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Abstract We present a simple extension of the Standard
Model with three right-handed neutrinos in a SUSY frame-
work, with an additional U(1)F abelian flavor symmetry with
a non standard leptonic charge Le − Lμ − Lτ for lepton
doublets and arbitrary right-handed charges. Our model pre-
dicts an inverted neutrino mass hierarchy and it is able to
reproduce the experimental values of the mixing angles of
the PMNS matrix and of the r = �m2

sun/�m2
atm ratio, with

only a moderate fine tuning of the Lagrangian free param-
eters. The baryon asymmetry of the Universe is generated
via thermal leptogenesis through CP-violating decays of the
heavy right-handed neutrinos. We present a detailed numer-
ical solution of the relevant Boltzmann equation, accounting
for the impact of the distribution of the asymmetry in the
various lepton flavors.
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1 Introduction

The Standard Model (SM) of particle physics has proven to
be one of the most accurate theories to explain microscopic
interactions at an unprecedented level. In spite of its many
successes, it fails to account for relevant low energy data,
such as the structure of fermion masses and mixing (in par-
ticular, the non-vanishing neutrino masses) and the value of
the baryon asymmetry of the Universe (BAU), which is com-
monly expressed by the parameter:

ηB ≡ nB − nB̄

nγ

∣
∣
∣
∣
0

, (1)

where nB , nB̄ and nγ are the number densities of the baryons,
antibaryons and photons, while the subscript “0” stands for
“at present time”. Latest observations provide a numerical
value of ηB ≈ 6.1 · 10−10 [1]. In recent times, enormous
experimental progress has been made in our knowledge of
the neutrino properties and it has been clearly shown that
the lepton mixing matrix contains two large and one small
mixing angle, and that the two independent mass-squared
differences are both different from zero [2–4]. Although sev-
eral abelian and non-abelian symmetries acting on flavour
space have been proposed to explain such a pattern, not a
unique framework emerged as the optimal one [5]. Thus,
one is still motivated to explore scenarios where different
symmetries and/or field (charge) assignments to the group
representations are studied in details. In this context, a less
explored possibility (compared to the most famous discrete
non-abelian symmetries) is given by the U (1)F flavor sym-
metry with non-standard leptonic charge Le − Lμ − Lτ for
lepton doublets [6] and arbitrary right-handed charges [7],
as:

li ∼ Le−Lμ − Lτ ∼ (1,−1,−1), lci ∼ (Qe, Qμ, Qτ ). (2)
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As it is well known, in the limit of exact symmetry, the neu-
trino mass matrix assumes the following structure:

mν = m0

⎛

⎝

0 1 x
1 0 0
x 0 0

⎞

⎠ , (3)

which leads to a spectrum of inverted type and to θ12 = π/4,
tan θ23 = x (i.e. large atmospheric mixing for x ∼ O(1)) and
θ13 = 0. While the previous texture can be considered a good
Leading Order (LO) result, it evidently fails to reproduce
two independent mass differences (two eigenvalues have the
same absolute values) and, except for the atmospheric angle,
also fails in the correct description of the solar and reactor
angles. Models based on the see-saw mechanism [8,9] have
been proven to be sufficiently realistic as to accommodate
solar and atmospheric splittings, but either the solar angle
was too large or the reactor angle was (almost) vanishing.
With the increasing precision in the measurement of oscil-
lation parameters, it turned out that both θ12 and θ13 were
substantially different from their LO results; the observa-
tion that corrections of O(λ) (λ being the Cabibbo angle) are
needed to bring both mixing angles to their experimental val-
ues, encouraged to explore the contributions to the neutrino
mixing matrix from the charged lepton sector [10,11]; in this
context, a natural value of r = �m2

sol/�m2
arm ∼ O(λ2)

was also obtained [12], thus showing that models based on
Le−Lμ−Lτ are capable to successfully describe low energy
neutrino data. An important missing piece of the previous
constructions is the possibility to explain the value of the
BAU through leptogenesis. In [9] it was clearly shown that
the baryon-to-photon ratio of the Universe ηB is proportional
to the neutrino mass m1 and, for vanishing lightest mass

m3, m1 ∼
√

�m2
atm, thus producing a hopelessly small ηB .

Providing a quantitative leptogenesis analysis has become
sophisticated in recent years, due to the addition of many
ingredients, such as various washout effects [13,14] or ther-
mal corrections to the particle masses [14,15]. Also, the fla-
vor effects can have a significant impact on the final value of
the baryon asymmetry, as widely shown in [16–18].
With the present paper, we aim to go beyond the existing
literature, assessing whether see-saw models based on the
Le − Lμ − Lτ quantum number can simultaneously account
for neutrino masses and mixing and explain the BAU through
thermal leptogenesis. The paper is structured as follows. In
Sect. 2 we describe our model and derive the analytic expres-
sions for the mass ratio r and the mixing angles, showing that
appropriate choices of the Lagrangian parameters lead to a
satisfactory description of low energy data; in Sect. 3 we face
the problem of reproducing the value of ηB , analyzing the
resonant and hierarchical scenarios and solving the related
Boltzmann equations. Our conclusions are drawn in Sect. 4.

2 The model

In the following, we summarize the relevant features of our
see-saw flavor model based on a brokenU (1)F symmetry. In
the proposed scenario, the left-handed lepton doublets have
charge Le − Lμ − Lτ [11] under the U (1)F , while the right-
handed SU (2) singlets lce,μ,τ have the charges reported in
Table 1, which are chosen following [11,12], i.e. in order to
obtain the charged lepton mass hierarchy in agreement with
the experiments.
Assuming a SUSY framework, two Higgs doublet fields, Hu

and Hd , are considered. They are respectively defined as:

Hu ∼ (1, 2,+1/2), Hd ∼ (1, 2,−1/2), (4)

under the SU (3)C×SU (2)L×U (1)Y symmetry group. Also,
the spectrum of the theory contains three heavy sterile neutri-
nos Ni=1,2,3, needed for the generation of the light neutrino
masses as well as for the implementation of the leptogenesis
process. The flavor symmetry is broken by vacuum expec-
tation values (vevs) of SU (2) singlet scalar fields (flavons)
suitably charged under the U (1)F symmetry. Non-vanishing
vevs are determined by the D-term potential [19]:

VD=1

2
(M2

FI − gF |F1|2 − gF |F2|2−gF |F1|2 − gF |F2|2),
(5)

where gF denotes the gauge coupling constant of the U (1)F
symmetry, while MFI is the Fayet–Iliopulos term. Non-zero
vevs are obtained by imposing the SUSY minimum VD = 0.
Without loss of generality, we can assume equal vevs for
the flavons and define λ = 〈F1〉/MF = 〈F2〉/MF =
〈F1〉/MF = 〈F2〉/MF the common ratio between the vevs
of the flavons and the scale MF at which the flavour symme-
try is broken.

2.1 Charged lepton sector

In the charged lepton sector, many operators of different
dimensions enter the Lagrangian; to avoid cumbersome
expressions, we quote here the lowest dimensional operators
contributing to each entry of the mass matrix:

L = a11lel
c
e

(
F1

MF

)6

Hd + a12lel
c
μ

(

F1

MF

)4

Hd

+ a13lel
c
τ

(

F1

MF

)2

Hd

+ a21lμl
c
e

(
F1

MF

)7

Hd + a22lμl
c
μ

(
F1

MF

)3

Hd

+ a23lμl
c
τ

(

F1

MF

)

Hd
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Table 1 U (1)F charges for leptons, Higgses and flavon fields

le lμ lτ lce lcμ lcτ F1 F2 F1 F2 Hu Hd N1 N2 N3

U(1)F +1 −1 −1 −13 7 3 2 1/2 −2 −1/2 0 0 −1 1 0

+ a31lτ l
c
e

(
F1

MF

)7

Hd + a32lτ l
c
μ

(
F1

MF

)3

Hd

+ a33lτ l
c
τ

(

F1

MF

)

Hd + h.c. , (6)

where all ai j coefficients are generic O(1) free parameters.
After flavor and electroweak symmetry breakings, the pre-
vious Lagrangian generates a mass matrix whose elements
have the general structure:

(ml)i j ∼ ai j li lci

( 〈F1〉
MF

)αi j
( 〈F2〉

MF

)βi j

( 〈F1〉
MF

)γi j
( 〈F2〉

MF

)ρi j 〈Hd〉 , (7)

where αi j , βi j , γi j and ρi j denote the appropriate powers of
the flavon fields needed to generate a singlet under U (1)F .
Factorizing out the τ mass, the charged lepton mass matrix
assumes the following form:

ml ∼ mτ

⎛

⎝

a11λ
5 a12λ

3 a13λ

a21λ
6 a22λ

2 a23eiφ23

a31λ
6 a32λ

2eiφ32 1

⎞

⎠ , (8)

where we have explicitly shown the phases of the (23) and
(32) matrix elements (phases into the other entries can be
either eliminated through a field rotation or are irrelevant for
our reasoning).
For λ < 1, the following mass ratios me : mμ : mτ = λ5 :
λ2 : 1 are found, which naturally reproduces the observed
pattern if λ ∼ 0.22.

It is not difficult to derive the left-handed rotation Ul ,
which contributes to the total neutrino mixing matrixUPMNS

[20,21], diagonalizing the hermitean mlm
†
l combination:

Ul =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

− a22−a23a32e−i(φ23+φ32)

a22a23K
a13λe−iφ23

(

a22a23+a32ei(φ23+φ32)
)

√

a2
23+1

(

a23a32ei(φ23+φ32)−a22
)

a13λ
√

a2
23+1

− a32λe−iφ32

a22K
1

√

a2
23+1

a23eiφ23
√

a2
23+1

λ
K − a23e−iφ23

√

a2
23+1

1
√

a2
23+1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+O(λ2), (9)

where the shorthand notation K = [

(a2
22 − 2a22

a23a32 cos(φ23 + φ32) + a2
23a

2
32)/a

2
13a

2
22

]1/2
is used. As

expected, the diagonal elements ofUl are unsuppressed; also,
the (23) and (32) entries are of O(1), which indicates that the
charged lepton contribution to the atmospheric angle will be
large. Notice also that, being the (12) and (13) elements of
O(λ), we expect similar corrections to the solar and reactor
angles.

2.2 Neutrino sector

In the neutrino sector, masses are generated through the stan-
dard type-I see-saw mechanism; at the renormalizable level,
the see-saw Lagrangian reads:

LLO =1

2
MWN

c
1N2 + 1

2
MZN

c
3N3 − aN 1Hulμ+

− bN 1Hulτ − cN 2Hule + h.c. ,

(10)

whereM is an overall Majorana mass scale whileW, Z , a, b, c
are dimensionless coefficients which will be regarded as free
parameters. When Hu acquires a vev vu , Majorana and Dirac
mass matrices are generated:

MR = M
⎛

⎝

0 W 0
W 0 0
0 0 Z

⎞

⎠ , mD = vu

⎛

⎝

0 a b
c 0 0
0 0 0

⎞

⎠ . (11)

Next-to-leading order (NLO) contributions are given by
higher dimensional operators suppressed by the large scale
MF ; up to flavon insertions, we get1:

LNLO =1

2
Mm11N

c
1N1

(
F1

MF

)

+ 1

2
Mm13N

c
1N3

(
F2

MF

)2

+ 1

2
Mm22N

c
2N2

(

F1

MF

)

+

+ 1

2
Mm23N

c
2N3

(

F2

MF

)2

− d11N 1Hule

(

F1

MF

)

− d22N 2Hulμ

(
F1

MF

)

+

− d23N 2Hulτ

(
F1

MF

)

− d31N 3Hule

(

F2

MF

)2

− d32N 3Hulμ

(

F2

MF

)2

+

− d33N 3Hulτ

(
F2

MF

)2

+ h.c. . (12)

Their main effects are to fill the vanishing entries in Eq. (11);
however, as we have numerically verified, some of the free
parameters in Eq. (12) needed to be slightly adjusted to fit the
low energy data. In particular, only a moderate fine-tuning is

1 Notice that we use the same overall scale M in the Majorana mass
terms.
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necessary on m11, m22, d11, d22 and d23, which we rescale
according to:

(m11,m22, d11, d22, d23) → λ (m11,m22, d11, d22, d23),

(m11,m22, d11, d22, d23) ∼ O(1) .

With the previous position, the following Dirac and Majorana
mass matrices are obtained:

Y = mD

vu
∼ Nl ∼

⎛

⎝

λ2d11 aei� bei�

cei� λ2d22 λ2d23ei�

λ2d31 λ2d32 λ2d33

⎞

⎠ , (13)

and

MR ∼ NN ∼ M
⎛

⎝

λ2m11 W λ2m13

W λ2m22 λ2m23

λ2m13 λ2m23 Z

⎞

⎠ . (14)

Notice that the Dirac mass matrix contains unsuppressed
entries because of the choice QN1 = −QN2 for two of the
right-handed neutrinos. The four physical phases �,�,�,�

in Y , obtained after a suitable redefinition of the fermion
fields, are the only source of CP violation of our model
and are not fixed by the symmetries of the Lagrangians. For
the sake of simplicity and without any loss of generality,
we can assume the parameters mi j ∼ m and consider m
as a real quantity. From the type-I seesaw master formula,
mν � −v2

uY
TM−1

R Y , we get the following matrix for the
light SM neutrinos, up to O(λ2):

mν � v2
u

M

⎛

⎜
⎜
⎝

cei�
(

cei�m−2d11W
)

λ2

W 2
• •

− acei(�+�)

W
aei�

(

aei�m−2d22W
)

λ2

W 2
•

− bcei(�+�)

W

(

abei(�+�)m−ad23ei(�+�)W−bd22ei�W
)

λ2

W 2
bei�

(

bei�m−2d23ei�W
)

λ2

W 2

⎞

⎟
⎟
⎠

. (15)

This mass matrix provides, as usual for models based on the
Le − Lμ − Lτ symmetry, an inverted mass spectrum.
From now on, we will distinguish two different scenarios, that
will be further elaborated when studying the BAU generated
in our model, and identified by different assumptions on the
parameter M. In order to better understand this distinction,
let us assume that all parameters in Eq. (15) are ofO(1); thus,
the light neutrino mass matrix can be recast in the following
form:

mν = m0

⎛

⎝

λ2x1 1 x
1 x2λ

2 x3λ
2

x x3λ
2 x4λ

2

⎞

⎠ , (16)

where m0 = v2
u/M × O(1) coefficients and (x, xi ) are

suitable combinations of the coefficients present in Dirac
and Majorana matrices in Eqs. (13) and (14). At the lead-
ing order in λ, mν has two degenerate eigenvalues m1 =
−m2 = m0

√
1 + x2 and a vanishing one, m3 = 0; there-

fore, we can only construct the atmospheric mass difference
�m2

atm = |m1|2 − |m3|2, which results in:

x2 = �m2
atm

m2
0

− 1 . (17)

To maintain x ∼ O(1), we can choose the overall mass
scale to m0 ∼ O(10−2) eV, which corresponds to the choice
M ∼ 1015 GeV. Notice also that, taking into account the
corrections of O(λ2), the eigenvalue degeneracy is broken,
and the solar mass difference can be accounted for, which
results in:

�m2
sol = λ2

[

x1(1 + x2) + x2 + 2xx3 + x4x2
]

√
1 + x2

. (18)

Since the masses of the three heavy right-handed neutrinos
are simply given by Mi = MM̃i with:

M̃1 � W + mλ2 + O(λ3),

M̃2 � W − mλ2 + O(λ3),

M̃3 � Z + O(λ3) ,

(19)

and, in particular, the relation W � Z holds, we dubbed
such a situation as the resonant scenario. As expected, two
mass eigenstates are degenerate, up to corrections of order
λ2. The second possibility arises when M ∼ 1013 GeV and,
consequently, W should be around 102 to maintain m0 ∼
O(10−2) eV. With all other parameters again of O(1), the
light neutrino mass matrix is now as follows:

mν � v2
u

MW

⎛

⎝

−2cei�d11λ
2 −acei(�+�) −bcei(�+�)

−acei(�+�) −2aei�d22λ
2 − (

ad23ei(�+�) + bd22ei�
)

λ2

−bcei(�+�) − (

ad23ei(�+�) + bd22ei�
)

λ2 −2bd23ei(�+�)λ2

⎞

⎠ . (20)

123
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Table 2 Best fits and 1σ ranges for the oscillation parameters, from
[2]

Oscillation parameters Best fits (IH)

θ12/
◦ 33.45+0.78

−0.75

θ13/
◦ 8.61+0.12

−0.12

θ23/
◦ 49.3+1.0

−1.3

δcp/
◦ 287+27

−32

�m2
21

10−5 eV 2 7.42+0.21
−0.20

�m2
31

10−3 eV 2 −2.497+0.028
−0.028

The right-handed neutrino spectrum will feature two,
almost degenerate states with mass M1 � M2 ∼ 1015 GeV,
and a lighter one with mass M3 � ZM ∼ 1013 GeV; we
call this scenario as the hierarchical scenario. Even in this
case, the left-handed neutrino mass matrix can be recast in the
form (16), with the obvious redefinition of (x, xi ) in terms of
the parameters appearing in Eq. (20). Thus, in both resonant
and hierarchical scenarios, we get the same structure of the
diagonalizing matrix Uν :

Uν =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 1√
2

1√
2

0

1
√

2(1 + x2)

1
√

2(1 + x2)
− x

√

2(1 + x2)
x

√

2(1 + x2)

x
√

2(1 + x2)

1√
1 + x2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ O(λ2).

(21)

The final expressions of the neutrino mixing angles
(including the corrections from the charged lepton sector,
i.e. using the relation UPMNS = U †

l Uν) and the ratio
r = �m2

sol/�m2
atm , which are valid for both scenarios con-

sidered in this paper, are reported here:

r = − 2λ2

(1 + x2)3/2

(

x1(1 + x2) + x2 + 2xx3 + x4x
2
)

,

tan θ12 = 1 − 2a13λ
(

a22(a22x − a32(a23x cos(φ23 + φ32) + cos(φ32))) + a23a2
32 cos(φ23)

)

√
x2 + 1

(

a2
22 − 2a22a23a32 cos(φ23 + φ32) + a2

23a
2
32

) ,

sin θ13 = λ

√

a2
13

(

a2
22 + 2a22a32x cos(φ32) + a2

32x
2
)

(

x2 + 1
) (

a2
22 − 2a22a23a32 cos(φ23 + φ32) + a2

23a
2
32

) , tan θ23 =
√

a2
23 + 2a23x cos(φ23) + x2

a2
23x

2 − 2a23x cos(φ23) + 1
.

(22)

Our order of magnitude estimates are in good agreement
with their measured values, reported in Table 2.

This conclusion has been further strengthened by a suc-
cessful numerical scan over the model free parameters, with
moduli extracted flat in the intervals [−5, 5] and all the phases

in the [−π, π ] interval. The relevant scatter plots are reported
in Fig. 1.

It is interesting that this model and the model studied in
[12] provide similar predictions for the mixing angles, even
if in the latter the neutrino mass matrix is obtained through
dim-5 Weinberg operators, while here we presented a type-I
see-saw realization, with a totally different charge assign-
ment. Notice that the model provides a CP conserving lep-
tonic phase2 (still compatible with the data at less than 3σ ).

In Fig. 2 we plot the model prediction for |mee| as a func-
tion of the absolute value of the lightest massm3. The shaded
area corresponds to the region allowed by current neutrino
data, for a mass ordering of inverted type. The vertical band
corresponds to the current sensitivity on the lightest neutrino
mass of 0.2 eV from the KATRIN experiment [22] and the
horizontal line to the future sensitivity of order 15 meV of the
next generation experiments, e.g. CUPID [23], NEXT [24]
and PandaX-III [25]. The figure suggests that the model pre-
diction points are in the non-degenerate region and that the
lightest neutrino mass relies in the range [5 ·10−4, 10−2] eV,
as it is expected recalling that m3 ∼ v2

u/M × O(λ2), with

v2
u/M ∼

√

�m2
atm . From the range of m3, we get a range on

the sum of the neutrino masses [0.10, 0.12] eV, completely
in agreement with the current bounds from [1].

3 Leptogenesis

As stated above, our study of leptogenesis will be performed
within two reference scenarios, identified by different mass
patterns for the heavy right-handed neutrinos:

• the resonant scenario, with M1 � M2 � M3 around
1015 GeV, and the mass difference comparable to the
decay width �Mi j ∼ �i ;

• the hierarchical scenario, with M3 � M1,2 � 1015

GeV .

2 We preferred not to report here its analytic cumbersome expression.

123
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Fig. 1 Scatter plots of the physical observables as predicted by our model. Left panel: scatter plot in the (r, δcp) plane. Right panel: scatter plot in
the (sin θ13

2, tan θ12) plane. The green bands display the 2σ C.L. for the oscillation parameters [2]

Fig. 2 |mee| as a function of
the lightest mass m3. The
shaded area corresponds to the
region allowed by current
neutrino data, for a mass
ordering of inverted type. The
vertical band corresponds to the
current sensitivity on the lightest
neutrino mass of 0.2 eV from
the KATRIN experiment [22]
and the horizontal line to the
future sensitivity of order 15
meV of the next generation
experiments [23–25]

The three Majorana neutrinos decay in the early Uni-
verse creating a lepton asymmetry, which is consequently
conversed in a baryon asymmetry through non perturbative
processes, known as sphaleron processes [13,14]. As we
will clarify in the following, a different Majorana neutrino
mass spectrum can lead to different CP-violating parame-
ters, affecting the final amount of baryon asymmetry in the
Universe.

Resonant scenario

The first scenario we consider is the resonant scenario,
obtained assuming that all the coefficients in the Dirac and
Majorana matrices are of O(1), leading to three degenerate
sterile neutrinos with mass M ∼ 1015 GeV. This represents
in some sense the most natural realization of our scenario. We
are interested in computing the BAU via thermal leptogene-
sis. To facilitate the understanding of the numerical results,

we will first provide analytical (approximated) expressions of
all relevant quantities entering our computations, which will
be validated against a full numerical solution of an appropri-
ate system of Boltzmann’s equations. Being mass degener-
ate, we expect that all the three right-handed neutrinos con-
tribute to the leptogenesis process. Following [26], we write
the baryon asymmetry as:

ηB � 7.04 · 10−3
∑

i

εiηi with i = 1,2,3 , (23)

with εi being the CP-asymmetries produced in the decay
of the ith neutrino and ηi the corresponding efficiency fac-
tors. As will be clarified below, the generation of the lepton
asymmetry in the resonant scenario occurs in an unflavored
regime; the final asymmetry is consequently just the sum of
the contributions associated to the individual neutrinos. The
efficiency factors can be written in terms of decay parameters
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Ki [18]:

ηi = 1

Ki
, Ki ≡ m̃i

m∗ , (24)

with:

m̃i = Ŷ ∗
i i Ŷi iv

2
u

Mi
,

m∗ =1.1 × 10−3 eV ,

(25)

where the symbol hat refers to the Yukawa evaluated in the
physical mass basis of the Majorana neutrinos, i.e. Ŷ =
UTY , where U is the unitary matrix such that UT M−1

R U =
(

Mdiag
R

)−1
. As it is well known, different values of Ki define

different washout regimes, namely strong (Ki  1), inter-
mediate (Ki � 1) andweak (Ki � 1). In terms of the param-
eters of the Dirac and Majorana neutrino mass matrices of
Eq. (13), their expressions up to O(λ4) are as follows:

K1 � 27.7

W

{

c2 + (

d2
11 + d2

31

)

λ4

+ 2

(W − Z)

(
c2m2

(W − Z)
+√

2 c d31 m cos(�)

)

λ4
}

,

K2 � 27.7

W

{

a2 + (d2
22 + d2

33)λ
4},

K3 � 27.7

Z

{

b2 + (d2
23 + d2

33)λ
4} .

(26)

Being all the above parameters ofO(1), we straightforwardly
conclude Ki ∼ O(10), implying a intermediate/strong
washout regime.
We are now in the position to discuss the CP asymme-
try. Since the heavy neutrinos are close in mass, the CP-
asymmetry can be resonantly enhanced [26–28]. To check
whether such an enhancement occurs, and hence properly
evaluate the CP asymmetry parameters, a good rule of thumb
consists in computing the ratios �Mi j/�i between the mass
splittings and the decay widths of the right-handed neutri-
nos, verifying that the resonance condition �Mi j ∼ �i

is satisfied. In the scenario under scrutiny, with degenerate
masses and not strongly hierarchical Yukawa couplings, we
can assume �1 ∼ �2 ∼ �3, so that:

�M12

�1
� �M12

�2
� 32mπ

a2 W
λ2 + O(λ4) ,

�M23

�2
� �M23

�3
� 16 (Z − W ) π

b2 + Z
+ O(λ2) ,

�M13

�1
� �M13

�3
� 16 (Z − W ) π

b2 + W
+ O(λ2) ,

(27)

where we have used �i = Mi

(

Ŷ †Ŷ
)

i i
/(16π). As evident,

for W−Z � O(0.1), �Mi3 � �i . Consequently, leptogen-
esis occurs in the resonant regime. In such a case, the self
energy contribution dominates the CP violation parameters.
Furthermore, as shown in [29], the asymmetry parameters
are time dependent. Following [29,30], we rewrite the latter
as:

εi (z) �
∑

j �=i

Im

[(

Ŷ †Ŷ
)2

i j

]

(Ŷ †Ŷ )i i (Ŷ †Ŷ ) j j

�Mi j/� j

1 + (

�Mi j/� j
)2

[

f mix
i j (z) + f osc

i j (z)
]

, (28)

where z = M/T , with M the sterile neutrino mass. The
coefficient in front of the squared parenthesis is the (con-
stant) usual CP-asymmetry, and it is resonantly enhanced for
�M ∼ �, while the second one is the sum of two z (and
hence time) dependent functions:

f mix
i j (z) =2 sin2

(
�Mi j t

2

)

= +2 sin2
[
Ki z2�Mi j

4�i

]

,

f osc
i j (z) = − � j

�Mi j
sin

(

�Mi j t
)

= − � j

�Mi j
sin

[
Ki z2�Mi j

2�i

]

,

(29)

In the case �Mi j t ≡ Ki z2�Mi j
4�i

 1, Eq. (29) is a strongly
oscillating function. Making the average over a generic time
interval (or, equivalently, in z) t ∈ [0, τ ], we have that:
〈

2 sin2
(

�Mi j t

2

)

− �i j

�Mi j
sin

(

�Mi j t
)
〉

= 1 − sin
(

�Mi jτ
)

�Mi jτ
− �i

�Mi j

1 − cos
(

�Mi jτ
)

�Mi jτ
(30)

As evident, the average tends to 1 if �Mi jτ  1. In such
a limit, we have that the CP asymmetry averages to the fol-
lowing constant value:

〈ε(z)〉 =
∑

j �=i

Im

[(

Ŷ †Ŷ
)2

i j

]

(Ŷ †Ŷ )i i (Ŷ †Ŷ ) j j

�Mi j/� j

1 + (

�Mi j/� j
)2 . (31)

In the case of a large decay parameter, the regime �Mi j t  1
occurs for small values of z. In good approximation, the
whole leptogenesis process can be described by replacing
the time dependent CP-asymmetry with its average. Being, in
our case, Ki � O(10), we can adopt this approach and, con-
sequently, propose an analytic estimate of the baryon asym-
metry neglecting the time dependence of the εi ’s. The ηB
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Table 3 Set of parameter assignments which lead to the final baryon
asymmetry value shown in Fig. 3. The parameters are selected close to
1 as to avoid particular effects of enhancement or suppression in the εi

a b c d11 d22 d23 d31 d32

1.02 1.19 1.17 1.18 1.24 1.45 1.70 1.01

d33 m � � � � Z W

1.50 1.50 0.007 0.007 −0.003 −0.004 1.38 1.27

will be nevertheless compared against a complete numerical
treatment. The time-independent piece of the CP-asymmetry
parameters in Eq. (28) can be expressed in power series of
the small parameter λ as follows:

ε1 = + 16 π (W − Z) Z

c2
(

256π(W − Z)2 + b4Z2
)
[

c2d2
23 sin [2 (� − �)] +

+ bd11 (bd11 sin [2�] + 2cd23 sin [� − � + �])
]

λ4 + O(λ5)

ε2 = − 16
(

b2π(W − Z)Z sin [2(�−�)]
)

256π2(W−Z)2+b4Z2 +

+ 16b2mπ Z
(

256π2(W − Z)2−b4Z2
)

sin [2 (� − �)] λ2

(

256π2(W − Z)2 + b4Z2
)2 +O(λ4)

ε3 = + 16
(

b2π(W − Z)Z sin [2(� − �)]
)

256π2(W − Z)2 + b4Z2 +

− 16b2mπ Z
(

256π2(W − Z)2 − b4Z2
)

sin [2 (� − �)] λ2

(

256π2(W − Z)2+b4Z2
)2 +O(λ4) .

(32)

By inspecting the analytical expressions above we see that,
for W−Z � O(0.1), the parameters ε2,3 tend approximately
to O(0.1), while ε1 is of order 10−4. Therefore, the main
contribution to the final baryon asymmetry of the Universe
is carried by ε2,3, leading to an ηB value which exceeds the
experimentally favoured one ηB � 6.1 · 10−10 by several
orders of magnitude. It is nevertheless possible to suppress
the values of the εi parameters by an ad-hoc assignations of
the phases to trigger a destructive interference among them.
First of all, by taking � − � → 0, the leading order contri-
butions to ε2,3 go to zero and, as for ε1, all ε’s are of O(λ4):

ε2 = 32 b d22 d23π(W − Z)Z sin [�] λ4

a
(

256π2(W − Z)2 + b4Z2
) + O(λ5)

ε3 = 16πW (Z − W )

b2

[
2 a b d22 d23 sin [�]

a4W + 256π2(W − Z)2 +

+ b2d11 sin [2�] + c d23 (c d23 sin [2(� − �)] + 2 b d11 sin [� + � − �])

c4W 2 + 256π2(W − Z)2

]

λ4 + O(λ5) .

(33)

Upon numerical check, we have found that the λ4 suppression
was not enough to guarantee viable values of the εi . Conse-
quently, we need to further assume individually suppressed

�, � and � phases. For the benchmark values reported in
Table 3, the efficiency factors turn to be:

η1 � 2.6 · 10−2, η2 � 3.4 · 10−2, η3 � 2.5 · 10−2 ,

(34)

while the CP-asymmetry parameters are:

ε1 � 2.2 · 10−5, ε2 � −7.5 · 10−7, ε3 � 1.5 · 10−5 .

(35)

Using the approximated formula in Eq. (23), we can estimate
the final baryon asymmetry, obtaining ηB ≈ 5.20 · 10−10,
in good agreement with the observations. We conclude our
study of the resonant scenario with a numerical validation of
the analytical results presented above. We have hence solved
the following set of coupled Boltzmann’s equations [13]:

dNi

dz
= − (Di + Si )

(

Ni − N eq
i

)

i = 1, 2, 3

dNB−L

dz
=

3
∑

i

εi Di
(

Ni − N eq
i

) − Wi NB−L ,

(36)

where Ni stands for number density of the RH sterile neu-
trinos, while NB−L is the amount of B–L asymmetry, both
normalized by comoving volume [13]. εi = εi (z) are the full
time dependent asymmetry parameters as given in Eqs. (28–
29). Di and Si indicate, respectively, inverse decay and scat-
tering contributions to the production of the right-handed
neutrinos while the Wi represent the total rate of Wash-out
processes including both inverse decay and �L �= 0 scatter-
ing contributions (see Appendix A for further details). From
the benchmark values of Table 3, the following entries of the
Yukawa matrix are obtained:

Ŷ =
⎛

⎝

0.761 − 0.003 i −0.270 − 0.002 i −0.324 − 0.002 i
−0.896 + 0.004 i −0.345 − 0.002 i −0.413 − 0.002 i

0.03104 − 0.00004 i 0.931 + 0.006 i 1.079 + 0.007 i

⎞

⎠

(37)

Plugging the latter values in the interaction rates appear-
ing in the Boltzmann’s equations, we have solved the system
assuming null initial abundance for the right-handed neu-
trinos in the primordial plasma. The B–L yield NB−L as a
function of z is shown with a blue line in Fig. 3, while the
abundance of the right-handed neutrinos is displayed with a
green line. For reference, we have reported the corresponding
equilibrium function as a dashed orange line. To better pin-
point the impact on our result of the time dependency of the
CP-asymmetry, we have shown, as red line in Fig. 3, solution
of the same system of equations but retaining a constant CP
violating parameter as given by Eq. (35). As evident, there is a
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Fig. 3 B− L asymmetry and neutrino abundance evolution during the
expansion of the Universe in case of zero initial neutrino abundance.
The blue line refers to the full solution of the Boltzmann’s equations,
obtained retaining the time dependence of the CP-violation parameter.
The red line refers to the solution of the analogous system but adopting

a time-constant value of the asymmetry parameters. Finally, the green
line represents the abundance of the right-handed neutrinos, as given
by the solution of the system. For reference, the latter is compared with
the function N eq

N (dashed line) which represents a thermal equilibrium
abundance for right-handed neutrinos

nice agreement between the curves, justifying the assumption
of neglecting the time dependence of the asymmetry param-
eter in our analytical treatment. Some more comments are in
order. Starting from a negligible abundance, the yield of the
right-handed neutrino is driven by inverse decays toward the
equilibrium value which is reached for zeq < 1. For z > zeq,
the decays dominate and the neutrino abundance decreases,
until it becomes almost zero around z � 10. This means
that the leptogenesis processes is completed at temperatures
above 1013 GeV. This justifies our assumption of neglecting
flavor effects since the latter are relevant only if leptogen-
esis occurs at temperatures below 1012 GeV. The shape of
the NB−L also clearly evidences the time dependency of the
εi parameters. The solution of the system NB−L(∞) can be
related to ηB through the relation ηB = (asph/ f )NB-L(∞).
Here asph = 28/79 [13] is the fraction of B − L asym-
metry converted into a baryon asymmetry by the sphaleron
processes while f = N rec

γ /N∗
γ = 2387/86 is the dilution

factor calculated assuming standard photon production from
the onset of leptogenesis till recombination. The values of the
latter parameters, as obtained from the numerical solution of
the system are:

NB−L(∞) = 4.38 × 10−8,

ηB = 6.20 × 10−10.
(38)

We conclude that, although with the CP-violation enhance-
ment typical of the resonant leptogenesis scenario, and a high
scale degenerate spectrum for the Majorana neutrinos, it is
possible to provide the BAU in agreement with the cosmo-

logical observations, for the price of a phases suppression.
While this outcome is unsurprising, since as well known, the
resonant leptogenesis favors sensitively lower mass scales for
the right-handed neutrinos, we remark again that very high
mass scale almost degenerate neutrinos represent a general
prediction of the considered model. We will show in the next
section that, such degeneracy can be broken at the price of
a moderate fine tuning so that viable leptogenesis can be
obtained for generic assignations of the CP-phases.

Hierarchical scenario

This alternative scenario is obtained by lowering the mass
scale M down to a value of the order of 1013 GeV, which
brings to a hierarchical mass spectrum for the sterile neutri-
nos, with two heavy, almost degenerate, states with M1 �
M2 ∼ 1015 GeV, and a lighter one with M3 � 1013 GeV. In
this setup, the baryon asymmetry of the Universe can be gen-
erated through the conventional thermal leptogenesis only
via the out-of-equilibrium decay of the lightest heavy neu-
trino. Similarly to the previous case, no flavor effects need
to be accounted for. As discussed in [26], the latter becomes
relevant when the rate of processes mediated by τ , μ and
e exceeds the Hubble expansion rate. This occurs when the
temperature of the Universe drops below, respectively:

Tτ �5 · 1011 GeV , Tμ �2·109 GeV , Te � 4 · 104 GeV .

(39)
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Table 4 Set of parameter assignments which lead to a final baryon
asymmetry close to the cosmological observations. See text for further
details

a b c d11 d22 d23 d31 d32

0.72 0.79 1.65 1.99 1.56 1.88 1.10 1.10

d33 m � � � � Z W

0.76 1.50 0.39 1.02 4.10 5.11 1.41 159.97

In the scenario under consideration we have M3  Tτ 
Tμ,e. Thus, we can work in the so-calledunflavored regime, in
which the lightest neutrino decays via flavor blind processes.
The baryon asymmetry can then be parametrized as:

ηB � 7.04 · 10−3 ε3 η3 , (40)

with ηi as in Eq. (24) and the unflavored CP-asymmetry as
[31–34]:

εi = 1

8π
(

Ŷ †Ŷ
)

i i

∑

j �=i

Im

[(

Ŷ †Ŷ
)2

i j

]

f

[

M2
j

M2
i

]

, (41)

where x j = M2
j /M

2
i and the loop function is:

f [x] = √
x

[

1 − (1 + x) log

(

1 + 1

x

)

+ 1

1 − x

]

, (42)

that can be approximated to f [x] � −3/(2
√
x) in the limit

x  1. Expressing the elements of the Yukawa matrices in
terms of the model parameters, we have:

ε3 = f

[

M2
2

M2
3

]

1

8b4π
·
{

sin [2(� − �)]

(

a2b2 − 2a2(d2
23 + d2

33)
)

+ −2a b d22 d23 sin [� − � + �]

+ 2 a b d32 d33 sin [� − �] + O(λ4)

}

.

(43)

Using the values in Table 4, and noticing that f
[

M2
2 /M2

3

] �
10−2, we obtain ε3 � 3.1 · 10−4.

The corresponding efficiency factor η3 can be simply
approximated to:

η3 � 3.6 · 10−4
(
Z

b2 + O(λ4)

)

� 1.4 · 10−4 , (44)

for the assignations in Table 4. The efficiency factor can be
converted to the baryon asymmetry parameter ηB :

ηB � 7.04 × 10−3 [ε3η3] ≈ 2.9 × 10−10 , (45)

very close to the experimentally favoured value. Also in this
case, we have verified the goodness of our analytical approx-
imations by solving a suitable set of Boltzmann equations,
which take the form:

dN3

dz
= − (D3 − S3)

(

N3 − N eq
3

)

,

dNB−L

dz
= ε3D3

(

N3 − N eq
3

) − W3NB−L .

(46)

From the parameter choices in Table 4, we get the following
Yukawa matrix :

Ŷ =
⎛

⎝

0.124 − 0.699 i −0.243 − 0.358 i 0.032 + 0.500 i
−0.234 + 0.699 i −0.322 − 0.358 i 0.0772 + 0.421 i

0.03739 − 0.00003 i 0.0398 − 0.0001 i 0.0222 + 0.0002 i

⎞

⎠

(47)

Notice that the imaginary parts of the third row is suppressed
by a factor proportional to Z/W .
This choice corresponds to the CP-violation parameter ε3 =
2.7·10−4. For the benchmark values under consideration, the
numerical solution of the Boltzmann’s equations is shown in
Fig. 4 and gives:

NB−L(∞) = 4.35 · 10−8 ,

ηB = 6.12 · 10−10 ,
(48)

confirming what we expected from the simplified analytical
analysis.

It is interesting to notice that, contrary to the resonant
regime, in the hierarchical scenario it is possible to find a
parameter assignation leading to viable leptogenesis without
imposing a fine tuning on the CP violating phases.

4 Conclusions

In this paper we have provided a proof of existence about
the possibility of contemporary achieving viable masses and
mixing patterns for the SM neutrinos and a value of the BAU,
via leptogenesis, compatible with the experimental deter-
mination, in models based on the abelian flavor symmetry
Le−Lμ −Lτ . Given the large parameter space of the model,
we have identified two reference scenarios. The first one,
dubbed the resonant scenario, provides a viable light neu-
trino mass spectrum and assures the existence of three degen-
erate right-handed neutrinos at a mass scale of 1015 GeV. In
this scenario, the generation of the lepton asymmetry is res-
onantly enhanced so that a baryon asymmetry exceeding the
experimentally favored value is generically predicted. This
problem can be overcome by invoking an ad-hoc suppression
of the CP-violating phases in the Yukawa matrix. In the sec-
ond scenario, that we called the hierarchical scenario, one of
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Fig. 4 Evolution of the B − L
symmetry in the hierarchical
scenario. The color code is the
same as in Fig. 3

the right-handed masses is lowered down to 1013 GeV with-
out destroying the good agreement with the lepton masses
and mixing. The BAU is generated via the conventional ther-
mal leptogenesis. We have verified that it is possible to find
parameter assignations leading to the correct value of the
BAU without invoking specific assignations for the CP vio-
lating phases.
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Appendix A: Full Boltzmann equations

In this Appendix we discuss in greater detail the Boltzmann’s
equations solved in the main text. For the sake of simplicity,
we will write them as a single equation for the right-handed
neutrino specie N1. In the case of the resonant regime, we
just need to consider multiple copies of the same equation.
The relevant processes in the thermal plasma are:

• N1 decays (D) and inverse decays (ID) into leptons and
Higgs bosons N1 → φl, and into anti-leptons and anti-
Higgs bosons N1 → φ̄l̄;

• �L = 2 scattering processes mediated by the heavy
Majorana neutrinos, lφ ↔ l̄φ̄ (N) and ll ↔ φ̄φ̄, l̄ l̄ ↔ φφ

(Nt);
• �L = 1 scattering, with an intermediate Higgs boson

field φ, involving the top quark. The s-channel N1l ↔ t̄q,
N1l̄ ↔ t q̄ (s) and the t-channel N1t ↔ l̄q, N1 t̄ ↔ lq̄
(t);

In brackets we have indicated a short-hand notation for such
processes, to be used later on. Considering z = M/T , where
M is the mass of the decaying neutrino, the Boltzmann’s
equations read:

dN1(z)

dz
= −(

D(z) + S(z)
)(

N1(z) − Neq
1 (z)

)

,

dNB−L (z)

dz
= ε(z)D(z)

(

N1(z) − Neq
1 (z)

) − W (z)NB−L (z) ,

(A1)

where ε is the usual CP-violation parameter. Instead of the
number density nX of the particle species, it is useful to con-
sider their number NX in some portion of the comoving vol-
ume, in such a way to automatically take into account the
expansion of the Universe. In the literature, the comoving
volume R3∗(t) is usually chosen such that it contains one
photon at the time t∗, before the onset of the leptogenesis
[35]:

NX (t) = nX (t)R3∗(t) , (A2)

with

R∗(t∗) =
(

neqγ (t∗)
)−1/3

, (A3)
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so that Nγ (t∗) = 1. Differently, one could even choose to
normalize the number density to the entropy density s con-
sidering then YX = nx/s, as widely done in literature, e.g.,
[13]; however, if the entropy is conserved during the Universe
evolution, the two normalizations are related by a constant.
Introducing the thermally averaged dilation factor 〈1/γ 〉 as
the ratio of the modified Bessel functions of the second type:

〈
1

γ

〉

= K1

K2
, (A4)

we can write the decay term D(z) as [36]:

D(z) = Kz

〈
1

γ

〉

. (A5)

K is the decay parameter, which is introduced in the con-
text of the GUT baryogenesis [36], to control whether the
decays of the sterile neutrinos are in equilibrium or not. This
parameter depends on the effective neutrino mass m̃1 [37]:

m̃1 =
(

Ŷ †Ŷ
)

11
v2
u

M1
, (A6)

where Ŷ is the Dirac neutrino Yukawa matrix computed in
the physical mass basis of the Majorana neutrinos, vu is the
vacuum expectation value of the Hu doublet field and M1 is
the mass of the decaying neutrino.
This effective mass has to be compared with the equilibrium
neutrino mass [13]:

m∗ � 1.08 · 10−3 eV. (A7)

The decay parameter turns out to be:

K = m̃1

m∗ . (A8)

From the parameter D(z) we can obtain the inverse decay
parameter WID(z), which contributes to the washout of the
lepton asymmetry. Indeed, the inverse decay parameter can
be written as [13]:

WID(z) = 1

2
D(z)

Neq
1 (z)

Neq
l

(A9)

with

Neq
1 (z) = 3

8
z2K2(z) , Neq

l = 3

4
. (A10)

Therefore, the contribution of the inverse decays to the final
washout is:

WID(z) = 1

4
Kz3K1(z) . (A11)

We can now move to the �L = 1 and �L = 2 scatter-
ing processes. The latter contributes to the washout of the
lepton asymmetry, while the former counts towards both the
production of the right-handed sterile neutrinos and the final
washout.
In general, the scattering terms Sx (z), where the subscript x
indicates the different processes to be considered, are:

Sx (z) = �x (z)

Hz
, (A12)

with H being the evolution Hubble constant. �x are the scat-
tering rates, defined as [38]:

�x (z) = M1

24ζ(3)gNπ2

Ix
K2(z)z3 , (A13)

where gN = 2 is the number of degrees of freedom of the
right-handed neutrinos. The quantity Ix is the integral:

Ix =
∫ ∞

z2
d�σ̂x (�)

√
�K1(

√
�) , (A14)

of the reduced cross section σ̂x given in [35]. In particular,
for the scattering processes mediated by the three Majorana
neutrinos, i.e. the �L = 2 scatterings, the reduced cross
section reads [39]:

σ̂N ,Nt (x) = 1

2π

[
∑

i

(

Ŷ †Ŷ
)2

i i
f N ,Nt
ii (x)

+
∑

i< j

Re
(

Ŷ †Ŷ
)2

i j
f N ,Nt
i j (x)

⎤

⎦ , (A15)

with

f Nii (x) = 1 + ai
Di (x)

+ xai
2D2

i (x)
− ai

x

[

1 + x + ai
Di

]

ln

(

1 + x

ai

)

,

(A16)

f Ni j (x) = √
ai a j

[
1

Di (x)
+ 1

Dj (x)
+ x

Di (x)Dj (x)

+
(

1 + ai
x

)(
2

a j − ai
− 1

Dj (x)

)

ln

(

1 + x

ai

)

+
(

1 + a j

x

)(
2

ai − a j
− 1

Di (x)

)

ln

(

1 + x

a j

)]

,

(A17)

f Nt
ii (x) = x

x + ai
+ ai

x + 2ai
ln

(

1 + x

ai

)

, (A18)
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f Nt
i j (x)=

√
ai a j

(ai −a j )(x+ai +a j )

[

(2x+3ai +a j ) ln

(

1+ x

a j

)

− (2x + 3a j + ai ) ln

(

1 + x

ai

)]

.

(A19)

Here a j ≡ M2
j /M

2
1 and 1/Di (x) ≡ (x − ai )/[(x − ai )2 +

ai ci ] is the off-shell part of the Ni propagator with ci =
ai (Ŷ †Ŷ )2

i i/(8π)2.
On the other hand, for the �L = 1 scattering processes, it is
convenient to write the rates Ss,t (z) in term of the functions
fs,t (z) defined as [35]:

fs,t (z) =
∫ ∞
z2 d�χs,t (�/z2)

√
�K1(

√
�)

z2K2(z)
, (A20)

with the functions χs,t (x) as follows:

χs(x) =
(
x − 1

x

)2

, (A21)

χt (x) = x − 1

x

[
x − 2 + 2ah
x − 1 + ah

+ 1 − 2ah
x − 1

log

(
x − 1 + ah

ah

)]

,

(A22)

where ah = mφ/M1 is the infrared cut-off for the t-channel
and mφ is the mass of the Higgs boson which receives con-
tributions from the thermal bath and its value can be written
as mφ � 0.4 T [14]. In this a way, the �L = 1 scattering
terms are:

Ss,t (z) = Ks

9ζ(3)
fs,t (z) , (A23)

with Ks = m̃1/ms∗ and [13]:

ms∗ = 4π2

9

gN
h2
t
m∗ , (A24)

where ht is the top quark Yukawa coupling evaluated at T �
M1.
The total scattering term S(z), related to the production of
the sterile neutrinos, is given by S(z) = 2Ss(z) + 4St (z),
where the s-channel acquires a factor of 2 stemming from the
diagram involving the antiparticles, and an additional factor
of 2 in the t-channel comes from the u-channel diagram.
Therefore, the parameter S(z) can finally be written as:

S(z) = 2Ks

9ζ(3)
( fs(z) + 2 ft (z)) . (A25)

Thus, for the total washout termW (z), which includes contri-
butions from the inverse decay processes and the �L = 1, 2
scatterings, we have [35,38]:

W (z) = WID(z)

[

1 + 2

D(z)
(2St (z)

+ N1(z)

Neq
1 (z)

Ss(z) + 2SN (z) + 2SNt (z)

)]

. (A26)
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