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Abstract Calculations of the central exclusive diffractive
production (CEDP) of two pions via continuum and res-
onance mechanisms are presented in the Regge-eikonal
approach. Data from STAR, ISR, CDF and CMS are anal-
ysed and compared with theoretical descriptions. The pre-
liminary extraction of f0(500), f0(980) and f2(1270) cou-
plings to pomerons and the ρ meson contribution from the
photoproduction mechanism to the CEDP cross-section are
considered. We show possible nuances and problems of cal-
culations and prospects of investigations at current and future
hadron colliders.

1 Introduction

In previous papers [1,2], the general properties and calcula-
tions of the central exclusive diffractive production (CEDP)
were considered. It was shown, in particular in [2], that
diffractive patterns (differential cross-sections) of CEDP
play a significant role in model verification.

In [3], we considered the low-mass CEDP (LM CEDP)
with production of the two-pion continuum. Here, we expand
this analysis and add contributions from CEDP of f0(500),
f0(980) and f2(1270) and exclusive vector meson photopro-
duction (EVMP) of a ρ0 meson to this process, also taking
into account the interference between continuum and reso-
nance mechanisms.

CEDP of two pions is a basic “standard candle” for LM
CEDP. Why do we need exact calculations and predictions
for this process?

– Di-pion LM CEDP is a tool for the investigation of
hadronic resonances (such as f2 or f0), since one of the
basic hadronic decay modes for these resonances is the
two-pion one. We can extract different couplings of these
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resonances to reggeons (pomeron, odderon) to under-
stand their nature (structure and interaction mechanisms).

– We can use LM CEDP to fix the procedure to calculate
“rescattering” (unitarity) corrections. In the case of di-
pion LM CEDP, there are several kinds of corrections in
the proton–proton, pion–proton and pion–pion channels.

– The pion is the most fundamental particle in the strong
interactions, and LM CEDP gives us a powerful tool to
go deep inside its properties, especially to investigate the
form factor and scattering amplitudes for the off-shell
pion.

– LM CEDP has rather large cross-sections. This is very
important for an exclusive process, since in the special
low-luminosity runs (of the LHC) we need more time to
get enough statistics.

– As was proposed in [3,4], it is possible to extract some
reggeon-hadron cross-sections. In the case of single and
double dissociation, this was the pomeron–proton cross-
section. Here, in the LM CEDP of the di-pion, we can
analyse the properties of the pomeron–pomeron to pion–
pion exclusive cross-section.

– Diffractive patterns of this process are very sensitive to
different approaches (subamplitudes, form factors, uni-
tarization, reggeization procedure), especially differen-
tial cross-sections in t and φpp (azimuthal angle between
final protons), and also Mππ dependence. That is why this
process is used to verify different models of diffraction.

– All the above items are additional advantages provided
by the LM CEDP of two pions, which has the usual prop-
erties of CEDP, namely a clear signature with two final
protons and two large rapidity gaps (LRG) [5,6], and the
possibility to use the “missing mass method” [7].

Processes of the LM CEDP have been calculated in other
works [8–18] which are devoted to the most popular models
for the LM CEDP of di-mesons, where the authors consid-
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ered phenomenological, non-perturbative, perturbative and
mixed approaches in the reggeon–reggeon collision subpro-
cess. The nuances of various approaches were analysed in
the introduction of [3].

In this article we consider the case depicted in Fig. 1 and
show how it can describe the data from the ISR [19,20],
STAR [21–26], CDF [27,28] and CMS [29–31] collabora-
tions.

In the first part of the present work, we introduce the
framework for calculations of double-pion LM CEDP (kine-
matics, amplitudes, differential cross-sections) in the Regge-
eikonal approach, which was considered in detail in [3]. Here,
we take the reggeized full (RF) case from the four approaches
of [3], which is the best in the data description.

We also discuss some nuances of the calculations which
we should take into account in further more accurate anal-
ysis (elastic amplitudes for virtual particles, off-shell pion
form factor, pion–pion elastic amplitude at low energies, non-
linearity of the pion trajectory, tensorial couplings and spin
effects).

In the second part, we analyze the experimental data on
the process at different energies, extract some couplings of
resonances the pomeron, find the best approach and make
some predictions for LHC experiments.

To avoid complicated expressions in the main text, all the
basic formulae are placed in appendixes.

2 General framework for calculations of LM CEDP

LM CEDP is the first exclusive two-to-four process which is
driven basically by the pomeron–pomeron fusion subprocess.
It serves as a clear process for investigations of resonances
such as f0(500), f0(980), f2(1270) and others with masses
less than 3 GeV. At the moment, for low central di-pion
masses it is a huge problem to use a perturbative approach,
which is why we apply the Regge-eikonal method for all
the calculations. For proton–proton and proton–pion elastic
amplitudes, we use the model of [32,33], which describes
all the available experimental data on elastic scattering. For
EVMP we use a similar model [34].

2.1 Components of the framework

The LM CEDP process can be calculated in the following
scheme (see Fig. 1):

1. We calculate the primary amplitudes of the processes,
which are depicted as central parts of diagrams in Fig. 1.
Here we consider the case where the bare off-shell pion
propagator in the amplitude for continuum di-pion pro-

Fig. 1 Primary amplitudes (absorptive corrections are not shown) of
the process of double-pion LM CEDP p + p → p + π+ + π− +
p in the Regge-eikonal approach for a continuum (a, b), LM CEDP
of f0 and f2 resonances (c) and EVMP of a ρ0 meson (d, e) with
subsequent decay to π+π−. a, b The central part of the diagram is
the primary continuum CEDP amplitude, where Tπ± p are full elastic
pion–proton amplitudes, and the reggeized off-shell pion propagator is
depicted as a dashed zigzag line. This is the most applicable case from
the four approaches considered in [3]. c The central part of the diagram
contains pomeron–pomeron-resonance fusion with subsequent decay
to pions. The propagator is taken in the Breit–Wigner approximation.
d, e The central part of the diagram contains full EVMP amplitude with
ρ0 production and decay. Off-shell pion form factor on a, b and other
suppression form factors (in the pomeron–pomeron-f or the pion–pion-
( f0, f2,ρ0 vertices) ) on c–e are presented as black circles

duction is replaced by the reggeized one

Pπ (ŝ, t̂) =
(

ctg
παπ(t̂)

2
− i

)

· πα′
π

2�(1 + απ(t̂))

(
ŝ

s0

)απ (t̂)

, (1)

where ŝ is the di-pion mass squared and t̂ is the square of
the momentum transfer between a pomeron and a pion in
the pomeron–pomeron fusion process (see Appendix A
for details).
Reggeization of the virtual pion propagator is not obvious,
since the effect of this is expected to be small, and more-
over, it is not even clear that we are in the relevant kine-
matic region (|t̂ | � ŝ = M2

ππ ) to include such corrections
for central production. It was also verified in the calcula-
tions presented in this paper. For example, the authors of
[8–10] used the replacement

1

t̂ − m2
π

→ eαπ (t̂)|ΔY |

t̂ − m2
π

, (2)

which gives the correct “reggeized” behaviour in the rele-
vant kinematic region, and the usual “bare” pion propaga-
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tor behaviour for the small difference between rapidities
of pions. The authors of [11–13] used a phenomenolog-
ical expression for virtual pion propagators (see (1) for
notations, and also (3.25), (3.26) of [13])

1

t̂ − m2
π

F(ΔY ) + (1 − F(ΔY ))Pπ

(
ŝ, t̂

)
,

F(ΔY ) = e−cyΔY , ΔY = yπ+ − yπ− , (3)

to take into account possible non-Regge behaviour for
t̂ ∼ ŝ/2, i.e. for small rapidity separation ΔY between
final pions. The Regge model really does not work in this
area or it needs to be modified (as was done, for example,
in works [11–18] with empirical formulae or additional
assumptions).
In the present calculations we use linear pion trajectory
απ(t̂) = 0.7(t̂ − m2

π ). The nonlinear case was also veri-
fied, and the difference in the final result is not significant.
We use also full eikonalized expressions for proton–
proton, pion–proton and photon–proton amplitudes, which
can be found in Appendix B.

2. After the calculation of the primary LM CEDP ampli-
tudes, we have to take into account all possible corrections
in proton–proton and proton–pion elastic channels due to
the unitarization procedure (so-called soft survival prob-
ability or rescattering corrections), which are depicted
as Vpp, V ′

pp and Sπp blobs in Fig. 1. For proton–proton
and proton–pion elastic amplitudes we use the model of
[32,33] (see Appendix B). The possible final pion–pion
interaction is not shown in Fig. 1, since we neglect it in
the present calculations.

In this article we do not consider so-called enhanced cor-
rections [8–10], since they give non-leading contributions
in our model due to smallness of the triple pomeron vertex.
Also, we have no possible absorptive corrections in the pion–
pion final elastic channel, since the central mass is low, and
there is a lack of data on this process to define parameters of
the model. Nevertheless, one can consider these corrections,
as was done by some authors recently [35], since they can
play a significant role for masses less than 1 GeV.

The exact kinematics of the two-to-four process is outlined
in Appendix A.

Here we use the model presented in Appendix B as an
example. One can use other models that are proved to effec-
tively describe all the available data on proton–proton and
proton–pion elastic processes and exclusive ρ0 photoproduc-
tion, but it is currently difficult to find more than a couple
of models which have more or less predictable power (see
[36] for a detailed discussion). This is why we use the given
model, as it is proved to be good in data fitting, especially in
our kinematic region of interest.

2.2 Continuum di-pion production

The final expression of the amplitude for the continuum di-
pion production with proton–proton and pion–proton “rescat-
tering” corrections (see Fig. 1a, b) can be written as

MU ({p})
=

∫ ∫
d2q

(2π)2
d2q′
(2π)2

d2q1

(2π)2
d2q2

(2π)2 Vpp(s, q
2)Vpp(s

′, q ′2)

×
[
Sπ− p(s̃14, q2

1 )M0 ({ p̃}) Sπ+ p(s̃23, q2
2 ) + (3 ↔ 4)

]
(4)

M0 ({p})
= T el

π+ p(s13, t1)Pπ (ŝ, t̂)
[
F̂π

(
t̂
)]2

T el
π− p(s24, t2), (5)

where functions are defined in (28)–(32) of Appendix B, and
sets of vectors are

{p} ≡ {pa, pb, p1, p2, p3, p4} (6)

{ p̃} ≡ {pa − q, pb + q; p1 + q ′ + q1,

p2 − q ′ + q2, p3 − q2, p4 − q1}, (7)

and

s̃14 = (
p1 + p4 + q ′)2

, s̃23 = (
p2 + p3 − q ′)2

, (8)

si j = (
pi + p j

)2
, t1,2 = (

pa,b − p1,2
)2

, (9)

ŝ = (p3 + p4)
2 , t̂ = (pa − p1 − p3)

2 (10)

The off-shell pion form factor is equal to unity on mass
shell t̂ = m2

π and taken as exponential

F̂π = e(t̂−m2
π )/Λ2

π , (11)

where Λπ ∼ 1.2 GeV is taken from the fits to the LM CEDP
of two pions at low energies (see the next section). In this
paper we use only the exponential form, but it is possible to
use other parametrizations (see [8–18]). The exponential one
shows more appropriate results in the data fitting.

Other functions are defined in Appendix B. Then we can
use the expression (19) to calculate the differential cross-
section of the process.

2.3 CEDP and EVMP of low mass resonances.

For f0(500), f0(980), f2(1270) and ρ0 resonances, the gen-
eral unitarized amplitude (see Fig. 1c, d) is similar to the
expression (4), where amplitude M0 ({p}) is replaced by the
corresponding central primary amplitude for the resonance
production and further decays to π+π−.

For f mesons, amplitudes are constructed from pro-
ton-pomeron form factors, pomeron–pomeron couplings to
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mesons,1 off-shell propagators, off-shell form factors and
decay vertices.

For the EVMP amplitude of the ρ0 meson, we take the
full unitarized photon–proton amplitude contracted with the
photon flux, and also with the off-shell meson propagator, off-
shell form factors and its decay vertex to pions. Additionally,
we have to sum this amplitude with the symmetric one with
t1 ↔ t2.

All the primary amplitudes are presented in Appendix C.

2.4 Nuances of calculations

In the next section, one can see that there are some difficulties
and puzzles in the data fitting, which have likewise been
presented in other works [11–18]. In this subsection, let us
discuss some nuances of calculations which could change
the situation.

We have to pay special attention to amplitudes, where one
or more external particles are off their mass shell. An exam-
ple of such an amplitude is the pion–proton one Tπ+ p (Tπ− p),
which is part of the CEDP amplitude (see (4)). For this ampli-
tude, here we use the Regge-eikonal model with the eikonal
function in the classical Regge form, and the “off-shell” con-
dition for one of the pions is taken into account by the addi-
tional phenomenological form factor F̂π (t̂). However, there
are at least two other possibilities.

The first of these was considered in [38]. For an amplitude
with one off-shell particle, the formula

T ∗(s, b) = δ∗(s, b)
δ(s, b)

T (s, b) = δ∗(s, b)
δ(s, b)

e2iδ(s,b) − 1

2i
(12)

was used. In our case,

δ(s, b) = δπp(s, b;m2
π ,m2

π ,m2
p,m

2
p),

δ∗(s, b) = δ∗
πp(s, b; t̂,m2

π ,m2
p,m

2
p)

δπp = δ∗
πp

∣∣∣
t̂→m2

π

. (13)

δπp is the eikonal function (see (24)). This is similar to the
introduction of the additional form factor, but in a more con-
sistent way, which takes into account the unitarity condition
(Fig. 2).

The second one arises from the covariant reggeization
method, which was considered in Appendix C of [3]. For
the case of conserved hadronic currents, we have definite
structure in the Legendre function, which is transformed in a
natural way to the case of the off-shell amplitude. But in this

1 Here we take the simple scalar one for every meson, even for f2(1270)

(multiplied by the leading tensor term), although, as was mentioned in
our work [37], this vertex can be rather complicated and can give a non-
trivial contribution to the dependence on the azimuthal angle between
final protons. But for our goals in this paper, namely, investigation of
the di-pion mass distributions, it is a rather good approximation.

Fig. 2 Full unitarized amplitude of the process of double-pion LM
CEDP p+ p → p+π+ +π− + p. Proton–proton rescatterings in the
initial and final states are depicted as Vpp and V ′

pp blobs, respectively,
and pion–proton rescattering corrections are also shown as Sπp blobs.
The sum of primary amplitudes M0 from Fig. 1 is shown as a red
rectangle

Fig. 3 Pion–proton on-shell and off-shell elastic differential
cross-section (in the model of conserved meson currents pre-
sented in Appendix C) for different pion virtualities t̂π : m2

π (on-
shell),−0.01 GeV2,−0.15 GeV2,−0.4 GeV2 in the covariant approach
with conserved currents

case, the off-shell amplitude has a specific behaviour at low
t values (see Fig. 3 and [2] for details). As was shown in [2],
unitarity corrections can mask this behaviour.

Since final pion–proton interactions can give rather large
suppression (about 10–20% and even more, as in Fig. 4),
in our calculations we use the full amplitude as depicted in
Fig. 2.

3 Data from hadron colliders versus results of
calculations

Our basic task is to extract the fundamental information
on the interaction of hadrons from different cross-sections
(“diffractive patterns”):
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Fig. 4 Predictions of the model for the continuum (see Fig. 1a, b)
at 7 TeV. Curves from top to bottom correspond to the Born term,
the amplitude with proton–proton rescattering corrections only, and
that with all the corrections (proton–proton and pion–proton). Λπ =
1.2 GeV

– from the t-distributions we can obtain the size and shape
of the interaction region;

– the distribution on the azimuthal angle between final pro-
tons gives quantum numbers of the produced system (see
[2,37] and references therein);

– from Mc (here Mc = Mππ ) dependence and its influence
on t dependence we can draw some conclusions about
the interaction at different space-time scales and interre-
lation between them. Also, we can extract couplings of
reggeons to different resonances.

Process p + p → p + π + π + p is the first “standard
candle”, which we can use to estimate other CEDP processes.
In this section, we consider the experimental data on the
process attempt to extract the information on couplings of
different resonances to the pomeron.

3.1 STAR collaboration data versus model cases

In this subsection, the data of the STAR collaboration [21–
26] and model curves for continuum and the sum of all cases
of Fig. 1 are presented. In our approach, we have several free
parameters, namely Λπ (for the continuum) and couplings
of resonances to pomeron gPP f , which we can extract from
the data. All the distributions are depicted here for Λπ =
1.2 GeV and couplings from (14).

We begin our analysis by fitting the data from STAR
depicted on the Fig. 5a. Then we make predictions for other
available data on this process.

First, we should note a difference between the data and
prediction at the same energy. In Fig. 5b, one can see the
azimuthal angle distribution. Here we can explain some dif-
ference because our pomeron–pomeron–meson couplings
are constants, but in reality, they depend on the azimuthal
angle. The next case, which is depicted in Fig. 6, is more
interesting. We see that predictions underestimate the data in

Fig. 5 The data on the process p + p → p + π+ + π− + p at√
s = 200 GeV (STAR collaboration [21,22]): a |ηπ | < 1, |ηππ | < 2,

pTπ > 0.15 GeV, 0.005 < −t1,2 < 0.03 GeV2; b plus additional cut
Mc < 1 GeV. Curves correspond to Λπ = 1.2 GeV in the off-shell pion
form factor (11) and couplings from (14). Solid upper curves correspond
to the sum of all amplitudes, and dashed lower curves represent the
continuum contribution. The thickness of the solid curves corresponds
to the errors of Monte Carlo calculations. Additional interpolation was
used between calculated points for smoothing

the region of Mc ∼ 0.8 ± 0.1 GeV as in Fig. 5a. The data
are close to predictions in the regions of f mesons. This fact
cannot be understood at the moment, since, if we fix param-
eters using this new STAR data from Fig. 6, we will obtain
overestimation of the data at higher energies, which looks
strange. We may have to renormalize this part of the STAR
data. Also, pomeron–pomeron–meson couplings have some
complex dependence on t1,2 and φ0 (see [37] and references
therein), and it should be taken into account.

The ρ contribution is small. We also see some differences
in Fig. 6b–d.

The data and fits (solid curves) for the extended kinematic
region at

√
s = 200 GeV are depicted in Fig. 7 with the the-

oretical curve, which slightly underestimates the data at low
masses and overestimates the data at the peak of f2(1270).
Since these data and curves were obtained in [23–25] by some
extrapolation, they can only be considered qualitatively.

In Fig. 8 we see a similar situation with overestimation at
Mc ∼ 0.7 ± 0.2 GeV and at the peak of f0(980).
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Fig. 6 The new data on the process p+ p → p+π++π−+ p at
√
s =

200 GeV (STAR collaboration [23–25]): |ηπ | < 0.7, pTπ > 0.2 GeV,
px > −0.2 GeV, 0.2 GeV< |py | < 0.4 GeV, (px + 0.3 GeV)2 + p2

y <

0.25 GeV2, where p denotes the momenta of final protons. Curves
correspond to Λπ = 1.2 GeV in the off-shell pion form factor (11)
and couplings from (14). Solid curves correspond to the sum of all
amplitudes, and the dashed lower curve in a represents the continuum
contribution. The thickness of the solid curves corresponds to the errors
of Monte Carlo calculations. Additional interpolation was used between
calculated points for smoothing

Fig. 7 The new data on the process p + p → p + π+ + π− + p
at

√
s = 200 GeV (STAR collaboration [23–25]): |yππ | < 0.4,

0.05 GeV< |t1,2| < 0.16 GeV2, φ0 < 45o. Solid curves represent fits
from experimental papers [23–25] extrapolated to the full kinematic
region. The thick dashed curve corresponds to parameters, fixed from
the old data from STAR depicted in Fig. 5 and explained in the text:
Λπ = 1.2 GeV in the off-shell pion form factor (11) and couplings
from (14). The thickness of the solid curves corresponds to the errors of
Monte Carlo calculations. Additional interpolation was used between
calculated points for smoothing

Fig. 8 The new preliminary data on the process p + p → p + π+ +
π− + p at

√
s = 510 GeV (STAR collaboration [26]): |ηπ | < 0.7,

pTπ > 0.2 GeV, px > −0.27 GeV, 0.4 GeV< |py | < 0.8 GeV, (px +
0.6 GeV)2 + p2

y < 1.25 GeV2, where p denotes the momenta of final
protons. The theoretical solid curve corresponds to Λπ = 1.2 GeV in
the off-shell pion form factor (11) and couplings from (14). Fluctuations
are due to a complex Monte Carlo integration process, and they can be
smoothed by increasing the integration accuracy

3.2 ISR and CDF data versus the model curves

Let us look at the ISR [19,20] and CDF [27,28] data with
parameter Λπ , which we use to describe the data from the
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Fig. 9 Data on the process p + p → p + π+ + π− + p (ISR and
ABCDHW collaborations [19,20]): a at

√
s = 63 GeV, |yπ | < 1,

ξp > 0.9; b at
√
s = 62 GeV, |yπ | < 1.5, ξp > 0.9. Curves cor-

respond to Λπ = 1.2 GeV in the off-shell pion form factor (11) and
couplings from (14). Solid upper curves correspond to the sum of all
amplitudes, and dashed lower curves represent the continuum contribu-
tion. Fluctuations in solid curves are due to the complex Monte Carlo
integration process, and they can be smoothed by increasing the inte-
gration accuracy. The thickness of the solid curves corresponds to the
errors of Monte Carlo calculations. Additional interpolation was used
between calculated points for smoothing

STAR collaboration. Different cases are depicted in Figs. 9
and 10.

We see a strong underestimation of the ISR data (by a
factor of 3). For these low energies we have to take into
account possible corrections to pion–proton amplitudes (con-
tributions from secondary reggeons are strong), since our
approach describes data rather well only for energies greater
than ∼ 10 GeV. In each shoulder (Tπp amplitude in Fig. 1a,
b) the energy can be less than 10 GeV. In the present cal-
culations, just to preliminarily and qualitatively check the
effect of secondary reggeons and to improve the situation,
we use simple exponential parametrization (Born approx-
imation with secondary reggeons) for pion–proton ampli-
tudes to cover the energy value down to ∼ 3 GeV. The result
depicted in Fig. 9 takes into account this correction. We can
observe some improvements (increase by a factor of ∼ 1.3)

Fig. 10 Data on the process p + p̄ → p + π+ + π− + p̄ (CDF col-
laboration [27,28]) at

√
s = 1.96 TeV: a |ηπ | < 1.3, |yππ | < 1,

pT,π > 0.4 GeV; b |ηπ | < 1.3, |yππ | < 1, pT,π > 0.4 GeV,
pT,ππ > 1 GeV. Curves correspond to Λπ = 1.2 GeV in the off-
shell pion form factor (11) and couplings from (14). Solid upper curves
correspond to the sum of all amplitudes, and dashed lower curves repre-
sent the continuum contribution. Fluctuations in solid curves are due to
the complex Monte Carlo integration process, and they can be smoothed
by increasing the integration accuracy. The thickness of the solid curves
corresponds to the errors of Monte Carlo calculations. Additional inter-
polation was used between calculated points for smoothing

in comparison with our previous calculations in [3], but even
in this case, the data are underestimated. This should be pre-
cisely explained in further research. We may also have sig-
nificant contributions from single and double dissociations
to the data.

As to the CDF data in Fig. 10a, they are close to the pre-
dictions at the region of the f2(1270) meson. Another part
of the CDF data in Fig. 10b are close to the prediction, but
the curve does not fit the data at the region of the f2(1270)

meson. It also looks strange and has no explanation at the
moment, since these are the data from the same experiment.
This may be due to interference effects with γ γ or γO fusion
in the central production process and corrections to the ππ

final interaction.
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Fig. 11 Data on the process p + p → p + π+ + π− + p (CMS
collaboration [29,30]): a at

√
s = 5 TeV with cuts |ηπ | < 2.4, pT,π >

0.2 GeV; b at
√
s = 7 TeV with cuts |yπ | < 2, pT,π > 0.2 GeV;

c at
√
s = 13 TeV with cuts |ηπ | < 2.4, pT,π > 0.2 GeV. Curves

correspond to Λπ = 1.2 GeV in the off-shell pion form factor (11)
and couplings from (14). Solid upper curves correspond to the sum
of all amplitudes, and dashed lower curves represent the continuum
contribution. The thickness of the solid curves corresponds to the errors
of Monte Carlo calculations. Additional interpolation was used between
calculated points for smoothing

3.3 CMS data and predictions

In Fig. 11, one can see the recent data from the CMS col-
laboration and curves of our model, which correspond to
Λπ = 1.2 GeV in the off-shell pion form factor (11) and
couplings (14) from the fit to the STAR data in Fig. 6. Here

our predictions are very close to the data except for the region
Mc ∼ 0.8 ± 0.1 GeV, as in all datasets.

Summary and conclusions

In this paper, we have considered the LM CEDP process of
di-pions and its description in the framework of the Regge-
eikonal approach. Here we summarize all the facts and con-
clusions:

– The result is crucially dependent on the choice of Λπ

in the off-shell pion form factor, i.e. on t̂ (virtuality of
the pion) dependence. In the present approach, the best
description of the old STAR data [21,22] is given by the
case with Λπ = 1.2 GeV and couplings:

gPP f0(500) = 0.88,

gPP f0(980) = 0.43,

gPP f2(1270) = 1.72. (14)

The couplings of the pomeron to f0,2 can be compared
with the value 0.64, which is obtained in [39].

– The model shows that contributions from the the ρ meson
are not so significant at available energies, but we have a
dip in the theoretical curves at the region of ρ production
(at CMS energies, for example, it is obvious). This should
also be explained in further investigations.

– Rescattering corrections (“soft survival probability”) in
pp and πp contribute significantly to the values and form
of distributions.

– If we try to fit the data from STAR [23–26], we find that
the curves with parameters fixed from [21,22] underes-
timate the data in the region of the ρ meson as in Fig. 5a.
The data are close to predictions only in the regions
of f mesons. These effects have no explanation at the
moment and may be due to some complex dependence
of pomeron–pomeron–meson couplings on t1,2 and φ0,
wrong normalization of the data or missed contributions
from some other processes such as low mass diffractive
dissociation.

– We have strong underestimation of the ISR data (by a
factor of 3) [19,20] and contradictory description of two
parts of the CDF data [27,28] with the same parameters
(see Figs. 9, 10).

– However, the CMS data at all energies are described
rather well (see Fig. 11). A discrepancy is observed only
in the region Mc ∼ 0.8 ± 0.2 GeV as for other energies.

The main open problems regarding model parameters are
related to interference terms (we have to know all cut-off
form factor parameters, couplings of pions and reggeons
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to resonances and their dependence on t1,2 and φ0). To
fix the model parameters correctly, we need the compar-
ison with precise (exclusive) experimental data (STAR,
ATLAS+ALFA, CMS+TOTEM) simultaneously in several
differential observables, e.g. the differential distributions
dσ/dt1, dσ/dφ0, the angular distributions in the π+π− rest
system and others. It should be done in further works.

We also have to take into account effects such as the
interference with γ γ → ππ and γO → ππ processes,
effects related to the irrelevance and possible modifications
of the Regge approach (for the virtual pion exchange) in
this kinematic region, as was discussed in the introduction,
corrections to pion–pion scattering at low Mππ , corrections
to Tπp(s, t) for

√
s < 3 GeV, and differences of resonance

peaks from the Breit–Wigner functions. In further works we
will take into account possible modifications of the model
for the best description of the data.

This model will be implemented in the Monte Carlo event
generator ExDiff [40]. It is possible to calculate LM CEDP
for other di-hadron final states (p p̄ for “odderon” hunting,
K+K−, ηη′ and so on), which are also very informative for
our understanding of diffractive mechanisms in strong inter-
actions.
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Appendix A: Kinematics of LM CEDP

The 2 → 4 process p(pa) + p(pb) → p(p1) + π(p3) +
π(p4) + p(p2) can be described as follows (the notation for
any momentum is k = (k0, kz;k), k = (kx , ky)):

pa =
(√

s

2
, β

√
s

2
; 0

)
, pb =

(√
s

2
,−β

√
s

2
; 0

)
,

p1,2 = (
E1,2, p1,2z; p1,2⊥

)
, E1,2 =

√
p2

1,2z + p2
1,2⊥ + m2

p,

p3,4 = (
m3,4⊥ch y3,4,m3,4⊥sh y3,4; p3,4⊥

)

=
(√

m2
π + p2

3,4⊥ch2η3,4, |p3,4⊥| sh η3,4;p3,4⊥
)

,

m2
i⊥ = m2

i + p2
i⊥, m1,2 = mp, m3,4 = mπ ,

p4⊥ = −p3⊥ − p1⊥ − p2⊥,

β =
√

1 − 4m2
p

s
, s = (pa + pb)

2, s′ = (p1 + p2)2. (15)

Here, yi (ηi ) are rapidities (pseudorapidities) of the final
pions.

The phase space of the process in terms of the above vari-
ables is as follows

d�2→4 = (2π)4 δ4

(
pa + pb −

4∑
i=1

pi

)
4∏

i=1

d3 pi
(2π)32Ei

= 1

24(2π)8

3∏
i=1

pi⊥dpi⊥dφi · dy3dy4 · J ;

J = dp1z

E1

dp2z

E2
δ

(√
s −

4∑
i=1

Ei

)
δ

(
4∑

i=1

piz

)

= 1∣∣∣Ẽ2 p̃1z − Ẽ1 p̃2z

∣∣∣ , (16)

where pi⊥ = |pi |, p̃1,2z are appropriate roots of the system
⎧⎨
⎩

A = √
s − E3 − E4 =

√
m2

1⊥ + p2
1z +

√
m2

2⊥ + p2
2z,

B = −p3z − p4z = p1z + p2z,

(17)

p̃1z = B

2
+ 1

2(A2 − B2)

[
B

(
m2

1⊥ − m2
2⊥

)
+ A · λ

1/2
0

]
,

λ0 = λ
(
A2 − B2,m2

1⊥,m2
2⊥

)
. (18)

Here λ(x, y, z) = x2 + y2 + z2 −2xy−2xz−2yz, and then
J −1 = λ

1/2
0 /2.

For the differential cross-section we have

dσ2→4∏3
i=1 dpi⊥dφi · dy3dy4

= 1

2βs
·

∏3
i=1 pi⊥

24(2π)8 · 1
2λ

1/2
0

|T |2

=
∏3

i=1 pi⊥
212π8βsλ1/2

0

|T |2 . (19)

Pseudorapidity is a more convenient experimental variable,
and we can use the transform

dyi
dηi

= pi⊥chηi√
m2

i + p2
i⊥ch2ηi

(20)

to obtain the differential cross-section in pseudorapidities.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


172 Page 10 of 14 Eur. Phys. J. C (2023) 83 :172

Fig. 12 Total amplitude of the process of double-pion LM CEDP p+
p → p + π+ + π− + p with detailed kinematics. Proton–proton
rescatterings in the initial and final states are depicted as black filled
circles, and pion–proton subamplitudes are shown as shaded circles. All
momenta are shown. The basic part of the amplitude, M0 (see Eq. (5)),
without corrections is circled by a dotted line. Crossed lines are on the
mass shell. Here, Δ1⊥ = Δ1 − q − q ′, Δ2⊥ = Δ2 + q + q ′, t̂ = k2 =
(Δ1⊥−q1 − p3 +q2)

2, û = (Δ1⊥−q1 − p4)
2, ŝ = (p3 + p4 −q1 −q2)

2

In some cases it is convenient to use other variables for
the integration of the cross-section and calculation of distri-
butions on central mass. For these cases we have

d�2→4 = 1

24(2π)8

2∏
i=1

dtidφi · McdMcdηcdc
∗dφ∗ · J ′;

J ′ = βM

4β1β2s

dyc
dηc

, βi �
√

1 + 4(m2
p − (1 − ξi )ti )

β2s2(1 − ξi )2 ;

βM =
√

1 − 4m2
π

M2
c

,
dyc
dηc

= pc⊥chηc√
M2

c + p2
c⊥ch2ηc

; (21)

dσdσ2→4∏2
i=1 dtidφidMcdηcdc∗dφ∗ = 1

2βs
·

McβM
dyc
dηc

24(2π)8 · 4β1β2s
|T |2

=
McβM

dyc
dηc

215π8ββ1β2s2
|T |2 , (22)

where c∗ = cos θ∗, θ∗ and φ∗ are the polar and azimuthal
angles of the pion momenta in the π+π− rest frame, Mc

is the di-pion mass, ηc is the di-pion pseudorapidity, t1 =
(pa − p1)

2, t2 = (pb − p2)
2 and

ξ1,2 �
√

M2
c − t1 − t2 + 2

√
t1t2 cos(φ1 − φ2)

s
e±yc .

For exact calculations of elastic subprocesses (see Fig. 12)
of the type a(p1) + b(p2) → c(p1 − qel) + d(p2 + qel):

qel = (q0, qz;q) ,

qz = − b

2a

(
1 −

√
1 − 4ac

b2

)
,

q0 = A0qz + p1⊥q + p2⊥q
Az

,

a = A2
z − A2

0, b = −2 (Az · D + A0 (p1⊥q + p2⊥q)) ,

c = 2Az Bz − (p1⊥q + p2⊥q)2 + q2A2
z ,

A0 = p1z + p2z, Az = p10 + p20,

B0 = p1z · p2⊥q − p2z · p1⊥q,

Bz = p10 · p2⊥q − p20 · p1⊥q,

D = p1z p20 − p2z p10, (23)

and q2
el � −q2.

Appendix B:Regge-eikonalmodel for elastic proton–pro-
ton and pion–proton scattering

Here is a short review of formulae for the Regge-eikonal
approach [32,33], which we use to estimate rescattering cor-
rections in the proton–proton and pion–proton channels.

Amplitudes of elastic proton–proton and pion–proton
scattering are expressed in terms of eikonal functions

T el
pp,πp(s, b) = e−2Ωel

pp,πp(s,b) − 1

2i
,

Ωel
pp,πp(s, b) = −i δelpp,πp(s, b),

δelpp,πp(s, b) = 1

16πs

∫ ∞
0

d(−t)J0(b
√−t)δelpp,πp(s, t). (24)

δelpp(s, t)

� gppP(t)2
(

i + tan
π(αP(t) − 1)

2
)

)
πα′

P
(t)

(
s

2s0

)αP(t)
,

αP(t) = 1 + αP(0) − 1

1 − t
τa

, gppP(t) = gppP(0)(
1 − agt

)2 . (25)

δelπp(s, t)

�
(

i + tan
π(αP(t) − 1)

2
)

)
βP(t)

(
s

s0

)αP(t)

+
(

i + tan
π(α f (t) − 1)

2
)

)
β f (t)

(
s

s0

)α f (t)
, (26)

αP(t) = 1 + p1

[
1 − p2t

(
arctan (p3 − p2t) − π

2

)]
,

α f (t) =
(

8

3π
γ (

√−t + c f )

)1/2
,

γ (μ) = 4π

11 − 2
3n f

⎛
⎝ 1

ln μ2

Λ2

+ 1

1 − μ2

Λ2

⎞
⎠ ,

123



Eur. Phys. J. C (2023) 83 :172 Page 11 of 14 172

Table 1 Parameters for proton–proton elastic scattering amplitude

Parameter Value

αP(0) − 1 0.109

τa 0.535 GeV2

gppP(0) 13.8 GeV

ag 0.23 GeV−2

Table 2 Parameters for pion–proton elastic scattering amplitude

Parameter Value

BP 26.7

bP 2.36 GeV−2

d1 0.38 GeV−2

d2 0.3 GeV−4

d3 −0.078 GeV−6

d4 0.04 GeV−8

B f 67

b f 1.88 GeV−2

βP(t) = BPebPt (1 + d1t + d2t
2 + d3t

3 + d4t
4),

β f (t) = B f eb f t . (27)

Parameters can be found in Tables 1 and 2.

Vpp(s, q
2) =

∫
d2b eiqb

√
1 + 2iT el

pp(s, b)

=
∫

d2b eiqbe−Ωel
pp(s,b)

= (2π)2δ2 (q) + 2π T̄pp(s, q
2), (28)

T̄pp(s, q
2) =

∫ ∞
0

b db J0

(
b
√

−q2
) [

e−Ωel
pp(s,b) − 1

]
(29)

Sπp(s, q
2) =

∫
d2b eiqb

(
1 + 2iT el

πp(s, b)
)

=
∫

d2b eiqbe−2Ωel
πp(s,b)

= (2π)2δ2 (q) + 2π T̄πp(s, q
2), (30)

T̄πp(s, q
2) =

∫ ∞
0

b db J0

(
b
√

−q2
) [

e−2Ωel
πp(s,b) − 1

]
(31)

Here we take Sπp(s, t) = Sπ+ p(s, t) = Sπ− p(s, t) and

T el
π+ p(s, t) = T el

π− p(s, t) = −4iπsT̄πp(s, t) (32)

Approach (26) describes the data on pion–proton scatter-
ing better even at low energies, which is why we use it instead
of the one presented in [32].

Functions T̄pp and T̄πp are convenient for numerical cal-
culations, since its oscillations are not so strong.

Appendix C: Primary amplitudes for CEDP and ERVM
resonance production

Here is a short review of the formulae, which can be obtained
from Refs. [14–17,34,39].

Let us introduce the general diffractive factor

FP(t, ξ) = gppP(t)2
(

i + tan
π(αP(t) − 1)

2
)

)
πα′

P
(t)

ξαP (t)
. (33)

f0 production

For f0 production we have the following expression

Mpp→p{ f0→π+π−}p
0

= −FP(t1, ξ1)FP(t2, ξ2) gPP f0(t1, t2, M
2
c )

×
g f0ππ

(
F(M2

c ,m2
f0
)
)2

FM (t1)FM (t2)

(M2
c − m2

f0
) + B f0(M

2
c ,m2

f0
)

, (34)

where (Mc > 2mπ )

B f0(M
2
c ,m2

f0)

= i Γ f0

(
F(M2

c )
)2

[
1 − 4m2

π/M2
c

1 − 4m2
π/m2

f0

]1/2

(35)

F(M2
c ,m2

f ) = FPP f (M2
c ,m2

f ) = F f ππ (M2
c ,m2

f )

= exp

(−(M2
c − m2

f )
2

Λ4
f

)
, Λ f ∼ 1 GeV, (36)

FM (t) = 1/(1 − t/m2
0), m

2
0 = 0.5 GeV2 (37)

F(M2
c ,m2

f ) and FM (t) are off-shell phenomenological form
factors introduced in [14–17] to better describe the data. Here
we fix the mass and width of f0(500) and f0(980) mesons
as in [15]

m f0(500) = 0.6 GeV, Γ f0(500) = 0.5 GeV, (38)

m f0(980) = 0.98 GeV, Γ f0(980) = 0.07 GeV, (39)

and also their couplings to pions

g f0(500)ππ = 3.37, g f0(500)ππ = 1.55, (40)

also assuming Γ ( f0 → ππ)/Γ f0 = 100%.
In this work, coupling of pomerons to mesons gPP f0 is

the constant and can be extracted from the experimental data
as a free parameter. In [39] this coupling is proposed to be
0.64 GeV for all mesons related to the “glueball state”. Here,
due to simplifications, these couplings are of the same order
but may differ by factor 2 ÷ 3 (see the main text).

f2 production

For f2(1270) production we have to modify the expres-
sion (34) due to the tensor nature of this meson. Finally,
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we have

Mpp→p{ f2→π+π−}p
0

= FP(t1, ξ1)FP(t2, ξ2) gPP f2

×
(g f2ππ/2)

(
F(M2

c ,m2
f2
)
)2

FM (t1)FM (t2)

(M2
c − m2

f2
) + B f2(M

2
c ,m2

f2
)

P2, (41)

where

P2 = (Δ1Δ34)
2 − (M2

c − 4m2
π )λ(M2

c , t1, t2)

12M2
c

(42)

is the additional function which can be obtained by contrac-
tion of the pomeron–pomeron–meson vertex with the pion–
pion–meson one, Δ1 = pa − p1, Δ34 = p3 − p4.

B f2(M
2
c ,m2

f2)

= i Γ f2

(
F(M2

c ,m2
f2)

)2
[

1 − 4m2
π/M2

c

1 − 4m2
π/m2

f0

]5/2
M4

c

m4
f2

(43)

Fixed parameters for f2(1270) are

m f2(1270) = 1.275 GeV, Γ f2(1270) = 0.1851 GeV,

g f2(1270)ππ = 9.26 GeV−1, Λ f2 = 1 GeV. (44)

After the data analysis, the “scalar” coupling of the f2(1270)

to the pomeron is found to be of the order of 2. Since the
pomeron does not behave as a simple scalar, the structure of
the coupling is, of course, more complicated. In the “exact”
model as in [14], the pomeron can be a coherent sum of
different spins and can have several couplings to f mesons.
But in real life we have to obtain the vertex for any spin J
and then make a continuation to the complex plane in J , such
as in classical Regge theory. This is the conceptual question
which was partially discussed in [3], but we postpone it to
our further theoretical works. In the present work we use
the simplified model for the f2 production. This is why the
extracted value of the “constant” coupling could differ from
the real set of tensor couplings.

ρ0 production

For ρ0 the situation is somewhat complicated, since we have
to take into account vector dominance and also ρ−ω mixing.
After all contractions, the primary amplitude looks like

Mpp→p{ρ0→π+π−}p
0 = i T el

ρ0 p(s2, t2)
Cρ0
T (t1)Pρ

|t1|
× (gρ0ππ/2)Fρ(M2

c )Fρ(t1)

(M2
c − m2

ρ0
) + Bρ0(M

2
c ,m2

ρ0
)

+ (1 ↔ 2), (45)

s2 = (p3 + p4 + p2)
2 = (pa − p1 + pb)

2,

s1 = (p3 + p4 + p1)
2 = (pb − p2 + pa)

2.

Amplitude T el
ρ0 p(s, t) can be obtained by the use of the for-

mulae similar to (24)–(26) with

δelρ0 p(s, t) � gppP(t)gρρP(t)

(
i + tan

π(αP(t) − 1)

2
)

)

×πα′
P
(t)

(
s

2s0

)αP(t)

,

gρρP(t) = gρρP(0) = 7.07 GeV (see [34]); (46)

Cρ0
T (t) =

√
3Γρ→e+e−

αemρ

m2
ρ

m2
ρ − t

, (47)

Fρ(p2) = (1 + p2(p2 − m2
ρ)/Λ4

ρ)−nρ , (48)

F1(t) = 1 − κ t/(4m2
p)

1 − t/(4m2
p)

(1 − t/m2
D)−2, (49)

κ = μp/μN = 2.7928, m2
D = 0.71 GeV2, (50)

Γρ→e+e− = 7.04 · 10−6 GeV, (51)

Pρ � 2
√

4παeF1(t)
(
Δ∗

34p
∗
a

)
, (52)

Pρ is the factor that is equal to the “scalar proton–proton–
photon vertex” contracted with the vector of the ρππ vertex,
and the scalar product of transverse vectors

(
Δ∗

34p
∗
a

)
in the

ρ meson rest frame with

Δ∗
1 = {(M2

c + t1 − t2)/(2Mc), 0, 0, λ1/2/(2Mc)}
can be expressed in terms of four vectors in the central mass
frame of colliding protons:(

Δ∗
34p

∗
a

) = −Δ34 pa − Δ∗
34,z p

∗
a,z,

Δ∗
34,z = −Δ1Δ34

2Mc

λ1/2 ,

p∗
a,z =

(
pa pc(M2

c + t1 − t2)

2M2
c

− t1
2

)
2Mc

λ1/2 ,

λ ≡ λ(M2
c , t1, t2), pc = p3 + p4. (53)

Other functions and parameters are

Bρ0 (M
2
c ,m2

ρ0
)

= i Γρ0

(Fρ(M2
c )

)2

[
1 − 4m2

π/M2
c

1 − 4m2
π/m2

ρ0

]3/2
M2

c

m2
ρ0

(54)

mρ0 = 0.7737 GeV, Γρ0 = 0.1462 GeV,

gρ0ππ = 11.51 GeV, Λρ = 1 GeV, nρ = 0.5. (55)

Here we take for all off-shell propagators of resonances the
simple Breit–Wigner form, but we can use more complicated
expressions, which can be found, for example, in [14–17].

MU ({p})
=

∫ ∫
d2q

(2π)2

d2q′

(2π)2

d2q1

(2π)2

d2q2

(2π)2 Vpp(s, q
2)Vpp(s

′, q ′2)

×
[[
Sh̄ p(s̃14, q

2
1 )MC

0 ({ p̃}) Shp(s̃23, q
2
2 ) + (3 ↔ 4)

]
+ MR

0 ({ p̃})
]

≈
∫ ∫

d2q
(2π)2

d2q1

(2π)2

d2q2

(2π)2 Spp(s, q
2)
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×
[[
Sh̄ p(s̃14, q

2
1 )MC

0 ({ p̃}) Shp(s̃23, q
2
2 ) + (3 ↔ 4)

]
+MR

0 ({ p̃})
]
q ′→0

MC
0 ({p}) = T el

hp(s13, t1)Ph(ŝ, t̂)
[
F̂h

(
t̂
)]2

T el
h̄ p

(s24, t2),

where functions are defined in (28)–(32) of Appendix B, and
sets of vectors are

{p} ≡ {pa, pb, p1, p2, p3, p4}
{ p̃} ≡ {pa − q, pb + q; p1 + q ′ + q1,

p2 − q ′ + q2, p3 − q2, p4 − q1},
and

s̃14 = (
p1 + p4 + q ′)2

, s̃23 = (
p2 + p3 − q ′)2

, (56)

si j = (
pi + p j

)2
, t1,2 = (

pa,b − p1,2
)2

, (57)

ŝ = (p3 + p4)
2 , t̂ = (pa − p1 − p3)

2 (58)

Sh1h2 (s, q
2) =

∫
d2b eiqb

(
1 + 2iT el

h1h2
(s, b)

)

=
∫

d2b eiqbe−2Ωel
h1h2

(s,b)=(2π)2δ2 (q)+2π T̄h1h2 (s, q
2),

T̄h1h2 (s, q
2) =

∫ ∞

0
b db J0

(
b
√

−q2

) [
e−2Ωel

h1h2
(s,b) − 1

]

T el
h1h2

(s, b) = e−2Ωel
h1h2

(s,b) − 1

2i
,

Ωel
h1h2

(s, b) = −i δelh1h2
(s, b),

δelh1h2
(s, b) = 1

16πs

∫ ∞

0
d(−t)J0(b

√−t)δelh1h2
(s, t)

F̂h = e(t̂−m2
h )/Λ2

h ,

MC,π
0 ({p}) = T el

π+ p(s13, t1)Pπ (ŝ, t̂)
[
F̂π

(
t̂
)]2

T el
π− p(s24, t2),

Pπ (ŝ, t̂) =
(

ctg
παπ (t̂)

2
− i

)
· πα′

π

2�(1 + απ (t̂))

(
ŝ

s0

)απ (t̂)

,

απ (t̂) = 0.7(t̂ − m2
π )

MC,p
0 ({p}) = T el

pp(s13, t1)Pp(ŝ, t̂)
[
F̂p

(
t̂
)]2

T el
p̄ p(s24, t2),

Pp(t̂) =
(

ctg
παp(t̂)

2
− i

)
· πα′

p

2�(1 + αp(t̂))

(
ŝ

s0

)αp(t̂)

,

αp(t̂) � (t̂ − m2
p) (for the “scalar” proton)

Vh1h2 (s, q
2) =

∫
d2b eiqb

√
1 + 2iT el

h1h2
(s, b)

=
∫

d2b eiqbe−Ωel
h1h2

(s,b) = (2π)2δ2 (q) + 2π T̃h1h2

T̃h1h2 =
∫ ∞

0
b db J0

(
b
√

−q2

) [
e−Ωel

h1h2
(s,b) − 1

]

References

1. R. Ryutin, Exclusive double diffractive events: general framework
and prospects. Eur. Phys. J. C. 73, 2443 (2013)

2. R. Ryutin, Visualizations of exclusive central diffraction. Eur. Phys.
J. C. 74, 3162 (2014)

3. R. Ryutin, Central exclusive diffractive production of two-pion
continuum at hadron colliders. Eur. Phys. J. C 79, 981 (2019)

4. V.A. Petrov, R.A. Ryutin, Single and double diffractive dissociation
and the problem of extraction of the proton-Pomeron cross-section.
Int. J. Mod. Phys. A 31, 1650049 (2016)

5. J.D. Bjorken, Rapidity gaps and jets as a new-physics signature in
very-high-energy hadron-hadron collisions. Phys. Rev. D 47, 101
(1993)

6. F. Abe et al. (CDF Collaboration), Observation of rapidity gaps in
p̄ p collisions at 1.8 TeV. Phys. Rev. Lett. 74, 855 (1995)

7. M.G. Albrow, A. Rostovtsev, Searching for the Higgs at hadron
colliders using the missing mass method, FERMILAB-PUB-00-
173 (2000). arXiv:hep-ph/0009336

8. L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin, Central exclu-
sive production and the Durham model. Int. J. Mod. Phys. A 29,
1446004 (2014)

9. L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin, W.J. Stirling, Cen-
tral exclusive production within the Durham model: a review. Int.
J. Mod. Phys. A 29, 1430031 (2014)

10. L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin, Modeling exclusive
meson pair production at hadron colliders. Eur. Phys. J. C 74, 2848
(2014)

11. P. Lebiedowicz, O. Nachtmann, A. Szczurek, Tensor pomeron, vec-
tor odderon and diffractive production of meson and baryon pairs
in proton–proton collisions. EPJ Web Conf. 206, 06005 (2019)

12. P. Lebiedowicz, O. Nachtmann, A. Szczurek, Exclusive diffrac-
tive production of π+π− continuum and resonances within tensor
pomeron approach. EPJ Web Conf. 130, 05011 (2016)

13. P. Lebiedowicz, O. Nachtmann, A. Szczurek, Central exclusive
diffractive production of K+K−K+K− via the intermediate φφ

state in proton–proton collisions. Phys. Rev. D 99, 094034 (2019)
14. C. Ewerz, M. Maniatis, O. Nachtmann, A model for soft high-

energy scattering: tensor pomeron and vector odderon. Ann. Phys.
342, 31 (2014). arXiv:1309.3478 [hep-ph]

15. P. Lebiedowicz, O. Nachtmann, A. Szczurek, Central exclusive
diffractive production of π+π− continuum, scalar and tensor res-
onances in pp and p p̄ scattering within tensor pomeron approach.
Phys. Rev. D 93, 054015 (2016). arXiv:1601.04537 [hep-ph]

16. P. Lebiedowicz, O. Nachtmann, A. Szczurek, Extracting the
pomeron–pomeron- f2(1270) coupling in the pp → ppπ+π−
reaction through angular distributions of the pions. Phys. Rev. D
101, 034008 (2020). arXiv:1901.07788 [hep-ph]

17. P. Lebiedowicz, O. Nachtmann, A. Szczurek, ρ0 and Drell-Soding
contributions to central exclusive production of π+π− pairs in
proton–proton collisions at high energies. Phys. Rev. D 91, 074023
(2015). arXiv:1412.3677 [hep-ph]

18. P. Lebiedowicz, A. Szczurek, Revised model of absorption correc-
tions for the pp → pπ+π− p process. Phys. Rev. D 92, 054001
(2015)

19. R. Waldi, K.R. Schubert, K. Winter, Search for glueballs in a
pomeron pomeron scattering experiment. Z. Phys. C 18, 301 (1983)

20. A. Breakstone et al., (ABCDHW Collaboration), The reaction
pomeron–pomeron → π+π− and an unusual production mech-
anism for the f2(1270). Z. Phys. C 48, 569 (1990)

21. L. Adamczyk, W. Guryn, J. Turnau, Central exclusive production
at RHIC. Int. J. Mod. Phys. A 29, 1446010 (2014)

22. R. Sikora, Central Exclusive Production of meson pairs in proton–
proton collisions at

√
s = 200 GeV in the STAR experiment at

RHIC, talk at Low x Meeting, 1-5 September 2015, Sandomierz,
Poland

23. J. Adam et al. (The STAR collaboration), Measurement of the cen-
tral exclusive production of charged particle pairs in proton–proton
collisions at

√
s = 200 GeV with the STAR detector at RHIC.

JHEP 07, 178 (2020). arXiv:2004.11078 [hep-ex]. https://www.
hepdata.net/record/ins1792394

24. W. Guryn, From elastic scattering to central exclusive production:
physics with forward protons at RHIC. Acta Phys. Pol. B 52, 217
(2021). arXiv:2104.15041 [nucl-ex]

123

http://arxiv.org/abs/hep-ph/0009336
http://arxiv.org/abs/1309.3478
http://arxiv.org/abs/1601.04537
http://arxiv.org/abs/1901.07788
http://arxiv.org/abs/1412.3677
http://arxiv.org/abs/2004.11078
https://www.hepdata.net/record/ins1792394
https://www.hepdata.net/record/ins1792394
http://arxiv.org/abs/2104.15041


172 Page 14 of 14 Eur. Phys. J. C (2023) 83 :172

25. R. Sikora (for the STAR Collaboration), Central exclusive produc-
tion of charged particle pairs in proton–proton collisions at

√
s =

200 GeV with the STAR detector at RHIC. PoS ICHEP2020, 501
(2021). arXiv:2011.14400 [hep-ex]

26. T. Truhlar (for the STAR Collaboration), Study of the central exclu-
sive production of π+π−, K+K− and p p̄ pairs in proton-proton
collisions at sqrts = 510 GeV with the STAR detector at RHIC.
arXiv:2012.06295 [hep-ex]

27. T.A. Aaltonen et al. (CDF Collaboration), Measurement of central
exclusive pi+ pi- production in p pbar collisions at

√
s = 0.9 and

1.96 TeV at CDF. Phys. Rev. D 91, 091101 (2015)
28. M. Albrow, J. Lewis, M. Zurek, A. Swiech, D. Lontkovskyi,

I. Makarenko, J.S. Wilson, the public note called Measurement of
Central Exclusive Hadron Pair Production in CDF. http://www-cdf.
fnal.gov/physics/new/qcd/GXG_14/webpage/

29. CMS Collaboration, Measurement of exclusive π+π− production
in proton–proton collisions at

√
s = 7 TeV, CMS-PAS-FSQ-12-

004
30. K. Osterberg, Potential of central exclusive production studies in

high β∗ runs at the LHC with CMS-TOTEM. Int. J. Mod. Phys. A
29, 1446019 (2014)

31. A.M. Sirunyan et al., Study of central exclusive π+π− production
in proton–proton collisions at

√
s = 5.02 and 13 TeV. Eur. Phys.

J. C 80, 718 (2020). https://www.hepdata.net/record/ins1784063

32. A.A. Godizov, Effective transverse radius of nucleon in high-
energy elastic diffractive scattering. Eur. Phys. J. C 75, 224 (2015)

33. A.A. Godizov, Asymptotic properties of Regge trajectories and
elastic pseudoscalar-meson scattering on nucleons at high energies.
Yad. Fiz. 71, 1822 (2008)

34. A.A. Godizov, The ground state of the Pomeron and its decays
to light mesons and photons. Eur. Phys. J. C 76, 361 (2016).
arXiv:1604.01689 [hep-ph]

35. J.R. Pelaez, A. Rodas, J. Ruiz De Elvira, Global parameterization
of ππ scattering up to 2 GeV, e-Print: arXiv:1907.13162 [hep-ph]

36. A.A. Godizov, Current stage of understanding and description of
hadronic elastic diffraction. AIP Conf. Proc. 1523, 145 (2013)

37. V.A. Petrov, R.A. Ryutin, A.E. Sobol, J.-P. Guillaud, Azimuthal
angular distributions in EDDE as spin-parity analyser and glueball
filter for LHC. JHEP 0506, 007 (2005)

38. V.A. Petrov, High-energy implications of extended unitarity, IFVE-
95-96, IHEP-95-96, talk given at Blois Conference: 20-24 Jun
1995, Blois, France

39. A.A. Godizov, High-energy central exclusive production of the
lightest vacuum resonance related to the soft Pomeron. Phys. Lett.
B 787, 188 (2018)

40. R.A. Ryutin, ExDiff Monte Carlo generator for Exclusive Diffrac-
tion. Version 2.0. Physics and manual. arXiv:1805.08591 [hep-ph]

123

http://arxiv.org/abs/2011.14400
http://arxiv.org/abs/2012.06295
http://www-cdf.fnal.gov/physics/new/qcd/GXG_14/webpage/
http://www-cdf.fnal.gov/physics/new/qcd/GXG_14/webpage/
https://www.hepdata.net/record/ins1784063
http://arxiv.org/abs/1604.01689
http://arxiv.org/abs/1907.13162
http://arxiv.org/abs/1805.08591

	Central exclusive diffractive production of two pions from continuum and resonance decay in the Regge-eikonal model
	Abstract 
	1 Introduction
	2 General framework for calculations of LM CEDP
	2.1 Components of the framework
	2.2 Continuum di-pion production
	2.3 CEDP and EVMP of low mass resonances.
	2.4 Nuances of calculations

	3 Data from hadron colliders versus results of calculations
	3.1 STAR collaboration data versus model cases
	3.2 ISR and CDF data versus the model curves
	3.3 CMS data and predictions

	Summary and conclusions
	Acknowledgements
	Appendix A: Kinematics of LM CEDP
	Appendix B: Regge-eikonal model for elastic proton–proton and pion–proton scattering
	Appendix C: Primary amplitudes for CEDP and ERVM resonance production
	 f0 production
	 f2 production
	 ρ0 production

	References




