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Abstract In the framework of strong-field QED with
x-steps, we study vacuum mean values of the current den-
sity and energy–momentum tensor of the quantized spinor
field placed in the so-called L-constant electric background.
The latter background can be, for example, understood as
the electric field confined between capacitor plates, which
are separated by a sufficiently large distance L. First, we
reveal peculiarities of nonperturbative calculating of mean
values in strong-field QED with x-steps in general and, in
the L-constant electric field, in particular. We propose a new
renormalization and volume regularization procedures that
are adequate for these calculations. We find necessary rep-
resentations for singular spinor functions in the background
under consideration. With their help, we calculate the above
mentioned vacuum means. In the obtained expressions, we
show how to separate global contributions due to the particle
creation and local ones due to the vacuum polarization. We
demonstrate how these contributions can be related to the
renormalized effective Heisenberg–Euler Lagrangian.

1 Introduction

In QED with strong electric-like external fields (strong-field
QED in what follows) there exists the so-called vacuum insta-
bility due to the effect of real particle creation from the vac-
uum caused by the external fields (the so-called Schwinger
effect [1]). A number of publications, reviews and books
are devoted to this effect itself and to developing different
calculation methods in theories with unstable vacuum, see
Refs. [2–9] for a review. In strong-field QED, nonperturba-
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tive (with respect to strong external fields) methods are well-
developed for two classes of external backgrounds, namely
for the so-called t-electric potential steps (t-steps) and x-
electric potential steps (x-steps). t-steps represent uniform
time-dependent external electric fields that are switched on
and off at the initial and the final time instants, respectively
whereas x-steps represent time-independent external electric
fields of constant direction that are concentrated in restricted
space areas. The latter fields can also create particles from the
vacuum, the Klein paradox is closely related to this process
[10–13]. A general nonperturbative formulation of strong-
field QED with t-steps was developed many years ago in
Refs. [14–18]. The study of particle creation due to the x-
steps began early in the framework of relativistic quantum
mechanics, see Ref. [19,20] for a review. However, until
recently a consistent quantum field theory (QFT) with x-steps
has not been completed. Only a short time ago a nonperturba-
tive formulation of strong-field QED with x-steps was devel-
oped in Refs. [21,22]. In the framework of strong-field QED
with x-steps calculations of particle creation effect were pre-
sented in Refs. [23–29]. In both relativistic quantum mechan-
ics and strong-field QED the possibility of nonperturbative
calculations is based on the existence of specific exact solu-
tions (in- and out-solutions) of the Dirac equation. In strong-
field QED (in explicit in the relativistic quantum mechanics
as well), it is assumed that quantum processes under con-
sideration do not affect significantly classical external fields,
the back-reaction is supposed to be small. Nevertheless, it is
well-understood that, in principle, the back-reaction must be
calculated, at any rate, to estimate limits of the applicability
of obtained results. It is also clear that the back-reaction may
be strong namely for external backgrounds that can violate
the vacuum stability. Here we have to say that studying the
vacuum instability, one usually calculates the number den-
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sity of particles created from the vacuum. In some cases, this
allows one to make phenomenological conclusions about the
back-reaction; see, e.g., [30]. However, a complete study of
the back-reaction is related to calculating mean values of the
current density and the energy-momentum tensor (EMT) of
the charge matter field. In strong-field QED with t-steps such
a study was performed in Refs. [31–34]. In particular, it was
demonstrated that the effect of particle-creation is precisely
the main reason for the change of the energy of the mat-
ter. Making a comparison between the change of the energy
density of the charged matter and the energy density of the
external electric field, which is responsible for this change,
restrictions on the intensity of an external field and its dura-
tion were found, see Ref. [35].

In the present article, in the framework of strong-field
QED with x-steps, we study vacuum mean values of the cur-
rent density and EMT of the Dirac field in a constant external
electric field confined between capacitor plates, which are
separated by a sufficiently large distance L . In earlier publi-
cations such a field is conditionally called L-constant electric
field. In the limiting case L → ∞ this field can be considered
as a regularization of the constant uniform electric field. In
the obtained results, we demonstrate how to separate contri-
butions due to the global effects of particle production from
the local effect due to the vacuum polarization.Some rela-
tions with the Heisenberg-Euler Lagrangian are established.

The paper is organized as follows. In Sect. 2, we describe
peculiarities of calculating mean values in strong-field QED
with x-steps and, in particular, in the L-constant electric field,
in Sect. 3. In Sect. 4, we refine the volume regularization pro-
cedure with respect to the time-independent inner product on
the t-constant hyperplane and find necessary representations
of singular spinor functions in the electric field under con-
sideration. In Sect. 5, we calculate directly the vacuum mean
values of current density and EMT. In the obtained expres-
sions, we separate contributions due to the particle creation
and due to the vacuum polarization. We demonstrate how
the latter contributions can be derived by the help of the
Heisenberg–Euler Lagrangian. In the last Sect. 6, we sum-
marize and discuss the main results. Some useful technical
details are placed in the Appendices.

In our consideration, we use the relativistic units � = c =
1 in which the fine structure constant is α = e2/c� = e2.

2 Mean values in strong-field QED with x-steps

We consider quantum and classical fields in d dimensional
Minkowski space-time and use coordinates X ,

X = (
Xμ, μ = 0, 1, . . . , d − 1

) = (t, r) , X0 = t ,

r =
(
X1, . . . , Xd−1

)
, x = X1 .

for their parametrization. We assume that the basic Dirac
particle is an electron with the mass m and the charge −e,
e > 0, and the positron is its antiparticle. In general, the x-
step is given by zero component of electromagnetic potential
A0 (x) that depends on the coordinate x . The corresponding
electric field E (x) = −∂x A0 (x) > 0 is directed along the
x axis in the positive direction and is confined in the region
Sint = (xL, xR), where xL < 0 and xR > 0. The potential
energy of an electron isU (x) = −eA0 (x), and ∂xU (x) > 0
if x ∈ Sint, and is constant outside the region Sint ,U (x) = UL

if x < xL and U (x) = UR if x > xR. The field accelerates
the electrons along the axis x in the negative direction and
the positrons along the axis x in the positive direction. The
x-step can create particles from the vacuum if the magnitude
of its potential energy is sufficiently large, �U > 2m. Such
a x-step is called critical. In Refs. [21,22] it was developed
an approach that allows one to calculate nonperturbatively
effects of the vacuum instability in the presence of x-steps
(the above mentioned in the Introduction strong-field QED
with x-steps). It is clear that the process of pair creation
is transient. Nevertheless, the condition of the smallness of
backreaction shows there is a window in the parameter range
of E and a time duration of its existence where the constant
field approximation is consistent [35]. Physically, one can
believe that the electric field of an x-step may be consid-
ered as a part of a time-dependent inhomogeneous electric
field Epristine (X) directed along the x-direction, which was
switched on very fast before a time instant tin, by this time
it had time to spread to the whole region Sint. Then it was
switched off very fast just after a time instanttout = tin + T .
We stress that the field Epristine (X) is equal to E (x) from tin
to tout, considered in the region Sint, acts as a constant field
E during the sufficiently large (macroscopic) period of time
T ,

T � (eE)−1/2 max
{

1,m2/eE
}

. (1)

We note, that there exist time-independent observables in
the presence of critical x-steps. The pair-production rate and
the flux of created particles are constant during the time T
and main contributions to the latter quantities are indepen-
dent from fast switching-on and -off effects if Eq. (1) holds
true. This statement is confirmed by results obtained in con-
sidering exactly solvable cases with t-steps [36–39] and by
numerical calculations1; see, e.g. [30]. Neglecting contribu-
tions of the fast switching-on and -off effects, one can use
in calculations instead of the true initial and final vacua that
existed before the time tin and after the time tout some time-

1 Note that the pair-production rate per unit volume due to homoge-
neous fields (xL → −∞, xR → ∞) of given average intensity is equal
to or higher than that for the case of a finite width xR − xL; see Ref.
[23].
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independent vacua |0, in〉 and |0, out〉 respectively, see Refs.
[21,22].

In the case of the L-constant electric field we have E (x) =
E and U (x) = eEx in the region Sint and we choose that
xL = −L/2 and xR = L/2. Its magnitude is

�U = UR −UL = eEL > 0 .

The L-constant field produces constant fluxes of created from
the vacuum final particles during the time interval T . These
particles created as electron–positron pairs and leave field
area Sint, wherein electrons are emitted to the region SL on the
left of Sint and positrons to the region SR on the right of Sint.
In these regions the created particles have constant velocities
in opposite directions, moving away from the area Sint. They
form constant longitudinal currents and energy fluxes in the
regions SL and SR, respectively. Since the time interval T
is chosen be macroscopic, one may believe that, measuring
characteristics of particles in the regions SL and SR, we are
able to evaluate the effect of pair creation in the area Sint

for the time interval T . As it follows from exact results [23]
in the case of the L-constant field with a sufficiently large
length L ,

L � (eE)−1/2 max
{

1,m2/eE
}

, (2)

one can use semiclassical description. That is, L is chosen
be macroscopic finite distance. In this description, outside
the area Sint, polarization effects are absent, therefore, the
particles moving away are the final particle that will remain
after the field Epristine (X) is turned off. They are already
formed as final particles in the field area. Thus, in the case of
the L-constant field with a sufficiently large length L , we are
able to measure characteristics of particles in the field area
Sint on the plane x = const for the time interval T .

We consider our theory in a large space-time box that
has a d − 2 dimensional spatial volume V⊥ of the hyper-
surface orthogonal to the electric field direction and the time
dimension T . From the latter point of view, the vacuum mean
values of the operators of physical quantities on the plane
x = const are defined as integrals over the area V⊥ of the
plane x = const and the time interval T . Due to the transla-
tional invariance of the external field in the Sint, all the mean
values are proportional to the spatial volume V⊥ and the time
interval T . In what follows, we consider mean values of the
operators Jμ(x) and Tμν(x) with respect to both initial and
final vacua,

〈
Jμ(x)

〉
in/out = −ietr

[
γ μScin/out(X, X ′)

]
|X=X ′ ,

〈
Jμ(x)

〉c = −ietr
[
γ μSc(X, X ′)

] |X=X ′ ;
〈
Tμν(x)

〉
in/out = i tr

[
AμνS

c
in/out(X, X ′)

] |X=X ′ ,
〈
Tμν(x)

〉c = i tr
[
AμνS

c(X, X ′)
] |X=X ′ ,

Aμν = 1

4

[
γμ(Pν + P ′∗

ν ) + γν

(
Pμ + P ′∗

μ

)]
, (3)

where γ μ are γ -matrices in d dimensions,
[
γ μ, γ ν

]
+ = 2ημν, ημν = diag(1,−1, . . . ,−1) .

In Eq. (3) there appear the generalized causal in–out propa-
gator Sc(X, X ′), the so-called in–in propagator Scin(X, X ′),
and out–out propagator Scout(X, X ′) are used,

Sc(X, X ′) = i 〈0, out| T̂ �̂(X)�̂†(X ′)γ 0 |0, in〉 c−1
v ,

Scin(X, X ′) = i 〈0, in| T̂ �̂(X)�̂†(X ′)γ 0 |0, in〉 ,

Scout(X, X ′) = i 〈0, out| T̂ �̂(X)�̂†(X ′)γ 0 |0, out〉 ,

cv = 〈0, out| 0, in〉 . (4)

Here T̂ denotes the chronological ordering operation, Pμ =
i∂μ + eAμ(X), P∗

μ = −i∂μ + eAμ(X), tr is denote the
trace in the space, where γ -matrices are acting, and the Dirac
Heisenberg operator �̂(X) corresponds to the classical Dirac
field ψ(X). Here ψ(X) is a 2[d/2]-component spinor (the
brackets stand for integer part of). The Dirac Heisenberg
operator satisfies the equal time canonical anticommutation
relations
[
�̂ (X) , �̂

(
X ′)]

+

∣∣
∣∣
t=t ′

= 0,

[
�̂ (X) , �̂† (X ′)]

+

∣
∣∣∣
t=t ′

= δ
(
r − r′) .

It is clear that the vacuum polarization is a local effect,
while the concept of a particle has a clear meaning only after
the electric field is turned off, which in the case under consid-
eration refers to those particles that have left the field region.
Nevertheless, it is natural to assume that the created particles
observed inside the field region near its boundaries xL and
xR practically do not differ from those observed outside this
region and, therefore, represent the final particles.

In this article, our main task is to establish the relationship
between the matrix elements (3) and the observable quantities
that describe the effects of vacuum polarization and particle
production.

However, a number of important technical and principal
questions still need to be answered. The point is, that in
the setting of problem considered in Refs. [21,22] did not
consider local effects, produced by electric field. In these
works, it was assumed that the measurement of particle fluxes
through some surfaces x = xL/R

meas, x
L/R
meas ∈ SL/R occurs at a

considerable distance from the field region Sint both in the
region SL and in the region SR during the macroscopical time
interval T .. This distance is assumed to be cT , which is much
larger than the extent of field, xR − xL. In this case, during
the time T through surfaces x = xL/R

meas, only those particles
pass, which at the time of the beginning of the measurement
were not farther from them than at a distance cT . Then the
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observed fluxes consist mainly of only one type of parti-
cles, namely, electrons in the region SL and positrons in the
region SR. Such a setting the problem allows you to neglect
local characteristics of the field and calculate the vacuum-
to-vacuum transition amplitude, mean differential and total
numbers of created particles, mean current and EMT of cre-
ated particles for the case of arbitrary x-step. In the case
under consideration unlike the approach [21,22] the mea-
surement of characteristics of particles is carried out in the
field area Sint, where fluxes consisting of both electrons and
positrons pass through any surface x = const. This is a new
type of task in the framework of strong-field QED with x-
steps, for which it is necessary to re-establish the relationship
between the duration of motion of particles and a duration of
observation. For this purpose, it is necessary to use a certain
regularization and renormalization of the parameters used.
That is why below we turn to a clarification of the physical
meaning of these parameters.

3 Dirac field in the L-constant electric background

The solutions of the Dirac equation with critical x-step are
known in the form of the stationary plane waves with given
real longitudinal momenta pL and pR in the regions SL and
SR, respectively. In this section we briefly recall some general
features of these solutions established in Ref. [21] and present
necessary details for the case of the L-constant electric field;
see Ref. [23] for more details. We consider Dirac field in
d dimensional Minkowski space-time with coordinates X .
A complete set of stationary plane waves has the following
form:

ψn (X) = (
γ μPμ + m

)
�n (X) ,

�n (X) = ϕn (t, x) ϕp⊥ (r⊥) vχ,σ ,

ϕn (t, x) = exp (−i p0t) ϕn (x) , n = (p0,p⊥, σ ) ,

r⊥ =
(
X2, . . . , Xd−1

)
, p⊥ =

(
p2, . . . , pd−1

)
, (5)

where vχ,σ with χ = ±1 and σ = (σ1, σ2, . . . , σ[d/2]−1),
σ j = ±1, is a set of constant orthonormalized spinors satis-
fying the following conditions:

γ 0γ 1vχ,σ = χvχ,σ , v†
χ,σ vχ ′,σ ′ = δχ,χ ′δσ,σ ′ ,

In fact, functions (5) correspond to states with given momenta
p⊥ in the perpendicular to the axis x direction. The quan-
tum numbers χ and σ j describe a spin polarization and pro-
vide a convenient parametrization of the solutions. Since in
(1 + 1) and (2 + 1) dimensions (d = 2, 3) there are no any
spin degrees of freedom, the quantum numbers σ are absent.
Note that in (2 + 1) dimensions, there are two nonequiva-
lent representations for the γ -matrices which correspond to
different fermion species parametrized by χ = ±1 respec-

tively. In d dimensions, for any given momenta, there exist
only J(d) = 2[d/2]−1 different spin states. One can see that
solutions (5), which differ only by values of χ , are linearly
dependent. Without loss of generality, we set χ = 1 and
introduce the notation vσ = v1,σ . The scalar functions ϕn(x)
obey the second-order differential equation:

{
p̂2
x − iU ′ (x) − [p0 −U (x)]2

+p2⊥ + m2
}

ϕn (x) = 0,

p̂x = −i∂x . (6)

Now we return to solving Eq. (6) in the area x ∈ Sint. It can
be rewritten as follows:

[
d2

dξ2 + ξ2 + i − λ

]
ϕn (x) = 0 ,

ξ = eEx − p0√
eE

, λ = π2⊥
eE

, π⊥ =
√
p2⊥ + m2 . (7)

Note that π0 (x) = p0 − eEx is kinetic energy an elec-
tron. The general solution of Eq. (7) is completely deter-
mined by an appropriate pair of linearly independent Weber
parabolic cylinder functions (WPCFs), either Dρ[(1 − i)ξ ]
and D−1−ρ[(1 + i)ξ ] or Dρ[−(1 − i)ξ ] and D−1−ρ[−(1 +
i)ξ ], where ρ = −iλ/2 − 1.

We assume that corresponding potential step is sufficiently
large, �U = eEL � 2m (i.e., it is critical). In this case the
field E and leading contributions to vacuum mean values can
be considered as macroscopic physical quantities.

In the case of critical steps, and, in particular, for the step
under consideration, there exist five ranges of quantum num-
bers n, �k , k = 1, . . . , 5; see section IIIB in Ref. [21]. We
are interested in the Klein zone, the range �3, is defined by
the inequalities UL + √

eEλ ≤ p0 ≤ UR − √
eEλ. Particle

production from the vacuum takes place only in this range.
We note that in the limit L → ∞ the width of the Klein zone
tends to the infinity; see section IIIB in Ref. [23] for details.

For states with quantum numbers belonging to the Klein
zone the L-constant electric field can be considered as a reg-
ularization of a constant uniform electric field. That is reason
why such a field with a sufficiently large length L , satisfying
both condition (2) and

[√
eEL

(√
eEL − 2

√
λ
)]1/2 � 1 , (8)

is of special interest. In what follows, we suppose that these
conditions hold true. Besides we assume that the additional
condition

√
λ < K⊥,

√
eEL/2 � K 2⊥ � max

{
1,m2/eE

}
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takes place. Thus, in fact, we are going to consider the sub-
range D,

D ⊃ �3 : √
λ < K⊥, |p0| /

√
eE <

√
eEL/2 − K ,√

eEL/2 � K � K 2⊥ � max
{

1,m2/eE
}

, (9)

where K and K⊥ are any given numbers satisfying the condi-
tion (9). Namely in this subrange the pair creation is essential.

Solutions of the Dirac equation with well-defined left and
right asymptotics we denote as ζ ψn (X) and ζ ψn (X),

p̂x ζ ψn (X) = pL
ζ ψn (X) , x → xL, ζ = sgn(pL) ,

p̂x
ζ ψn (X) = pR ζ ψn (X) , x → xR, ζ = sgn(pR) ;

pL = ζ

√
[π0 (L)]2 − π2⊥, pR = ζ

√
[π0 (R)]2 − π2⊥ ,

π0 (L) = p0 −UL, π0 (R) = p0 −UR, ζ = ± , (10)

where |π0 (L)| and |π0 (R)| are asymptotic kinetic energies
of an electron in the regions SL and SR, respectively.

The solutions ζ ψn (X) and ζ ψn (X) describe particles
with given momenta pL as x → xL and pR as x → xR,
respectively. One can see that the solutions ζ ψn (X) and
ζ ψn (X) have the form (5) with functions ϕn (x) denoted

here as ζ ϕn (x) or ζ ϕn (x) respectively. The latter functions
have the following asymptotics:

ζ ϕn (x) = ζC exp
[
i pLx

]
, x → xL ,

ζ ϕn (x) = ζC exp
[
i pRx

]
, x → xR .

Here ζC and ζC are normalization constants.
We consider our theory in a large space-time box that has

a spatial volume V⊥ = ∏d−1
j=2 K j and the time dimension T ,

where all K j and T are macroscopically large. It is supposed
that all the solutions ψ(X) are periodic under transitions from
one box to another. Then the integration in the inner product

(
ψ,ψ ′)

x =
∫

V⊥T
ψ† (X) γ 0γ 1ψ ′ (X) dtdr⊥ , (11)

over the transverse coordinates is fulfilled from −K j/2 to
+K j/2, and over the time t from −T/2 to +T/2. Under
these suppositions, the inner product (11) does not depend
on x ; see section IIIC1 in Ref. [21] for details. The solutions

ζ ψn (X) and ζ ψn (X) satisfy the following orthonormality
relations on the x = const hyperplane:
(

ζ ψn, ζ ′ψn′
)
x = ζ δζ,ζ ′δn,n′ ,

(
ζ ψn,

ζ ′
ψn′

)

x
= −ζ δζ,ζ ′δn,n′ . (12)

In what follows, we will need two sets of solutions of
Eq. (7) for the case xL → −∞ and xR → ∞:

+ϕn (x) = Y +C D−1−ρ[−(1 + i)ξ ] ,

−ϕn (x) = Y −C Dρ[−(1 − i)ξ ] ,

+ϕn (x) = Y +C Dρ[(1 − i)ξ ] ,

−ϕn (x) = Y −C D−1−ρ[(1 + i)ξ ] ,

−ζC = ζC

= (eE)−1/2eπλ/8
[
λ

2
(1 + ζ ) + 1 − ζ

]−1/2

,

Y = (V⊥T )−1/2 . (13)

In the V⊥ → ∞ and T → ∞ limits one has to replace the
symbol δn,n′ in the normalization conditions (12) by quantity
δσ,σ ′δ

(
p0 − p′

0

)
δ
(
p⊥ − p′⊥

)
and to set Y = (2π)−(d−1)/2

in Eq. (13).
In the Klein zone, in- and out-solutions are:

in − solutions : −ψn(X), −ψn(X) ,

out − solutions : +ψn(X), +ψn(X) . (14)

The solutions ζ ψn (X) describe electrons, whereas the solu-
tions ζ ψn (X) describe positrons.

The mutual decompositions of the solutions ζ ψn (X) and
ζ ψn (X) have the form:

ζ ψn (X)

= +ψn(X)g
(
+
∣∣ζ )− −ψn(X)g

(
−
∣∣ζ ) ,

ζ ψn (X)

= −ψn (X) g
(− ∣∣

ζ

)− +ψn (X) g
(+ ∣∣

ζ

)
, (15)

where expansion coefficients g are defined by the relations:
(

ζ ψn,
ζ ′

ψn′
)

x
= g

(
ζ

∣
∣∣ζ

′ )
δn,n′ ,

g
(

ζ ′ ∣∣
ζ

)
= g

(
ζ

∣∣∣ζ
′ )∗

. (16)

The coefficients g satisfy the following unitary relations:
∣∣g
(
−
∣∣+ )∣∣2 = ∣∣g

(
+
∣∣− )∣∣2 ,

∣∣g
(
+
∣∣+ )∣∣2 = ∣∣g

(
−
∣∣− )∣∣2 ,

g
(
+
∣
∣− )

g
(
−
∣∣− ) = g

(+ |−
)

g
(+ |+

) ,

∣
∣g
(
+
∣
∣− )∣∣2 − ∣

∣g
(
+
∣
∣+ )∣∣2 = 1 .

The differential mean numbers of electrons and positrons
from electron-positron pairs created from the vacuum are
equal and present the number of created pairs,

N cr
n = ∣∣g

(
−
∣∣+ )∣∣−2

.

The total number of pairs created from the vacuum N cr is the
sum over the range �3 of the differential mean numbers N cr

n .
Since the numbers N cr

n do not depend on the spin polarization
parameters σs , the sum over the spin projections produces

only the factor J(d) = 2

[
d
2

]
−1

. The sum over the momenta
and the energy can be easily transformed into an integral in
the following way:

N cr =
∑

p⊥,p0∈�3

∑

σ

N cr
n

123
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= V⊥T J(d)

(2π)d−1

∫

�3

dp0dp⊥N cr
n . (17)

In the case of the L-constant electric field with a suffi-
ciently large length L , satisfying Eqs. (2) and (8), functions
(13) have asymptotic expansions for |ξ | � max {1, λ} (see,
e.g. Ref. [40]) over the wide range of energies p0 for any
given λ of the subrange D given by Eq. (9). In this sub-
range the quantity N cr

n is almost constant and coincides with
the well-known result in a constant uniform electric field
[2,41,42],

N cr
n → N uni

n = e−πλ . (18)

One can see that the minimal length of an electric field for
which these asymptotic expansions are performed is the order
of the length scale,

�l0 = (eE)−1/2 max {1, λ} . (19)

Therefore we can call it as the formation interval over the x
for the mean numbers N uni

n .
Note that exact quantity N cr

n has the following features
(see section IIIB in Ref. [23] for details):

N cr
n ∼

∣∣∣pR
∣∣∣ → 0, N cr

n ∼
∣∣∣pL

∣∣∣ → 0, ∀λ �= 0 ,

if n tends to the boundary with either the range �2(∣∣pR
∣∣ → 0

)
or the range �4

(∣∣pL
∣∣ → 0

)
) where the vacuum

is stable. The contribution to the integral (17) of the entire
subrange of the range �3, that is not included in the subrange
D, is negligibly small compared to the large contribution due
to the subrange D. It means that in integral (17) N cr

n plays
the role of a cutoff factor. Finally, we obtain:

N cr = V⊥Tncr, ncr = r cr
[
L + O(K )√

eE

]
,

r cr = J(d) (eE)d/2

(2π)d−1 exp

{
−π

m2

eE

}
. (20)

Here ncr is the total number density of created from the vac-
uum pairs per unit of time and per unit of surface orthogonal
to the electric field direction.

Note that ncr given by Eq. (20) is a function of the field
length L . The density r cr = ncr/L is known in the theory
of pair creation in the constant uniform electric field as the
pair-production rate (see the d dimensional case in Ref. [36]).

4 Means of currents and EMT

4.1 Regularization

Calculating some of the matrix elements considered above,
one meets divergences that indicate a need of a certain
regularization. Below, we consider such regularization and
renormalization procedures for calculating local quantities

in strong-field QED with L-constant electric field. In main,
these procedures where formulated in Ref. [21], however,
here they are completed by some important and the neces-
sary refinements.

In the case of the L-constant electric field under consid-
eration, where the distance L between capacitor plates is
sufficiently large, the plane waves ζ ψn (X) and ζ ψn (X)

can be identified by using one-particle mean currents and the
energy fluxes in the field region Sint, see Ref. [23]. Thus,
we can calculate the matrix elements (3) inside of the range
Sint. However, the explicit form of the singular functions (4)
depends on parameters of the volume regularization. Due to
physical reasons, these parameters are significantly different
from those proposed in the case when very wide regions SL

and SR were used to measure fluxes of particles, see [22].
That is why below we turn to a clarification of the physical
meaning of these parameters.

Stationary plane waves of type (10) are usually used in
potential scattering theory, where they represent one-particle
states with corresponding conserved longitudinal currents.
Such one-particle consideration is consistent in all the ranges
�k , excepting the Klein zone �3. The technique developed
in Ref. [21] does not need any refining in these ranges. Let
us consider the range �3 where the strong-field QED con-
sideration is essential. We note that for our purposes it is
sufficient to consider the subrange D ⊃ �3, which gives the
main contribution to the vacuum instability.

The plane waves of the type (10) are orthonormalized with
respect to the inner product (11). To determine the time-
independent initial |0, in〉 and final |0, out〉 vacua and con-
struct the corresponding in- and out-states in an adequate
Fock space, we have to use a time-independent inner product
of solutions ψ (X) and ψ ′ (X) of the Dirac equation with the
field Epristine (X) on a t constant hyperplane. We recall that
the periodic conditions are not imposed in the x direction.
That is why, in contrast to the case of t-steps, the motion of
particles in the x direction is unlimited. Unlike the approach
[21,22] we assume that the large distance L is not less then
cT , where T is an observation time T . In this case, one can
ignore areas without the electric field and to believe that the
part of the system under consideration causally related to the
pair production process is situated inside the region Sint. The
corresponding particle states are represented by solutions
given by Eqs. (5) and (13). For these reasons, we refine the
volume regularization procedure used in Ref. [21], defining
the time-independent inner product on the t-constant hyper-
plane as follows:

(
ψ,ψ ′) =

∫

V⊥
dr⊥

K (R)∫

−K (L)

ψ† (X) ψ ′ (X) dx , (21)
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where the integral over the spatial volume V⊥ is completed
by the integral over the interval

[−K (L), K (R)
]

in the x direc-
tion. Here K (L/R) are some arbitrary macroscopic but finite
parameters of the volume regularization, which are situated
in the spatial area Sint, 0 < K (L) < |xL| and 0 < K (R) < xR.
The length K (R) + K (L) < L is sufficiently large,

K (R) + K (L) � �l0 ,

where �l0 is given by Eq. (19).
Such an inner product is time-independent if solutions

ψ (X) and ψ ′ (X) obey certain boundary conditions that
allow one to integrate by parts in Eq. (21) neglecting bound-
ary terms. These boundary conditions consist of above men-
tioned periodicity with respect of all K j translations and an
additional condition with respect of the integral over the coor-
dinate x ; see Appendix B in Ref. [21]. The inner product (21)
is conserved for such states. However, considering solutions
of the type (10), which do not vanish at the spatial infinity, we
must accept some additional technical assumptions to pro-
vide the time independence of the inner product (21). First
of all, we note that states with different quantum numbers
n are independent, therefore decompositions of the vacuum
matrix elements (3) into the solutions with given n do not
contain interference terms, see Appendix A for details. That
is why it is enough to consider Eq. (21) only for a partic-
ular case of solutions ζ ψn (X) and ζ ψn (X) with equal n.
One can evaluate the principal value of integral (21) using
relations (15) and the asymptotic behavior of functions (13)
in the spatial regions where arguments of WPCF’s are large,
|ξ | � max {1, λ}, see Appendix B for details. In this case
the modulus of a longitudinal momentum is well defined as,

|px (x)| =
√

[π0 (x)]2 − π2⊥. One can see that the norms of

the solutions ζ ψn (X) and ζ ψn (X) with respect to the inner
product (21) are proportional to the macroscopically large
parameters τ (L) and τ (R),

τ (L) = K (L)/vL, τ (R) = K (R)/vR ,

where vL = |px (x) /π0 (x)| at x = −K (L) and vR =
|px (x) /π0 (x)| at x = K (R) are absolute values of the longi-
tudinal velocities of particles. In the spatial regions of interest
where |ξ | is large and the energy |π0 (x)| is much bigger then
π⊥, the particles are moving almost parallel to the axis x , and
the longitudinal velocities |px (x) /π0 (x)| are ultrarelativis-
tic at any x , such that |px (x) /π0 (x)| → c (c = 1).

It is shown (see Appendix B in Ref. [21]) that the following
couples of plane waves are orthogonal with respect to the
inner product (21)
(
ζ ψn,

ζ ψn
) = O(1)/τ (L/R), n ∈ �3

if the parameters of the volume regularization τ (L/R) satisfy
the condition

τ (L) − τ (R) = O (1) , (22)

where O (1) are terms that are negligibly small in compari-
son with the macroscopic quantities τ (L/R). In what follows
we disregard the contributions of the order of O(1)/τ (L/R).
Thus, according to the physical interpretation given in lat-
ter reference, the sets (14) represent in- and out-solutions,
which are linearly independent couples of complete on the
t-constant hyperplane states with a given n. One can see that
τ (L) and τ (R) are macroscopic times and they are equal,

τ (L) = τ (R) = τ .

The L-constant field produces constant fluxes of created
from the vacuum final particles during the time interval T .
These particles are created with zero longitudinal kinetic
momenta in a relatively small formation interval �l0 given
by Eq. (19). After turning into real particles electrons and
positrons under the action of the electric field move in oppo-
site directions, the positrons move in the direction of the
electric field to the region SR, while the electrons in the oppo-
site direction to the region SL and finally leave the interval[−K (L), K (R)

]
. The time which is enough to these particles

to reach one of the hyperplane x = −K (L) or x = K (R)

varies from zero to the maximum possible time 2τ , which
is required by the ultrarelativistic particle to overcome the
distance K (R) + K (L). It is clear that the kinetic energy (and
the longitudinal kinetic momentum) of a particle crossing
these hyperplanes are proportional to the paths traveled by
the particles. Thus, the summation over the kinetic energies
when calculating fluxes of particles leaving the area between
the hypersurfaces x = −K (L) and x = K (R) is equivalent to
the summation over the distances that these particles traveled
within the interval

[−K (L), K (R)
]

in the x-direction.
Under condition (22) the norms of the solutions on the

t-constant hyperplane are:

(
ζ ψn, ζ ψn

) = (
ζ ψn,

ζ ψn
) = Mn ,

Mn = 2
τ

T

∣∣g
(
+
∣∣− )∣∣2 if n ∈ �3 , (23)

where coefficients g are defined by Eq. (16) and
∣∣g
(
+
∣∣− )∣∣2

are given explicitly by Eq. (18). It is natural to assume that
the observation time T (the time during which the observer
registers flows of created particles leaving the area between
hyperplanes x = −K (L) and x = K (R)) is equal to the
maximal time 2τ ,

2τ = T , (24)

which is required for the created particles to leave the region
with the electric field. As we see in what follows, such a
relation fixes the proposed renormalization procedure. Thus,
we find:

Mn = ∣∣g
(
+
∣∣− )∣∣2 if n ∈ �3 . (25)

123
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In the case L → ∞, one can consider the limitV⊥, K (L/R) →
∞ to obtain normalized solutions in the range �3 as follows:
(

ζ ψn, ζ ψn′
) = (

ζ ψn,
ζ ψn′

)

= δσ,σ ′δ
(
p0 − p′

0

)
δ(p⊥ − p′⊥)Mn ,

(
ζ ψn,

ζ ψn′
) = 0 ,

where the quantity Mn is given by Eq. (25).

4.2 Singular functions

We recall that in the general case, in theories with unstable
vacuum, the singular functions (4) do not coincide. The dif-
ferences between the functions Scin(X, X ′), Scout(X, X ′) and
the causal propagator Sc(X, X ′) are denoted by S p(X, X ′)
and S p̄(X, X ′),

S p(X, X ′) = Scin(X, X ′) − Sc(X, X ′) ,

S p̄(X, X ′) = Scout(X, X ′) − Sc(X, X ′) . (26)

In the case of strong-field QED with L-constant electric
field, all the functions can be expressed as sums over the
solutions, given by Eqs. (5) and (13), see Ref. [21]. It can
be seen that in the case under consideration with L → ∞,
the main contributions to the sums are due to the Klein zone.
Taking this fact into account, the singular functions can be
represented as:

Sc(X, X ′) = θ(t − t ′) S− (X, X ′)

−θ(t ′ − t) S+ (X, X ′) ,

S−(X, X ′)
= i

∑

n

M−1
n

+ψn(X) g
(+|−

)
g
(− |−

)−1 −ψ̄n
(
X ′) ,(27)

S+(X, X ′)
= i

∑

n

M−1
n −ψn (X) g

(
−
∣∣+ )g

(
+
∣∣+ )−1

+ψ̄n
(
X ′) ,

Scin/out(X, X ′) = θ(t − t ′) S−
in/out

(
X, X ′)

−θ(t ′ − t) S+
in/out

(
X, X ′) ,

S−
in/out(X, X ′) = i

∑

n

M−1
n

∓ψn (X) ∓ψ̄n
(
X ′) ,

S+
in/out(X, X ′) = i

∑

n

M−1
n ∓ψn (X) ∓ψ̄n

(
X ′) ,

ψ̄ = ψ†γ 0 , (28)

where Mn is given by Eqs. (25).
Using relations (15), we represent the singular functions

S p(X, X ′) and S p̄(X, X ′) given by Eq. (26) as follows:

S p(X, X ′)
= i

∑

n

M−1
n −ψn (X) g

(− |−
)−1 −ψ̄n

(
X ′) ,

S p̄(X, X ′)

= −i
∑

n

M−1
n

+ψn (X) g
(
+
∣
∣+ )−1

+ψ̄n
(
X ′) . (29)

We stress that both functions vanish in the absence of the
vacuum instability.

5 Calculation of mean values in strong-field QED with
L-constant field

5.1 Pair-creation contributions

With account taken of (26) the vacuum matrix elements,
defined by Eqs. (3) and (4), can be represented as:
〈
Jμ(x)

〉
in = Re

〈
Jμ(x)

〉c + Re
〈
Jμ(x)

〉p
,

〈
Jμ(x)

〉
out = Re

〈
Jμ(x)

〉c + Re
〈
Jμ(x)

〉 p̄
,

〈
Jμ(x)

〉p, p̄ = −ie tr
[
γ μS p, p̄(X, X ′)

]∣∣∣
X=X ′ ;

〈
Tμν(x)

〉
in = 〈0, in| Tμν |0, in〉

= i tr
[
AμνS

c
in(X, X ′)

]∣∣
X=X ′

= Re
〈
Tμν(x)

〉c + Re
〈
Tμν(x)

〉p
,

〈
Tμν(x)

〉
out = 〈0, out| Tμν |0, out〉

= i tr
[
AμνS

c
out(X, X ′)

]∣∣
X=X ′

= 〈
Tμν(x)

〉c + 〈
Tμν(x)

〉 p̄
,

〈
Tμν(x)

〉p, p̄ = i tr
[
AμνS

p, p̄(X, X ′)
]∣∣∣

X=X ′ . (30)

One can see with help of Eqs. (27) and (29) that all
the quantities 〈Jμ(x)〉c and

〈
Tμν(x)

〉c are finite as L →
∞, whereas the current components

〈
J 0(x)

〉p, p̄
,
〈
J 1(x)

〉p, p̄
,

〈
T 10(x)

〉p/ p̄
, and the diagonal components

〈
Tμμ(x)

〉p, p̄ of
the EMT are growing unlimited as L . That is why here we
consider the components 〈Jμ(x)〉p, p̄ and

〈
Tμν(x)

〉p, p̄ for the
case of a large but finite L .

In representation (29) the factor M−1
n = N cr

n plays the
role of a cutoff factor, that is why the main contribution is
formed on the finite subrange D given by Eq. (9). That is why
all the integrals over the momenta are finite. N cr

n is given by
Eq. (18) in the subrange D and does not depend on p0. In the
subrange D and for large L , the integral over p0 is responsible
for growing contributions as L → ∞. That is why the main
contribution to the vacuum means under consideration are
formed in this subarea, such that it is enough to consider
further the following expressions

S p(X, X ′) = i
∑

n∈D
N cr
n g(−|−)−1 −ψn (X) −ψ̄n

(
X ′)

= iV⊥T
(2π)d−1

∫

D
dp0dp⊥

∑

σ

[

N cr
n g(−|−)−1 −ψn (X) −ψ̄n

(
X ′)

]
,
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S p̄(X, X ′) = −i
∑

n∈D
N cr
n g

(
+
∣
∣+ )−1 +ψn (X) +ψ̄n

(
X ′)

= − iV⊥T
(2π)d−1

∫

D
dp0dp⊥

∑

σ

[

N cr
n g

(
+
∣∣+ )−1 +ψn (X) +ψ̄n

(
X ′)

]
(31)

for the singular functions (29).
We are interested in the mean values under consideration

inside the capacitor, namely for x ∈ Sint, where |x | < L/2.
In the range D for the given x ∼ x ′ you can select subranges
D+
x ⊂ D and D−

x ⊂ D,

D+
x : −

[
eE (x − xL) − K

√
eE
]

< π0 (x) < −√
eEK ,

√
λ < K⊥ if ξ > 0 ,

D−
x : √

eEK < π0 (x) < eE (xR − x) − K
√
eE ,√

λ < K⊥ if ξ < 0 , (32)

where |π0 (x)| is sufficiently large. In these subranges, the
functions −ψn (X) and −ψ̄n

(
X ′) can be approximated by

asymptotic forms of the WPCF’s for big |ξ | ∼ ∣∣ξ ′∣∣ > K ,
where ξ ′ = ξ |x→x ′ ; e.g., see Ref. [40]. Note that |π0 (x)|
is kinetic energy of a positron in D+

x and π0 (x) is kinetic
energy of an electron in D−

x . Both integration domains in
Eq. (32) are large enough, to provide the main contribution
to the integrals (31).

Let us consider the case of π0 (x) ∼ π0
(
x ′) ∈ D+

x . By
the help of Eq. (15) we get:

S p(X, X ′) = − iV⊥T
(2π)d−1

∫

D
dp0dp⊥

∑

σ

N cr
n g(−|−)−1

× [+ψn (X) g
(+ |−

)− −ψn (X) g
(− |−

)] −ψ̄n
(
X ′) ,

S p̄(X, X ′) = − iV⊥T
(2π)d−1

∫

D
dp0dp⊥

∑

σ

N cr
n g

(
+
∣
∣+ )−1

× +ψn (X)
[
g
(
+
∣∣− ) −ψ̄n

(
X ′)− +ψ̄n

(
X ′) g

(
+
∣∣+ )] .

In the case X ∼ X ′, using asymptotics of WPCF’s , given
by Eq. (13) and discarding negligibly small contributions
from the oscillating terms to the integral over p0, we obtain:

S p(X, X ′) ≈ S p
+(X, X ′)

= iV⊥T
(2π)d−1

∫

D+
x

dp0dp⊥
∑

σ

e−πλ −ψn (X) −ψ̄n
(
X ′)

= (γ P + m)�
p
+(X, X ′) ,

S p̄(X, X ′) ≈ S p̄
+(X, X ′)

= iV⊥T
(2π)d−1

∫

D+
x

dp0dp⊥
∑

σ

e−πλ [+ψn (X) +ψ̄n
(
X ′)]

= (γ P + m)�
p̄
+(X, X ′) ,

�
p/ p̄
+ (X, X ′) ∼ −i

2
√
eE(2π)d−1

∫

D+
x

dp0dp⊥ξ−1

× exp

[
−πλ − i p0(t−t ′)+ip⊥(r⊥−r′⊥) ± i

ξ2−ξ ′2

2

]
.

Now we consider the integration over the transversal momenta
p⊥. In the subrange D+

x , given by Eq. (32), the domain of the
variation of |p⊥| is finite. However, taking into account that
the exponential exp(−πλ) plays the role of a cutoff factor,
we can extend the limits of the domain to infinity. As a result
we have:

S p/ p̄
+ (X, X ′) = (γ P + m)�

p/ p̄
+ (X, X ′) ,

�
p/ p̄
+ (X, X ′) = −i h⊥(r⊥, r′⊥)

×
∫ x−K/

√
eE

xL+K/
√
eE

h−/+
‖ (x, x̃)dx̃ ,

p0 = eE x̃ ,

h−/+
‖ (x, x̃) = 1

2 (x − x̃)

× exp

{
−i p0(t−t ′) ∓ i

2

[
ξ(x)2−ξ(x ′)2

]}
.

h⊥(r⊥, r′⊥) = (eE)d/2−1

(2π)d−1

× exp

(

−πm2

eE
− eE

∣
∣r⊥ − r′⊥

∣
∣2

4π

)

. (33)

Let us consider the case of π0 (x) ∼ π0
(
x ′) ∈ D−

x . In
the same way as before, we can justify that it is enough to
consider further the following expressions for the singular
functions (29):

S p/ p̄
− (X, X ′) = (γ P + m)�

p/ p̄
− (X, X ′), ξ < −K ,

�
p/ p̄
− (X, X ′) = i h⊥(r⊥, r′⊥)

×
∫ xR−K/

√
eE

x+K/
√
eE

h+/−
‖ (x, x̃)dx̃ ,

p0 = eE x̃ . (34)

Now, we calculate the vacuum means values under consid-
eration, which, for a given x , are formulated by contributions
from both domains D+

x and D−
x ,

〈
Jμ(x)

〉p/ p̄ = 〈
Jμ(x)

〉p/ p̄
+ + 〈

Jμ(x)
〉p/ p̄
− ,

〈
Tμν(x)

〉p, p̄ = 〈
Tμν(x)

〉p, p̄
+ + 〈

Tμν(x)
〉p, p̄
− ,

〈
Jμ(x)

〉p/ p̄
± = −ie tr

[
γ μS p, p̄

± (X, X ′)
]∣∣∣

X=X ′ ,

〈
Tμν(x)

〉p, p̄
± = i tr

[
AμνS

p, p̄
± (X, X ′)

]∣∣∣
X=X ′ . (35)

Using representations (33) and (34) we obtain that nonva-
nishing means are:

〈
J 1(x)

〉p

+ = −
〈
J 1(x)

〉 p̄

+ =
〈
J 0(x)

〉p/ p̄

+ ,
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〈
J 0(x)

〉p/ p̄

+ = e r cr
(
x − xL − K√

eE

)
,

〈
T 10(x)

〉p

+ = −
〈
T 10(x)

〉 p̄

+ =
〈
T 00(x)

〉p/ p̄

+ ,

〈
T 11(x)

〉p/ p̄

+ =
〈
T 00((x)

〉p/ p̄

+ ,

〈
T 00(x)

〉p/ p̄

+ = r cr

2
eE

(
x − xL − K√

eE

)2

,

〈
T kk(x)

〉p/ p̄

+ = r cr

2π
log

√
eE(x − xL)

K
,

k = 2, . . . , d − 1 ,

if
√
eE(x − xL) � K ;
〈
J 1(x)

〉p

− = −
〈
J 1(x)

〉 p̄

− = −
〈
J 0(x)

〉p/ p̄
,

〈
J 0(x)

〉p/ p̄

− = −e r cr
(
xR − x − K√

eE

)
,

〈
T 10(x)

〉p

− = −
〈
T 10(x)

〉 p̄

− = −
〈
T 00(x)

〉p/ p̄

− ,

〈
T 11(x)

〉p/ p̄

− =
〈
T 00((x)

〉p/ p̄

− ,

〈
T 00(x)

〉p/ p̄

− = 1

2
r creE

(
xR − x − K√

eE

)2

,

〈
T kk(x)

〉p/ p̄

− = r cr

2π
log

√
eE(xR − x)

K
,

if
√
eE(xR − x) � K . (36)

It entails that
〈
J 1(x)

〉p = −
〈
J 1(x)

〉 p̄ ≈ e r crL ,

〈
J 0(x)

〉p/ p̄ ≈ 2e r crx ,

〈
T 10(x)

〉p = −
〈
T 10(x)

〉 p̄ = r creELx ,

〈
T 11(x)

〉p/ p̄ =
〈
T 00((x)

〉p/ p̄
,

〈
T 00(x)

〉p/ p̄

− ≈ r creE

[(
L

2

)2

+ x2

]

, (37)

for |x | < L/2 and

〈
T kk(x)

〉p/ p̄

− ≈ r cr

2π
log

{

eE

[(
L

2

)2

− x2

]}

if eE

[(
L

2

)2

− x2

]

� K 2 ,

〈
T kk(x)

〉p/ p̄

− ≈ r cr

2π
log

[√
eE(

L

2
± x)

]

if
√
eE

(
L

2
∓ x

)
� K , k = 2, . . . , d − 1 . (38)

Vacuum polarization contribution 〈Jμ(x)〉c and
〈
Tμν

〉c

will be calculated in the next section. Here we will show how

to connect the matrix elements (37) and (38) with quantities
characterizing directly pair production effect.

It should be noted that in strong-field QED with t-steps
Heisenberg operators of physical quantities (for example, the
kinetic energy operator of the Dirac field) are time-dependent
in the general case. That is why one can determine contri-
butions of the final particles, using in-in vacuum means, and
setting t → ∞ (which means considering the time instant
when the external field is already switched off and all the
corresponding effects of the vacuum polarization vanish).
In the case under consideration we work with mean values
when they already are time independent and another way of
actions has to be used to determine contributions of the final
particles.

We see from Eq. (36) that the charge density
〈
J 0(x)

〉p/ p̄
+ ,

formed by contributions from the domain D+
x , is positive

while the charge density
〈
J 0(x)

〉p/ p̄
− , formed by contribu-

tions from the domain D−
x , is negative. This shows that main

contributors to these densities are the created positrons and

electrons, respectively. The means
〈
J 0(x)

〉p/ p̄
+ grow along the

direction of the electric field as x → xR, while the means〈
J 0(x)

〉p/ p̄
− grow in the opposite direction as x → xL. Also

the energy density
〈
T 00((x)

〉p/ p̄
+ and the pressure component

along the direction of the electric field
〈
T 11(x)

〉p/ p̄
+ , increase

as x → xR, while the energy density
〈
T 00((x)

〉p/ p̄
− and the

pressure
〈
T 11(x)

〉p/ p̄
− increase as x → xL. Moving along the

direction of the electric field, positrons exit the region Sint

at x = xR, while electrons moving in the opposite direc-
tion exit the region Sint at x = xL. These particles main-
tain directions of their movements after leaving the region
Sint at x > xR and x < xL. Once outside the region Sint,
these particles are not affected by the local effects of vac-
uum polarization, and cannot change after the field is turned
off. Hence, these are final particles. Their state is described
by out-solutions, given by Eq. (14), see Ref. [23]. Since
the distances x − xL and xR − x are much larger than the
formation length �l0 of the created pair, one can use the
semiclassical description of particle motion. From this point
of view, an electron–positron pair is created with the same
probability at any point inside of the region Sint. The par-
ticles are created with a small kinetic energy, which then
increases. In the domains D+

x and D−
x increments of particle

kinetic energy are, |π0 (x)| − |π0 (xL)| = eE (x − xL) and
π0 (x) − π0 (xR) = eE (xR − x) respectively. These parti-
cles are ultrarelativisic, therefore longitudinal momenta of
the particles on x hyperplane are defined by their kinetic
energies: px (x) = |π0 (x)| for positrons with π0 (x) ∈ D+

x
and px (x) = −π0 (x) for electrons with π0 (x) ∈ D−

x . It is
natural to assume that the created particles observed inside
the region Sint near the boundaries xL and xR practically do
not differ from those observed outside this region and, there-
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fore, represent the final particles. This situation is similar to
t-step case, when final particles are those that remain after
the field is switched off. Thus, we see that fluxes at x → xL

and at x → xR hyperplanes form final particles with energies
and momenta from the domains D+

x and D−
x .

Thus, it is enough to know longitudinal currents and the
energy fluxes through the surfaces x = xL and x = xR, given
by Eq. (37), that are formed in the region Sint to evaluate the
contributions of the initial and final states. The normal forms
of the operators J 1 and T 10 with respect to the out -vacuum
are:

Nout

(
J 1
)

= J 1 −
〈
0, out

∣∣∣J 1
∣∣∣ 0, out

〉
,

Nout

(
T 10

)
= T 10 −

〈
0, out

∣∣∣T 10
∣∣∣ 0, out

〉
.

Taking into account Eqs. (30) and (37), we calculate densities
of the longitudinal current and energy flux corresponding to
the final particles as means with respect to the initial vacuum
state,

J 1
cr(x) =

〈
Nout

(
J 1
)〉

in

=
〈
J 1(x)

〉

in
−
〈
J 1(x)

〉

out

=
〈
J 1(x)

〉p −
〈
J 1(x)

〉 p̄ = 2encr ;
T 10

cr (x) =
〈
Nout

[
T 10(x)

]〉

in

=
〈
T 10(x)

〉

in
−
〈
T 10(x)

〉

out

=
〈
T 10(x)

〉p −
〈
T 10(x)

〉 p̄

= 2ncreEx , (39)

where ncr = r crL is the total number density of pairs created
per unit time and per unit surface orthogonal to the elec-
tric field direction, whereas r cr is the pair-production rate,
given by Eq. (20). This rate coincides with the known pair-
production rate in a constant uniform electric field, see Ref.
[36]. Note that ncr is proportional to the magnitude of the
potential step �U = eEL . We stress that the longitudinal
current density J 1

cr(x) is x-independent. The process of the
current formation has a constant rate per unit length,

J 1
cr(x)

L
= 2e r cr . (40)

The energy flux T 10
cr (x) of the final particles through the

surface x , is proportional to the potential energy difference
with respect of the hyperplane of the symmetry x = 0,
U (x) − U (0) = eEx and has the maximal magnitude as
x → xL and x → xR,

T 10
cr (xR) = −T 10

cr (xL) = ncr�U . (41)

We see that the fluxes of final particles are formed by the
fluxes of the positrons moving along the direction of the elec-
tric field and electrons moving to the opposite direction.

Comparing two nonzero components of thed-dimensional

Lorentz vectors
〈
J 1(x)

〉p/ p̄
and

〈
J 0(x)

〉p/ p̄
, given by Eq.

(37), we see the relationship of the charge density of created

pairs J 0
cr(x) with the current densities

〈
J 0(x)

〉p/ p̄
. Namely,

J 0
cr(x) =

〈
J 0(x)

〉p +
〈
J 0(x)

〉 p̄ = 4e r crx .

We see that there exists a charge polarization due to the elec-
tric field. In particular,

J 0
cr(xL) = −2encr, J 0

cr(xR) = 2encr . (42)

A relation of the energy density T 00
cr (x) of created pairs

to the mean value
〈
T 00(X)

〉p/ p̄
can be derived in a similar

manner as it was done for the current density. For this, it is

suffices to note that the means
〈
T 00(X)

〉p/ p̄
and

〈
T 10(X)

〉p/ p̄

are two nonzero components of a d-dimensional Lorentz vec-
tor. Therefore, by rotating the coordinate system, we obtain
relations between all others diagonal elements of the vacuum
mean values of EMT. These relations are:

Tμμ
cr (x) = 〈

Tμμ(x)
〉p + 〈

Tμμ(x)
〉 p̄ = 2

〈
Tμμ(x)

〉p
, (43)

where 〈Tμμ(x)〉p are given by Eqs. (37) and (38). In partic-
ular, we have

T 00
cr (xR) = T 00

cr (xL) = ncr�U ,

T kk
cr (xR) = T kk

cr (xL) = r cr

π
log

(√
eEL

)
,

k = 2, . . . , d − 1 . (44)

5.2 Vacuum polarization contributions

One can verify using Eqs. (27) and (29) that means 〈Jμ(x)〉c
and

〈
Tμν

〉c are finite as L → ∞. That is why they can be
calculated in such limit as well. In this relation, we recall
that the causal propagator Sc(X, X ′) in L-constant electric
field was calculated in Ref. [43] and its limiting expression
as L → ∞ was found. Moreover, we have demonstrated
that that expression has the form of the causal propagator
Sc(X, X ′) in T -constant electric field as in the limit T → ∞.
In particular, it was shown that the causal propagator given
by Eq. (27) can be represented in the Schwinger’s integral
form,

Sc(X, X ′) = (γ P + m)�c(X, X ′) ,

�c(X, X ′) =
∫ ∞

0
f (X, X ′; s)ds , (45)

where

f (X, X ′; s) = exp
(
−eEγ 0γ 1s

)
f (0)(X, X ′; s) ,
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f (0)(X, X ′; s) = −
(−i

4π

)d/2 eE

s(d−2)/2 sinh(eEs)
exp

[

−ism2− i

2
eEy0(x+x ′) + i

4s

∣∣r⊥−r′⊥
∣∣2

− i

4
eE coth(eEs)

(
y2

0 − y2
1

) ]
(46)

is the Fock–Schwinger kernel [1]. Here y0 = t−t ′ and y1 =
x ′ − x . The kernel can be represented as the matrix element
with respect of eigenvectors of the coordinate operators Xμ,

f (X, X ′; s) = 〈t, r | e−isM2 | t ′, r′〉 ,

M2 = m2 − i0 − P2 − e

2
σμνFμν ,

Fμν = ∂μAν − ∂ν Aμ, σμν = i

2
[γ μ, γ ν] . (47)

This fact allows one to use results obtained in Ref. [34] for
the renormalization of the mean values (3), see details in
Appendix C.

Using this representation, we calculate Re〈 jμ (t)〉c and
Re〈Tμν (t)〉c. It is easy to see that 〈 jμ (t)〉c = 0, as should
be expected due to translational symmetry,2 and 〈Tμν(t)〉c =
0 , μ �= ν.

Let us substitute Eq. (45) into Eq. (3) with account taken of
the representation (46). Then nonvanishing nonrenormalized
vacuum means can be written as:

〈T00〉c = −〈T11〉c = J(d)eE
∫

�c

f (X, X; s)
sinh(eEs)

ds,

〈Tii 〉c = J(d)eE
∫

�c

sinh(eEs)

eEs
f (X, X; s)ds ,

J(d) = 2�d/2�−1, i = 2, . . . , d .

These means can be expressed via nonrenormalized one-loop
Heisenberg-Euler Lagrangian L, as

〈T00〉c = − 〈T11〉c = E
∂L
∂E

− L, 〈Tii 〉c = L ,

L = 1

2

∫

�c

ds

s
tr f (X, X; s) ,

tr f (X, X; s) = 2J(d) cosh(eEs) f (0)(X, X; s) . (48)

To renormalize the mean values (48) it is enough to
renormalize the real part of the one-loop effective action
W = ∫ Ldtdr (see Ref. [34]).

Then we may use the fact that, real parts of the renor-
malized finite vacuum mean values are expressed via the
renormalized effective Lagrangian (C3) as:

2 Note that this current can nevertheless result in finite contributions to
higher-loop diagrams; see Ref. [44].

Re 〈T00〉cren = −Re 〈T11〉cren

= E
∂ReLren

∂E
− ReLren ,

Re 〈Tii 〉cren = ReLren . (49)

Thus, taking into account Eq. (C8), one can see that in
the strong-field case, the quantities (49) have the following
behavior:

Re
〈
Tμμ

〉c
ren ∼

{ |eE |d/2 , d �= 4n
|eE |d/2 log

(
eE/μ2

)
, d = 4n

.

Finally, we have obtained nonperturbative one-loop rep-
resentations for the mean current densities and renormalized
EMT of a Dirac field in the L-constant electric background
as:
〈
Jμ(x)

〉
in = 〈

Jμ(x)
〉p

,
〈
Jμ(x)

〉
out = 〈

Jμ(x)
〉 p̄

,
〈
Tμν(x)

〉ren
in = Re

〈
Tμν

〉c
ren + Re

〈
Tμν(x)

〉p
,

〈
Tμν(x)

〉ren
out = Re

〈
Tμν

〉c
ren + Re

〈
Tμν(x)

〉 p̄
. (50)

Here Re
〈
Tμν

〉c
ren is given by Eq. (49), other terms are related

by Eq. (37) and (38), and expressed via characteristics of
pair creation as 〈Jμ(x)〉p = Jμ

cr (x)/2 and Re〈Tμν(x)〉p =
Tμν

cr (x)/2. The components Re
〈
Tμν

〉c
ren describe the contri-

bution due to vacuum polarization. These components are
local. The components Jμ

cr (x) and Tμν
cr (x) describe the con-

tribution due to the creation of real particles from vacuum.
They are global quantities and growing unlimited as the mag-
nitude of potential energy tends to infinity.

6 Discussion and summary

In this work we draw the reader’s attention to the fact that the
technique of nonperturbative calculating of vacuum instabil-
ity effects based on the original formulation of the strong-
field QED with x-electric steps proposed in Refs. [21,22]
must be refined and supplemented by a certain regulariza-
tion procedure studying the problem of local mean values,
see Sect. 2. Here we illustrate general considerations by the
case of strong-field QED with L-constant field (which can
be interpreted as an electric field between capacitor plates).
In the same case, we propose a convenient volume regular-
ization procedure with respect of the time-independent inner
product on the t-constant hyperplane. At the same time we
find adequate representations (27), (28), and (26) for all the
involved singular spinor functions. Using the regularization
procedure and the singular functions, we calculate the vac-
uum mean values of current density and EMT (3) that are
local physical quantities. The new approach allows us to
separate in these mean values global contributions due to
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the particle creation from local contributions due to the vac-
uum polarization. In Sect. 5.2 we show that real parts of the
vacuum polarization contributions to EMT can be expressed
via the renormalized effective Heisenberg–Euler Lagrangian.
Finally, we have obtained nonperturbative one-loop represen-
tations for the mean current densities and renormalized EMT
(50).

It’s believed that in the limiting case L → ∞ the L-
constant field is a suitable regularization of the constant uni-
form electric field in course of describing the vacuum insta-
bility effects when the field region is considered to be small
compared to the entire field region and far enough from its
boundaries. In this relation, it is demonstrated that the lon-
gitudinal current density of created particles J 1

cr(x) = 2encr

is x-independent and the process of the current formation
has a constant rate per unit length (40) that coincides with
the known pair-production rate in a constant uniform electric
field. This fact confirms the above supposition and justifies
the proposed regularization procedure (24).

The new approach applied to study the vacuum instability
in the L-constant field allows us to reveal details that could
not be detected by calculations in the homogeneous electric
field. For example, the obtained formulas show explicitly that
the current density and EMT of created particles are formed
separately by contributions of created positrons and created
electrons. The behavior of these quantities can be described
as follows. They grow with the increase the potential energy
differences with respect of the symmetry hyperplane x = 0
and reach maximal magnitudes near the capacitor plates,
namely as x → xL and as x → xR. They are growing unlim-
ited as the magnitude of the potential energy �U tends to
infinity. Note that it explains initiation of secularly growing
loop corrections to two-point correlation functions in the case
of the time-independent electric field given by a linear poten-
tial step [45]. The longitudinal energy flux of final particles
on both sides of the hyperplane x = 0 is directed in opposite
directions and a charge polarization occurs due to the electric
field. Continuing to move along the direction of the electric
field, the positrons leave the field at the point x = xR, and
the electrons moving in the opposite direction leave the field
at the point x = xL. The current density and EMT calculated
for these separated fluxes of electrons and positrons [22] add
up to results that are consistent with the results obtained in
this article.

It is useful to compare the obtained results with results on
the study of the vacuum instability in the L-constant electric
field presented in the work [22]. In the latter work, it was
calculated the current densities and the energy flux densities
of electrons and positrons, after the instant when these fluxes
become completely separated and have left the region Sint . In
the framework of the approach formulated in the present arti-
cle, it is impossible to consider processes of particles leaving
the region Sint boundaries. Nevertheless, based on physical

considerations, we can expect a certain agreement between
both results. In particular, we see that current density and
EMT components given by Eqs. (39), (41), (42), and (44) for
x → xL and x → xR are sums of the corresponding values
obtained in Ref. [22] separately for electrons and positrons.
This may be considered as an additional evidence that the
proposed renormalization procedure (24) is consistent.

We believe also that results obtained in this work may
contribute to a further development of the locally constant
field approximation which is not based on the Heisenberg–
Euler Lagrangian approach.
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Appendix A: Decomposition of observable into plane
waves

In the framework of a field theory an observable F can be
realized as an inner product of the type (21) of localizable
wave packets ψ(X) and F̂ψ ′(X),

F
(
ψ,ψ ′) =

(
ψ, F̂ψ ′) ,

where F̂ is a differential operator and ψ(X) and ψ ′(X) are
solutions of the Dirac equation. Assuming that an observable
F
(
ψ,ψ ′) is time-independent during the time T one can

represent this observable in the following form of an average
value over the period T :

〈F〉 = 1

T

∫ +T/2

−T/2
F
(
ψ,ψ ′) dt .

In general the wave packets ψ(X) and ψ ′(X) can be decom-
posed into plane waves ψn(X) and ψ ′

n(X) with given n,

ψ(X) =
∑

n

αnψn(X), ψ ′(X) =
∑

n

α′
nψ

′
n(X) ,

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


108 Page 14 of 16 Eur. Phys. J. C (2023) 83 :108

where ψn(X) and ψ ′
n(X) are superpositions of the solutions

ζ ψn (X) and ζ ψn (X). Taking into account the orthogonality
relation (12) one finds that the decomposition of 〈F〉 into
plane waves with given n does not contain interference terms,

〈F〉 =
∑

n

F
(
αnψn, α

′
nψ

′
n

)
.

Appendix B: Integrals on t-constant hyperplane

Integrating in (21) over the coordinates r⊥ and using the
structure of constant spinors vσ that enter the states ψn (X)

and ψ ′
n′ (X), we obtain:

(
ψn, ψ

′
n′
) = δσ,σ ′δp⊥,p′⊥V⊥R, R =

∫ K (R)

−K (L)

�dx ,

� = ei(p0−p′
0)tϕ∗

n (x)
[
p0 + p′

0 − 2U (x)
]

× [
p′

0 −U (x) + i∂x
]
ϕ′
n′ (x) .

Then we represent the integral R as follows

R =
∫ −k(L)

−K (L)

�dx +
∫ k(R)

−k(L)

�dx +
∫ K (R)

k(R)

�dx , (B1)

where 0 < k(L) � K (L) and 0 < k(R) � K (R). Param-
eters k(L,R) are selected so that one can use the asymp-
totic behavior of WPCF’s with large |ξ |. It can be seen that
for a particular case of the plane waves with equal n and
ϕ′
n (x) = ϕn (x) the kernel � is real constant. Therefore that

integrals over intervals
[−K (L),−k(L)

]
and

[
k(R), K (R)

]
in

Eq. (B1) are proportionate to lengths of these intervals. In
the case of a sufficiently large length L , one can assume
that both lengths K (L) − k(L) and K (R) − k(R) are large
too, it is of order of length L and much larger than interval
k(R) + k(L). In this case the contribution to the integral (B1)
from last interval can be ignored. Thus, the value of the inte-
gral (B1) is basically determined by the first and last terms.
To calculate these integrals, it is enough to use the asymp-
totic behavior of WPCF’s both in region with ξ < 0 and in
the region with ξ > 0. Note that in intervals

[−K (L),−k(L)
]

and
[
k(R), K (R)

]
the modulus of a longitudinal momentum

is well defined as |px (x)| =
√

[π0 (x)]2 − π2⊥. Further cal-
culation is no different from what is given in the Appendix
B in Ref. [21]. In particular, one sees that all the solutions

ζ ψn (X) and ζ ψn (X) having different quantum numbers n
are orthogonal with respect to the introduced inner product
on the hyperplane t = const. One can see that the norms of
the solutions ζ ψn (X) and ζ ψn (X) with respect to the inner
product (21) are proportional to the macroscopically large
parameters

τ (L) = K (L)/vL, τ (R) = K (R)/vR,

where vL = |px (x) /π0 (x)| → c and vR = vL =
|px (x) /π0 (x)| → c (c = 1) are absolute values of lon-
gitudinal velocities of particles in the spatial regions where
|ξ | is large.

Finally, one obtains the orthonormality relations (23).

Appendix C: Ultraviolet renormalization

The one-loop effective action W = ∫ Ldtdr can be rep-
resented as W = (−i/2) ln det M2. After passing to the
Euclidean metric

t → −iη, ∂t → i∂η, eE → −i B, B > 0 ,

M2 becomes the elliptic operator M̃2 and W becomes
the effective action W̃ = −i

[∫ Ldηdr
]
qE→i B over the

Euclidean space. To carry out the renormalization procedure,
we first introduce the generalized zeta function of the oper-
ator M̃2 in d-dimensional Euclidean space using the heat
kernel K (u):

ζ (d)(s) = 1

�(s)

∫ ∞

0
us−1du K (u) ,

K (u) =
∫

dηdr tr fEucl(X, X; u) ,

fEucl(X, X; u) =
〈
η, r

∣
∣∣∣e

− u
μ2 M̃2

∣
∣∣∣ η, r

〉
. (C2)

Here μ is a normalization constant with the mass dimen-
sion which is necessary for the generalized zeta function to
be dimensionless. Note that for on-shell renormalization one
has μ = m. One can write:

ln det M̃2 = tr ln M̃2 = − dζ (d)(s)

ds

∣∣∣∣∣
s=0

.

The renormalized effective Lagrangian can be expressed
in terms of the generalized zeta function as:

ReLren = Re L̃
∣
∣∣
B=ieE

,

L̃ = − 1

2�(d)

dζ (d)(s)

ds

∣
∣∣∣∣
s=0

,

�(d) =
∫

dηdr . (C3)

Next, we calculate Lren. Comparing Eq. (C2) with Eq. (47)
and given the expression (46) for the kernel, we calculate the
trace,
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tr fEucl(X, X; u) = − tr f

(
X, X;− iu

μ2

)∣∣∣∣
eE→−i B

= 2J(d)

Bu

μ2

(
μ2

4πu

)d/2

coth

(
Bu

μ2

)

× exp

[

−
(
m

μ

)2

u

]

.

Then for the zeta function in two dimensions we obtain:

ζ (2)(s) = �(2)

2π�(s)

×
∫ ∞

0
us−1B coth

(
Bu

μ2

)
exp

[

−
(
m

μ

)2

u

]

du .

The integral over u can be expressed in terms of the Hurwitz
zeta function as follows:

ζH(s, a) =
∞∑

k=0

(k + a)−s, Res > 1 ,

whose analytic continuation to the entire complex plane can
be given by the integral representation

ζH(s, a) = 1

�(s)

∫ ∞

0
xs−1 e−ax

1 − e−x
dx .

Then for zeta function ζ (2)(s) we obtain (see Refs. [46,47]):

ζ (2)(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�(2)B
2π

[
2
(

2B
μ2

)−s
ζH

(
s, 1 + m2

2B

)
+
(
m2

μ2

)−s
]

,

m �= 0

�(2)
B
π

(
2B
μ2

)−s
ζR (s) , m = 0

.(C4)

For d > 2, the zeta function ζ (d)(s) can be expressed in terms
of the function ζ (2)(s) as follows:

ζ (d)(s) = J(d)

�(d)

�(2)

(
μ2

4π

)d/2−1

×�(s − d/2 + 1)

�(s)
ζ (2)(s − d/2 + 1) . (C5)

Using Eq. (C3), we obtain the real part ofLren for an arbitrary
dimension d in the following form:

ReLren = − 1

2�(d)

Re
dζ (d)(s)

ds

∣∣∣∣∣
s=0, B=ieE

= − J(d)

2�(2)

(
μ2

4π

)d/2−1

×Re
d

ds

{
�(s − d/2+1)

�(s)
ζ (2)(s−d/2+1)

}∣∣∣∣
s=0, B=ieE

.

The derivative of the zeta function ζ (d)(s) at the point
s = 0 reads:

dζ (d)(s)

ds

∣
∣∣
∣∣
s=0

= J(d)

(
μ2

4π

)d/2−1

×

⎧
⎪⎨

⎪⎩

(−1)d/2−1

�(d/2)

[
ζ (2)′ (1 − d

2

)+ (γ + ψ( d2 ))ζ (2)
(
1 − d

2

)]
,

forevend
�
(
1 − d

2

)
ζ (2)

(
1 − d

2

)
, forodd d

. (C6)

For odd d, Eq. (C6) implies that

dζ (d)(s)

ds

∣∣∣∣∣
s=0

= �(s)ζ (d)(s)
∣∣∣
s=0

, forodd d . (C7)

The corresponding final expressions for L̃ in d = 2,3, 4
dimensions are treated in detail in Ref. [46]. For example,
for d = 4 and m �= 0 we obtain:

L̃d=4 = �(4)

(
B

π

)2 {[
log

2B

μ2 − 1

]
ζH

(
−1, 1 + m2

2B

)

− ∂

∂s
ζH

(
s − 1, 1 + m2

2B

)∣∣∣∣
s=0

+ m2

2B

(
log

m

μ
− 1

2

)}
,

ReLd=4
ren = ReL̃d=4

∣∣∣
B=ieE

.

In particular, in d = 3 dimension and for m �= 0 we have:

ReLd=3
ren = Re

{
B

2π

√
2B

×
⎡

⎣ζH

(
−1

2
,
m2

2B
+ 1

)
+ 1

2

√
m2

2B

⎤

⎦

B=ieE

}
.

Using the relation (see Ref. [46], formula (4.5))

ζH

(
−1

2
,
m2

2B
+ 1

)
= ζR

(
−1

2

)

−
∞∑

l=1

(−1)l
(2l − 3)!!

2l l!
(
m2

2B

)l

ζR

(
l − 1

2

)
,

we obtain for small m2/(2 |eE |) the following result:

ReLd=3
ren = 1

8π2 (eE)3/2 ζR

(
3

2

)
+ m2

8π

√
eEζR

(
1

2

)

−m3

4π

∞∑

l=2

(−1)l
sin πl

2 − cos πl
2√

2

(2l − 3)!!
2l l!

×
(

m2

2eE

)l−3/2

ζR

(
l − 1

2

)
.

Note that when the field is very strong, m2/(eE) � 1, the
main contributions to Lren are determined by Eq. (C3) as
m → 0. Using (C4), (C5) and (C7) for these contributions,
we obtain:
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ReLren

≈ 1

2
Re

⎧
⎨

⎩

[
log

(
B
μ2

)
ζ (d)(0)
�(d)

]

B=ieE
, for evend

−
[
�(s) ζ (d)(s)

�(d)

∣∣∣
s=0

]

B=ieE

, for oddd
.

In particular,
ReLren

≈ −

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Re
[

B
4π

log
(

B
μ2

)]

B=ieE
= − eE

8 , d = 2

Re
[

1
2π2

( B
2

)3/2
ζR
( 3

2

)]

B=ieE
= − (eE)3/2

8π2 ζR
( 3

2

)
, d = 3

Re
[ 1

2 �(4)ζ
′(4)(0)

]
B=ieE ≈ (eE)2

24π2 log
(
eE
μ2

)
, d = 4

.

In the general case, for a very strong electric field, we have:

ReLren ∼
{ |eE |d/2 , d �= 4n

|eE |d/2 log
(
eE/μ2

)
, d = 4n

. (C8)
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