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Abstract We quantize the solution to the Belinski–
Khalatnikov–Lifshitz (BKL) scenario using the integral
quantization method. Quantization smears the gravitational
singularity, preventing its localization in the configuration
space. The latter is defined in terms of spatial and tempo-
ral coordinates, which are treated on the same footing that
enables the respective covariance of general relativity. The
relative quantum perturbations grow as the system evolves
towards the gravitational singularity. The quantum random-
ness amplifies the deterministic classical chaos of the BKL
scenario. Additionally, our results suggest that the generic
singularity of general relativity can be avoided at a quantum
level, giving support to the expectation that quantum gravity
has a good chance of being a regular theory.
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1 Introduction

The Belinski–Khalatnikov–Lifshitz (BKL) conjecture states
that general relativity includes a solution with a generic grav-
itational singularity [1,2]. The evolution towards the BKL
singularity, the so-called BKL scenario, consists of the deter-
ministic dynamics turning into a stochastic process near the
generic singularity. There are at least two fundamental ques-
tions to be addressed in that context: What is the fate of
the BKL chaos at the quantum level? Can the singularity be
avoided in the corresponding quantum theory?

The evolution process presented in [1,2] is complicated
and difficult to map into quantum evolution. There exists a
well-defined and comparatively simple model of the BKL
scenario [3–5] that can be used in the derivation of the BKL
conjecture [6]. The model was obtained from the general
model of the Bianchi IX spacetime for perfect fluid. The
equation of state of that fluid reads p = kε, 0 ≤ k < 1,

where p and ε denote the pressure and energy density of the
fluid, respectively. The case k = 1 is excluded as it does not
lead to the oscillatory dynamics specific to the Bianchi IX
model. The massive BKL scenario model was obtained from
that general Bianchi IX model by making the assumption
(see Eq. (3)) that in the dynamics near the singularity, the
anisotropy of space grows without bound so that each of the
so-called directional scale factors oscillates, but never crosses
the other, and evolves towards vanishing, i.e., singularity. The
resulting dynamics, specified in the next section, is differ-
ent from the commonly known mixmaster dynamics [7,8]
in which one can divide the oscillatory evolution of the sys-
tem into eras, each consisting of Kasner’s epochs, evolving
towards the singularity. The mixmaster model is the vacuum
Bianchi IX model and can serve to derive the BKL conjecture
as well [6], so we call it the vacuum model of the BKL sce-
nario. We recently compared the dynamics of the massive
and vacuum models within the dynamical systems method
[9]. The dynamics of the massive BKL model depends on
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the matter field implicitly via the directional scale factors
which are effective ones; see Eqs. (2.6), (2.7), and (2.24) in
[3]. Also, due to the dependence of the general Bianchi IX
model on matter components, it was possible to obtain the
asymptotic form (near the singularity) of the general dynam-
ics [3], which is mathematically simple enough to be solved
analytically [10]. The dynamics of the vacuum Bianchi IX
model is the same far away and near the singularity. It is so
complex that the model is non-integrable [11]. Therefore, the
massive BKL model is both simpler for analysis than the vac-
uum BKL model and better suited to describe the dynamics
in the neighborhood of the cosmological singularity.

Recently, we verified numerically that the classical dynam-
ics underlying the present paper lead to the gravitational sin-
gularity [12,13], and it is generically unstable, turning into a
chaotic process near the singularity [10]. These features are
consistent with the original BKL scenario [1,2,5].

As far as we are aware, there are no results available con-
cerning the issue of the construction of quantum theory cor-
responding directly to the original BKL scenario [1,2]. The
existing results concern the Hamiltonian framework in terms
of the Ashtekar variables, which is supposed to be convenient
for addressing the BKL scenario problem [14,15]. We have
used the homogeneous sector of that formalism to consider
the possible existence of classical and quantum spikes within
that sector [16,17]. A recent article on spacelike singularities
of general relativity promises to readdress the original BKL
singularity problem within loop quantum gravity [18]. We
do not exclude the case of joining that development in the
future, but at present we rather prefer to follow our program.

Quantization of the dynamics presented in [3] can be used
in examining the fate of the corresponding quantum dynam-
ics. In fact, we have already quantized that model, with the
conclusion that quantization of the dynamics leads to avoid-
ing a gravitational singularity [19,20]. In these papers, we
quantized Hamilton’s dynamics derived in [21]. However,
since quantization is known to be an ambiguous procedure,
we have decided to examine the robustness of these results by
making use of a completely different quantization method,
which is one of the goals of the present paper. That method,
applied recently to the quantization of the Schwarzschild
spacetime [22], includes quantization of the temporal and
spatial variables on the same footing. The rationale for such
dealing is that the distinction between time and space vari-
ables violates the general covariance of arbitrary transforma-
tions of temporal and spatial coordinates.

The results of the present paper in the context of resolving
the cosmological singularity are similar to the results of [22]
addressing the issue of a singularity of an isolated object. In
both cases, quantization smears the singularity, preventing
its localization in configuration space. The issue of resolving
the singularity within our two quite different approaches will
be further discussed in the last section.

The new phenomenon we deal with in the present paper
is the fate of classical chaos at the quantum level. Our anal-
ysis shows that the quantum randomness turns deterministic
classical chaos into stochastic quantum chaos.

The paper is organized as follows: In Sect. 2 we recall
the main results of [10] so that our paper is self-contained.
Section 3 presents the main aspects of the coherent states
quantization method adopted for our gravitational system. In
Sect. 4 we quantize the solution to the BKL scenario. Stochas-
tic aspects of quantum evolution are presented in Sect. 5.
We conclude in the last section. The Appendix presents the
essence of the coherent states quantization.

In the following, we choose G = c = 1 = h̄ except where
otherwise noted.

2 Solution to the BKL scenario

So that the paper will be self-contained, we recall in this
section the main results of Ref. [10] to be used later.

The massive model of the BKL scenario is defined as [3,5]

d2 ln a

dt2 = b

a
− a2,

d2 ln b

dt2 = a2 − b

a
+ c

b
,

d2 ln c

dt2 = a2 − c

b
, (1)

subject to the constraint

d ln a

dt

d ln b

dt
+ d ln a

dt

d ln c

dt
+ d ln b

dt

d ln c

dt

= a2 + b

a
+ c

b
, (2)

where a = a(t) > 0, b = b(t) > 0 and c = c(t) > 0
are the so-called directional scale factors, while t ∈ R is a
monotonic function of proper time.

Equations (1) and (2) have been derived from the gen-
eral dynamics of the Bianchi IX model under the condition
that near the singularity, the following strong inequalities are
satisfied [3]

a � b � c > 0. (3)

It was found in [10] that the analytical solutions to Eqs. (1)
and (2), for t > t0, read

a(t) = 3

t − t0
, b(t) = 30

(t − t0)3 , c(t) = 120

(t − t0)5
, (4)

where t − t0 �= 0, and t0 is an arbitrary real number. Thus,
the solutions are parameterized by the number t0 ∈ R.

The solution (4) corresponds, for instance, in the case t >

t0 and t0 < 0 to the following choice of the initial data
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a(0) = −3 t−1
0 , ȧ(0) = −3 t−2

0 ,

b(0) = −30 t−3
0 , ḃ(0) = −90 t−4

0 ,

c(0) = −120 t−5
0 , ċ(0) = −600 t−6

0 . (5)

The stability analyses carried out in [10] showed that the
solution (4) is unstable against small perturbations. More
precisely, substituting the following functions

a(t) = 3(t − t0)
−1 + εα(t), (6a)

b(t) = 30(t − t0)
−3 + εβ(t), (6b)

c(t) = 120(t − t0)
−5 + εγ (t), (6c)

into (1)–(2) leads, in the first order in the small parameter ε,
to the following solution of the resulting equations

α(t) = exp(−θ/2) [K1 cos(ω1θ + ϕ1)

+K2 cos(ω2θ + ϕ2)] + K3 exp(−2θ), (7a)

β(t) = exp(−5θ/2)
[(

4 + 6
√

6
)
K1 cos(ω1θ + ϕ1)

+
(

4 − 6
√

6
)
K2 cos(ω2θ + ϕ2)

]

+ 30K3 exp(−4θ), (7b)

γ (t) = − 4 exp(−9θ/2)
[(

26 + 9
√

6
)
K1 cos(ω1θ + ϕ1)

+
(

26 − 9
√

6
)
K2 cos(ω2θ + ϕ2)

]

+ 200K3 exp(−6θ), (7c)

where θ = ln(t − t0). The two frequencies read

ω1 = 1

2

√
95 − 24

√
6, ω2 = 1

2

√
95 + 24

√
6, (8)

where K1, K2, K3, ϕ1, and ϕ2 are constants.
The manifoldM defined by {K1, K2, K3, ϕ1, ϕ2} is a sub-

manifold of R5. The solution defined by (6) and (7) corre-
sponds to the choice of the set of the initial data N which
is a small neighborhood of the initial data (5). N is a sub-
manifold ofR5, as (5) defines five independent constants due
to the constraint (2). Therefore, it is clear that (7) presents
a generic solution, as the measures of both M and N are
nonzero. The exact solution (4) alone is of zero-measure in
the space of all possible solutions to Eqs. (1) and (2).

The relative perturbations α/a, β/b, and γ /c grow pro-
portionally as exp( 1

2θ). The multiplier 1/2 plays the role of a
Lyapunov exponent, describing the rate of their divergence.
Since it is positive, the evolution of the system towards the
gravitational singularity (θ → +∞) is chaotic. The transi-
tion into the chaos occurs if the evolution begins with initial
data which belong, for instance, to the neighborhood of the
conditions (5).

The original BKL scenario [1,2] is known to enter the
chaotic phase near the singularity. Its vacuum model, the

mixmaster universe, has been proved to include the chaotic
dynamics [23–27]. Its massive model [10] underlying the
present paper has never been examined in the context of
stochasticity. Finding that its dynamics is chaotic opens the
door for studies of that issue at the quantum level, which is
the main subject of our article. The main difference between
the two BKL models (in terms of physics) is that the latter is
more realistic near the singularity, as it effectively includes
some contribution from the matter field.

3 Affine coherent states quantization

We propose to quantize the classical BKL scenario by using
the integral quantization called affine coherent states quanti-
zation; see Appendix. We recently applied this approach in
the context of cosmology [19,20] and astrophysics [22,28].

In general relativity, time and position in space are treated
on the same level; however, in quantum mechanics, time is
not considered to be a quantum observable, but a parameter
enumerating events. In this paper, we treat time and posi-
tion on the same footing in the quantum description. They
are related to operators obtained by the affine coherent states
quantization. This idea requires us to introduce the notion of
an extended classical configuration space by including time
as an additional coordinate. The correspondence between the
classical time and position is determined by comparing their
classical values with expectation values of their quantum
counterparts.

In the following, we extend the method of quantization
used in [19,20,22]. In the present description of the BKL
scenario, the Hilbert space has to be extended to the carrier
space of an infinite-dimensional unitary irreducible repre-
sentation of the direct product of three affine groups with
additional constraints determining a model of physical time.
In this approach there is no distinction between kinematic
and dynamical Hilbert spaces; we construct the state space
of the system with time treated on the same footing as other
observables. In addition, we obtain quantum states evolv-
ing similarly to classical solutions. This is achieved using
the idea of the correspondence principle between quantum
mechanics and its classical approximation.

We begin by introducing two configuration spaces defined
as follows: the classical gravitational configuration space
TBK L

TBK L := {(t, a, b, c) : (t, a, b, c) ∈ R × R
3+}, (9)

where R+ = (0,+∞), and the affine configuration space T ,
defined as

T = {ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) : ξ ∈ (R × R+)

×(R × R+) × (R × R+)}, (10)
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where every pair (ξk, ξk+1), (k = 1, 3, 5), parameterizes the
affine group Aff(R).

The variables with even indices correspond to the scale
factors ξ2 = a, ξ4 = b, ξ6 = c. Because a, b, c > 0 and
ξ1, ξ3, ξ5 ∈ R, the configuration space T parameterizes the
simple product of three affine groups Aff(R) × Aff(R) ×
Aff(R) =: G to be used in the affine quantization.

As the observational data are parameterized by a single
time parameter, the variables ξ1, ξ3, ξ5 should be mapped
onto a single variable representing time.

The affine group Aff(R) is known to have two nontriv-
ial unitary irreducible representations in the Hilbert space
Hx := L2(R+, dν(x)), where dν(x) := dx/x . We choose
the one defined as follows (the second representation would
give exactly the same results):

U (ξk, ξk+1)�(x) = eiξk x�(ξk+1x), (11)

where k = 1, 3, 5, and 〈x |�〉 =: �(x) ∈ Hx . The action
(11) corresponds to the standard parameterization of the
affine group Aff(R) defined by the multiplication law

(ξk , ξk+1) · (ξ ′
k , ξ

′
k+1) := (ξk + ξk+1ξ ′

k , ξk+1ξ ′
k+1) ∈ Aff(R).

(12)

The left invariant measure on the group Aff(R) reads

dμ(ξk, ξk+1) := dξk
dξk+1

ξ2
k+1

, (13)

and the corresponding invariant integration over the affine
group is defined as
∫

Aff(R)

dμ(ξk, ξk+1) := 1

2π

∫ ∞

−∞
dξk

∫ ∞

0
dξk+1/ξ

2
k+1.

(14)

It is clear that the direct product of three affine groups G has
the unitary irreducible representation in the following Hilbert
space H = Hx1 ⊗ Hx2 ⊗ Hx3 = L2(R3+, dν(x1, x2, x3)),
where dν(x1, x2, x3) = dν(x1)dν(x2)dν(x3). This enables
us to define in H the continuous family of affine coherent
states 〈x1, x2, x3|ξ1, ξ2; ξ3, ξ4; ξ5, ξ6〉 := 〈x1|ξ1, ξ2〉〈x2|ξ3,

ξ4〉〈x3|ξ5, ξ6〉, as follows:

H 
 〈x1, x2, x3|ξ1, ξ2; ξ3, ξ4; ξ5, ξ6〉
:= U (ξ)�0(x1, x2, x3), (15)

whereU (ξ) := U (ξ1, ξ2)U (ξ3, ξ4)U (ξ5, ξ6), and |ξ1, ξ2; ξ3,

ξ4; ξ5, ξ6〉 := |ξ1, ξ2〉|ξ3, ξ4〉|ξ5, ξ6〉, and where

H 
 �0(x1, x2, x3) = �1(x1)�2(x2)�3(x3). (16)

In (16), the vectors �k(xk) ∈ L2(R+, dν(xk)), k = 1, 2, 3
are the so-called fiducial vectors. They are required to satisfy
the two conditions∫ ∞

0

dx

x
|�k(x)|2 = 1, (17)

and

Aφl :=
∫ ∞

0

dx

x2 |�k(x)|2 < ∞, (18)

where l = 1 for k = 1, l = 3 for k = 2, and l = 5 for
k = 3. The fiducial vectors are the free “parameters” of this
quantization scheme.

Finally, we have

U (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)�0(x1, x2, x3)

= U (ξ1, ξ2)U (ξ3, ξ4)U (ξ5, ξ6)�1(x1)�2(x2)�3(x3)

= ei(ξ1x1+ξ3x2+ξ5x3)�1(ξ2x1)�2(ξ4x2)�3(ξ6x3). (19)

The irreducibility of the representation leads to the resolution
of the unity in H as follows:

1

Aφ

∫

G
dμ(ξ)|ξ 〉〈ξ |

:=
⊗

k=1,3,5

1

Aφk

∫

Aff(R)

dμ(ξk, ξk+1)|ξk, ξk+1〉〈ξk, ξk+1|

= 1

A�1 A�3 A�5

∫

Aff(R)

dμ(ξ1, ξ2)|ξ1, ξ2〉〈ξ1, ξ2|

⊗
∫

Aff(R)

dμ(ξ3, ξ4)|ξ3, ξ4〉〈ξ3, ξ4|

⊗
∫

Aff(R)

dμ(ξ5, ξ6)|ξ5, ξ6〉〈ξ5, ξ6| = 11

⊗12 ⊗ 13 = 1, (20)

where dμ(ξ) = �k=1,3,5dμ(ξk, ξk+1).
The resolution (20) can be used for mapping a classical

observable f : T → R into an operator f̂ : H → H as
follows [19,20,22,29]

f̂ := 1

Aφ

∫

G
dμ(ξ)|ξ 〉 f (ξ)〈ξ |

= 1

A�1 A�3 A�5

∫

Aff(R)

dμ(ξ1, ξ2)

∫

Aff(R)

dμ(ξ3, ξ4)

×
∫

Aff(R)

dμ(ξ5, ξ6)|ξ1, ξ2; ξ3, ξ4; ξ5, ξ6〉
× f (ξ1, ξ2; ξ3, ξ4; ξ5, ξ6)〈ξ1, ξ2; ξ3, ξ4; ξ5, ξ6|, (21)

where A� := A�1 A�3 A�5 .
Here, we recall two standard characteristics of quantum

observables: (i) expectation values and variances of quan-
tum observables are the most important characteristics which
allow us to compare quantum and classical worlds, and (ii)
expectation values of quantum observables correspond to
classical values of measured quantities, and their variances
describe quantum smearing of these observables.

A general form of the expectation value of the observable
f̂ obtained from the classical function f , while the quantum
system is in the state |�〉, reads
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〈 f̂ ;�〉 := 〈�| f̂ |�〉 = 1

Aφ

∫

G
dμ(ξ) f (ξ)|〈ξ |�〉|2. (22)

The variance of an observable f̂ defined as var( f̂ ;�) :=
〈( f̂ −〈 f̂ ;�〉)2, �〉 is more difficult for calculations because
it requires 〈 f̂ 2;�〉, which involves an overlap between the
coherent states, and usually depends explicitly on the fiducial
vector:

〈( f̂ )2;�〉 := 〈�|( f̂ )2|�〉
= 1

Aφ

∫

G
dμ(ξ)

1

Aφ

∫

G
dμ(ξ ′)〈�|ξ 〉 f (ξ)

〈ξ |ξ ′〉 f (ξ ′)〈ξ ′|�〉. (23)

The variance var( f̂ ;�) can be rewritten as

var( f̂ ;�) = 〈 f̂ 2;�〉 − 〈 f̂ ;�〉2. (24)

The important quantum observables correspond to the vari-
ables of the configuration space (10). These elementary vari-
ables, ξk (k = 1, 2, . . . , 6), can be mapped into the quantum
operators as follows:

ξ̂k = 1

A�

∫

G
dμ(ξ)|ξ 〉ξk〈ξ |. (25)

For every k, the above equality (25) reduces to integration
over a single affine group. The other integrations give the unit
operators in two remaining spaces, Hxl , l �= k. For example,

ξ̂2 = 1

A�1

∫

Aff(R)

dμ(ξ1, ξ2)|ξ1, ξ2〉ξ2〈ξ1, ξ2| ⊗ 1x1 ⊗ 1x3 .

(26)

To deal with a single time variable at the quantum level,
one needs to choose a model of time in the configuration
space T , defined by (10). In general, it can be introduced
as either a real function or distribution, T : T → R. Its
quantization leads to the time operator T̂ . However, we can
impose the appropriate constraints to have the common time
variable for all three operators ξ̂1, ξ̂3 and ξ̂5. In this paper we
realize that option assuming that the only allowed quantum
states � of our BKL system are the states which satisfy the
condition

〈�|ξ̂1|�〉 = 〈�|ξ̂3|�〉 = 〈�|ξ̂5|�〉, (27)

which is consistent with the choice of the configuration space
in the form (9). It means that we require the same expectation
values for all three operators, which represent three “times”
related to appropriate quantum observables â = ξ̂2, b̂ = ξ̂4,
and ĉ = ξ̂6.

4 Quantization of the solution to the BKL scenario

The above quantization scheme can now be applied to the
solutions (7) of the BKL scenario1

a(t) = ã(t) + εα(t), b(t) = b̃(t) + εβ(t),

c(t) = c̃(t) + εγ (t), (28)

ascribing to them appropriate quantum states and the corre-
sponding operators.

In quantum mechanics, contrary to classical mechanics,
one needs two kinds of objects to describe the physical world.
These are quantum observables represented by either appro-
priate operators or operator-valued measures, and quantum
states being the vectors in a Hilbert space or the so-called den-
sity operators. In classical mechanics, the functions on either
configuration or phase space are at the same time states and
observables.

To quantize solutions of the BKL scenario, we already
have the elementary observables ξ̂k . However, we also have
to find the appropriate family of states related to the solutions
(28). This family of states has to reproduce the classical solu-
tions (28) by comparing them with expectation values of the
corresponding observables.

The classical solutions are represented by three time-
dependent functions. In the configuration space T , we have
six variable, where three of them, ξ1, ξ3, ξ5, represent the time
in the state space which satisfies the condition (27). As men-
tioned above, the classical observables should be related to
their quantum counterparts by the corresponding expectation
values. This idea leads directly to the conditions for a family
of states {�η(x1, x2, x3) = 〈x1, x2, x3|�η〉, η ∈ R

s} param-
eterized by a set of evolution parameters η = (η1, η2, . . . ηs)

enumerating the set of trial functions.
We require the states |�η〉 to satisfy the following condi-

tions [22]:

〈�η|ξ̂k |�η〉 = t, k = 1, 3, 5 (29)

〈�η|ξ̂2|�η〉 = a(t), (30)

〈�η|ξ̂4|�η〉 = b(t), (31)

〈�η|ξ̂6|�η〉 = c(t). (32)

Equation (29) represents the single time constraint (27).
The parameter η labels the family of states to be found, and
it should be a function of t , as the r.h.s. of (29)–(32) depends
on t . The solution of Eqs. (29)–(32) allows us to construct
the vector state dependent on classical time, |�η(t)〉 ∈ H, in
our Hilbert space.

In this way, we relate the quantum dynamics to the clas-
sical dynamics. Obviously, there may exist more than one
family of states satisfying the above equations of motion.

1 In what follows, we denote by ã, b̃ and c̃ the solution (4).
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In what follows, we determine the states |�η(t)〉 satisfying
the conditions (29)–(32). This will enable us to examine the
issue of the fate of the gravitational singularity and chaos of
the BKL scenario at the quantum level.

4.1 Evolving wave packets

In our paper, we consider two kinds of wave packets satis-
fying the conditions (29)–(32). The first kind are the affine
coherent states themselves. The second type is a set of modi-
fied “exponential” wave packets, which represent a dense set
of states in the Hilbert space H.

4.1.1 Coherent states and expectation values

One can verify that, based on the results of the recent paper
[22], the considered coherent states generated by a single
affine group satisfy the following equations:

〈ξk, ξk+1|ξ̂l |ξk, ξk+1〉 = ξl , where

l = k, k + 1; k = 1, 3, 5, (33)

where the operators ξ̂l are defined as

ξ̂l := 1

2π

1

A�k

∫

R

dξk

∫

R+

dξk+1

ξ2
k+1

|ξk, ξk+1〉ξl〈ξk, ξk+1|,
(34)

and where l = k, k + 1, k = 1, 3, 5.
The conditions (33) are the consistency conditions between

the affine group parameterization and the configuration space
of the quantized physical system [22].

This implies that the coherent states generated by the prod-
uct of three affine groups also satisfy the consistency condi-
tion

〈ξ |ξ̂l |ξ 〉 = 1

Aφ

∫

G
dμ(ξ ′)〈ξ |ξ ′〉ξ ′

l 〈ξ ′|ξ 〉 = ξl ,

where l = 1, 2, . . . , 6. (35)

The consistency conditions coincide with an idea that the
coherent state |ξ1, ξ2, ξ3, ξ4, ξ5, ξ6〉 represents a state local-
ized at the point {ξ1, ξ2, ξ3, ξ4, ξ5, ξ6} of the affine configu-
ration space and at the same time in the spacetime.

Therefore, the coherent states

|CSε; t〉 := |t, ã(t) + εα(t); t, b̃(t)
+εβ(t); t, c̃(t) + εγ (t)〉 (36)

satisfy the equations of motions (29)–(32). In such case, we
propose using a one-dimensional parameter η and we identify
it with the classical time t , i.e., the classical time is a label of
the evolving family of quantum states.

Realization of (36) as a wave packet constructed in the
space of square integrable functions L2(R3+, dν(x1, x2, x3))

reads

�CSε (t, x1, x2, x3) = 〈x1, x2, x3|CSε; t〉
= ei t (x1+x2+x3)�1(a(t)x1)

×�2(b(t)x2)�3(c(t)x3). (37)

Using Eq. (35) and the fact that the vector (36) factorizes

|CSε; t〉 = |t, ã(t) + εα(t)〉|t, b̃(t)
+εβ(t)〉|t, c̃(t) + εγ (t)〉, (38)

we can compute the expectation value of the volume operator
V̂ , where V := ξ2ξ4ξ6, as follows

〈CSε; t |V̂ |CSε; t〉 = (ã(t) + εα(t)) (b̃(t)

+εβ(t)) (c̃(t) + εγ (t)). (39)

4.1.2 The modified exponential packet and expectation
values

Let us consider the set of Gaussian distribution wave packets
(with a modified exponential part)

�n(x; τ, γ ) = Nxn exp

[
iτ x − γ 2x2

2

]
, N 2 = 2γ n

(n − 1)! ,
(40)

which according to [22] is dense in L2(R+, dν(x)).
The expectation values and variances of the operators ξ̂k

and ξ̂k+1 have the following values:

〈�n|ξ̂k |�n〉 = τ, k = 1, 3, 5, (41)

〈�n|ξ̂k+1|�n〉 = 1

A�

�
(
n − 1

2

)

(n − 1)! γ, (42)

var(ξ̂k;�n) = 4n − 3

4(n − 1)
γ 2, (43)

var(ξ̂k+1;�n) = 1

A2
�

(
1

n − 1
− �

(
n − 1

2

)2

(n − 1)!2
)

γ 2. (44)

In this case, the evolution parameter η consists of η1 = τ

and η2 = γ .
In the space L2(R3+, dν(x1, x2, x3)), we take the corre-

sponding wave packets in the form

�n1,n3,n5(x1, x2, x3; τ1, τ3, τ5, γ1, γ3, γ5)

= �n1(x1; τ1, γ1)�n3(x2; τ3, γ3)�n5(x3; τ5, γ5). (45)

To satisfy the properties (29)–(32) for the wave packets
�n1,n3,n5 , we choose the parameters τk and γk as follows:

τ1 = τ3 = τ5 = t, (46)

γk = A�k

(nk − 1)!
�

(
nk − 1

2

) · fk(t), k = 1, 3, 5, (47)

where

fk(t) =
⎧⎨
⎩
ã(t) + εα(t), k = 1
b̃(t) + εβ(t), k = 3
c̃(t) + εγ (t), k = 5.

(48)
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Using a similar technique as in the case of equation (39), we
can calculate the expectation value of the volume operator in
the state (45), and we obtain

〈�n1,n3,n5 |V̂ |�n1,n3,n5〉 = f1(t) f3(t) f5(t), (49)

which coincides with the result obtained with the coherent
states method (39).

It is clear that the expectation value of the volume operator
converges very fast to zero as t → ∞.

4.2 Variances in the Hilbert space H

The wave packets obtained above follow the classical solu-
tions. However, in quantum mechanics, the observables
which do not commute with time and position operators
fluctuate at every spacetime point. This smearing of quan-
tum observables is determined by the Heisenberg uncertainty
principle. Its most important ingredients are variances of the
corresponding observables. In the following we perform an
analysis of the variances of our elementary variables.

4.2.1 Using coherent states

The variances of the operators ξ̂k , ξ̂k+1, k = 1, 3, 5 in coher-
ent states (36) read

var(ξ̂k; |CSε; t〉) = 〈ξ̂2
k 〉0 fk(t)

2, (50)

var(ξ̂k+1; |CSε; t〉) =
(
〈ξ̂2

k+1〉0 − 1
)
fk(t)

2, (51)

where

〈ξ̂2
i 〉0 = 〈0, 1|ξ̂2

i |0, 1〉, i = 1, 2, . . . 6, (52)

and where 〈ξ̂2
i 〉0 is a constant which depends on the choice

of the fiducial vector.
The variance of the volume operator is found to be

var(V̂ ; |CSε; t〉)

=
⎡
⎣ ∏
k=2,4,6

〈ξ̂2
k 〉0 − 1

⎤
⎦ f1(t)

2 f3(t)
2 f5(t)

2. (53)

For more details concerning the r.h.s. of (52), see
Appendix D of [22].

4.2.2 Using exponential wave packet

The corresponding results for the wave packets (45) under
the conditions (46)–(47) read

var(ξ̂k;�n1,n3,n5) = Ak fk(t)
2, (54)

var(ξ̂k+1;�n1,n3,n5) = Bk fk(t)
2, (55)

where

Ak = A2
�k

(4nk − 3)(nk − 1)!(nk − 2)!
4�

(
nk − 1

2

)2 , (56)

Bk = (nk − 1)!(nk − 2)!
�

(
nk − 1

2

)2 − 1. (57)

The variance of the volume operator has the form

var(V̂ ;�n1,n3,n5)

=
⎡
⎣ ∏
k=2,4,6

(nk − 1)!(nk − 2)!
�

(
nk − 1

2

) − 1

⎤
⎦ f1(t)

2 f3(t)
2 f5(t)

2.

(58)

These results show that all positions of our system in time
and space are smeared owing to nonzero variances. It is an
important fact about the possibility of avoiding singularities
in this dynamics.

5 Stochastic aspects of quantum evolution

The results of recent paper [10] give strong support to the
expectation that near the generic gravitational singularity, the
evolution becomes chaotic. In what follows, we examine that
fundamental property of the BKL scenario at the quantum
level.

To enable a direct comparison with the results of [10], we
split the variances (55) into the contributions from unper-
turbed and perturbed states. We have

f2(t)
2 = (ã(t) + εα(t))2

= ã(t)2 + 2εã(t)α(t) + ε2α(t)2

� ã(t)2 + 2εã(t)α(t), (59)

f4(t)
2 = (b̃(t) + εβ(t))2

= b̃(t)2 + 2εb̃(t)β(t) + ε2β(t)2

� b̃(t)2 + 2εb̃(t)β(t), (60)

f6(t)
2 = (c̃(t) + εγ (t))2

= c̃(t)2 + 2εc̃(t)γ (t) + ε2γ (t)2

� c̃(t)2 + 2εc̃(t)γ (t). (61)

The corresponding dimensionless functions describing
relative quantum perturbations are defined as

κk := var(ξ̂k;�pert ) − var(ξ̂k;�unpert )

var(ξ̂k;�unpert )
, k = 2, 4, 6, (62)

where �pert and �unpert denote perturbed and unperturbed
wave packets, respectively.

The explicit form of (62), up to the first order in ε, reads

κa(t) := κ2(t) = 2εã(t)α(t)

ã(t)2 = 2ε
α(t)

ã(t)
, (63)
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Fig. 1 The t dependence of
quantum perturbation defined by
(63)–(65) for K1 = K2 = 0.01,
K3 = 0, φ1 = φ2 = 0, t0 < 0,
ε = 0.01. The plot presents the
parametric curve
{κa(t), κb(t), κc(t)}, where
t − t0 ∈ (0.01, 35)

Fig. 2 The t dependence of the expectation value of the operator ξ̂2
defined by (42), (47) for K1 = K2 = 0.01, K3 = 0, φ1 = φ2 = 0,
any t0 < 0, n1 = 3. The axis of t is in logarithmic scale. The left panel
corresponds to the unperturbed solution (ε = 0), and the right panel

corresponds to the perturbed solution (ε = 0.01). The blue area defines
the points for which the distance from the expected value is smaller
than

√
var(ξ2; �n) defined by (55) (the distance is counted along fixed

t line)

κb(t) := κ4(t) = 2εb̃(t)β(t)

b̃(t)2
= 2ε

β(t)

b̃(t)
, (64)

κc(t) := κ6(t) = 2εc̃(t)γ (t)

c̃(t)2 = 2ε
γ (t)

c̃(t)
. (65)

It is clear that the relative perturbations (63)–(65) are the
same for the coherent states and the exponential wave pack-
ets.

Figure 1 presents the parametric curve visualizing the rel-
ative quantum perturbations. The time dependence of the
expectation values of the ξ̂2 operator and corresponding vari-
ances of unperturbed and perturbed solutions are presented
in Fig. 2. The plots for ξ̂4 and ξ̂6 operators would look similar,
so we do not present them.

6 Conclusions

It has been shown [10] that the perturbed classical solution
to the dynamics of the massive model of the BKL scenario
exhibits chaotic behavior. Our results present the quantum
dynamics corresponding to that dynamics. Figure 1 shows
that the relative quantum perturbations grow as the system
evolves towards the singularity, which is consistent with the
corresponding classical evolution; see Fig. 2 of [10]. Since
our quantum and classical perturbations have quite simi-
lar time evolutions, we conclude that quantization does not
destroy classical chaos. In fact, the quantum chaos corre-
sponds to the classical chaos in the lowest-order approxima-
tion. Nonlinearity of classical dynamics creates deterministic
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chaos. Non-vanishing variances of observables of the corre-
sponding quantum dynamics lead to stochastic chaos.

To show that behavior, we have constructed the wave pack-
ets for which expectation values of elementary observables
follow the corresponding classical ones. This choice of quan-
tum states leads to the scenario in which calculated expec-
tation values of quantum directional scale factors evolve to
vanishing similarly as their classical counterparts. However,
quantum states do not represent sharp properties of a physi-
cal system. Expectation values are smeared quantities. That
smearing is represented by quantum variance.

More precisely, the variance is a measure of the stochastic
deviation from an expectation value of a given operator. A
quantum system is in an eigenstate of an operator if and only
if the variance of this operator in that state equals zero (see
[22] for more details). The calculated variances depicted in
Fig. 2 are always nonzero, which means that the probability
of hitting the gravitational singularity is equal to zero. The
nonzero variance removes the singularity from considered
quantum evolution.

The quantum randomness amplifies the deterministic clas-
sical chaos. This supports the hypothesis that in the region
corresponding to the neighborhood of the classical singu-
larity, the dynamics, both classical and quantum, enter the
stochastic phase. The oscillatory behavior of the expectation
value of the quantum scale factor increases as t → ∞, which
is consistent with the classical BKL scenario [2,5].

The results of the present paper support our previous
results [19,20] concerning the fate of the BKL singularity
at the quantum level. One of the main differences between
the results of the papers [19,20] and the present article is that
in the former case, the evolution parameter (time) used at
the quantum level was purely mathematical and was taken
as being equal to the classical time by an assumption. In the
present paper, the quantum time is established by the require-
ment that the temporal and spatial variables should be treated
on the same footing at the quantum level, which supports the
covariance of arbitrary transformations of these variables in
general relativity. Another important difference is the quite
different implementation of the dynamics at both the classi-
cal and quantum levels. In the case of [19,20], it was based
on Hamilton’s dynamics and the corresponding Schrödinger
equation at the quantum level. Here, we quantize the solution
to the classical dynamics ascribing to it the corresponding
quantum system. Surprisingly, both approaches give physi-
cally similar results: avoidance of the classical singularity at
the quantum level. Additionally, the approach of the present
paper addresses the issue of the fate of the classical chaos
at the quantum level, which was beyond the scope of the
approach used in [19,20]. We have examined that issue by
calculating the variances of expectation values of quantum
observables. The variances are measures of stochasticity of
considered observables at the quantum level. In fact, the cal-

culations of variances were ignored in the recent quantiza-
tions of the vacuum BKL models [30–32].

The BKL conjecture states that general relativity includes
a generic gravitational singularity. Our results strongly sug-
gest that a generic singularity can be avoided at the quantum
level so that one can expect that a theory of quantum gravity
(to be constructed) has a good chance of being regular.
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Appendix A: Essence of integral quantization

If the configuration space � is a half-plane,

� := {(p, q) ∈ R × R+}, R+ := {x ∈ R | x > 0},
it can be identified with the affine group Aff(R) =: G.

The multiplication law can be defined as

(p1, q1) · (p2, q2) := (p1 + q1 p2, q1q2). (A1)

The unity of the group is (0, 1), and the inverse reads
(p, q)−1 = (−p/q, 1/q).

This group has two nontrivial unitary irreducible represen-
tations realized in the Hilbert space L2(R+, dν(x)) =: H,
where dν(x) = dx/x . We choose the one defined as follows
(the second representation would lead to exactly the same
results):

U (p, q)ψ(x) = ei pxψ(qx), ψ(x) ∈ H. (A2)

Equation (A2) enables us to define the continuous family
of affine coherent states (ACS), denoted by 〈x |p, q〉 ∈ H, as
follows:

〈x |p, q〉 = U (p, q)〈x |φ〉, (A3)
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where 〈x |φ〉 =: φ(x) ∈ H is the so-called fiducial vector,
which is a free parameter (to some extent) of the ACS quan-
tization scheme.

Equation (A3) can be interpreted as the correspondence

(p, q) −→ |p, q〉〈p, q| (A4)

between the point of the configuration space � and the quan-
tum projection operator acting in H.

The irreducibility of the representation leads (due to
Schur’s lemma) to the resolution of the unity in L2(R+,

dν(x)):

1

Aφ

∫

G
dμ(p, q)|p, q〉〈p, q| = 1, (A5)

where dμ(p, q) := dp dq/q2 is the left invariant measure
on G, and where Aφ := ∫ ∞

0 |φ(x)|2 dx
x2 < ∞ is a constant.

The use of (A5) enables quantization of almost any
observable f : � → R

f −→ f̂ = 1

Aφ

∫

G
dμ(p, q)|p, q〉 f (p, q)〈p, q|. (A6)

The operator f̂ : H → H is symmetric by construction. No
ordering ambiguity occurs (notorious problem of canonical
quantization). That operator is self-adjoint if it is bounded.

For more details concerning the integral quantization, see
[29] and references therein.
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