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Abstract By extending the standard holographic principle
to a cosmological framework and combining the non-flat con-
dition with the Kaniadakis entropy, we construct the non-flat
Kaniadakis holographic dark energy (KHDE) model. The
model employs Kaniadakis parameter K and a parameter
c. Derivation of the differential equation for KHDE density
parameter to describe the evolutionary behavior of the uni-
verse is obtained. Such a differential equation could explain
both the open as well as closed universe models. The clas-
sification based on matter and dark energy (DE) dominated
regimes show that the KHDE scenario may be used to spec-
ify the universe’s thermal history and that a quintom regime
can be encountered. For both open and closed, we find the
expressions for the deceleration parameter and the equation
of state (EoS) parameter. Also, by varying the associated
parameters, classical stability of the method is established.
On considering the curvature to be positive, the universe
favors the quintom behavior for substantially smaller val-
ues as opposed to the flat condition, when only quintessence
is attained for such K values. Additionally, we see a similar
behavior while considering the negative curvature for such K
values. Therefore, adding a little bit of spatial geometry that
isn’t flat to the KHDE enhances the phenomenology while
maintaining K values at lower levels. To validate the model
parameters, the most recent 30 H(z) dataset, in the redshift
range 0.07 ≤ z ≤ 1.965 are utilized. In addition, the distance
modulus from the current Union 2.1 data set of type SNIa are
employed.
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1 Introduction

The majority view in contemporary cosmology holds that
both the early and late universes witnessed accelerated expan-
sion, which is backed by a vast number of cosmic observa-
tions [1,2]. The first strategy is to continue using general
relativity to explain gravity theory while introducing new
types of matter, such as inflation [3,4] or the idea of dark
energy [5,6]. The second route involves creating extended
and modified gravitational theories, which, while they gen-
erally provide an additional degree of freedom that might
result in acceleration, nevertheless have general relativity as
a specific limit [7–9]. Mathematically, the universe’s accel-
eration can alternatively be described through holographic
dark energy(HDE) [10,11] and holographic inflation [12]
in an excellent way. But, technically speaking, it does not
fit in the above two solution approaches. However, the cos-
mic application [13–15] of the holographic principle [16–18]
allows for a different explanation of how dark energy was
created. The concept utilizes thermodynamics of black holes
and the relationship between a quantum field theory’s Ultra-
violet cutoff and largest theory’s distance. A quantum field
theory must have an ultraviolet cutoff for it to be applicable
across large distances [19]. In particular, to prevent the sys-
tem from collapsing into a black hole, the total energy in a
particular system with volume-dependent entropy can not be
more than an equivalent-sized black hole’s mass whose area
depends on entropy. When the entire universe is seen as a sys-
tem, holographic vacuum energy, or HDE with a dynamical
aspect, may be extracted [10,11].

HDE’s cosmic effects turn out to be both fascinating
[10,11,20–24] and consistent with observations [25–30].
The fundamental expression in the development of HDE is
the one that relates a system’s entropy to its radius. The
Boltzmann–Gibbs entropy has been applied to black holes
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and other cosmic phenomena to produce the most famous
Bekenstein–Hawking entropy. In contrast, the Boltzmann–
Gibbs entropy’s one-parameter generalization was proposed
by Kaniadakis [31,32]. This is the result of a self-consistent
and coherent relativistic statistical theory which maintains
the basic guidelines of normal statistical theory. Continuous
deformation of the original Maxwell–Boltzmann distribution
function by one parameter is made in such an expanded sta-
tistical theory. Thus, as a limited scenario, the usual statistical
theory is restored.

The holographic approach is used to produce HDE using
the black hole entropy expression. As a result, many versions
of the theory may be generated by varying the entropy [33–
39]. Applying Kaniadakis entropy in a black-hole framework
leads to

SK = 1

K
sinh(K SBH ), (1)

where SBH is the Bekenstein–Hawking entropy. Bekenstein–
Hawking entropy is the limiting case of (1) i.e. limK→0 SK =
SBH . K � 1 (especially −1 < K < 1) is expected for (1)
to recover standard Bekenstein–Hawking value. The basic
Kaniadakis entropy can therefore be extended for small K ,
yielding [40]

SK = SBH + S3
BH

6
+ O

(
K 4

)
. (2)

Various cosmological aspects of KHDE model, theoretically
as well as observationally in [40–52].

The combined study of the Planck Collaboration’s aniso-
tropic power spectra of the CMB and luminosity distance
data indicates a non-flat universe at a 99% confidence level
[53]. Despite being much less than other energy compo-
nents, it is still conceivable that the spatial curvature makes
a contribution to the Friedmann equation. Studying a uni-
verse with a spatial curvature that is only tangentially per-
mitted by the inflation hypothesis, along with observations,
is therefore of more than just academic interest. In litera-
ture, Huang and Li [22] generalized the HDE model of M. Li
[10,11] by insisting non-flatness into consideration. It was
concluded that in order to maintain thermodynamics’ sec-
ond law into picture, phantom-like situations will not exist.
Setare [24] studied the HDE model by considering the inter-
action among the constituent sectors in a non flat universe.
Sharma et al. [54] studied the KHDE model with an apparent
horizon in a non flat universe. Recently, Adhikari [55] stud-
ied the Barrow HDE model with the largest theory’s distance
as a future event horizon to analyze the behavior of vari-
ous cosmic parameters. The fractional energy density due to
curvature is taken as �ksc . �ksc > 0 signifies the spatially
closed whereas �ksc < 0 corresponds to a spatially open
universe. The Planck 2018 CMB temperature and polariza-
tion anisotropy data favors the non flatness of the universe

with �ksc = −0.044+0.018
−0.015 [56,57]. Additionally, by com-

bining P18 data with the full-shape (FS) universe power
spectrum and adding the �ksc = 0.0023 ± 0.0028 obtained
from this collaboration together with calculations from the
BOSS DR12 CMASS example, one can attain results with
weaker constraints [58,59]. In any scenario, a considerable
number of scholars have been motivated to put tenable con-
straints on �ksc because the evolution of the universe is under
the influence of spatial curvature [53]. In light of the above
discussions, our current study focuses on constructing and
analyzing the non-flat universe with Kaniadakis holographic
dark energy with future event horizon as IR cutoff.

The manuscript starts with a brief introduction. Next sec-
tion is devoted to formulating KHDE to describe the events of
the closed and open Friedmann–Robertson–Walker metric.
We continue our extensive analysis of the cosmic behavior
in Sect. 3 by concentrating towards dark energy density, EoS
and deceleration parameters. Additionally, we’ll examine the
squared sound speed to confirm the model’s traditional stabil-
ity. In Sect. 4, the techniques used to analyze the data for this
study are described. Last section is dedicated to the summary
of obtained results and conclusions.

2 Kaniadakis holographic dark energy (KHDE) in
non-flat geometry

In this section, by assuming that spatial curvature is non-zero,
we seek to generate holographic dark energy. We pay special
attention to a non-flat FRW line element. Such a line element
with a(t) as scale factor is expressed by

ds2 = a(t)2
[

dr2

1 − kscr2 + r2d�2
]

− dt2, (3)

where the choice ksc = −1, 0,+1 correspondingly result in
open, flat, and closed spatial curvatures.

Using (2) and the inequality ρd L4 ≤ S will give the
expression for the KHDE density ρd given by [40]

ρd = 3c2M2
p

L2 + K 2M6
pL

2, (4)

where L , c and K are length of horizon, model and Kani-
adakis parameters respectively and Mp is the reduced Plank’s

mass given by Mp = 1√
8πG

. The standard Bekenstein–

Hawking entropy is recovered from Kaniadakis entropy in
Eq. (4) for K = 0.

To derive the basic results, we have considered the pres-
ence of only two sectors in the universe namely: dark energy
and dark matter. If ρm represents the dark matter density and
pd the KHDE pressure, the corresponding Friedmann equa-
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tions are given by

3M2
pH

2 + 3M2
p
ksc
a2 = ρd + ρm, (5)

2M2
p Ḣ + 3M2

pH
2 + M2

p
ksc
a2 = −pd , (6)

with Hubble parameter H given by H = ȧ

a
. The conservation

equation for the dark matter and KHDE sectors are given by

ρ̇m + 3Hρm = 0, (7)

ρ̇d + 3H(1 + wd)ρd = 0, (8)

with KHDE’s equation of state (EoS) parameter is wd defined

by wd = pd
ρd

. For the sake of further analysis, the dark

matter, KHDE and curvature density parameters are defined

respectively by �m = ρm

3M2
pH

2 , �d = ρd

3M2
pH

2 and

�ksc = ksc
a2H2 . In the light of Eq. (5), we get the relation

among density parameters as

�d + �m = 1 + �ksc . (9)

The next stage is to define the theory’s longest length L ,
specifically the holographic horizon, which is a part of the
description of HDE. In the case of the flat-universe, future
event horizon Rh will serve the purpose of the theory’s largest
distance L to describe the accelerated expansion. But for the
non-flat universe model, a suitable modification is needed
to get an appreciable behavior of cosmic parameters for the
accelerated expanding universe [22,24]. The suitably mod-
ified L will be discussed in subsections concerning closed
and open spatial curvatures.

2.1 Case I: Closed spatial curvature (ksc = 1)

For the case of closed spatial curvature, the largest theory’s
distance L is defined by L = ar(t) [22,24] with r(t) defined
by the relation

∫ r(t)

0

1√
1 − kscr2

dr =
∫ ∞

t

dt

a
= Rh

a
, (10)

which gives

r(t) = 1√
ksc

sin y, (11)

where

y = √
ksc

Rh

a
= √

ksc

∫ ∞

x

dx

Ha
, (12)

where a = ex . We are interested to analyze the behavior of
various density parameters and hence will use expressions in

terms of their present value as

�m = �m0 H
2
0

a3H2 , �ksc = �ksc0 H
2
0

a2H2 , (13)

by considering

�ksc

�m
= aγ, (14)

where γ = �ksc0

�m0

.

The universe’s curvature is related to the energy density
and expansion rate using the Friedmann equation (9), given
by [22]

H = H0
√

�m0

√
a−1 − γ

a
√

1 − �d
, (15)

Using Eqs. (11), (12) and (15), we get

L = a√
ksc

sin

[√
ksc

∫ ∞

x

1√
�m0 H0

√(
1 − �d

a−1 − γ

)
dx

]
.

(16)

Another expression for L is obtained through KHDE den-
sity parameter, Eqs. (4) and (15) given by

L =

√√√√3H2�d −
√

9H4�2
d − 12c2K 2M4

p

2K 2M4
p

. (17)

As both the Eqs. (16) and (17) are giving the value of L , we
get

a√
ksc

sin

[√
ksc

∫ ∞

x

1√
�m0 H0

√(
1 − �d

a−1 − γ

)
dx

]

=

√√√√3H2�d −
√

9H4�2
d − 12c2K 2M4

p

2K 2M4
p

. (18)

Using the transformation a = ex in (18) and differentiating
w.r.t. x we get

�′
d = 2�d(1 − �d)

(
B

√
�d

A3/2

√
A + B

2c2 − 3ksce−2x

− A + B

A
+ 5 − 4exγ

2 − 2exγ

)
, (19)

where A = 3e−3x (1 − exγ )H2
0 �m0�d

1 − �d
,

B =
√
A2 − 12c2K 2M4

p.

The differential equation (19) describes the evolution of
the KHDE by supposing a closed universe with dark mat-
ter and dark energy as its primary components. The case of
ksc = 0 i.e. the curvature density �ksc to be 0 (γ = 0)

corresponds to KHDE in flat universe [40]. When K → 0,
we get B = A, leads the Eq. (19) to standard HDE model
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of non-flat universe’s differential equation for the DE den-

sity [22],
�′

d

�2
d

= (1 − �d)

(
1

(1 − aγ )�d
+ 2 cos y

c
√

�d

)
. We

point out that when K → 0 and γ = 0, it leads (19) in
retrieving the equivalent differential equation of the con-
ventional HDE model for the flat universe. This equation is

�′
d = �d(1 − �d)

(
1 + 2

√
3M2

p�d

3c2M2
p

)
, and being indepen-

dent of x , it can have an implicit analytic solution [10,11].
We shall now examine how the KHDE’s EoS parameter

wd = pd/ρd behaves. Because of the conservation of matter
sector, the Friedmann equations (5–6) forces the conservation
of dark energy sector, i.e.

ρ̇d + 3Hρd(1 + wd) = 0, . (20)

Differentiating (4), using (11), (12) with L̇ = LH − cos y
and inserting into (8), we get

wd = −1 + 2B

3A

(
1 − 1

c

√
�d

√
A + B

2A
cos

[
ce−x

√
6ksc
A + B

])
.

(21)

Hence, obtaining wd requires knowledge of �d from (19).
On considering ksc = 0, we achieve the EoS parameter
expression obtained for flat-universe [40]. When K = 0
Eq. (21) becomes the EoS equation for non flat universe

wd = −1

3
− 2

3c

√
�d cos y . For ksc = K = 0, the relation

(21) leads to the standard holographic dark energy scenario

wd = −1

3
− 2

3c

√
�d [10,11].

From the Friedmann second equation (6) and Hubble

parameter (15), the deceleration parameter q = −1 − Ḣ

H2 is

deduced as

q = 1

2

(
1 + 3wd�d + ksc

1 − �d

H2
0 �m0

(
e−x − γ

)
)

. (22)

2.2 Case II: Open spatial curvature (ksc = −1)

In this subsection the analysis is based on the negative spatial
curvature consideration, i.e. ksc = −1. The largest theory’s
distance L is given by L = ar(t), where the expression for
r(t) can be obtained using the relation

∫ r(t)

0

1√
1 + kscr2

dr = Rh

a
, (23)

which gives the relation for r(t) as

r(t) = 1√|ksc| sinh y, (24)

where, using the transformation a = ex we get

y = √|ksc| Rh

a
= √|ksc|

∫ ∞

x

1

Ha
dx . (25)

The calculation for L will be performed similar to the closed
spatial curvature case and we get the relation

a√|ksc| sinh

[√|ksc|
∫ ∞

x

1√
�m0 H0

√(
1 − �d

a−1 − γ

)
dx

]

=

√√√√3H2�d −
√

9H4�2
d − 12c2K 2M4

p

2K 2M4
p

. (26)

Taking the x− derivative of the relation (26) by using the
transformation a = ex and applying Eq. (15) leads to the
differential equation

�′
d = 2�d(1 − �d)

(
B

√
�d

A3/2

√
A + B

2c2 + 3|ksc|e−2x

− A + B

A
+ 5 − 4exγ

2 − 2exγ

)
, (27)

where A = 3e−3x (1 − exγ )H2
0 �m0�d

1 − �d
,

B =
√
A2 − 12c2K 2M4

p.

The development of KHDE for dust matter in an open
universe is given by the differential equation (27). The case
of ksc = 0 leads to the KHDE for flat universe [40].
While as K = 0, the current model tend towards the stan-
dard holographic dark energy scenario for open universe

[22],
�′

d

�2
d

= (1 − �d)

(
1

(1 − aγ )�d
+ 2 cosh y

c
√

�d

)
, using

the relations cosh2 y − sinh2 y = 1 and L = c

√
3

A
=

c

H
√

�d
. If we restrict both, i.e. ksc = 0 and K → 0,

it returns the usual HDE in a flat universe �′
d = �d(1 −

�d)

(
1 + 2

√
3M2

p�d

3c2M2
p

)
[10,11].

Now we will obtain the EoS parameter expression for open
spatial curvature in a way exactly similar to the closed uni-
verse case. Taking the time derivative of (4), using Eqs. (8),
(24) and (25) we get

wd = −1 + 2B

3A

(
1 − 1

c

√
�d

√
A + B

2A
cosh

[
ce−x

√
6|ksc|
A + B

])
.

(28)

On considering ksc = 0, the EoS parameter expression for
KHDE model with flat universe is obtained [40]. K → 0
leads to the EoS parameter expression for usual HDE model

with open spatial curvature wd = −1

3

(
1 + 2

c

√
�d cosh y

)
.

Standard holographic dark energy model [10,11] is recovered
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Fig. 1 The variation in the KHDE density parameter �d with redshift z for the closed universe, in units when M2
p = 1, H0 = 67.9. In order to be

consistent with data, we now imposed �d (x = − ln(1 + z) = 0) = �d [0] = 0.7

Fig. 2 The variation in the KHDE density parameter �d with redshift z for the open universe, in units when M2
p = 1, H0 = 67.9. In order to be

consistent with data, we now imposed �d (x = − ln(1 + z) = 0) = �d [0] = 0.7

as a limiting case of the current model, i.e. for ksc = 0 and

K → 0, we get wd = −1

3

(
1 + 2

c

√
�d

)
. The deceleration

parameter expression is provided using the same formula as
in the closed case.

q = −1 − Ḣ

H2 = 1

2

(
1 + 3wd�d + ksc

1 − �d

H2
0 �m0

(
e−x − γ

)
)

.

(29)

In order to examine the KHDE model’s conventional sta-
bility, the squared sound speed is stated as

v2
s = dpd

dρd
= ρd

ρ̇d
ẇd + wd . (30)

3 Cosmological evolution

The KHDE model was developed in the part before this one
with a future event horizon by considering the spatial geome-
try to be open as well as closed. Various equations pertaining
to the evolutionary behavior of the universe such as KHDE
density, EoS and deceleration parameters were obtained. As
a result, we may now conduct a thorough analysis of the
resultant cosmological behavior. The Eqs. (19) and (27) can

be solved analytically only for γ = 0 and K = 0. We must
seek a numerical solution for the general case. Using the
straightforward equation x = ln a = − ln (1 + z), we may
predict its behavior in terms of the redshift z as long as the
solution for �d is available. Kaniadakis entropy, being an
even function, restricts K values to be positive only.

Inline with observational data, Eqs. (19) and (27) are
solved numerically by considering �d(x = − ln (1 + z) =
0) = 0.7 ≡ �d0 , �m(x = − ln (1 + z) = 0) = 0.29 ≡
�m0 , and �ksc (x = − ln (1 + z) = 0) = 0.01 ≡ �ksc0 . By
varying c and fixing K , Figs. 1 and 2 are plotted. Figure 1
explains the closed universe’s thermal history whereas Fig. 2
characterizes the open universe’s thermal history. Both the
Figs. 1 and 2 imply that dark matter ruled the whole universe
in the past, partially KHDE dominated at present and fully
KHDE dominated in the near or far future.

The EoS parameter is plotted against redshift z in Fig. 3
for closed universe model and in Fig. 4 for open universe by
assuming K to be fixed and varying c. The KHDE model
never crosses the line wd = −1, shows pure quintessence
behavior for c < 1, and c = 1 results into the �− CDM
model. For c values greater than 1, the EoS trajectories evolve
in the quintessence region, and by going across the divide line
wd = −1, in the near or far future enters the phantom zone.
As a result, when c > 1, the KHDE model acts like quintom.
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Fig. 3 The variation in the EoS parameter wd with redshift z for the closed universe, in units when M2
p = 1, H0 = 67.9. In order to be consistent

with data, we now imposed �d (x = − ln(1 + z) = 0) = �d [0] = 0.7

Fig. 4 The variation in the EoS parameter wd with redshift z for the open universe, in units when M2
p = 1, H0 = 67.9. In order to be consistent

with data, we now imposed �d (x = − ln(1 + z) = 0) = �d [0] = 0.7

Deceleration parameter plots w.r.t. z are depicted in Figs. 5
and 6 for closed and open universe models respectively by
fixing the parameter K and varying c values. Both the list
of figures clearly state that the universe started evolving in
a decelerated phase. The phase shifted from deceleration to
acceleration at about z ≈ 0.6. The future of the universe will
follow the accelerated phase irrespective of the nature of the
model whether closed or open.

The squared sound speed against redshift is displayed to
assist the model’s conventional stability in Figs. 7 and 8 in
the case of closed and open universe models respectively
by varying c values and fixed K . Both figures from Figs. 7
and 8 show that the KHDE model at hand is future stable
for c values less than 1 otherwise unstable irrespective of K
values.

4 Examination of observed data

This section discusses the non-flat KHDE model’s advanced
research analysis. A brief explanation is given of the datasets
used in our research, with particular emphasis on how the
Type Ia Supernova and CC (cosmic chronometer) mode were
used to get the most recent Hubble parameter data (SNIa).

4.1 Observationally obtained Hubble dataset

We use the 30 H(z) observational dataset limitations from
table 4 of [60], which covers the range of redshifts from 0.07
to 1.965. The cosmic chronometric (CC) method can be used
to get this uncorrelated data. The reasoning behind collect-
ing these data is based on the possibility that the Hubble
dataset obtained via the CC approach is individualized. The
method of different galaxy dating determines the CC data of
the universe that is passively developing. Figures 9 and 10
demonstrate the development of H(z) in the case of closed
and open universe models respectively, and compares it to
the said 30 points of H(z) data. Clearly, the current model
is completely consistent with the observationally obtained
H(z) dataset.

4.2 Distance modulus

The observations taken from the SNIa are extremely help-
ful for studying cosmological models, especially as the main
proof of an accelerating universe. As a result, in addition to
the CC data, we also used a sample of 580 Union 2.1 scores
mixed with SNIa from the distance modulus dataset [61].
The redshift-luminosity distance connection is a well-known
observational method for studying the development of the
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Fig. 5 The variation in the deceleration parameter q with redshift z for the closed universe, in units when M2
p = 1, H0 = 67.9. In order to be

consistent with data, we now imposed �d (x = − ln(1 + z) = 0) = �d [0] = 0.7

Fig. 6 The variation in the deceleration parameter q with redshift z for the open universe, in units when M2
p = 1, H0 = 67.9. In order to be

consistent with data, we now imposed �d (x = − ln(1 + z) = 0) = �d [0] = 0.7

Fig. 7 The variation in the squared sound speed v2
s with redshift z for the closed universe, in units when M2

p = 1, H0 = 67.9. In order to be
consistent with data, we now imposed �d (x = − ln(1 + z) = 0) = �d [0] = 0.7

universe [62]. The light travelling towards a faraway lumi-
nescent body is redshifted as a result of the universe’s expan-
sion, and this causes us to be able to calculate the z-dependent
luminosity distance (DL ). We may calculate a source’s flux
using the luminosity distance, which is expressed by

DL = a0r(1 + z), (31)

with radial coordinate of the source r . Another definition of
DL is given by [5]

DL = clight (1 + z)

H0

∫ z

0

1

E(z)
dz, (32)

with E(z) = H(z)

H0
. And hence the distance modulus is given

by

μ = 25 + 5 log10

(
DL

Mpc

)
. (33)

Equation (32) yields the relation for the distance modulus μ

given by

μ = 25 + 5 log10

[
clight (1 + z)

H0

∫ z

0

1

E(z)
dz

]
. (34)
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Fig. 8 The variation in the squared sound speed v2
s with redshift z for the open universe, in units when M2

p = 1, H0 = 67.9. In order to be
consistent with data, we now imposed �d (x = − ln(1 + z) = 0) = �d [0] = 0.7

Fig. 9 The variation in the Hubble parameter H with redshift z for the closed universe, in units when M2
p = 1, H0 = 67.9. In order to be consistent

with data, we now imposed �d (x = − ln(1 + z) = 0) = �d [0] = 0.7. Bars represent the 30 H(z) datapoints

Fig. 10 The variation in the Hubble parameter H with redshift z for the open universe, in units when M2
p = 1, H0 = 67.9. In order to be consistent

with data, we now imposed �d (x = − ln(1 + z) = 0) = �d [0] = 0.7. Bars represent the 30 H(z) datapoints

By combining the 580 Union 2.1 [61] scores and the SNIa
data, Figs. 11 and 12 display the z-dependent period of dis-
tance modulus μ(z) for the non-flat KHDE model, appro-
priately. The error graph of the present model is presented
by a solid line on togetherness of 580 Union 2.1 results with
SNIa datasets. Figures 11 and 12 show how the current model
significantly reflects the observed μ(z) values for each data
point.

5 Summary of results

In this paper, we built the KHDE with future event horizon
as IR cutoff in a non-flat universe with model parameters K
and c. KHDE is constructed by applying Kaniadakis entropy
to a cosmological framework instead of normal Bekenstein
Hawking entropy and the holographic principle. We first
offered a straightforward differential equation for the holo-
graphic dark energy density parameter �d in order to exam-
ine the cosmic applications of KHDE. Additionally, as a
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Fig. 11 The variation in the luminosity distance μ with redshift z for
the closed universe, in units when M2

p = 1, H0 = 67.9. In order to be
consistent with data, we now imposed �d (x = − ln(1 + z) = 0) =

�d [0] = 0.7. Bars display the 580 Union 2.1 scores along with the
SNIa results from the distance modulus data set

Fig. 12 The variation in the luminosity distance μ with redshift z for
the open universe, in units when M2

p = 1, H0 = 67.9. In order to be
consistent with data, we now imposed �d (x = − ln(1 + z) = 0) =

�d [0] = 0.7. Bars display the 580 Union 2.1 scores along with the
SNIa results from the distance modulus data set

function of �d , we deduced an analytical expression for
the holographic dark energy equation-of-state parameter wd

while accounting for both closed and open spatial geome-
try. Although the aforementioned differential equation can
be analytically solved in an implicit form when K = 0 and
γ = 0, in general case it can not be solved analytically, hence
one must numerically elaborate it.

A rich behavior is also displayed by the associated dark
energy EoS parameter, which can exhibit quintessence-like,
or quintom like experience by crossing the phantom-divide
before or after the present. We then conducted a thorough
examination, demonstrating that the KHDE model may prop-
erly reflect the universe’s thermal history, including the
sequence of matter and dark energy epochs. The change from
deceleration to acceleration occurs in the vicinity of z ≈ 0.6
in agreement with observations, before it leads to a complete
dark energy dominance in the long term. The squared sound
speed parameter behavior shows that the KHDE model is sta-
ble for the present epoch but unstable for the very beginning
epoch. Furthermore, we tested the scenario using observa-
tional data from the distance modulus dataset samples from

580 Union 2.1 scores, and the combined SNIa data with 30
CC data points for H(z), to validate the values of the param-
eters K and c under consideration, and found that the agree-
ment is quite strong.

However, in order to more precisely constrain the new
parameters, the present analysis should be expanded with
more data from the BAO (Baryon Acoustic Oscillation),
SNIa, and CMB probes. Further research on this topic is on
the way, and further studies will likely disclose more insights.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The present work
is a theoretical study and adopted numerical analysis, and therefore
there is no data to be deposited.]
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