
Eur. Phys. J. C (2023) 83:144
https://doi.org/10.1140/epjc/s10052-023-11278-4

Regular Article - Theoretical Physics

A correspondence between the free and interacting field

Fei Gao1,a, Minghui Ding2,b , Yu-xin Liu1,3,4,c, Sebastian M. Schmidt2,5,d

1 Center for High Energy Physics, Peking University, Beijing 100871, China
2 Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
3 Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
4 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
5 RWTH Aachen University, III. Physikalisches Institut B, 52074 Aachen, Germany

Received: 11 August 2022 / Accepted: 30 January 2023 / Published online: 14 February 2023
© The Author(s) 2023

Abstract We discover a correspondence between the free
field and the interacting states. This correspondence is firstly
given from the fact that the free propagator can be con-
verted into a tower of propagators for massive states, when
expanded with the Hermite function basis. The equivalence
of propagators reveals that in this particular case the dual-
ity can naturally be regarded as the equivalence of one the-
ory on the plane wave basis to the other on the Hermite
function basis. More generally, the Hermite function basis
provides an alternative quantization process with the cre-
ation/annihilation operators that correspond directly to the
interacting fields. As an illustration, we apply this basis to
the 3 + 1 dimensional Yang–Mills theory, where the three-
dimensional space being reduced through the Hermite func-
tion basis, and an auxiliary parameter ω denotes for string
tension. At large ω limit, with then considering only the low-
est order Hermite function (Lowest Landau Level), the equiv-
alent action becomes the Banks–Fischler–Shenker–Susskind
(BFSS) matrix model. At smallω limit, the perturbative series
summed over all orders of Hermite function gives a massive
gluon propagator.

1 Introduction

There have been longstanding efforts for understanding the
phenomenon of duality. Generally speaking, duality is a way
of showing the correspondence between two apparently dif-
ferent theories. The aspects covered by duality are quite
numerous and include the target space duality [1–3], strong–
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weak duality [4–6] and fermion–boson duality [7–11], and
so on. Especially, a large class of duality has been known as
particle-vortex duality, which is the dual of the Higgs model
with the XY model [12,13] for bosonic system, and the dual
of the Dirac fermion with the composite one [14–18] for the
fermionic case. It was later realised that this type of duality
could generally be grouped into the fermion–boson dual-
ity by bosonisation [11,19]. The idea was to attach the flux
to fields that had been found to switch the statistical trans-
mutation of particles [20–23]. After attaching the flux, the
new state defined by the monopole operator which carries
a transmutation different from that of the fundamental field
emerges. The underlying concept of these dualities is the
relation between the fundamental field and the interacting
field associated with the flux.

Inspired by this, we propose a new approach based on
Hermite function basis, and discover a closely related corre-
spondence between the free field and the interacting states.
This correspondence shows the equivalence of two theories,
one of which can be achieved by expanding the other on the
Hermite function basis. The Hermite functions are the eigen-
functions of the harmonic oscillator in quantum mechan-
ics, forming a complete orthonormal basis. The formulae
of harmonic oscillators or Hermite functions is ubiquitous
and can be intuitively interpreted as the basis of interact-
ing field. Based on these observations, one may expand the
free field on account of the Hermite function basis being
orthonormal, and then the resulting theory is supposedly con-
verted into the interacting field picture. It becomes clear in the
canonical quantization procedure, whereas the field holds the
same canonical commutation relation, on the Hermite func-
tion basis, its respective creation/annihilation operators now
directly describe the harmonic type interacting particles. By
applying this, we study the correspondence for both fermion
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and boson fields. We hope this will shed some light on the
understanding of the phenomenon of duality.

At last, we illustrate the application of this approach on
the 3 + 1 dimensional Yang–Mills theory. After reducing
the three dimensional space with the Hermite function basis
and constraining to the lowest order Hermite function (Low-
est Landau Level), the resulting action becomes the action
of the Banks–Fischler–Shenker–Susskind (BFSS) Matrix
model derived through dimensional reduction [24–27]. Natu-
rally, this approach offers an exact way of dimensional reduc-
tion without requiring compactification of the space [28–30].
Besides, the perturbative computation through the resulting
theory is shown to be able to generates a dynamical mass
scale of gluon, which implies the relation between the non
perturbative property and the interacting states by the Her-
mite function basis.

The article is organised as follows. In Sect. 2 we start with
the equation of motion for fermion/boson, and derive the
respective propagator on the Hermite function basis. Then,
in Sect. 3 we lead up to an alternative quantization process
and observe a duality relation in the action of the field. In
Sect. 4 we illustrate the application on the 3 + 1 dimensional
Yang–Mills theory. In Sect. 5 we summarise our approach
and present our conclusions.

2 Equation of motion in the Hermite function basis

We start our discussion with the equation of motion for
fermions, i.e. the Dyson-Schwinger equation (DSE) for the
fermion propagator. The DSE for the propagator of the
fermion interacting with the gauge field is generally written
as:

(−∂aγz + i p̄/ + m0)S( p̄; a − b)

= δ(a − b) + g2
∫

dkzd
3q̄dc

×γμS(q̄; a − c)ΓνD
μν( p̄ − q̄, kz)

e−ikz(a−b)S( p̄; c − b), (1)

with S the fermion propagator; Dμν the gauge boson propa-
gator; Γμ the full interaction vertex with tree level as γμ;
g the running coupling; δ the Dirac delta function and
the metric being set as (−1, 1, 1, 1). Here the DSE is in
a mixed representation with momentum representation for
p̄ = (pt , px , py, 0) and coordinate representation for z-axis
(a and b are on the z-axis in the coordinate space). The inte-
grated momentum are q̄ = (qt , qx , qy, 0), and kz = pz −qz ,
where pz, qz and kz are on the z-axis in the momentum space.
If the Fourier transform is also applied to the z-axis, the usual
DSE in momentum representation can be obtained [31–40].
Here we are taking the case where the z-direction is in coor-
dinate space as an example, and the approach is applicable

and can be extended to other cases where other directions
(t, x, y) are in coordinate space.

The equation for the free fermion propagator of zero cou-
pling (g = 0) is then given by:

(−∂aγz + i p̄/ + m0)S( p̄; a − b) = δ(a − b). (2)

With the momentum representation, the free fermion propa-
gator can be obtained as:

S( p̄; a − b) =
∫

dpz
e−i pz(a−b)

i p/z + i p̄/ + m0
, (3)

which may be formally regarded as being expanded with the
plane wave basis. Here instead, as we described in preceding
section, the Hermite functions also form a complete orthonor-
mal basis, and we therefore use the Hermite function basis
to expand the fermion propagator on the z-axis, i.e.,

S( p̄; a − b) =
∑
n

Sn( p̄) fn(a − b)

=
∑
n

[
−iσ A

n ( p̄2) p̄/ + σ B
n ( p̄2)−iσC

n ( p̄2)γz

]
fn(a−b),

(4)

where the general form of p̄-dependent scalar functions
are denoted by σ A

n ( p̄2), σ B
n ( p̄2), and σC

n ( p̄2) respectively;
fn(z) with n ≥ 0 is the Hermite function (sometimes called
Hermite-Gaussian function) as:

fn(z) = ω1/2√
2nn!√π

Hn(ωz)e
−ω2z2/2, (5)

and Hn(z) is the Hermite polynomial and the orthogonal nor-
malisation condition is:∫

dz fn(z) fm(z) = δnm . (6)

The Hermite function, which gives rise to the wave function
of the energy eigenstate of the quantum harmonic oscilla-
tor, when operated by the creation and annihilation operators

(a† = ω2z−∂z√
2ω

, a = ω2z+∂z√
2ω

), give:

ω2z − ∂z√
2ω

fn(z) = √
n + 1 fn+1(z),

ω2z + ∂z√
2ω

fn(z) = √
n fn−1(z). (7)

It should be mentioned that in Eq. (4) there exists in principle
γz p̄/ term, but this can be excluded by comparing it with
the momentum representation of the fermion propagator in
Eq. (3).

By now we have expanded the fermion propagator with the
Hermite function basis on the z-axis in the coordinate space.
Actually this Hermite function basis expansion method has
been broadly used in the studies of continuum Schwinger
method with a constant background magnetic field, namely
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the Ritus formula [41–43]. The order of the Hermite function
then naturally defines the Landau Level. In a constant mag-
netic field, the Hermite function basis can be closed to four
terms, including only fn , fn−1, and fn+1. Here we general-
ize this method by inserting an auxiliary field Az(a) = iω2a
with string tension ω2, and decomposing the operator on the
left hand side of Eq. (2) as:

−∂aγz + i p̄/ + m0

= −1

2
(∂a + ω2a)γz − 1

2
(∂a − ω2a)γz + i p̄/ + m0. (8)

This decomposition involves only the differential operator
and does not require the background field. The Hermite func-
tion basis cannot now be closed within finite terms, thus it
requires to use infinite dimensional matrices defined as lin-
ear operators for the functional analysis. To make this point
clearer, one may first insert the fermion propagator expan-
sion expression in Eq. (4) into the equation it satisfies, i.e.,
DSE in Eq. (2), and apply the property of Hermite function
in Eq. (7) and the decomposition in Eq. (8) to obtain:

∑
m′

{
(i p̄/ + m0)

[
−iσ A

m′( p̄2) p̄/ + σ B
m′( p̄2) − iσC

m′( p̄2)γz

]

× fm′(a − b) − γz

2

√
2m′ω[−iσ A

m′( p̄2) p̄/ + σ B
m′( p̄2)

−iσC
m′( p̄2)γz] fm′−1(a − b) + γz

2

√
2(m′ + 1)ω

×
[
−iσ A

m′( p̄2) p̄/ + σ B
m′( p̄2) − iσC

m′( p̄2)γz

]

fm′+1(a − b)
} = δ(a − b). (9)

Multiplying the resulting Eq. (9) by the integral
∫
da fm(a

− b), and applying the orthogonal normalisation condition
in Eq. (6), one get that all the Hermite functions turn to the
Dirac delta functions, which may be combined with the index
m′ in the scalar functions σ

A,B,C
m′ ( p̄2). Then comparing the

corresponding Dirac terms on both sides of the equation, one
can directly obtain (We drop the explicit p̄ index in the scalar
functions σ

A,B,C
m and it is included implicitly):

fm(0) = p̄2σ A
m + m0σ

B
m + i

√
m + 1

2
ωσC

m+1

−i

√
m

2
ωσC

m−1, (10a)

0 = m0σ
A
m − σ B

m , (10b)

0 = −i

√
m + 1

2
ωσ A

m+1 + i

√
m

2
ωσ A

m−1 + σC
m . (10c)

Let’s now define an operator T̂ as:

T̂ = Tmm′ = i

√
m′
2

ωδm,m′−1 − i

√
m

2
ωδm,m′+1, (11)

which acts on the Hermite function basis space. One can
represent it in the infinite dimensional matrix form as:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 iω√
2

0 0 0 0

− iω√
2

0 iω 0 0 0

0 −iω 0 i
√

3
2ω 0 0

0 0 −i
√

3
2ω 0 i

√
2ω 0

0 0 0 −i
√

2ω 0 i
√

5
2ω

0 0 0 0 −i
√

5
2ω 0 . . .

·
·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

The free fermion propagator can then be conveniently
expressed as:

S( p̄; a − b) = f(a − b)
−i T̂ γz − i p̄/ + m0

p̄2 + m2
0 + T̂ 2

f(0), (13)

with f = { f0, f1, ... fn} the array of Hermite functions in
Eq. (5). It follows from Eq. (12) that T̂ is a Hermitian oper-
ator, so that it can be diagonalised as T̂ = P̂†Ωn P̂ . Interest-
ingly, for even basis, T̂ has two sets of eigenvalues that differ
only by the sign ±1, i.e., Ωn = ±|Ωn|. For odd basis, there
is an additional eigenvalue of zero.

In order to build a relation with the momentum repre-
sentation of the free fermion propagator, as in Eq. (3), it is
convenient to take the Fourier transform of a−b in Eq. (13),
i.e. a transformation of the z-axis in coordinate space. The
Fourier transform of the Hermite function here is∫

dae−i pz(a−b) fn(a − b) =
√

2π(−i)n

ω
fn
( pz
ω2

)
, (14)

and note that the odd Hermite function vanishes at the origin,
and therefore for pz = 0 we only need to consider the even
Hermite function. We denote Ω̃n = Ω2n for convenience and
obtain:

S( p̄, pz = 0) = −i p̄/ + m0

p̄2 + m2
0

= (−i p̄/ + m0)

√
2π

ω

∑
n

σ̂ (ϕn)∗(ϕn)

p̄2 + m2
0 + Ω̃2

n

, (15)

with

ϕn = P̂ f2n
( pz
ω2 = 0

)
. (16)

The operator σ̂ acting on the 4n and 4n + 2 basis function
will give 1 and −1 respectively. Leaving aside the Lorentz
structure −i p̄/ + m0, the propagator corresponds to that of
the interacting theory, describing a tower of massive states of
mass spectrum Ω̃n and wave function ϕn with norm operator
σ̂ = ±1. In a sense, it corresponds to two towers of massive
states with positive and negative norms, that ultimately cancel
and maintain a free propagation mode. Here we use the case
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Fig. 1 The boson propagator obtained from the Hermite function
basis expansion as in Eq. (20) compared to the free boson propaga-
tor 1/( p̄2 + m2

0) expanded on the plane wave basis, with two different

types of masses, real mass with m0 = 1 GeV (left panel) and purely
imaginary mass with m0 = i GeV (right panel)

pz = 0 as an example, the discussion is applicable and can
be extended to other cases where pz is non-zero.

Our work from the beginning of this section onwards has
all been concerned with the fermion field. It gave a general
correspondence in Eq. (15) revealing that the fermion prop-
agator of the free field corresponds to that of the interacting
field of massive states. To get a complete image we then con-
sider also the correspondence for the bosonic propagators.

Again, we start from the equation for the free boson prop-
agator D of zero coupling given by:

(−∂2
a + p̄/2 + m2

0)D( p̄; a − b) = δ(a − b). (17)

Similarly, we expand the boson propagator using the Hermite
function basis as:

D( p̄; a − b) =
∑
n

Dn( p̄) fn(a − b), (18)

and performing the same procedure as in the fermion case
above, we obtain the boson propagator, expressed as:

D( p̄; a − b) = f(a − b)
1

p̄2 + m2
0 + T̂ 2

f(0). (19)

Comparing it with the momentum representation of the free
boson propagator, we obtain:

D( p̄, pz = 0) = 1

p̄2 + m2
0

=
√

2π

ω

∑
n

σ̂ (ϕn)∗(ϕn)

p̄2 + m2
0 + Ω̃2

n

.

(20)

This gives an analogous correspondence between the boson
propagator of the free field and the interacting field with a
tower of massive states. Thus we note that a correspondence
also exists in the boson system.

It’s worth mentioning that the parameter ω in the Her-
mite function basis representation is in fact arbitrary, i.e.,
Eq. (20) can be satisfied for any ω if the infinite order of the

Hermite function is used. This is rather nontrivial, since ω in
Eq. (20) is not easy to be fully cancelled. Therefore, we try to
verify the correspondence in Eq. (20) numerically with two
very different types of propagators, the results of which are
shown in Fig. 1. In the left panel of Fig. 1, the original prop-
agator is like a propagator with m0 = 1 GeV, and its pole
on the spacelike momentum axis, while in the right panel
the propagator has m0 = i GeV, and its pole on the timelike
momentum axis. To begin with, we find that the correspon-
dence is indeed generally independent of the choice of ω.
We considered the correspondence under three different ω,
namely ω = 0.01, 0.1, 1 GeV, for all of which Eq. (20) is
approximately satisfied. There are some deviations due to
the truncation of the basis space of Hermite functions. To
be specific, for the real mass case, a smaller ω brings more
deviation, while for the purely imaginary mass, a smaller ω

implies a better correspondence. Additionally, it is interest-
ing to note that the space required for the Hermite function is
different in these two cases. Specifically, form0 = 1 GeV, we
apply here the Hermite function fn(z) of order up to n = 100,
while for the propagator with a pole on the momentum axis,
i.e. m0 = i GeV, a good correspondence can be achieved
with very few orders of the Hermite function for sufficiently
small ω. For example, at ω = 0.01 GeV, we apply the first six
orders of the Hermite function as f0,1,...5(z). This indicates
that the Hermite function basis might be useful for nonpertur-
bative studies towards the timelike momentum region, such
as the spectrum of states or the transport properties of the
system.

3 Canonical quantization on Hermite function

We further investigate the Hermite function basis more gen-
erally by the action. Clearly, an alternative typical canonical

123



Eur. Phys. J. C (2023) 83 :144 Page 5 of 9 144

quantization based on the Hermite function basis can be con-
structed. Let’s begin with the free fermion field. The basic
idea is to expand the d + 1 dimensional free fermion field ψ

as:

ψ
(
t, x1, . . . xp, xp+1 . . . xd

) =
∑

n1,...n p

Ψn1,...n p

(
t, xp+1, . . . xd

) [P̂ f ]n1(x1) · · · [P̂ f ]n p (xp).

(21)

P̂ , as described above, is the matrix acting on the Hermite
function basis space to diagonalize the operator T̂ defined in
Eq. (12). Ψ is a new field, the part that has not been expanded.
Here we expand the fermion field in the direction n1 to n p,
this is used as an example, in fact it can be extended to the
expansion in other directions as well. The canonical anti-
commutation relation of the original free fermion field ψ is:{

ψ(t, x1, . . . xd), ψ
†(t, y1, . . . yd)

}
= δd(x − y). (22)

We can set the new field Ψ to meet the following constraint:{
Ψn1,...n p (t, xp+1, . . . xd), Ψ

†
m1,...mp

(t, yp+1, . . . yd)
}

= δn1,m1 . . . δn p,mpδ(xp+1 − yp+1) · · · δ(xd − yd),

(23)

and then use the properties of the Hermite function∑
n fn(x) fn(y) = δ(x−y) and the matrix used for diagonal-

isation P̂ P̂† = I, the anti-commutation relation in Eq. (22)
can be reproduced. Comparing Eq. (23) with Eq. (22), we see
that the new field holds a similar canonical anti-commutation
relation as that of the original free fermion field, hence they
must be connected in some way, at least this suggests that the
new field is also a fermion field.

Let’s now consider the action of the d + 1 dimensional
free fermion field:

S =
∫

dtdd x
[−ψ̄(x)∂/ψ(x) + m0ψ̄(x)ψ(x)

]
. (24)

Substituting Eq. (21) in Eq. (24), the action is converted to:

S =
∫

dtdd−px
∑
n

[− Ψ̄n(x)∂/Ψn(x)

−iΨ̄n(x)γ̃ · Ã(n)Ψn(x) + m0Ψ̄n(x)Ψn(x)
]
, (25)

where n denotes for n1, . . . n p; ∂/ and x are now used only for
coordinates xp+1, . . . xd ; γ̃μ is the gamma matrix associated
with coordinates x1, . . . xp. In the derivation, the p dimen-
sional ∂ left acting on the Hermite function basis f transforms
into i T̂ . With the integral

∫
d px and the orthogonal normal-

ization condition of Hermite function, the operator becomes
P̂ T̂ P̂† = Ωn . The action in Eq. (25) becomes that of an
interacting field theory of the fermion field Ψ in 1 + d − p
dimensions, which interacts with a discretized gauge field in
the rest p dimensions, i.e., Ã(n) = Ωn1,...n p . This shows a

duality relation between a 1 + d dimensional free fermion
field and a 1 + d − p dimensional interacting fermion field
with interactions coming from the rest p dimensions.

One can also consider the case of 1+d dimensional com-
plex scalar field. Similarly, we expand the complex scalar
field φ as follows:

φ(t, x1, . . . xp, xp+1 . . . xd) =
∑

n1,...n p

Φn1,...n p (t, xp+1, . . . xd)[P̂ f ]n1(x1) · · · [P̂ f ]n p (xp).

(26)

Φ is a new field, the part that has not been expanded. Per-
forming the same procedure as in the fermion case above, we
obtain the commutation relation for the new field Φ as:[

Φn1,...n p (t, xp+1, . . . xd), Φ̇
∗
m1,...mp

(t, yp+1, . . . yd)
]

= iδn1,m1 . . . δn p,mpδ(xp+1 − yp+1) · · · δ(xd − yd),

(27)

with Φ̇ denoting the time derivative of Φ. It is easy to check
that the original field satisfies:

[
φ(t, x), φ̇∗(t, y)

] = iδd(x −
y), the commutation relation for a free complex scalar field
can therefore be reproduced. Equation (27) suggests that the
new field Φ is also a complex scalar field.

Let’s move on to consider the action of the d + 1 dimen-
sional free complex scalar field:

S =
∫

dtdd x
[
∂μφ∗(x)∂μφ(x) + m2

0φ
∗(x)φ(x)

]
. (28)

By inserting Eq. (26) into the Eq. (28), the action becomes
1 + d − p dimensional as:

S =
∫

dtdd−px
∑
n

[
∂μΦ∗

n (x)∂μΦn(x)

+M2
nΦ∗

n (x)Φn(x) + m2
0Φ

∗
n (x)Φn(x)]

]
, (29)

again, n denotes for n1, . . . n p; ∂ and x are now used only for
coordinates xp+1, . . . xd . The 1 + d dimensional scalar field
then becomes a 1+d− p dimensional scalar field interacting
with a tower of massive states with M2

n = Ω2
n1

+ · · · + Ω2
n p

.

4 Yang–Mills field on Hermite function basis and
matrix model

When applying the Hermite function basis to the Yang–Mills
field, it eventually gives an action of the BFSS matrix model.
Firstly, we write here the Yang–Mills action as [32]:

S = −1

4

∫
d4xFa

μν(x)F
a,μν(x), (30)

where the field strength tensor Fa
μν defined as: Fa

μν =
∂μA

a
ν − ∂ν A

a
μ − g f abc Ab

μA
c
ν , with g the coupling constant;
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Aa
μ the bosonic gauge field; f abc the structure constant of the

gauge group. Now we can expand Aa
μ(x) for all three spatial

coordinates as:

Aa (t, x) = Aa,n(t)[P̂ f ]n1(x1)[P̂ f ]n2(x2)[P̂ f ]n3(x3),

Xa
j (t, x) = Xa,n

j (t)[P̂ f ]n1(x1)[P̂ f ]n2(x2)[P̂ f ]n3(x3),

(31)

with n = (n1, n2, n3), Aa = Aa
0 and Xa

j = Aa
j=1,2,3.

Now inserting Eq. (31) into Eq. (30), the action in Eq. (30)
becomes:

S = S0 + Sint + Sim, (32)

where

S0 = −1

2

∫
dt

( ∣∣∣Ẋa,n
j

∣∣∣2 + Ω2
n j

∣∣Aa,n
∣∣2

+1

2

∣∣Ωn j ′ X
a,n
j − Ωn j X

a,n
j ′
∣∣2
)

, (33a)

Sint = −1

2

∫
dt
(− 2gτ nml f abc Ẋa,n

j Xc,m
j Ab,l

+g2 f abc f ab
′c′

λnmlk Ab,n Xc,m
j Ab′,l Xc′,k

j

+1

2
g2 f abc f ab

′c′
λnmlk Xb,n

j Xc,m
j ′ Xb′,l

j Xc′,k
j ′
)
, (33b)

Sim = i
1

2

∫
dt
[
Ωn j A

a,n(Ẋa,n,∗
j − g f abc Ab,mXc,l

j τ nml)

+g f abcτ nml(Ωn j ′ X
a,n
j − Ωn j X

a,n
j ′ )Xb,m

j ′ Xc,l
j

]
,

(33c)

with summation of indices a, b, c, j ′, j and n,m, l, k the
order of Hermite function, and also

τ nml =
∏

i=1,2,3

∫
d3x[P̂ f ]ni (xi )[P̂ f ]mi (xi )[P̂ f ]li (xi ),

λnmlk =
∏

i=1,2,3

∫
d3x[P̂ f ]ni (xi )[P̂ f ]mi (xi )[P̂ f ]li (xi )

×[P̂ f ]ki (xi ). (34)

One can see that the procedure defines an exact way of
dimensional reduction which leads directly from the 3 + 1-
dimensional Yang Mills theory to a one-dimensional the-
ory, namely Eq. (32). Specifically, the free field with g = 0
becomes a tower of massive gauge fields, similar to the case
in the previous section.

Now for the full theory, the arbitrary parameter ω is
included in the interaction term through the coefficients τ

and λ, and the theory is in principle independent of ω. How-
ever, the convergence domains of the expansion are rather
different for different choices of ω. This can be viewed by
treating the Lagrangian in Hermite function basis as a new
Lagrangian in plane wave basis. One may forsake the Her-
mite function basis and consider S0 as the kinetic term of a
theory with n particles of mass Ωn . The couplings of the new

Lagrangian are then gτ nml and g2λnmlk , proportional to ω3/2

andω3, respectively. Consequently, the convergence domains
of the expansion in the large−ω limit and the small-ω limit
are different. On the one hand, the large-ω limit makes the
Lowest Landau Level approximation valid, which then leads
to the BFSS matrix model. This shows a strong-weak duality
between the Yang–Mills theory and the matrix model. On the
other hand, by adjusting ω to be small, one can apply pertur-
bative calculations even if the original coupling g is strong.
It should also be mentioned that for the new Lagrangian the
fundamental picture of the matter field is different, because
the free field of the new Lagrangian is actually the interac-
tion field in the old Lagrangian. In particular, the mass term
in the free field can only be generated dynamically in the old
Lagrangian by nonperturbatively considering the interaction
terms of all orders. One may consider the Hermite function
basis as a strong coupling expansion in contrast to the weak
coupling perturbation with plane wave basis.

4.1 Large-ω limit

For large-ω limit, one can apply the Lowest Landau Level
approximation as in a strong magnetic field, where the theory
can be described by only the lowest order Hermite function
ni ,mi , li , ki = 0, and then Ωn j = 0 correspondingly. With
this approximation, one can greatly reduce the action as:

S = −1

2

∫
dt

((
Ẋa

j

)2 − 2gω3/2

( 9
4π
)3/4 f abc Ẋa

j X
c
j A

b

+ g2ω3

(2π)3/2

[
A, X j

]2 + g2ω3

2(2π)3/2

[
X j ′ , X j

]2 )
, (35)

with Xa
j , A

b standing for the lowest order of the gauge field,

and
[
Xi , X j

] = f abcXb
i X

c
j . Now if setting g′ = g/

( 9
4π
)3/4

with rescaling the fields as (Xa
j , A

b) → ω−1/2(Xa
j , A

b), and

DXa
j = Ẋa

j − g′ω
[
A, X j

]
, one can rewrite the action as:

S = −1

2

∫
dt

((
DX j

a
)2

ω
+ ω

2
(9/8)3/2 g′2 [X j ′ , X j

]2

+
[
(9/8)3/2 − 1

]
ωg′2 [A, X j

]2 )
, (36)

the first line is just the bosonic part of the BFSS matrix model,
and the second term is an additional term. Note that in the
original BFSS model, the dimensional reduction is based on
the compactification of the space, whereas here the dimen-
sional reduction procedure in Eq. (32) is exact, and Eq. (36)
is the Lowest Landau Level, which is valid in the strong limit.

4.2 Small-ω limit

Now one can also take the small ω limit and then the perturba-
tive calculations can be applied. Note that Aa,n has no canon-
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Fig. 2 One-loop self-energy Feynman diagrams of the gluon propaga-
tor, Π im

A and Π im
B

ical momentum and hence one may impose the Weyl gauge
fixing condition, Aa,n = 0. The Weyl gauge fixing is incom-
plete and requires additional constraints. This incomplete-
ness is straightforwardly depicted in the new action Eq. (32),
in terms of the cross term between the two gauge fields, Xa,n

j

and Xa,n′
j ′ . Therefore, one may simply neglect such cross

terms as a gauge fixing condition. The resulting gluon prop-
agator is then similar to that in the Feynman gauge, which
reads:

Dabnm
ii ′ (p2) = δi i

′
δnmδabDim(p2), (37)

with Dim(p2) = p2 +∑
j �=i Ω

2
n j

+ Π im(p2).
Now one can compute the one-loop self-energy of the

gluon propagator, which contains two contributions, i.e.

Π im
A (p2) = g2Nc

2

Nmax∑
n,l

τ lnmτ l
∗n∗m∗

∫
dq

2π

∑
j=k �=i

×[(Ωn j − Ωm j )
2D jn

0 (p − q)Dil
0 (q)

+(Ωmk − Ωlk )
2Dkn

0 (p − q)Dil
0 (q)

+(Ωlk − Ωn j )
2D jn

0 (p − q)Dkl
0 (q)], (38)

Π im
B (p2) = g2Nc

Nmax∑
n

λn
∗nm∗m

∫
dq

2π

∑
j �=i

D jn
0 (q2)

= g2Nc

2

Nmax∑
n

∑
j �=i

λn
∗nm∗m

(Ω2
n j

+ Ω2
ni )

1/2 , (39)

whose diagrammatic representations are given in Fig. 2.
Here, Dim

0 (p2) = p2 + ∑
j �=i Ω

2
n j

is the bare gluon func-
tion. Nmax is the truncated order of Hermite function basis
and index n∗ means the complex conjugate of the respective
function. Having obtained Dim , one may construct the gluon
propagator in momentum representation with Eq. (31) and
Eq. (20), and thus one gets:

Di,i ′(p
2) = δi i

′
D(p2)

= δi i
′
(√

2π

ω

)3

σ̂ [P̂ f ]†
m(0)Dim(p2)[P̂ f ]m(0). (40)

Here, for simplicity, we choose only the temporal component
of p2, which makes no difference due to Lorentz invariance.

First of all, we depict the gluon propagator with setting the
coupling g = 0 in Fig. 3. The obtained propagator is equiva-

Fig. 3 Two types of gluon propagators with the Hermite functions of
truncation order Nmax = 18 and Nmax = 20, together with the free
field propagator. The gluon propagator with same parametrization as
Nmax = 20 but with zero coupling g = 0 is also depicted, which
coincides with the free field propagator

lent to the free field propagator, which shows the validity of
the method. It is then interesting to note that the one-loop self-
energy term leads directly to the dynamical mass generation
in the gluon propagator, which can only be obtained non-
perturbatively in the plane wave expansion scheme. Slightly
surprisingly, in our results, two types of solutions exist for
the gluon propagator, depending on the maximum order of
the summed Hermite function, i.e. Nmax. As shown in Fig. 3,
if the Hermite function basis is summed to the order of 4n,
the gluon propagator becomes non-monotonic in the infrared
region and drops after a maximum value as it enters the
deep infrared region. When summing the series to the order
of 4n + 2, we obtain a monotonic function for the gluon
propagator. Now one may recall that it has been argued that
there exist two types of gluon propagators, which differ in
the infrared, i.e. for p2 � 1 GeV (”scaling” [39,44,45],
versus ”decoupling” or ”massive” [46–48]; for related dis-
cussions, see, e.g. [49–52]). The solution where the Her-
mite function basis is truncated to 4n + 2 can immediately
be regarded as the decoupling solution, whereas the non-
monotonicity of the solution from truncation to 4n suggests
a scaling solution. It should be mentioned that here we do
not get a fully scaling solution, as the solution does not van-
ish at zero momentum. However, we did find two distinct
solutions, as for each case the solution converges quickly.
In Fig. 4, we can see that for solutions added to order 4n,
the solution converges at Nmax ∼ 20. Similarly, as shown
in Fig. 5, for solutions added to order 4n + 2, the solution
converges at approximately Nmax ∼ 18. Note that the string
tension parameter ω is related to the scale of the theory, and
here we set the parameter ω to ω = 0.09 GeV, which locates
the peak of the scaling solution at p ∼ 0.3 GeV as in the
other non-perturbative studies.
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Fig. 4 The gluon propagator with the Hermite functions of truncation
order Nmax = 4n

Fig. 5 The gluon propagator with the Hermite functions of truncation
order Nmax = 4n + 2

5 Summary

We depict a novel duality phenomenon through the Hermite
function basis. The main idea is to apply the Hermite function
basis instead of the plane wave function basis for the expan-
sion. By doing so, the free propagator becomes a tower of
propagators with additional mass terms. Since the Hermite
function naturally defines the basis of the interacting fields,
we construct an equivalent quantization procedure on this
basis. In detail, we find that the action of a 1 + d dimen-
sional free fermionic field is dual to the action of a tower of
1 + d − p dimensional fermionic fields Ψn coupled to the
constant gauge field Ã(n) in the rest p dimensions. Similarly,
for the scalar field, a 1+d dimensional free scalar field is dual
to a tower of 1+d− p dimensional massive scalar fields with
additional mass terms coming from the p dimensions. In the
sense of duality, here one theory is achieved by expanding
the other theory on the Hermite function basis.

This approach can be broadly applied to the study of dual-
ity phenomena. Here we apply it in particular to the 3 + 1-
dimensional Yang–Mills theory. After applying the Hermite
function to reduce the three spatial dimensions, an exact
form of the corresponding one-dimensional theory can be

obtained. The action is naturally discretized and thus pre-
sumably suitable for lattice simulation. For large ω limit,
the Hermite function of the lowest order (Lowest Landau
Level) is applied, the resulting action is found to become the
BFSS matrix model. For small ω limit, the one-loop compu-
tation of self-energy of the gluon propagator directly gener-
ates a dynamical mass scale, which can only be obtained non-
perturbatively in the plane wave basis. Therefore, the Hermite
function basis can be helpful in studying non-perturbative
effects.

On the practical side, the Hermite function basis provides
a possible way of approaching timelike momentum region
non-perturbatively. Non-perturbative calculations are usu-
ally performed in spacelike momentum region, where the
information in timelike region, and in particular the analytic
properties of the non-perturbative propagators on plane wave
basis, becomes very complicated. The Hermite function basis
shows the ability to deal with different kinds of propagators,
and therefore through the basis, the information in timelike
region can potentially be accessed directly. The momentum
representation is also readily accessible as the Hermite func-
tion is the eigenfunction of the Fourier transform.
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