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Abstract In this work, we implement the 13th order semi-
analytical WKB method to explore the stability of hairy black
holes obtained in the framework of Gravitational Decoupling.
In particular, we perform a detailed analysis of the frequen-
cies of the quasi-normal modes as a function of the primary
hair of the solutions with the aim to bound their values. We
explore a broad interval in a step of 0.1 of the hair param-
eters. We find that except for some cases where the method
is expected to have poor accuracy, all the solutions seem to
be stable and the role played by the primary hair is twofold:
to modulate the damping factor of the perturbation and to
decrease the frequency of its oscillation.

1 Introduction

Although non-hair conjecture states that black holes (BH)
are the simplest objects in nature described only by a few
parameters, namely its mass, charge, and angular momen-
tum, a real BH is far from being isolated. Indeed, black holes
are surrounded by galactic nuclei, stars, planets, etc, so they
are always in a perturbed state [1]. In this regard, to analyze
the stability of BH’s we have to start with the study of their
perturbation.

For the study of how a BH responds to perturbation, we
can consider either perturbing the BH background (the space-
time metric) or adding extra fields to the BH spacetime. In
any case, the equation describing the perturbation of the BH
reduces to a radial like-Shrödinger equation in which com-
plex frequencies solutions correspond to the quasinormal
modes (QNM) of the BH. More precisely, the real part of
the QNM frequencies, Re(ω), corresponds to the frequency
of oscillations, and the imaginary part, Im(ω), is related
to the damping factor associated with the loss of energy
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through gravitational radiation. It is worth mentioning that
if Im(ω) > 0 the perturbation grows exponentially leading
to instabilities in the system so that a stable solution will be
that which Im(ω) < 0.

The computation of the QNM modes can be performed
through a variety of methods (for an incomplete list see [2–
18] and references therein, for example). However, in this
work, we shall use the recently developed WKB approxi-
mation to the 13th order which has brought the attention
of the community [19]. It should be emphasized that as the
computation of QNM modes can only be performed semi-
analytically, the set of any free parameter appearing in the
BH solution is compulsory. As a consequence, the compu-
tation of QNM modes allows the definition of the parameter
space of any solution by demanding Im(ω) < 0. This strat-
egy has been applied in Ref. [20] with the aim to bound
the free parameters in the construction of stable traversable
wormholes.

In this work, we explore the stability through the com-
putation of the QNM by the 13th order WKB method of
hairy black holes obtained by Gravitational decoupling in
Ref. [21]. The main goal is to bound in the values taken by the
“primary” hairs of the solution. It is worth mentioning that,
during the writing of this work, there have been reported two
independent studies on the QNM modes for the same mod-
els [22,23]. However, in our analysis, we make an extensive
study on the frequencies as a function of the primary hairs of
the solution that has not been reported before.

This work is organized as follows. In the next section, we
review the main aspects related computation of the QNM
associated to perturbation of a BH. In Sect. 3, we introduce
the hairy BH models in which we base our analysis. Section 4
is devoted to the analysis of the results obtained and in the
last section we conclude the work.
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Fig. 1 Typical radius of the shadow, Rs as function of α for models 1 (black line) and 2 (blue line) in the left panel and as a function of �0 for
model 3 (red line) and 4 (brown line) in the right panel. The horizontal orange line corresponds to Rs = 5.49874 for M87 BH as discussed in the
text

2 QNM by the WKB approximation

Let us consider a static and spherically symmetry line ele-
ment satisfying the Schwarzschild condition, namely

ds2 = f (r)dt2 − dr2

f (r)
− r2(dθ2 + sin2 θdφ2), (1)

with f (r) the so-called lapse function encoding the infor-
mation of the BH spacetime. Next, the perturbation of the
BH can be performed by adding test fields (Klein–Gordon or
Dirac fields) to the background or by perturbing the space-
time itself. In any case, the perturbation equation can be
reduced to a like-Schrödinger equation of the form(

d2

dr2∗
+ ω2 − V (r∗)

)
χ(r∗) = 0, (2)

where r∗ is the tortoise radial coordinates

dr∗
dr

= 1

f (r)
, (3)

and V (r) is an effective potential, which for axial perturba-
tions takes the form

VL(r) = f (r)

(
L(L + 1)

r2 + f ′(r) (1 − s2)

r

)
, (4)

where s = 0, 1, 2 is the spin of the perturbing field. In this
work, we shall impose s = 0 (scalar field). Besides, ω repre-
sent the frequency of the QNM and has a real and an imagi-
nary part, namely ω = Re(ω) + i Im(ω).

Several strategies can be implemented to obtain the QNM
frequencies. However, in this work we shall implement the
WKB approximation first introduced in Ref. [24] to study
scattering around BH’s, given its similarity with the one-
dimensional Schrödinger equation with a potential barrier.
Now, as the problem demands that both the “reflected” and
“transmitted” waves of the scattering problem have compara-
ble amplitudes, the problem reduces to implement the WKB

method to high orders around the top of the potential. It can
be shown that the 13th WKB order formula reads

i
ω2 − V0√

−2V ′′
0

−
13∑
j=2

� j = n + 1

2
, (5)

where V0 is the maximum height of the potential and V ′′
0 is

its second derivative with respect to the tortoise coordinate
evaluated at the radius where V0 reaches a maximum. The
values � j are corrections that depend on the value of the
potential and higher derivatives of it at the maximum. The
exact expressions for the terms � j are too long to be shown
here but can be found in [19].

3 Hairy black holes

In this section we briefly describe the hairy black holes
obtained in Ref. [21] by the Gravitational Decoupling
(GD) through the Minimal Geometric Deformation (MGD)
extended (for details about GD and MGD see [25–74]). As it
is shown in [21], the solutions satisfy either the strong (SEC)
and the dominant (DEC) energy conditions outside the hori-
zon which make them attractive geometries in the modeling
of suitable BH-hair systems.

3.1 Model 1

This black hole is characterized by a metric function of the
form

f (r) = 1 − 2M

r
+ α

(
e−r/M − 2M

r
e−2

)
, (6)

where α is the decoupling parameter which connects (2) with
the Schwarzschield black hole which is obtain in the limit
α → 0. Note that the event horizon is located in rH = 2M
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Fig. 2 Imaginary part of the QNM for Model 1 as a function of the hair α for different values of L and n. Each plot corresponds to a different
value of L . The values for n are 0 (black line), 1 (blue line), 2 (red line), 3 (green line), 4 (brown line)

which equals the Schwarzschild horizon. As can be seen in
Ref. [21], this solution satisfies the SEC outside the horizon.

3.2 Model 2

In this case, the metric function takes the form

f (r) = 1 − 2M

r
+

(
1 + α

2e2

)

+4αM2

e2r2 − αM

r
e−r/M , (7)

As in the previous case, this solution reduces to the
Schwarzschild BH when α = 0. Besides, the horizon radius
is located at rH = 2M . As shown in Ref. [21], this solution
satifies the DEC outside the horizon.

3.3 Model 3

This black hole is characterized by a metric function of the
form

f (r) = 1 − 2M + �0

r
+ 2�0M

r2

−αMe−r/M

r2

(
r − �0e

r−�0
M

)
, (8)

and has the event horizon is in rH = α� = �0, being � a
parameter that relates α and �0. For the rest of the work we
will fix � = 1 which means α = �0. This solution satisfies
the DEC.

3.4 Model 4

This black hole is characterized by a metric function of the
form

f (r) = 1 − 2M + �0

r

−αMe−r/M

r2

(
r − (2M + �0)e

r−(2m+�0)

M

)
, (9)

and has the event horizon is in rH = α� = �0, being � a
parameter that relates α and �0. For the rest of the work we
will fix � = 1 which means α = �0. This solution satisfies
the DEC.

Before concluding this section, a couple of comments are
in order. First, it is worth mentioning that in [75] the geodesic
analysis of the set of metric describing models 1–4 has been
performed. In such a work, the authors not only studied the
basic stuff related to the motion of massive and massless
particles around the hairy black hole but they explored their
potential as a mimickers of rotating black holes based on
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Fig. 3 Imaginary part of the QNM for Model 2 as a function of the hair α for different values of L and n. Each plot corresponds to a different
value of L . The values for n are 0 (black line), 1 (blue line), 2 (red line), 3 (green line), 4 (brown line)

available data. This was achieved by comparing the radius
of the innermost circular orbits (ISCO) of the static solu-
tion with that obtained from the Kerr solution. The relation
between both ISCO radius was used to bound the values of the
hairs as a function of the spin parameter of the rotating solu-
tion. The results obtained allow to consider the black holes
described by the metrics here as mimickers of the systems
ARK564 and NGC1365. The spin parameter of both systems
was derived form relativistic reflection fitting of SMBH X-
ray as reported in [76–78]. Second, the set of metric con-
sidered here was used as the seed for the construction of a
rotating black hole by following the Gravitational Decou-
pling approach for stationary space-times [79]. Although in
that work the shadow cast by this solution was found, an
extensive analysis can be perform in order to compare the
results with the EHT data. Indeed, we can use the strategy
followed in [80] where the authors constraint Einstein–Yang–
Mills parameter via frequency analysis of the quasi periodic
normal oscillations and the EHT data of shadow cast by the
M87 super massive BH. In the same direction, the results
obtained in [79] based on the set of metric we are assuming
in the present work, could be used to constraint the value of
the hair associated with each of them. However, although this

treatment is out of the scope of this work, we can estimate
the typical size of the shadow, Rs , of the M87 supermassive
BH based on the set of the static metrics here as an approxi-
mation. To this end, we proceed as follows. First, the angular
diameter of the BH shadow, θs , can be expressed as [80]

θs = 2 × 9.87098 × 10−6Rs

(
M

M�

) (
1kpc

D

)
μas, (10)

where M and D are the mass and the distance of the BH,
respectively. For the M87 BH, θs = (42±3)μas, M = 6.5×
109M� and D = 16.8Mpc so that Rs = 5.49874. Second,
from [81,82] it is known that the relationship between the
shadow and the radius of the photon sphere r0 is given by

Rs = r0

f (r0)
(11)

with f the lapse function under consideration. The radius
of the photon sphere of the metrics under consideration was
obtained numerically and are shown in figure 7 of [75] for
{α, �0} ∈ (0, 3). Using this data in (11), we obtain Rs as
function of the primary hairs as is shown in Fig. 1. Note that,
the model 2 is the only one that cannot be used to mimic the
shadow of the M87 supermassive BH. It should be empha-
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Fig. 4 Imaginary part of the QNM for Model 3 as a function of the hair α for different values of L and n. Each plot corresponds to a different
value of L . The values for n are 0 (black line), 1 (blue line), 2 (red line), 3 (green line), 4 (brown line)

sized that comparison we are doing here must be taken as an
approximation.

It is worth mentioning that the primary hairs, namely α in
Models 1 and 2 and �0 in Models 3 and 4, can take arbitrary
values in principle. For example, in Refs. [21,75] we have
taken {α, �0} ∈ (0, 1). In this work we explore the stability of
the solution in a larger interval. Although we have studied the
behaviour for α, �0 ∈ (−50, 50), here we show the results in
the interval (−10, 10) given that, essentially, it contains all
the information we require.

4 Results and discussion

In this section, we shall discuss the results obtained by the
implementation of the WKB method in the models described
in the previous sections. In all of the cases have plotted Im(ω)

as a function of the primary hair of the BH with the aim
to explore if there is a change in the imaginary part of the
frequency for some of their values. All the results are shown
in Figs. 2, 3, 4 and 5 for Models 1, 2, 3 and 4 respectively. All
the computations have been performed setting the multipole
number L and varying the overtonen = 0, 1, 2, 3, 4. For each
model we have a plot for each L = 2, 3, 4, 5, 6, 7, 8, 9, 10.

It is worth mentioning that in all the plots we have taken
a step of 0.1 for the hair parameters, namely α, �0. Higher
precision is possible but the computational time increases
considerably.

In Fig. 2 for L = 2, we note an increasing in the value
of Im(ω) and then an oscillatory behaviour around α = 5.
Even more, there is a change of sign for n = 3 and n = 4.
The same oscillatory behaviour is observed for L = 3, 4, 5, 6
and n = 2, 3, 4. However, for L = 7, 8, 9, 10 the function
increases monotonously up to a certain α ≈ 5 where the
frequency reaches a maximum and then decreases and con-
verges to a certain constant value. It is worth mentioning that
it is claimed that the method has high accuracy for small n
and large L so that, the change of sign for n = 3, 4 for L = 2
could be associated with the lack of precision for the values
under study and not to instabilities of the BH. Similarly, we
could conclude that the oscillatory behavior is a result of the
low precision of the method for large n and small L . Finally,
the damping of the signal given by e−i Im(ω), decreases as
α grows (except in the oscillatory interval). Accordingly,
as α increases, the oscillation dominates at late times. Fur-
thermore, the frequency of the the oscillations (the Re(ω))
decreases when α increases as shown in Tables 1, 2, and
3. Also, we note that as α takes bigger values, the Re(ω)
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Fig. 5 Imaginary part of the QNM for Model 4 as a function of the hair α for different values of L and n. Each plot corresponds to a different
value of L . The values for n are 0 (black line), 1 (blue line), 2 (red line), 3 (green line), 4 (brown line)

Table 1 Numerical values for
Re(ω) and Im(ω) for α = 1

Model 1 Model 2 Model 3 Model 4

L n Re ω Im ω Re ω Im ω Re ω Im ω Re ω Im ω

6 0 1.17395 − 0.08208 1.24877 − 0.09627 1.07828 − 0.06557 0.82851 − 0.06307

1 1.16863 − 0.24669 1.24019 − 0.28961 1.07411 − 0.19699 0.82337 − 0.18975

2 1.15831 − 0.41255 1.61297 − 0.48535 1.06586 − 0.32919 0.81332 − 0.31804

7 0 1.35425 − 0.08206 1.44067 − 0.09625 1.24398 − 0.06557 0.95578 − 0.06306

1 1.34961 − 0.24654 1.43322 − 0.28937 1.24036 − 0.19691 0.95131 − 0.18958

2 1.34054 − 0.41198 1.61297 − 0.48429 1.23317 − 0.32885 0.94253 − 0.31731

8 0 1.53458 − 0.08206 1.63259 − 0.09624 1.40970 − 0.06557 1.08307 − 0.06305

1 1.53047 − 0.24644 1.62601 − 0.28920 1.40650 − 0.19687 1.07912 − 0.18946

2 1.52239 − 0.41159 1.61297 − 0.48358 1.40014 − 0.32863 1.07133 − 0.31682

converges to the same values for the different overtones n
and a fixed L . In summary, as the parameter associated with
the primary hair increases the signal becomes less damped
and the dominant oscillatory behavior at late times becomes
“monochromatic” for each multipole number L .

In Fig. 3 we show the results for Model 2. Note that for
L = 2 the frequency remains constant for n = 0, 1, 2.
Besides, the value of the frequency decreases as n increases.
For n = 3, 4 the frequency is a decreasing function and

undergoes an oscillatory behavior around α ≈ 10. In con-
trast, for L = 3, 4, 5, 6, 7, 8, Im(ω) is constant for n =
0, 1, 2 but a maximum around α ≈ 0 for n = 3, 4. For
L = 9, 10 the frequency is almost constant for every value
of the overtone under consideration. However, in contrast to
what occurs in Model 1, the values of Re(ω) are different for
a fixed multiple number L and different overtones n. Even
more, their separation increase as the primary hair grows as
shown in Tables 1, 2, and 3. In any case, the results indicate
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Table 2 Numerical values for
Re(ω) and Im(ω) for α = 2

Model 1 Model 2 Model 3 Model 4

L n Re ω Im ω Re ω Im ω Re ω Im ω Re ω Im ω

6 0 1.09141 − 0.06802 1.24568 − 0.09625 0.85604 − 0.04576 0.62292 − 0.04765

1 1.08899 − 0.20429 1.23665 − 0.28954 0.85263 − 0.13746 0.61892 − 0.14334

2 1.08457 − 0.34119 1.21882 − 0.48523 0.84579 − 0.22972 0.61110 − 0.24023

7 0 1.25896 − 0.06801 1.43716 − 0.09624 0.98766 − 0.04575 0.71861 − 0.04764

1 1.25682 − 0.20419 1.42932 − 0.28931 0.98473 − 0.13740 0.71514 − 0.14321

2 1.25282 − 0.34085 1.41379 − 0.48420 0.97894 − 0.22943 0.70830 − 0.23969

8 0 1.42654 − 0.06800 1.62866 − 0.09623 1.11929 − 0.04575 0.81431 − 0.04763

1 1.42463 − 0.20413 1.62173 − 0.28916 1.11669 − 0.13736 0.81125 − 0.14313

2 1.42100 − 0.34063 1.60798 − 0.48350 1.11151 − 0.22929 0.80519 − 0.23933

Table 3 Numerical values for
Re(ω) and Im(ω) for α = 3

Model 1 Model 2 Model 3 Model 4

L n Re ω Im ω Re ω Im ω Re ω Im ω Re ω Im ω

6 0 1.00397 − 0.05442 1.24261 − 0.09624 0.65548 − 0.03756 0.49957 − 0.03835

1 1.00447 − 0.16356 1.23312 − 0.28953 0.65348 − 0.11284 0.49631 − 0.11536

2 1.00574 − 0.27374 1.21432 − 0.48523 0.64954 − 0.18853 0.48993 − 0.19333

7 0 1.15798 − 0.05439 1.43368 − 0.09624 0.75619 − 0.03756 0.57632 − 0.03834

1 1.15839 − 0.16340 1.42545 − 0.28932 0.75445 − 0.11279 0.57348 − 0.11526

2 1.15941 − 0.27313 1.40909 − 0.48421 0.75102 − 0.18834 0.56791 − 0.19290

8 0 1.31204 − 0.05438 1.62476 − 0.09623 0.85692 − 0.03756 0.65308 − 0.03834

1 1.31238 − 0.16330 1.61749 − 0.28917 0.85538 − 0.11276 0.65057 − 0.11520

2 1.31322 − 0.27275 1.60303 − 0.48353 0.85235 − 0.18820 0.64563 − 0.19262

that Model 2 is stable for all the values of the hair considered
here. Based on these results, we conclude that for this model,
the damping of the signal is almost the same for each value
of the primary hair but the frequency of oscillations at late
times depends critically on the value of α.

The results for Model 3 are shown in Fig. 4. We note that,
except for L = 2, 3 where there is an oscillatory behavior
for n = 3, 4, the frequency increases monotonously. Besides,
Im(ω) is always negative indicating that this model is stable
for each value of the primary hair under consideration. Again,
as in Model 1, both the damping of the signal and Re(ω)

decreases as α grows (except in the oscillatory interval)
In Fig. 9 we show the frequency for Model 4. The behavior

is similar to that seen in Models 1 and 3. The only difference
is that, in this case, there is not any oscillatory behavior for
any values of n or L .

Another point that deserves discussion is the values taken
by Im(ω) for a fixed multipole, L , and different values of the
overtone n. A well-established point is that for a fixed L , the
absolute value of the imaginary part of the QNM frequency
increases as n grows [1,20]. This behavior is shown by Mod-
els 2, 3, and 4 for all the values of the primary hairs under
consideration. In this regard, as n increases, the damping is
strong. In Model 1, the oscillatory behavior for L = 2, 3 and

n = 3, 4 violates this tendency for a certain value of α but as
we stated before this should be related to the lack of accuracy
of the method.

In summary, we conclude that the role played by the pri-
mary hair in the BH is twofold: to modulate the damping
factor of the perturbation and to decrease the frequency of
the dominant oscillations at late times.

Before concluding this section we would like to emphasize
that the results obtained here can be matched with observa-
tional data thorough the relationship between the real part
of the QNM and the the typical radius of the shadow Rs .
Indeed, in Ref. [83] the authors found a relationship between
the QNM frequencies and the metric evaluated at the radius
of the photon sphere at third order WKB. It should be inter-
esting to explore this relationship to higher orders with the
aim to apply this results with the finding here. However, this
issue is out the scope of this paper and could be explore in a
future work.

5 Conclusion

In this work, we computed the frequencies of the quasinormal
modes through the 13th order WKB approach of four models
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of hairy black holes. All the results were shown as a function
of the primary hair parameter of the black holes. All the plots
were made by varying the values of the primary hair param-
eters in a step of 0.1 in α, �0 ∈ (−50, 50). However, in this
work we only showed the results for α, �0 ∈ (−10, 10) given
that such an interval contains all the information we required
for the discussion. We found that (except for some multipole
parameters in Model 1) all the black holes are stable under the
perturbation for the values under consideration in the sense
that the imaginary part of the quasinormal mode frequencies
is always negative. Besides, we obtained that for a fixed value
of the multipole parameter an increase of the overtone leads
to an increase of both the absolute value of the imaginary part
real part of the quasinormal modes. This result shows that,
at a late time, the dominant oscillatory behavior is that with
the least frequency. Regarding the effect that the primary hair
has on the perturbation, we found that in Models 1, 3, and
4, the damping factor diminishes as the parameter associated
with the hair grows. However, for Model 2 the frequencies
are almost constant so that, in this case, the primary hair has
no effect on the stability of the black hole geometry.
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