′

0
∗ − β ′′′+β ′′′+

∗
< 0.

Let the classical r -matrices (3.26) be su(1, 1)-antireal, i.e.
their parameters satisfy the reality conditions (4.36). In such
case the functions (3.28) for χ = eıφ have the same conjuga-
tion properties, i.e. β̃∗

0 = β̃0, β̃∗± = −β̃∓, and we obtain that
the automorphism (3.25) with these parameters is su(1, 1)-
real, i.e.

(ϕ1(E
′±))† = ϕ1((E

′±)†) = −ϕ1(E
′∓),

(ϕ1(H
′))† = ϕ1((H

′)†) = ϕ1(H
′),

(ϕ1(v
′±)† = ϕ1((v

′±)†) = −ıεϕ1(v
′∓).

(4.43)

It allows to reduce the r -matrix r ′
2 to the standard r -matrix

r ′
st := r ′

1 for γ1 = γ2 > 0 and the r -matrix r ′
3 to the r -

matrix r ′
4 for γ3 = γ4 < 0 by use of the formula (3.16). By

analogy to the notation of quasi-Jordanian r -matrix we shall
call the r -matrices r ′

3 and r ′
4 as quasi-standard ones and take

r ′
qst = α(E ′+ ∧ H ′ + v′+ ∧ v′+ + E ′− ∧ H ′ + v′− ∧ v′−) as

their representative.6

Finally for su(1, 1) we obtain:
For the non-compact real form osp†(1|su(1, 1)) with graded
(ε = 1) or ungraded (ε = ı) conjugation (†), there exists up
to osp†(1|su(1, 1))-automorphisms four solutions of CYBE,
namely quasi-Jordanian r ′

q J , quasi-super-Jordanian r ′
qs J ,

quasi-standard r ′
qst and standard r ′

st :

r ′
q J = β

(
ı(E ′+ − E ′−) ∧ H ′ + E ′+ ∧ E ′−

)
,

[r ′
q J , r

′
q J ]S = 0,

(4.44)

r ′
qs J = β

(
ı((E ′+ − E ′−) ∧ H ′+ v′+ ∧ v′+ − v′− ∧ v′−)

+E ′+ ∧ E ′−+ 2v′+ ∧ v′−
)
,

[r ′
qs J , r

′
qs J ]S = 0,

(4.45)

r ′
qst = α(E ′+ ∧ H ′+ v′+ ∧ v′+

+E ′− ∧ H ′ + v′− ∧ v′−),

[r ′
qst , r

′
qst ]S = −α2	,

(4.46)

6 The r -matrix r ′
qst is connected with r ′

3 (4.42) by the following way.

Substituting β+ = |β+|eıφ in r ′
3 (4.42) and using the su(1, 1)-real

rescaling automorphism ϕ(E ′±) = e±ıφE ′±, ϕ(H ′) = H ′, ϕ(v′±) =
e± ıφ

2 v′± we obtain r ′
qst with α = |β+|.
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r ′
st = α(E ′+ ∧ E ′− + 2v′+ ∧ v′−),

[r ′
st , r

′
st ]S = α2	,

(4.47)

where β and α are positive numbers.

5 Isomorphism between osp†(1|sl(2;R)) and
osp†(1|su(1, 1)) bisuperalgebras and its application
to quantizations of N = 1, D = 3 Lorentz
supersymmetry osp†(1|o(2, 1))

Using the formulas of connections between the CW and
Cartesian bases (see (2.12), (2.14)) we can express the classi-
cal osp†(1|sl(2; R)) and osp†(1|su(1, 1)) r -matrices in terms
of the osp†(1|o(2, 1)) Cartesian basis. We get the following
results.

For the non-compact real form osp†(1|sl(2; R)) with
graded and ungraded conjugation (†):

rJ = ıβE+ ∧ H
= −β(ı I1 − I2) ∧ I3,

[rJ , rJ ]S = 0,

(5.1)

rs J = ıβ(E+ ∧ H + v+ ∧ v+)

= −β(ı I1 − I2) ∧ I3 + v1 ∧ v1)

[rs J , rs J ]S = 0,

(5.2)

rst = ıα(E+ ∧ E− + 2v+ ∧ v−)

= −2α(I1 ∧ I2 + 2v1 ∧ v2),

[rst , rst ]S = −α2	,

(5.3)

rqst = ıα(E+ ∧ H + v+ ∧ v+
+E− ∧ H + v− ∧ v−)

= −2ıα(I1 ∧ I3 + v1 ∧ v1 − v2 ∧ v2),

[rqst , rqst ]S = α2	,

(5.4)

where β and α are positive numbers.
For the noncompact real form osp†(1|su(1, 1)) with

graded and ungraded conjugation (†):

r ′
q J = β

(
ı(E ′+ − E ′−) ∧ H ′ + E ′+ ∧ E ′−

)
,

= −β(ı I1 − I2) ∧ I3,
[r ′
q J , r

′
q J ]S = 0,

(5.5)

r ′
qs J = β

(
ı((E ′+ − E ′−) ∧ H ′+ v′+ ∧ v′+ − v′− ∧ v′−)

+E ′+ ∧ E ′−+ 2v′+ ∧ v′−
)
,

= −β(ı I1 − I2) ∧ I3 + v1 ∧ v1),

[r ′
qs J , r

′
qs J ]S = 0,

(5.6)

r ′
qst = α(E ′+ ∧ H ′ + v′+ ∧ v′+

+E ′− ∧ H ′ + v′− ∧ v′−)

= −2α(I1 ∧ I2 + 2v1 ∧ v2),

[r ′
qst , r

′
qst ]S = −α2	,

(5.7)

r ′
st = α(E ′+ ∧ E ′− + 2v′+ ∧ v′−)

= −2ıα(I1 ∧ I3 + v1 ∧ v1 − v2 ∧ v2),

[r ′
st , r

′
st ]S = α2	,

(5.8)

where β and α are positive numbers.
Comparing the r -matrix expressions (5.3)–(5.4) with

(5.5)–(5.8) we obtain that

rJ = r ′
q J = −α

(
(ı I1 − I2) ∧ I3

)
, (5.9)

rs J = r ′
qs J = −α

(
(ı I1 − I2) ∧ I3 + v1 ∧ v1

)
, (5.10)

rst = r ′
qst = −2α(I1 ∧ I2 + 2v1 ∧ v2), (5.11)

rqst = r ′
st = −2ıα(I1 ∧ I3 + v1 ∧ v1 − v2 ∧ v2). (5.12)

We see the following:

(i) The Jordanian r -matrix rJ in the osp†(1|sl(2; R)) basis
is the same as the quasi-Jordanian r -matrix r ′

q J in the

osp†(1|su(1, 1)) basis.
(ii) The super-Jordanian r -matrix rs J in theosp†(1|sl(2; R))

basis is the same as the super-quasi-Jordanian r -matrix
r ′
qs J in the osp†(1|su(1, 1)) basis.

(iii) The standard r -matrix rst in the osp†(1|sl(2; R)) basis
becomes the quasi-standard r -matrix r ′

qst in the osp†

(1|su(1.1)) basis.
(iv) Conversely, the quasi-standard r -matrix rqst in the osp†

(1|su(2, R)) basis is the same as the standard r -matrix
r ′
st in the osp†(1|su(1, 1)) basis.

The relations (5.9)–(5.12) show that the osp†(1|su(2, R))

and osp†(1|su(1, 1)) superbialgebras are isomorphic. This
result finally resolves the doubts about isomorphisms of these
two superbialgebras [19])

Using the isomorphisms of the osp†(1|su(2, R)) and osp†

(1|su(1, 1)) bialgebras we take as basic r -matrices for the
N = 1, D = 3 Lorentz superalgebra osp†(1|o(2, 1)) the
following ones:

rJ = −β
(
(ı I1 − I2) ∧ I3

)

= ıβE+ ∧ H,
(5.13)

rs J = −β
(
(ı I1 − I2) ∧ I3 + v1 ∧ v1

)

= ıβ(E+ ∧ H + v+ ∧ v+),
(5.14)

rst = −2α(I1 ∧ I2 + 2v1 ∧ v2)

= ıα(E+ ∧ E− + 2v+ ∧ v−),
(5.15)

r ′
st = −2ıα(I1 ∧ I3 + v1 ∧ v1 − v2 ∧ v2)

= α(E ′+ ∧ E ′− + 2v′+ ∧ v′−),
(5.16)

where β and α are positive numbers, moreover the parame-
ter α is effective whereas the parameter β is not effective,
i.e. it can be removed by a osp†(1|sl(2; R))-real rescal-
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ing automorphism7: ϕ(E+) = β−1E+, ϕ(E−) = βE−,
ϕ(v+) = √

β−1 v+, ϕ(v−) = √
β v−, ϕ(H) = H .

The first two r -matrices rJ and rs J present the Jordanian
and super-Jordanian twist deformations of osp†(1|sl(2; R)),
the third and fourth r -matrices rst and r ′

st correspond to the
q-analogs of osp†(1|sl(2; R)) and osp†(1|su(1, 1)) real alge-
bras. In the next section we shall show how to quantize the
r -matrices (5.13)–(5.16) in an explicit form.

6 Quantizations of the N = 1, D = 3 Lorentz
supersymmetry osp†(1|o(2, 1))

Comparing the classical r -matrices of the complex Lie
superalgebra osp(1|2; C) (3.30)–(3.32) with the classical r -
matrices of its real forms:osp∗(1|o(3)) (4.20) andosp†(1|o(2,

1)) (5.13)–(5.16), we see that they are given by the same for-
mulas and differ in values of the deformation parameters
and conjugation properties. There are the similar picture for
the deformed structures of osp(1|2; C) and its real forms.
Therefore one can obtain the quantum deformations of all
osp(1|2; C) real forms from the quantum deformation of
osp(1|2; C) by specialization of the corresponding param-
eter deformation and the conjugation property.

1. q-Analogs. The quantum Hopf deformations corre-
sponding to the standard classical r -matrices (3.32), (4.20),
(5.15) and (5.16) are called the q-analogs, The q-analog of
U (g) (g = osp(1|2; C), osp∗(1|su(2)), osp†(1|sl(2; R)),

osp†(1|su(1, 1))) is an unital associative algebra Uq(g) with

the generators8 x±, q± 1
2 X0 and the defining relations:

q
1
2 X0q− 1

2 X0 = q− 1
2 X0q

1
2 X0 = 1,

q
1
2 X0x± = q± 1

4 x±q
1
2 X0 ,

{x+, x−} = q− 1
2 X0 − q

1
2 X0

q − q−1 ,

(6.1)

with the additional conditions:

(a) q = eβ (β ∈ C) for Uq(osp(1|2; C)),

(b) x∗± = ±εx∓, (q
1
2 X0)∗ = q

1
2 X0 , q = eα

for Uq(osp
∗(1|su(2))),

(c) x†
± = −εx±, (q

1
2 X0)† = q

1
2 X0 , q = eıα

for Uq(osp
†(1|sl(2; R))) 	 Uq(osp

†(1|o(2, 1))),

(c′) x†
± = ıεx∓, (q

1
2 X0)† = q

1
2 X0 , q = eα

for Uq(osp
†(1|su(1, 1))) 	 Uq(osp

†(1|o(2, 1))),

(6.2)

where α is real in accordance with (4.20), (5.15) and (5.16),
for the graded (ε = 1) or ungraded (ε = ı) conjugation (�),
(� = ∗, †) (see (4.6), (4.7).

7 Here we keep the non-effective parameter β for convenient of quan-
tization.
8 They are q-analogs of the Chevalley basis v±, H with the defining
relations: {v+, v−} = − 1

2 H , [H, v±] = ± 1
2 v± (see (2.2)–(2.3)).

A Hopf structure on Uq(g) is defined with help of
three additional operations: coproduct (comultiplication)
�q , antipode Sq and counit εq :

�q(q± 1
2 X0) = q± 1

2 X0 ⊗ q± 1
2 X0 ,

�q(x±) = x± ⊗ q
1
4 X0 + q− 1

4 X0 ⊗ x±,

Sq(q± 1
2 X0) = q∓ 1

2 X0 , Sq(x±) = −q± 1
4 x±,

εq(q± 1
2 X0) = 1, εq(x±) = 0,

(6.3)

with the reality conditions for the real form Uq(g
�) (� =

∗, †):

(�q(X))�⊗� = �q(X�),

(Sq(X))� = S−1
q (X�), (εq(X))� = εq(X�)

(6.4)

for any X ∈ Uq(g
�) (g� = osp∗(1|su(2)), osp†(1|sl(2; R)),

osp†(1|su(1, 1))).
The quantum algebra Uq(g) is endowed also with the

opposite Hopf structure: opposite coproduct �̃q ,9 corre-
sponding antipode S̃q and counit ε̃q .

An invertible element Rq := Rq(g) which satisfies the
relations:

Rq�q(X) = �̃q(X)Rq , ∀X ∈ Uq(g),

(�q ⊗ id)Rq = R13
q R23

q ,

(id ⊗ �q)Rq = R12
q R13

q

(6.5)

as well as, due to (6.5), the quantum Yang–Baxter equation
(QYBE)

R12
q R13

q R23
q = R23

q R13
q R12

q (6.6)

is called the universal R-matrix.
Let Uq(b+) and Uq(b−) be quantum Borel subalgebras

of Uq(g), generated by x+, q± 1
4 X0 and x−, q± 1

4 X0 respec-
tively. We denote by Tq(b+ ⊗ b−) the Taylor extension
of Uq(b+) ⊗ Uq(b−)10. One can show (see [20,21]) that
there exists unique solution of equations (6.5) in the space
Tq(b+ ⊗ b−) and such solution has the following form11

Rq(g) := R�
q = Ř�

q K , (6.7)

where

K = qX0⊗X0 , (6.8)

9 The opposite coproduct �̃q (·) is a coproduct with permuted compo-
nents, i.e. �̃q (·) = τ ◦ �q (·) where τ is the super flip operator (see
4.4).
10 Tq (b+ ⊗ b−) is an associative algebra generated by formal Taylor
series of the monomials xn+ ⊗ xm− with coefficients which are rational

functions of q± 1
4 X0 , q±X0⊗X0 , provided that all values |n−m| for each

formal series are bounded, |n − m| < N .
11 The formulas (6.7)–(6.9) are a specialization of the formulas (7.1)-
(7.3) from the article [20] to the case (6.1).
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Ř�
q = expq̃

(
(q−1 − q)x+q− 1

4 X0 ⊗ q
1
4 X0x−

)
, (6.9)

Here q̃ := −q− 1
4 and the deformation parameter q is given

by the conditions (6.2). We also use the standard definition
of the q̃-exponential:

expq̃(x) :=
∑

n≥0

xn

(n)q̃ ! , (n)q̃ := (1 − q̃n)

(1 − q̃)
,

(n)q̃ ! := (1)q̃(2)q̃ . . . (n)q̃ .

(6.10)

Analogously, there exits unique solution of equations (6.5) in
the space Tq(b− ⊗b+) = τ ◦Tq(b+ ⊗b−) and such solution
is given by the formula

Rq(g) := R≺
q = Ř≺

q K−1, (6.11)

where K is given by the formula (6.8), and

Ř≺
q = expq̃ ′

(
(q−1 − q)x−q

1
4 X0 ⊗ q− 1

4 X0x+
)
. (6.12)

Here q̃ ′ = q̃−1 = −q
1
4 , and q satisfies the conditions (6.2).

As formal Taylor series the solutions (6.7)–(6.9) and
(6.11), (6.12) are independent and they are related by

R≺
q = τ ◦ R�

q−1 . (6.13)

It should be noted also that

(R�
q )−1 = R�

q−1, (R≺
q )−1 = R≺

q−1 (6.14)

for all quantum superalgebras Uq(g), g = osp(1|2; C),
osp∗(1|su(2)), osp†(1|sl(2; R)), osp†(1|su(1, 1)). From the
explicite forms (6.7)–(6.9) and (6.11), (6.12) we also see that
(� = ∗, †):

(R�
q )� = τ ◦ R�

q = (R≺
q )−1,

(R≺
q )� = τ ◦ R≺

q = (R�
q )−1 (6.15)

for Uq(osp
∗(1|su(2))) 	 Uq(osp

∗(1|0(3))) and Uq(osp
†

(1|su(1, 1))) 	 Uq(osp
†(1|o(2, 1))), and

(R�
q )† = (R�

q )−1, (R≺
q )† = (R≺

q )−1 (6.16)

for Uq(osp
†(1|sl(2; R))) 	 Uq(osp

†(1|o(2, 1))). Thus,
in the case Uq(osp

†(1|sl(2; R))) both R-matrices R�
q ,

R≺
q are unitary and in the case Uq(osp

∗(1|su(2))) and
Uq(osp

†(1|su(1, 1))) they can be called “τ -Hermitian”.
In the limit α → 0 (q → 1) we obtain for the R-matrix

(6.7)–(6.9)

Rq(g) = 1 + rBD + O(α2). (6.17)

Here rBD is the classical Belavin–Drinfeld r -matrix:

rBD = β
(
2x̃+ ⊗ x̃− − 16x̃2+ ⊗ x̃2− + X0 ⊗ X0

)
, (6.18)

where β = ln q (see (6.2)), and12 x̃± = v±, x̃2± = ± 1
4 E±,

X0 = H . The r -matrix rBD is not skew-symmetric and it

12 In the case of osp†(1|su(1, 1)) we need to use the primed CW basis
x̃± = E ′±, X0 = H ′ (see (2.14), (2.15)).

satisfies the standard CYBE

[r12
BD, r13

BD + r23
BD] + [r13

BD, r23
BD] = 0 (6.19)

which is obtained from QYBE (6.6) in the limit (6.17). The
standard r -matrix (5.11) or (5.12) is the skew-symmetric part
of rBD , namely

rBD = 1

2
r̄st + 1

2
C̄2, (6.20)

where r̄st = rBD − τ ◦ rBD is the standard r -matrix (3.32),
(4.20), (5.15) or (5.16), and C̄2 = 2βC2 = rBD + τ ◦ rBD
whereC2 is the split Casimir element of g, (g = osp(1|2; C),
osp∗(1|su(2)), osp†(1|sl(2; R)), osp†(1|su(1, 1))).

2. Twisted deformations. The classical r -matrices (3.30),
(3.31) and (5.13), (5.14) satisfy the homogeneous CYBE
(3.1) with the vanishing right side and the corresponding
Hopf deformations are determined by twisting two-tensors.
We remind basic properties of the twisted deformation of
a Hopf (super)algebra [22]. Let A := A(A;m,�, S, ε) be
a Hopf (super)algebra with multiplication m, coproduct �,
antipode S and counit ε and let F ∈ A ⊗ A be an invertible
two-tensor satisfies the 2-cocycle condition

F12(� ⊗ id)(F) = F23(id ⊗ �)(F) (6.21)

and the “unital” normalization

(ε ⊗ id)(F) = (id ⊗ ε)(F) = 1. (6.22)

Then the twisting element F defines a deformed Hopf alge-
bra A(F) := A(A;m,�(F), S(F), ε) with the new deformed
coproduct and antipode are given as follows

�(F)(X) = F�(X)F−1,

S(F)(X) = u(F)S(X)(u(F))−1 (6.23)

for any X ∈ A, where �(X) and S(X) are the coproduct and
the antipode before twisting, and

u(F) = m(id ⊗ S)(F) =
∑

i, j

f (1)
i S( f (2)

j ), (6.24)

if F = ∑
i, j f (1)

i ⊗ f (2)
j .

Let ω ∈ A be an arbitrary invertible element, ωω−1 =
ω−1ω = 1, then it is not difficult to check that the two-tensor

Fω := (ω ⊗ ω)F�(ω−1) (6.25)

satisfies also the cocycle Eq. (6.21). Two deformed Hopf
algebras A(F) = A(A;m,�(F), S(F), ε) and A(Fω) =
A(A;m,�(Fω), S(Fω), ε) with the twists F and Fω are iso-
morphic by the conjugacy isomorphism: X → ωXω−1,
(∀X ∈ A). Evidently, that �(F)(X) → �(Fω)(ωXω−1) =
(ω ⊗ ω)�(F)(X)(ω−1 ⊗ ω−1). As an example of one-
parameter isomorphism family ω(t) we can use the following
function:

ω(t) = u(t) := (u(F))t (t ∈ R), (6.26)
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where u(F) is the convolution (6.24). Therefore we have one-
parameter family of the twist Fu(t), where Fu(0) = F , Fu(1) =
Fu(F) = (u(F) ⊗ u(F))F�((u(F))−1) (see [23,24]).

Let R be an universal R-matrix of A then the operator13

R(F) = F21RF−1 (6.27)

is also the universal R-matrix of the twisted Hopf (super)
algebra A(F), i.e. it satisfies the relations of the form (6.5),
(6.6).

Let a invertible two-tensor � ∈ A ⊗ A also generates a
twist quantization after the quantization by the twist F , that
is it satisfies the 2-cocycle condition:

�12(�(F) ⊗ id)(�) = �23(id ⊗ �(F))(�), (6.28)

and the normalization (6.22), then the new co-product
�((F)�) and antipode S((F)�) are given as follows

�((F)�)(X) = ��(F)(X)�−1,

S((F)�)(X) = u((F)�)S(F)(X)(u((F)�))−1 (6.29)

for any X ∈ A, where �(F)(X) and S(F)(X) are the coprod-
uct and the antipode after twisting with F , and

u((F)�) = m(id ⊗ S(F))� =
∑

i

φ
(1)
i S(F)(φ

(2)
j ), (6.30)

if � = ∑
i, j φ

(1)
i ⊗φ

(2)
j . It is not hard to see that the invertible

tensor F = �F satisfies the conditions (6.21) and (6.22).
Indeed, if we multiply the relation (6.30) by the relation
(6.21) with the right-hand side and apply the definition (6.23)
for �(F) we obtain the 2-cocycle condition forF = �F . The
normalization condition for F is obvious. Therefore the ele-
ment F generates the quantization and moreover this quan-
tization is equivalent to one in the beginning with the twist
F and then with �, that is the following formulas are valid:

�((F)�)(X) = �(�F)(X),

S((F)�)(X) = S(�F)(X).
(6.31)

The first relation in (6.31) is obvious and the second relation
for the antipodes is a direct consequence of the equation for
the convolutions (6.24), (6.30):

u((F)�)u(F) = u(�F), (6.32)

that is proved by direct calculations. It is evident that the
universal R-matrices of these quantizations also coincide

R((F)�) = �21R(F)�−1 = F21RF−1 = R(F), (6.33)

where F = �F .
Let A� be a �-Hopf (super)algebra, A� := A(A;m,�,

S, ε, �), and the twisting element F is unitary

F�⊗� = F−1, (6.34)

13 Here and elsewhere any two tensors F12 and F21 are connected by
the relation F21 = τ ◦ F12, where τ is the superflip operator (see 4.4).

then the new twisting deformed �-Hopf (super)algebra
A�(F) is also a �-Hopf (super)algebra, i.e.

(�(F)(X))�⊗� = �(F)(X�),

(S(F)(X))� = (S(F))−1(X�)
(6.35)

for any X ∈ A�. Now we come back to our concrete
Hopf superalgebras A = U (osp(1|2; C)) and A� =
U (osp†(1|su(2, R))).

2a. Jordanian deformation. There are two well-known
expressions of the twisting operator F = FJ correspond-
ing the Jordanian classical r -matrix (3.30), (5.13):

FJ = (1 + 1 ⊗ βE+)H⊗1

= 1 +
∑

k>0

βk

k! H(H − 1) · · · (H − k + 1) ⊗ Ek+

(6.36)

= exp(H ⊗ 2σ), (6.37)

where 2σ := ln(1 + βE+) and β ∈ C for U (osp(1|2; C))

and β ∈ ıR+ for U (osp†(1|su(2, R))). The Jordanian twist
in the form of binomial series (6.36) was first proposed in [25]
(see also [26,27]) and the exponential expression (6.31) was
proposed in [28] (see also [29]). Using the binomial series
(6.36) we can easy obtain the explicit form of the element
(6.24):

u(F) = m(id ⊗ S)(FJ ) = exp(−βHE+). (6.38)

In accordance with (6.26) we put

u(t) = exp(−tβHE+) (t ∈ R). (6.39)

One can calculate the following formulae for the deformed
coproducts �(FJ )(X) = FJ�(X)F−1

J (see [30]):

�(FJ )(e±σ ) = e±σ ⊗ e±σ ,

�(FJ )(E+) = E+ ⊗ e2σ + 1 ⊗ E+,

�(FJ )(H) = H ⊗ e−2σ + 1 ⊗ H,

�(FJ )(v+) = v+ ⊗ eσ + 1 ⊗ v+,

�(FJ )(v−) = v− ⊗ e−σ + 1 ⊗ v− + βH ⊗ v+e−2σ ,

(6.40)

The coproducts �(FJ )(E−) can be calculated from the con-
dition �(FJ )(E−) = 4�(FJ )(v−)�(FJ )(v−).

Using (6.23) and (6.38), one gets the formulas for the
deformed antipode S(FJ ):

S(FJ )(e±σ ) = e∓σ , S(FJ )(E+) = −E+e−2σ ,

S(FJ )(H) = −He2σ , S(FJ )(v+) = −v+e−σ ,

S(FJ )(v−) = −v−eσ + βHv+eσ .

(6.41)

It is easy to see the universal R-matrix R(F) for this twisted
deformation looks as follows

R(FJ )=F21
J F−1

J , (R(FJ ))∗ = (R(FJ ))−1. (6.42)
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In the limit α → 0 we obtain for the R-matrix (6.23)

R(FJ ) =1 + rJ + O(α2), (6.43)

where rJ is the classical Jordanian r -matrix (5.13). It should
be added that the coproduct �(FJ ) is real under the involution
(†), i.e.

�(FJ )(a†) = (�(FJ )(a))†⊗†, (6.44)

and the antipode S(FJ ) satisfies the consistency

S(FJ )((S(FJ )(a†))†) = a, (6.45)

as well as ε(a�) = ε(a) is trivially valid for ∀a ∈
Uq(osp

†(1|sl
(2; R))).

2b. Super-Jordanian deformation. The explicit twisting
operator F = FsJ corresponding the super-Jordanian clas-
sical r -matrix (3.31), (5.14) was obtained in the paper [15]
and it has the following factorized form:

FsJ = �Fs FJ , (6.46)

where FJ is the Jordanian twisting two tensor (6.37), and the
supersymmetric part Fs depending on the odd generator v+
and the unitarizing factor � are given by the formulas:

Fs = 1 − 4β
v+

eσ + 1
⊗ v+

eσ + 1
, (6.47)

� =
√

(eσ + 1) ⊗ (eσ + 1)

2(eσ ⊗ eσ + 1)
, (6.48)

F�
s = F−1

s for � = † or ‡, (6.49)

Such choice will modify the coproduct, �s J = ��s J�
−1,

and we obtain

�(FsJ )(h) = h ⊗ e−2σ + 1 ⊗ h +
+βv+e−σ ⊗ v+e−2σ , (6.50)

�(FsJ )(v+) = v+ ⊗ 1 + eσ ⊗ v+,

(6.51)

�(FsJ )(v−) = v− ⊗ e−σ + 1 ⊗ v− + β

4

{({
h, eσ

} ⊗ v+e−2σ

−{h, v+} ⊗ (eσ − 1)e−2σ

+2v+ ⊗ h −
{
h,

v+e−σ

eσ + 1

}
⊗ (eσ − 1)e−σ

+(eσ − 1) ⊗
{
h,

v+
eσ + 1

}) 1

eσ ⊗ eσ + 1

}
. (6.52)

The formulae for the antipode S(FsJ ) look as follows:

S(FsJ )(h) = −h e2σ + 1

4
(e2σ − 1), (6.53)

S(FsJ )(v+) = −e−σ v+, (6.54)

S(FsJ )(v−) = −v−eσ + βhv+eσ − β

4
v+eσ . (6.55)

It is easy to see that the formulae (6.50)–(6.52) satisfy the
reality condition (�(FsJ )(x))† = �(FsJ )(x†) for any x ∈

osp†(1|sl(2; R)) and the antipodes (6.53)–(6.55) satisfy the
condition (6.35).

The universal R-matrix of the super-Jordanian deforma-
tion has the form

R(FsJ ) = �F21
s R(FJ )F−1

s �−1, (6.56)

where

R(FJ ) = F21
J F−1

J = e2σ⊗h ⊗ e−2h⊗σ . (6.57)

7 Short summary and outlook

By the simple algebraic technique we obtain the complete
classification of all basic (nonisomorphic) quantum deforma-
tions for the orthosymplectic Lie superalgebra osp(1|2; C)

and its pseudoreal and real forms in terms of the classical
r -matrices. In particular, we prove that compact pseudoreal
form has only one quantum deformation (standard q-analog),
and the D = 3, N = 1 Lorentz supersymmetry, which
is the non-compact real form of osp(1|2; C), has four dif-
ferent Hopf-algebraic quantum deformations: two standard
q-analogs, and two (Jordanian and super-Jordanian) twist
deformations. All basic Hopf-algebraic quantum deforma-
tions are presented in the explicit forms.

The q-deformation of the complex osp∗(1|2; C) has been
considered firstly in Refs. [12,13]. Further, its real forms
were still studied in eighties and nineties, as quoted in the
present paper (see [10–13,29,30]). We point out that in [14]
there was studied the kappa-deformation of D = 1 supercon-
formal mechanics as described by twisting of osp�(1|o(2, 1))

superalgebra. We consider as main advantage of the present
paper the first presentation in the literature of the complete
classification providing all Hopf-algebraic quantum defor-
mations of real forms of osp(1|2; C).

The matrix realizations o(2, 1), su(1, 1) and sl(2; R) of
D = 3 Lorentz algebra and their respective superextensions
can be used in different types of models, with D = 3 Lorentz
(super)symmetries. First type of such models are described
in terms of D = 3 Lorentz (super)vector variables, in sec-
ond and third type models one employs two-dimensional
(super)spinorial representations, described by supersymmet-
ric extensions of complex su(1, 1) spinors and real sl(2; R)

spinors. The examples of models with above three types of
the realizations of D = 3 Lorentz supersymmetries could be
studied as a continuation of the present paper.

We did not consider in the paper the derivation of the
supergravity models described by three different realizations
of D = 3 Lorentz supersymmetries, but this could be a possi-
ble subject for further investigations. It is known that one can
obtain the D = 3 gravity and supergravity actions from the
knowledge of D = 3 Chern-Simons forms and superforms.
For that purpose one can study the derivation of superforms
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for the real forms of complexified D = 3 Lorentz superalge-
bra osp(1, 2;C), considered in this paper.

In conclusion, we would like to note a very important
point related to the fact that the results obtained here should
help to solve also a more difficult problem: classification
and construction of quantum deformations for the com-
plex orthosymplectic superalgebra osp(1|4; C)) and its real
(de Sitter and anti-de Sitter) forms, which can be directly
used in D = 4 SUGRA models. Namely, the superalge-
bra osp(1|4; C)), as a linear space, has the following tensor
structure

osp(1|4; C)) = ospL(1|2; C)) ⊕ P4 ⊕ ospR(1|2; C)), (7.1)

where left ospL(1|2; C)) and right ospR(1|2; C)) superal-
gebras are isomorphic to the one considered here, and P4

is a four-dimensional linear space of a curved complexified
D = 4 dS four-momentum generators. Since we already
know the quantum deformations for the left and right super-
algebras, our task is to extend them by curved four-momenta
P4 and study the real forms of osp(1|4; C)). If we introduce
into this formula (7.1) a correct involution that character-
izes the non-compact real form osp(1|so(3, 2)), we will get
explicit expressions for this non-compact form used in ( [33]).

Finally, it can be mentioned that one can introduce
also quaternionic superalgebra osp(1|2; H) [31,32] which
describes D = 5 Lorentz or D = 4 de-Sitter superalgebra,
with the bosonic sector o(4, 1)⊗o(2), and consider their real
forms and quantum deformations.
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