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Abstract We derive the asymptotic lattice spacing depen-

dence an[2b0 ḡ2(1/a)]�̂i relevant for spectral quantities of
lattice QCD, when using Wilson, O(a) improved Wilson or
Ginsparg–Wilson quarks. We give some examples for the
spectra encountered for �̂i including the partially quenched
case, mixed actions and using two different discretisations
for dynamical quarks. This also includes maximally twisted
mass QCD relying on automatic O(a) improvement. At
O(a2), all cases considered have mini �̂i � −0.3 if Nf ≤ 4,
which ensures that the leading order lattice artifacts are
not severely logarithmically enhanced in contrast to the
O(3) non-linear sigma model (Balog et al. in Nucl Phys B
824:563–615, 2010; Balog et al. in Phys Lett B 676:188–
192, 2009). However, we find a very dense spectrum of these
leading powers, which may result in major pile-ups and can-
cellations. We present in detail the computational strategy
employed to obtain the 1-loop anomalous dimensions already
used in Husung et al. (Phys Lett B 829:137069, 2022).

1 Introduction

Today’s lattice QCD simulations are reaching a point, where
statistical uncertainties of several quantities obtained from
the lattice become of O(1%) and below while smaller lat-
tice spacings a � 0.04 fm become accessible. Under these
conditions predictions for precision physics are within reach,
but systematic errors must be kept under control. We focus
here on the systematic error due to the continuum extrap-
olation. The method of choice to describe the approach of
the lattice theory to the continuum theory as a ↘ 0 is
Symanzik Effective theory (SymEFT) [1–4], see also [5,
p. 39ff.]. SymEFT allows to take the quantum corrections
into account, that modify the leading anmin lattice artifacts

a e-mail: n.husung@soton.ac.uk (corresponding author)

expected from classical field theory, where nmin is a positive
integer and depends on the chosen lattice discretisation. In
an asymptotically free theory like QCD the leading lattice
artifacts from the lattice action then have the generic form
anmin [ḡ2(1/a)]γ̂i , where ḡ(1/a) is the renormalised coupling,
γ̂i = (γ0)i/(2b0), (γ0)i are the 1-loop anomalous dimensions
of (4+nmin)-dimensional operators and b0 is the 1-loop coef-
ficient of the β-function. These higher dimensional operators
form a minimal on-shell basis describing all lattice artifacts
originating from the lattice action, which can formally be
written in form of the effective Lagrangian

Leff(x) = L (x) + aδL (1)(x) + a2δL (2)(x) + · · · , (1)

where L is the Lagrangian of continuum QCD

L = − 1

2g2
0

tr(FμνFμν) + �̄
{
γμDμ(A) + M

}
�. (2)

� = (ψ1, . . . , ψNf )
T is a flavour vector, Dμ(A) = ∂μ + Aμ

is the continuum covariant derivative with su(N ) algebra val-
ued gauge field Aμ, Fμν = [

Dμ, Dν

]
is the field strength

tensor and M = diag(m1, . . . ,mNf ) are the quark masses.
To obtain the leading lattice artifacts we then need to expand
the SymEFT around the continuum Lagrangian such that the
δL (d) are treated as operator insertions in the continuum
theory, which is the common strategy in Effective Field The-
ories. Here and in the following the superscript in δL (d)

denotes the deviation of the canonical mass-dimension from
the continuum field, e.g.

d = [
δL (d)

]− [
L
]
. (3)

We focus on contributions from the lattice action. This is
sufficient for spectral quantities, where corrections from
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local fields cancel out. For non-spectral quantities such con-
tributions from local fields must be taken into account as
well, which is beyond the scope of this paper and obviously
depends on the local fields involved.1

As shown by Balog et al. [7,8] in the 2-d O(3) sigma model
quantum corrections can spoil the approach to the continuum
limit with distinctly negative values for γ̂i . For this model
they found mini (γ̂i ) = −3, which worsens the approach
from the naive a2 lattice artifacts (nmin = 2) to something
which behaves like O(a) corrections over a long range of
lattice spacings due to ḡ2(1/a) ∼ −1/ log(a
), where 
 is
the intrinsic scale of the theory. Thus computing the leading
anomalous dimensions for full lattice QCD at leading order
in the lattice spacing is not just a purely academic question
but puts continuum extrapolations on more solid grounds by
predicting the true asymptotic lattice spacing dependence.
This knowledge should then be used both in the ansatz for
the continuum extrapolation and to estimate uncertainties of
this extrapolation through varying the leading power in the
coupling in the range predicted for the competing values γ̂i .

In a previous paper [9] we discussed the special case of
SU(N ) pure gauge theory with nmin = 2 and Wilson’s lattice
QCD with nmin = 1, which have a minimal basis of 2 or 1
operators respectively in the massless case. In both cases the
values found for γ̂i are larger than zero such that discretisa-
tion errors vanish faster than the classically assumed anmin

behaviour. There the general concept of SymEFT theory is
discussed in more detail. It is recommended as an introduc-
tion for the reader. In this paper we will focus on the exten-
sion to lattice QCD actions with non-perturbatively O(a)

improved Wilson quarks [10] and Ginsparg–Wilson quarks
[11] both with nmin = 2, which have a significantly larger set
of operators forming the minimal basis. We also take a look
at twisted mass QCD [12,13] and the connection of the min-
imal operator basis of untwisted QCD to the twisted case. In
particular twisted mass QCD at maximal twist ensures auto-
matic O(a) improvement due to an additional symmetry of
the continuum Lagrangian [14,15]. While we discuss here the
technicalities of the computation in some detail, we also rec-
ommend to take a look at the Letter published [16] alongside
this paper, summarizing the overall results and consequences.

2 Minimal operator basis of full QCD to O(a2)

To compute the various γ̂i we need the complete minimal
on-shell operator basis O(d)

i to express

1 For commonly used local fields a similar analysis can (and should) be
performed along the lines of this paper with the sole difference that total
divergence operators can no longer be discarded in the additional oper-
ator bases introduced for each local field. See also [6] for a discussion
of the minimal on-shell basis of local fields for nmin = 1.

δL (d) =
∑

i

ωO
i (g2

0)O(d)
i , (4)

where ωO
i (g2

0) are the bare matching coefficients with bare
continuum coupling g2

0. The expansion in g2
0 of ωO

i can be
determined for any chosen lattice discretisation. Which oper-
ators must be included into the basis, depends on the sym-
metries realised for the lattice discretisation, i.e. the lattice
action

SQCD = SG + a4
∑

x

�̄(x)D̂�(x). (5)

Different discretisations of the lattice gauge action SG have
already been discussed in [9] and we rather focus here on the
lattice fermion actions. Depending on the chosen lattice Dirac
operator D̂ the symmetry constraints differ. We restrict con-
siderations to Wilson quarks [17,18] and Ginsparg–Wilson
quarks [11].

Starting with Wilson quarks the lattice Dirac operator
reads

D̂W = 1

2

{
γμ(∇∗

μ + ∇μ) − a∇∗
μ∇μ

}

+M + acsw(g2
0)

i

4
σμν F̂μν, (6)

where σμν = i
2

[
γμ, γν

]
. Here csw(g2

0) = 1 + O(g2
0) is

the improvement coefficient for the Sheikholeslami–Wohlert
(SW) term [19]. For the definition of ∇μ, ∇∗

μ and F̂μν see
appendix A. The SW-term can remove O(a) lattice artifacts
either perturbatively [6] or non-perturbatively [10], where the
latter choice also removes double mass-dimension 5 operator
insertions in the SymEFT contributing to O(a2).

In contrast to Wilson quarks, Ginsparg–Wilson quarks
[11] obey in the massless limit

{
D̂GW, γ5

}
= aD̂GWγ5 D̂

GW, (7)

such that they have an exact lattice chiral symmetry [20].
This symmetry ensures that terms like i/4�̄σμνFμν� are
already forbidden by symmetry and the lattice artifacts of the
massless theory automatically start at O(a2). One particular
solution to Eq. (7) are Overlap fermions [21,22] (we choose
here the conventions from [23])

D̂OV(M) =
{

1 − a

2
M
}
D̂OV(0) + M, (8)

aD̂OV(0) = 1 − A
(
A†A

)−1/2
, A = 1 − aD̂W. (9)

Another solution of Eq. (7) are Domain-Wall fermions
[24,25] in the limit of infinite extent of the auxiliary 5th
dimension [26]. For finite extent of the 5th dimension, chiral-
symmetry violations are only exponentially suppressed as the
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extent of the 5th dimension increases such that flavour sym-
metries of Domain Wall fermions are then reduced to the ones
of conventional Wilson quarks. In summary, the symmetry
constraints for Wilson and Ginsparg–Wilson quarks are the
following:

• Local SU(N ) gauge symmetry,
• invariance under charge conjugation and any Euclidean

reflection,
• Hypercubic H4 symmetry as a remnant of broken O(4)

symmetry,
• SU(Nf)L×SU[Nf ]R×U(1)V flavour symmetry for mass-

less lattice fermion actions preserving lattice chiral sym-
metry,

• UNfV flavour symmetry for massless (or mass-degenerate)
Wilson quarks.

Due to being interested in the minimal on-shell basis
we may further make use of the continuum equations of
motion (EOM)

[Dμ(A), Fμν] = T ag2
0�̄γνT

a�, γμDμ(A)� = −M�,

�̄
←
Dμ(A)γμ = �̄M, (10)

to eliminate redundant operators [6]. Here T a denotes the
generators of the su(N ) colour algebra.

2.1 Massless operator basis

For massless Wilson quarks with at most perturbative O(a)

improvement, one operator is required at mass-dimension 5
describing the occurring O(a) lattice artifacts. We previously
discussed this operator [9] and list it here for completeness

O(1)
1 = i

4
�̄σμνFμν�. (11a)

For mass-dimension 6 we restate here the minimal basis of
pure gauge theory [27,28], which is of course a subset of the
operator basis of full QCD,

O(2)
1 = 1

g2
0

tr([Dμ, Fνρ] [Dμ, Fνρ])

O(2)
2 = 1

g2
0

∑

μ

tr([Dμ, Fμν] [Dμ, Fμν]). (11b)

The extension to full QCD with massless quarks at O(a2) then
introduces an additional fermion bilinear compatible with
chiral symmetry to the minimal on-shell basis after applying
the EOMs and making use of integration by parts on the basis
listed in [19]

O(2)
3 =

∑

μ

�̄γμD
3
μ�. (11c)

Both operators O(2)
2 and O(2)

3 break O(4) symmetry and are
only compatible to H4 symmetry. Therefore their mixing
under renormalisation will be fairly restricted as they can-
not mix into any operator invariant under O(4) symmetry –
assuming use of a regulator that preserves this symmetry. At
mass-dimension 6 also 4-fermion operators contribute. For
Ginsparg–Wilson quarks only those compatible with chiral
symmetry are allowed

O(2)
4 = g2

0(�̄γμ�)2, O(2)
5 = g2

0(�̄γμγ5�)2,

O(2)
6 = g2

0(�̄γμT
a�)2, O(2)

7 = g2
0(�̄γμγ5T

a�)2, (11d)

while Wilson quarks also require the inclusion of the chiral-
symmetry violating 4-fermion operators

O(2)
8 = g2

0(�̄�)2,O(2)
9 = g2

0(�̄γ5�)2,O(2)
10 = g2

0(�̄σμν�)2,

O(2)
11 = g2

0(�̄T a�)2,O(2)
12 = g2

0(�̄γ5T
a�)2,O(2)

13 = g2
0(�̄σμνT

a�)2.

(11e)

We choose here the 4-fermion operator basis such that the
flavour, colour algebra and spinor indices are contracted
within �̄ . . . � pairs. All other ways to contract the indices
compatible with the symmetry constraints are related to the
basis chosen here through the following identities. Firstly
through Fierz identities2

⎛

⎜⎜⎜⎜
⎝

ψ̄1ψ2ψ̄3ψ4

ψ̄1γμψ2ψ̄3γμψ4

ψ̄1σμνψ2ψ̄3σμνψ4

ψ̄1γμγ5ψ2ψ̄3γμγ5ψ4

ψ̄1γ5ψ2ψ̄3γ5ψ4

⎞

⎟⎟⎟⎟
⎠

= 1

8

⎛

⎜⎜⎜⎜
⎝

−2 −2 −1 2 −2
−8 4 0 4 8
−24 0 4 0 −24

8 4 0 4 −8
−2 2 −1 −2 −2

⎞

⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

ψ̄1ψ4ψ̄3ψ2

ψ̄1γμψ4ψ̄3γμψ2

ψ̄1σμνψ4ψ̄3σμνψ2

ψ̄1γμγ5ψ4ψ̄3γμγ5ψ2

ψ̄1γ5ψ4ψ̄3γ5ψ2

⎞

⎟⎟⎟⎟
⎠

,

(12)

where ψn is a quark field with an arbitrary combination of
flavour and colour index, while the spinor indices are con-
tracted within the quark anti-quark pair. Secondly through
identities from the su(N ) algebra

ψ̄A�{μ}T a
ABψB η̄C�{μ}T a

CDηD

= TF

N
ψ̄A�{μ}ψAη̄B�{μ}ηB − TFψ̄A�{μ}ψB η̄B�{μ}ηA,

(13)

2 Since we will use dimensional regularisation the Fierz identities are
actually only correct up to Evanescent operators [29] vanishing in four
dimensions. This ensures that such operators affect the renormalisation
only beyond 1-loop.
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ψ̄A�{μ}T a
ABηB η̄C�{μ}T a

CDψD

= TF

N
ψ̄A�{μ}ηAη̄B�{μ}ψB − TFψ̄A�{μ}ηB η̄B�{μ}ψA,

(14)

where ψ and η indicate different flavours, �{μ} denotes a
matrix of the Dirac algebra with all indices {μ} contracted
with the second �{μ} and A, B, C , D are contracted colour
indices. This particular choice for the basis is identical to the
one in [30] and, as shown there, equivalent to the choice in
[19]. We choose to prepend an additional factor of g2

0 to each
4-fermion operator motivated by the gluonic EOM (10) as
well as the leading order of any kind of tree-graph leading
to a 4-fermion interaction in lattice QCD. The latter happens
due to the absence of terms with more than one quark-anti-
quark pair in the classical expansion of the lattice action in the
lattice spacing a as discussed in [19], i.e. the tree-level coef-
ficients of 4-fermion operators without the factor g2

0 would
vanish anyway.

2.2 Massive operator basis

Unless one is interested in massless quarks or quarks at very
small quark masses, like up-, down- or strange-quarks, oper-
ators carrying explicit powers of quark masses should be
taken into account because they will no longer be suppressed.
If a hadronic renormalisation scheme is used on the lattice
rather than a mass-independent scheme, such contributions
can be ignored. For the general massive case one finds at
mass-dimension 5 the additional linearly independent oper-
ators

O(1)
2 = tr(M)

Nf

1

g2
0

tr(FμνFμν), O(1)
3 = �̄M2�,

O(1)
4 = tr(M)

Nf
�̄M�, O(1)

5 = tr(M2)

Nf
�̄�,

O(1)
6 = tr(M)2

N 2
f

�̄�, (15)

where the normalisation with Nf is chosen to ensure that
in the mass-degenerate case all operators carry the same
prefactor. Similarly, the basis of mass-dimension 6 opera-
tors requires the inclusion of the larger number of additional
linearly independent massive operators

O(2)
14 = i

4
�̄MσμνFμν�, O(2)

15 = tr(M2)

Nf

1

g2
0

tr(FμνFμν),

O(2)
16 = �̄M3�, O(2)

17 = tr(M2)

Nf
�̄M�,

O(2)
18 = i tr(M)

4Nf
�̄σμνFμν�, O(2)

19 = tr(M)2

N 2
f

1

g2
0

tr(FμνFμν),

O(2)
20 = tr(M)

Nf
�̄M2�, O(2)

21 = tr(M)2

N 2
f

�̄M�,

O(2)
22 = tr(M3)

Nf
�̄�, O(2)

23 = tr(M2)tr(M)

N 2
f

�̄�,

O(2)
24 = tr(M)3

N 3
f

�̄�. (16)

The way an explicit mass term added to the lattice action
reduces the flavour symmetries of Ginsparg–Wilson fermions
to U(1)

Nf
V implies that only the operators O(2)

14−17 are allowed
to contribute.3 To see how this simplification arises, we first
rewrite the mass term as

�̄M� = �̄RM�L + �̄LM
†�R, (17)

where the subscripts indicate left- and right-handed quarks.
Promoting the mass matrix M to a spurionic field that trans-
forms according to

M → RML†, L ∈ SU(Nf)L, R ∈ SU(Nf)R, (18)

ensures that the action stays invariant under the flavour rota-
tions

�̄L → �̄L L
†, �̄R → �̄R R

†,

�L → L�L , �R → R�R . (19)

For higher powers of the mass matrix in our SymEFT basis,
we replace iteratively all occurrences of M2 → MM† from
the left. Requiring invariance under the spurionic symmetry
transformation then indeed leaves only the O(2)

14−17 as stated
in the beginning. For Wilson quarks however, all massive
mass-dimension 6 operators listed here are needed, because
chiral symmetry was already explicitly broken by the lattice
discretisation of the massless theory.

3 Wilson quarks with a chiral twist

When discussing Wilson quarks also Wilson quarks with a
chirally twisted mass term [12,13,31] known as twisted mass
QCD (tmQCD) come to mind. The lattice fermion action
reads

Stw = a4
∑

x

χ̄ (x)D̂twχ(x), (20)

where χ are the chirally twisted flavours and the Dirac oper-
ator is defined as

D̂tw = 1

2

{
γμ(∇∗

μ + ∇μ) − a∇∗
μ∇μ

}

+mq + iγ5τ
3μq + a

csw(g2
0)

4
iσμν F̂μν. (21)

3 We thank the referee for pointing out this simplification. Due to the
degenerate anomalous dimensions, this will have no impact on the spec-
trum of powers in ḡ2 found in Sect. 6.
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Here τ 3 is the Pauli matrix τ 3 = diag(1,−1) acting in flavour
space and μq is the twisted mass parameter. The generalisa-
tion to mass-non-degenerate flavour doublets exists [32], but
lies beyond the scope of this paper. The reasoning used here
should carry over, but it relies more heavily on spurionic
symmetry arguments. Also the overall renormalisation argu-
ments for extracting the anomalous dimension matrix must
be revisited. Therefore we limit considerations here to the
case of multiple mass-degenerate flavour doublets.

Due to the twisted mass term, invariance under parity
transformation and time reversal are broken. Instead the the-
ory of the chirally twisted flavours χ (both continuum and
lattice) is invariant under [12] modified parity

χ̄ (x0, x) → −i χ̄ (x0,−x)γ0τ
j ,

χ(x0, x) → iγ0τ
jχ(x0,−x) (22)

and modified time reversal

χ̄ (x0, x) → −i χ̄ (−x0, x)γ5γ0τ
j ,

χ(x0, x) → iγ0γ5τ
jχ(−x0, x), (23)

where j = 1, 2, as well as the spurionic symmetry transfor-
mations

χ̄ (x0, x) → χ̄(x0,−x)γ0, χ(x0, x) → γ0χ(x0,−x),

μq → −μq (24)

χ̄ (x0, x) → χ̄(−x0, x)γ5γ0, χ(x0, x) → γ0γ5χ(−x0, x),

μq → −μq. (25)

This does not have any impact on the massless operator basis,
which is of course unchanged as the massless cases of Wilson
QCD and tmQCD are identical. For the massive basis the
spurionic symmetry transformations limit the occurrence of
powers of μq severely.

In the continuum theory and thus in our SymEFT twisted
(χ ) and untwisted (�) flavours are connected via the substi-
tution

�̄ = χ̄ exp(iωγ5τ
3/2), � = exp(iωγ5τ

3/2)χ,

tan(ω) = μq

mq
, (26)

as long as a regularisation is chosen, that is invariant
under chiral rotations. This connection enables us to infer
the anomalous dimensions of twisted operators from the
untwisted operators due to, see e.g. [33],

〈Oi; S [�̄,�]Oext
〉
QCD = ZO

i j

〈O j [�̄,�]Oext
〉
QCD

≡ ZO
i j

〈O j [χ̄ exp(iωγ5τ
3/2), exp(iωγ5τ

3/2)χ]Oext
〉
tmQCD ,

(27)

where the subscripts QCD and tmQCD denote the choice of
the mass term in the action with flavours denoted as � and
χ respectively. Here Oext is assumed to be invariant under

Eq. (26). This equivalence holds in case a mass-independent
multiplicative renormalisation scheme S is used, which
ensures that the mixing matrix is independent of the twist
angle ω.

In contrast to the continuum action, the Wilson term in the
lattice action Eq. (21) obstructs the transformation Eq. (26).
This requires the inclusion of additional operators to our
SymEFT. These additional operators relevant up to mass-
dimension 6 are

χ̄χ, i χ̄σμνFμνχ, (28)

dressed by an even power of the twisted mass parameter μq

to comply with the spurionic symmetry transformations in
Eqs. (24) and (25). These operators are accompanied by the
chirally twisted versions of �̄� and i�̄σμν�, namely

i χ̄γ5τ
3χ, χ̄σμν F̃μντ

3χ, (29)

where F̃μν = εμνρσ Fρσ /2 is the dual field strength tensor.
Both operators in Eq. (29) must be dressed by an odd power in
μq, to comply with the spurionic symmetry transformations
in Eqs. (24) and (25). Any new 4-fermion operators at mass-
dimension 6 will require an odd power in μq, such that they
eventually contribute only at mass-dimension 7, i.e. O(a3),
or beyond.

While the reasoning in Eq. (27) is sufficient to fix the renor-
malisation of the massless operator basis and some mixing
contributions of the operators in Eq. (29), we need additional
input to take also the mixing of the additional massive opera-
tors into account. Since the computations we report here have
been performed at zero twist angle we lack any information
about massive mixing contributions involving μq. The only
information we have for the massive operator basis are the
diagonal entries rather than the full mixing.

A special property of twisted mass QCD is automatic O(a)

improvement at maximal twist, i.e. ω = π/2. This is due to
the additional discrete symmetry of the continuum theory,
which reads at this twist angle [14,15]

T1 : χ̄ → i χ̄γ5τ
1, χ → iγ5τ

1χ. (30)

While being a continuum symmetry, it is again explicitly
broken on the lattice by the Wilson term, which allows for
additional O(a) terms. Following the lines of [14] any oper-
ator can be split into a T1-even and T1-odd part, i.e., parts
having eigenvalues ±1 under the transformation in Eq. (30)
respectively. This carries over to n-point functions of opera-
tors, which can then be split into a T1-even and T1-odd part
as well, where the T1-odd part vanishes by construction. At
maximal twist all mass-dimension 5 operators parametrising
the O(a) corrections are T1-odd. Thus any O(a) lattice arti-
facts vanish for quantities that are themselves T1-even. How-
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ever this does not imply that the matching coefficients ωi of
the mass-dimension 5 operators are zero. Instead these oper-
ators become relevant at O(a2) through T1-even double oper-
ator insertions but can in principle be removed through non-
perturbative O(a) improvement [31] identically to untwisted
Wilson quarks [10]. Without non-perturbative improvement
these double operator insertions also give rise to contact terms
in the SymEFT expansion to O(a2).

4 Partially quenched QCD and mixed actions

With the results for full QCD at hand we can also consider
the special case of partially quenched QCD, where the deter-
minant of the lattice Dirac operator has been dropped for Nb

flavours. In perturbation theory this leads to discarding any
closed fermion loops, while fermion lines contracted with
local fields are kept. Conceptually this can be implemented
by introducing additional bosonic fields � = (φ1, . . . , φNb)

T

into the lattice fermion action

SF = a4
∑

x

{
�̄(x)D̂�(x) + �†(x)D̂�(x)

}

≡ a4
∑

x

ˇ̄�(x)D̂�̌(x) (31)

such that closed fermion loops of the quenched flavours can-
cel out with closed boson loops, see e.g. [34–36]. Here we
also introduced the short-hand

�̌ =
(

�

�

)
= (ψ1, . . . , ψNf , φ1, . . . , φNb)

T. (32)

Assuming that the same lattice Dirac operator D̂ is used
for both quenched and unquenched flavours the underlying
flavour symmetries are modified to the U[Nf | Nb]V and
SU[Nf | Nb]L×SU[Nf | Nb]R×U(1)V graded symmetry for
massless Wilson and Ginsparg–Wilson quarks respectively.
For some details on Lie superalgebras see e.g. [37, p. 9ff.].
We only need to understand the constraint the graded flavour
symmetry transformation

ˇ̄� = (
�̄ �†

) → (
�̄ �†

) ( Ã C̃
B̃ D̃

)
,

�̌ =
(

�

�

)
→

(
A B
C D

)(
�

�

)
(33)

imposes on the minimal operator basis of our effective action,
where

ÃA + C̃C = 1Nf×Nf , B̃ B + D̃D = 1Nb×Nb,

ÃB + C̃ D = 0Nf×Nb, B̃ A + D̃C = 0Nb×Nf . (34)

The generalisation necessary for our operators containing
fermion fields can be inferred from the transformation of
fermion bilinears

�̄�� → �̄ ′�� ′ = �̄ ÃA�� + �† B̃ B��

+ �† B̃ A�� + �̄ ÃB�� = �̄��,

if (B = 0) ∨ (B̃ = 0) ∨ (C̃C = 0),

(35)

where � is flavour diagonal and, in the case of Ginsparg–
Wilson fermions, preserves chiral symmetry. An analogous
transformation can be given for bosonic bilinears. The special
case of B = C̃ = 0 = C = B̃, realises separate rotations
in fermionic and bosonic flavour space but this corresponds
only to a subset of the full graded flavour symmetry. We
thus immediately see that fermion bilinears and 4-fermion
operators must be generalised as � → �̌ for the partially
quenched case. This also means that there are no operators
needed besides those in Eqs. (11) with the substitution to
partially quenched flavours applied.

For the sake of argument mixed actions, i.e. different
choices for the Dirac operator of sea (D̂S) and valence (D̂V)
quarks, can be written as a partially quenched theory of Nf

unquenched and Nb quenched flavours [30]

SF = a4
∑

x

{
�̄S(x)D̂S�S(x) + ˇ̄�V(x)D̂V�̌V(x)

}
. (36)

The quenched flavours play the role of the valence quarks,
while the unquenched flavours are the sea quarks. Due to
the different discretisations of the Dirac operators D̂S and
D̂V, the flavour symmetries are more complicated as separate
flavour rotation symmetries are restricted to the quenched or
unquenched flavours respectively. Thus we expect the fol-
lowing minimal operator basis

O(2)
1 = 1

g2
0

tr([Dμ, Fνρ] [Dμ, Fνρ])

O(2)
2 = 1

g2
0

∑

μ

tr([Dμ, Fμν] [Dμ, Fμν]),

O(2)
3;S =

∑

μ

�̄SγμD
3
μ�S,

O(2)
i;S = g2

0(�̄S�i;S�S)2,

O(2)
3;V =

∑

μ

ˇ̄�VγμD
3
μ�̌V,

O(2)
i;V = g2

0( ˇ̄�V�i;V�̌V)2,

O(2)
i;SV = g2

0(�̄S�i;SV�S)( ˇ̄�V�i;SV�̌V), (37)

where �i;S/V are substitutes for all Dirac matrices allowed by
the respective symmetry constraints with and without addi-
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tional colour algebra generator T a . The same holds for �i;SV,
but here the more restrictive symmetry constraints of either
the quenched or the unquenched flavours decide, which Dirac
matrices are allowed. In the massive case the minimal basis
is enlarged accordingly.

Instead of sea and valence quarks we could just as
well introduce different discretisations for different sets of
flavours. In this case the reasoning still remains the same just
without the quenching.

5 One-loop computation of the anomalous dimension
matrix

To renormalise the full QCD on-shell basis perturbatively to
1-loop order, we make use of the background field method
[38–41]. There, a smooth classical background field Bμ(x)
is introduced as

Aμ(x) = Bμ(x) + g0Qμ(x), (38)

splitting the quantum field Aμ(x) into the background field
and the quantum fluctuations Qμ(x). Additionally the back-
ground field gauge is chosen by adding the gauge-fixing term

Lbf(B, Q) = −λ0tr([Dμ(B), Qμ][Dν(B), Qν]) (39)

to the continuum Lagrangian with bare gauge-fixing param-
eter λ0 alongside a Faddeev–Popov term [42]. Due to the
background field gauge, only the fields Qμ are gauge-fixed,
while the background field itself remains unaffected. Then
one-particle-irreducible (1PI) graphs with only background
fields and quarks as legs, see also Fig. 1, transform manifestly
gauge-covariant under gauge-transformations of the back-
ground field. This ensures absence of contributions from non-
gauge-invariant operators mixing into the gauge-invariant
ones, which are in principle allowed due to working in the
gauge-fixed theory [43,44]. Such mixing contributions are
of course irrelevant when being interested in gauge-invariant
observables. However, we cannot ignore contributions from
gauge-invariant operators E vanishing by the equations of
motion. Again such contributions vanish on-shell and the
mixing of EOM vanishing operators under renormalisation
is therefore restricted as

(O
E
)

R
=
(
Z AOE
0 ZE

)(O
E
)

, (40)

where Z is the desired on-shell mixing matrix of our operator
basis. For compactness we omitted here all operator indices,
i.e. Z , AOE and ZE are matrices themselves. We thus need
an additional minimal basis of EOM vanishing operators

E (0)
1 = �̄[γμDμ + M]�, E (1)

1 = �̄[γμDμ + M]2�,

E (2)
1 = �̄[γμDμ + M]3�,

E (2)
2 = �̄γμ[Dν, Fνμ]� − g2

0(�̄γμT
a�)2,

E (2)
3 = �̄

{
[γμ

←
Dμ − M]←D2 − D2[γμDμ + M]

}
�,

E (2)
4 = 1

g2
0

tr([Dμ, Fμν][Dρ, Fρν]) + 1

2
�̄γμ[Dν, Fνμ]�,

(41)

where the lower dimensional ones may carry additional pow-
ers of masses.

With these prerequisites we can now renormalise our min-
imal operator basis by computing the 1PI graphs with single
operator insertion as depicted in Fig. 1 using dimensional reg-
ularisation (D = 4 − 2ε) and renormalising any divergences
in the modified minimal subtraction (MS) scheme [45–47].

Working in a mass-independent renormalisation scheme
like MS ensures that the 1-loop anomalous dimensions
are simply related to counterterms renormalising ultraviolet
divergences. We then use the by now common trick called
infrared rearrangement, see e.g. [48–50]. This enables us to
separate the UV-divergent part of a 1-loop momentum inte-
gral from UV-finite but potentially IR divergent parts through
the exact relation [48,49]

1

(k + p)2 + m2 = 1

k2 + �
− 2kp + p2 + m2 − �

[k2 + �][(k + p)2 + m2] .
(42)

Here k is the loop momentum, p is an external momentum,
m is a mass and we choose � > 0 as a mass-scale. The
second term in Eq. (42) on the r.h.s. is one power less UV-
divergent. Iterating this step brings all UV-divergent terms
into the standard form

∫
dDk [k2 + �]−nkμ1 . . . kμl , while

all UV-finite terms can eventually be dropped as they do
not contribute to the 1-loop anomalous dimensions. These
steps have been implemented in FORM [51] to evaluate the
various 1PI graphs at 1-loop.4 We also derived the necessary
Feynman rules of the various operators in FORM and checked
that we reproduce the usual Feynman rules for full QCD in
the background field gauge.

Instead of inserting the flavour singlet operators, we insert
variants where the flavour is kept generic and we can then
build the required set of operators from these building blocks.
As a consequence we are immediately able to extract the gen-
eralisations necessary for cases like partially quenched and

4 The extraction of the 1-loop anomalous dimensions has been
automated to some extent via a Makefile based around FORM
scripts, a QGRAF model file and some Python scripts. For the
final renormalisation step some Mathematica routines were used.
All of this can be accessed from https://github.com/nikolai-husung/
Symanzik-QCD-workflow.
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Fig. 1 Graphical representation
of all 1PI graphs of fundamental
quark fields or background
fields with insertion of an
operator O or E considered for
the renormalisation of the basis.
Here the double line indicates
the momentum contribution of
the inserted operator, which may
also be seen as an additional leg
and is set to zero momentum.
The wiggly lines are external
background fields and the
straight lines carrying arrows
are quarks. The graph (e) is only
needed at mass-dimension 6 to
include 4-fermion operators

mixed actions without too much effort. All necessary graphs
are obtained using QGRAF [52,53]. The operator inser-
tions are realised by formally introducing additional non-
propagating fields ϕi called “anchor” and adding

∑
i ϕiOi

to the Lagrangian. These anchors correspond to the double
lines in Fig. 1. For all n-point functions with a single operator
insertion, except single flavour 4-fermion operators, setting

options = onepi;

in QGRAF is sufficient. The single flavour 4-fermion opera-
tors are implemented by splitting the 4-fermion vertex into
two 3-vertices connected with an additional “mediator” (here
denoted by the dotted line) according to

(43)

= 2g2
0(δABδCD�i j�kl − δADδCB�il�k j ) (44)

(45)
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The “mediator” ensures that relative minuses due to anti-
commutativity of fermions are taken care of 5 and that any
spacetime indices encapsulated in � are equal at the second
vertex of this kind completing the 4-fermion operator. For
the single flavour 4-fermion operator setup we thus have to
change the parameters for QGRAF in this case to

options =;
true = iprop[mediator,2,2];

true = bridge[quark,0,0];

true = bridge[gluon,0,0];

This takes into account that cutting the propagator of the
“mediator” cannot imply a reducible graph and thus must
be included in the set of 1PI graphs. In the same fashion one
can also define (q̄�T aq)2. Eventually we are interested in the
flavour singlets and, for the mixed action, in combinations of
flavour singlets in two different flavour subsets. Both can be
easily obtained from the results for the flavoured operators.

Composite operators can mix according to the symme-
try constraints, e.g. operators compatible with SU[Nf ]L ×
SU[Nf ]R flavour symmetry can mix into operators with
reduced SU[Nf ]V flavour symmetry but not the other way
around. This mixing pattern is thus present in the mixing
matrix Z as well as in the closely related anomalous dimen-
sion matrix

γO(ḡ) = μ
dZ

dμ
Z−1 = −ḡ2

{
γO

0 + γO
1 ḡ2 + O(ḡ4)

}
. (46)

Since we are only interested in the leading asymptotic depen-
dence on the lattice spacing, we restrict considerations to the
1-loop coefficient γO

0 of the anomalous dimension matrix,
which has the form

γO
0 =

⎛

⎜
⎝

γ
L|R
0 0 γ

L|R,m
0

γ
V,L|R
0 γ V

0 γ
V,m
0

0 0 γ m
0

⎞

⎟
⎠ . (47)

Notice that we hid the triangular structure of γO
0 for the sake

of compatibility to the original numbering of the operator
basis. The superscripts introduced here indicate the following
subsets of operators:

• L | R:
Includes operators which are invariant under separate
flavour rotations for left- and right-handed quarks.

• V:
Operators which are only invariant under joint flavour

5 We do not claim that single flavoured 4-fermion operators would not
work in QGRAF without this trick. We just wanted to make sure that no
surprises occur and that we do not accidentally introduce an additional
relative minus.

rotations of left- and right-handed quarks. These oper-
ators are in general needed for massless Wilson quarks
due to less restrictive flavour symmetry constraints.

• m:
These operators are lower-dimensional operators multi-
plied by explicit powers of masses.

For the partially quenched case, where only one lattice
discretisation is used for all flavours, it suffices to make the
replacements

Nf → (Nf − Nb), tr(Mn) → tr(Mn
f ) − tr(Mn

b ), (48)

where Mf and Mb are the diagonal mass matrices for the
fermionic and bosonic flavours respectively. We checked
explicitly that setting Nf = 0 indeed yields the fully
quenched approximation also for the 4-fermion operators.
This case can be easily obtained by discarding any closed
fermion loops.

As a cross-check of our renormalisation procedure we also
compared our mixing matrix for the non-singlet 4-fermion
operators at Nf = 3 with the results found in the literature
[54,55] – we agree. To do so we made use of the identities
Eqs. (12) – (14) to eliminate the redundant (up to Evanescent
operators) single flavour 4-fermion operators via
⎛

⎜⎜⎜⎜
⎝

(q̄T aq)2

(q̄γ5T aq)2

(q̄γμT aq)2

(q̄γμγ5T aq)2

(q̄σμνT aq)2

⎞

⎟⎟⎟⎟
⎠

= 1

16

⎛

⎜⎜⎜⎜
⎝

8
N + 2 2 2 −2 1

2 8
N + 2 −2 2 1

8 −8 8
N − 4 −4 0

−8 8 −4 8
N − 4 0

24 24 0 0 8
N − 4

⎞

⎟⎟⎟⎟
⎠

︸ ︷︷ ︸
def=F

×

⎛

⎜⎜⎜⎜
⎝

(q̄q)2

(q̄γ5q)2

(q̄γμq)2

(q̄γμγ5q)2

(q̄σμνq)2

⎞

⎟⎟⎟⎟
⎠

. (49)

We stress again that this equivalence does not hold in dimen-
sional regularisation, but for the renormalisation at 1-loop
order this subtlety is of no consequence as we can safely
ignore any Evanescent operators to this loop order [29].

Via use of Eq. (49) also the special case of Wilson quarks
with only one flavour q without quenching can be formally
obtained by the change of basis

g2
0(q̄�i T

aq)2 → g2
0(q̄�i T

aq)2 − Fi j g
2
0(q̄� j q)2 (50)
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introducing a set of Evanescent operators that mix only into
the other operators and not the other way around at Nf = 1.
Those Evanescent operators take the place of the ones of the
form g2

0(q̄�i T aq)2 while we keep g2
0(q̄�i q)2 in our mini-

mal basis. The desired mixing matrix can then be obtained
from the subblock without the Evanescent operators. Those
renormalised Evanescent operators vanish to all orders in
perturbation theory in the limit D → 4, while their mixing
contributions are needed to renormalise the remaining oper-
ators. While Nf = 1 is an uncommon choice, the case of
having e.g. Nf = 2 + 1 or Nf = 3 + 1 with different lattice
discretisations for the different flavour subsets is an interest-
ing option,6 that we want to include here as well for Wilson
quarks in the single flavour subset. Notice, that the case of
Nf = n + 1 without quenching is special in the sense, that
if we reached Nf = n + 1 by having more than one quark
flavour in the second set of flavours but a sufficient number
of bosonic flavours, the basis is a different one and we would
instead need to include the generalisation of all 4-fermion
operators to the partially quenched basis.

5.1 Mass-dimension 5

In contrast to the earlier paper [9] we will also include mas-
sive operators mixing into the ones without explicit mass-
dependence. Before discussing the operator mixing at mass-
dimension 6 we thus give for completeness the full mixing
matrix of the massive mass-dimension 5 operator basis

(4π)2
[
γ V

0

](1) = N 2 − 5

N
, (51a)

(4π)2
[
γ

V,m
0

](1) =
(
−2Nf 3 1−N2

N 0 0 0
)

, (51b)

(4π)2 [γ m
0

](1) =
⎛

⎜⎜⎜⎜⎜⎜
⎝

− 13
3 N − 3

N + 4
3 Nf 0 6 N2−1

N 0 0

0 3 N2−1
N 0 0 0

0 0 3 N2−1
N 0 0

0 0 0 3 N2−1
N 0

0 0 0 0 3 N2−1
N

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

(51c)

where the corresponding minimal basis O(1)
i is listed in

Sects. 2.1 and 2.2. As mentioned earlier, there exists no mass-
less operator that is invariant under separate flavour rotations
for left- and right-handed quarks in our minimal basis at
mass-dimension 5.

6 Nf = n + 1 denotes here different lattice discretisations for the n
flavours and the single flavour rather than different quark masses as is
often done in the literature.

In anticipation of the discussion in Sect. 5.5, we give here
the proper basis diagonal under 1-loop renormalisation

B(1)
1 = O(1)

1 + NNf

1 − b̂0N + N 2

{
O(1)

2 + 3
1 − N 2

1 + N 2 O
(1)
4

}

+ 3

2

N 2 − 1

1 + N 2 O
(1)
3 ,

B(1)
2 = O(1)

2 + 3
1 − N 2

Nb̂0
O(1)

4 ,

B(1)
3−6 = O(1)

3−6, (52)

where b̂0 = (4π)2b0 = 11
3 N − 2

3 Nf is related to the leading
order coefficient b0 of the β-function. The associated nor-

malised 1-loop coefficients
[
γ̂B](d)

i = (
γB

0

)(d)

i /(2b0) of the
anomalous dimension matrix are
[
γ̂B](1)

1
= N 2 − 5

2Nb̂0
,

[
γ̂B](1)

2
= 3

N 2 − 1

2Nb̂0
− 1,

[
γ̂B](1)

3−6
= 3

N 2 − 1

2Nb̂0
. (53)

The coefficient
[
γ̂B](1)

1 agrees with results found in the lit-
erature [56].

5.2 Mass-dimension 6

At mass-dimension 6 all 4-fermion operators contribute,
which enlarges the mixing matrix quite a bit, and also the
number of massive operators grows severely. The diagonali-
sation of this operator basis is then not feasible for arbitrary
values of Nf and N as will become clearer in Sect. 5.5. We
therefore give here only the subblocks of the non-diagonal
mixing matrix. For the massless case we find

(4π)2
[
γ

L|R
0

](2) =
⎛

⎝
A(Nf) B C
D(Nf) E F(Nf)

04×2 04×1 G(b̂0, Nf)

⎞

⎠ , (54a)

(4π)2
[
γ V

0

](2) = J (b̂0), (54b)

(4π)2
[
γ

V,L|R
0

](2) = (
06×3 H

)
, (54c)

where we introduced 0m×n as the m × n matrix filled with
zeros. For reuse in the case of mixed actions in Sect. 5.3, we
also introduced the short-hands

A(Nf) =
( 14N

3 + 4Nf
3 0

− 14N
15

42N
5 + 4Nf

3

)
, (55a)

B =
(

0
11

30N − 11N
30

)
, (55b)

C =
(

0 3 − 3
N2

N
3 + 4

3N
12
N − 3N

0 1 − 1
N2

47N
120 + 19

40N
4
N − N

)

(55c)
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D(Nf) = ( 11Nf
30 − 22Nf

15

)
, (55d)

E = 157N

30
− 157

30N
, (55e)

F(Nf) =
(

0 1
4 − 1

4N2
3N
40 − 13

40N − 7Nf
30

1
N − N

4

)
(55f)

G(b, Nf )

=

⎛

⎜⎜
⎝

2b 0 − 8
3 −12

0 2b − 44
3 0

0 3
N2 − 3 2b − 3N − 4

3N + 8Nf
3 3N − 12

N
3
N2 − 3 0 3N − 40

3N 2b − 3N

⎞

⎟⎟
⎠ ,

(55g)

H =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 0 4
3 0

0 0 − 4
3 0

0 0 0 0
0 0 2

3N 0
0 0 − 2

3N 0
0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (55h)

J (b) =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

2b − 6N + 6
N 0 0 0 0 2

0 2b − 6N + 6
N 0 0 0 2

0 0 2b + 2N − 2
N 48 48 0

0 0 1
2 − 1

2N2 2b + 6
N 0 2

N − N
2

0 0 1
2 − 1

2N2 0 2b + 6
N

2
N − N

2
12 − 12

N2 12 − 12
N2 0 48

N − 12N 48
N − 12N 2b − 4N − 2

N

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

. (55i)

The 13 columns and rows correspond to the non-diagonal
massless operator basis O(2)

1 to O(2)
13 in the order they are

numbered in Eqs. (11). The subblock A(Nf = 0) has already
been found for pure gauge theory [9]. The explicit depen-
dence on the argument b is introduced to handle the occur-
rence of Nf due to the renormalisation of the coupling differ-
ently than the Nf arising from the number of flavours involved
in constructing the operator. This will become important for
the mixed action case.

For non-vanishing quark masses we additionally get the
mixing subblocks

(4π)2
[
γ

L|R,m
0

](2)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

12N 0 8N − 8
N 0 0 0 0 0 0 0 0

79N
30 + 11

30N 0 149N
60 − 149

60N 0 0 0 0 0 0 0 0
37N
30 + 83

30N 2Nf
197N

60 − 197
60N 0 0 0 0 0 0 0 0

0 0 16 0 0 0 0 0 0 0 0
0 0 −16 0 0 0 0 0 0 0 0
0 0 8

N − 8N 0 0 0 0 0 0 0 0
0 0 8N − 8

N 0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(56a)

(4π)2
[
γ

V,m
0

](2)

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

8 0 4 0 0 0 0 0 −16NNf 0 0
8 0 4 0 0 0 0 0 0 0 0

−32 0 48 0 0 0 0 0 0 0 0
4
N 0 2

N − 2N 0 0 0 0 0 0 0 0
4
N 0 2

N − 2N 0 0 0 0 0 0 0 0
− 16

N 0 24
N − 24N 0 32Nf 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

(56b)

(4π)2 [γ m
0

](2)

=
⎛

⎝
M 04×4 04×3

04×4 M 04×3

03×4 03×4
(
6N − 6

N

)
13×3

⎞

⎠ ,

M

=

⎛

⎜⎜
⎝

4N − 8
N −2Nf

3
N − 3N 0

0 − 4N
3 − 6

N + 4Nf
3 0 6N − 6

N
0 0 6N − 6

N 0
0 0 0 6N − 6

N

⎞

⎟⎟
⎠ .

(56c)

Once a specific choice for Nf > 0 and N is being made, the
diagonalisation can be performed using the Mathematica
notebook provided [57]. Also the spectrum of the 1-loop
coefficients of the anomalous dimension matrix depends on
these values and the symbolic expressions are very compli-
cated if one does not fix Nf and N to some numerical values.
Therefore we refrain from trying to give here the symbolic
results of a diagonal basis altogether and point again to said
Mathematica notebook [57].

5.3 Generalisation to actions with two flavour
subsets

Instead of considering just mixed actions, where one flavour
subset is quenched, we will discuss the fully general case of
two flavour subsets q and Q using different lattice fermion
actions.

At mass-dimension 5, this doubles the massless operator
basis without introducing any new mixing. However, in the
presence of massive operators the minimal basis is severely
increased, but still the same three distinct eigenvalues from
Eq. (53) must be considered for the spectrum. We thus skip
stating the entire mixing matrix at mass-dimension 5 as it
does not yield much new insight.
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At mass-dimension 6 however, having two distinct flavour
subsets requires the inclusion of an additional kind of 4-
fermion operators already for the massless case, like e.g. for
the mixed action in Eq. (37). These operators give rise to new
contributions in the spectrum. Allowing for the absence of
quenching, we then find for the enlarged massless operator
basis in Eq. (37) the nonzero subblocks of the mixing matrix7

(4π)2
[
γ

L|R
0

](2)

=

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

A(Nf ) B C B C 2C
D(Nq

f ) E F(Nq
f ) 0 K (Nq

f ) F(2Nq
f )

04×2 04×1 G(b̂0, N
q
f ) 04×1 04×4 L(Nq

f )

D(NQ
f ) 0 K (NQ

f ) E F(NQ
f ) F(2NQ

f )

04×2 04×1 04×4 04×1 G(b̂0, N
Q
f ) L(NQ

f )

04×2 04×1 P(NQ
f ) 04×1 P(Nq

f ) R(b̂0, Nf )

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

,

(57a)

(4π)2 [γ V
0

](2) =
⎛

⎝
J (b̂0) 06×6 06×6

06×6 J (b̂0) 06×6

06×6 06×6 J (b̂0)

⎞

⎠ , (57b)

(4π)2
[
γ

V,L|R
0

](2) =
⎛

⎝
06×3 H 06×1 06×4 H
06×3 06×4 06×1 H H
06×3 06×4 06×1 06×4 06×4

⎞

⎠ . (57c)

Here Nf = Nq
f + NQ

f and we introduced further short-hands

K (Nf) = (
0 0 − 7Nf

30 0
)
, (58a)

L(Nf) =

⎛

⎜⎜
⎝

0 0 − 8
3 0

0 0 − 8
3 0

0 0 8Nf
3 − 4

3N 0
0 0 − 4

3N 0

⎞

⎟⎟
⎠ , (58b)

P(Nf) =

⎛

⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 4Nf

3 0
0 0 0 0

⎞

⎟⎟
⎠ , (58c)

R(b, Nf ) =

⎛

⎜⎜
⎝

2b 0 0 −12
0 2b −12 0
0 3

N2 − 3 2b − 3N + 4Nf
3 3N − 12

N
3
N2 − 3 0 3N − 12

N 2b − 3N

⎞

⎟⎟
⎠ .

(58d)

7 Using
[
γ

L|R
0

](2)

as orientation, the block rows (columns) are ordered

from top (left) to bottom (right) as: pure gauge operators, q̄γμD3
μq,

g2
0(q̄�chiral

i q)2, Q̄γμD3
μQ, g2

0(Q̄�chiral
i Q)2, g2

0(q̄�chiral
i q)(Q̄�chiral

i Q).

The ordering of the flavour subsets is the same in
[
γ V

0

](2)
, but there are

only 4-fermion operators present. Overall ordering of the various �i
insertions in the 4-fermion operators remains unchanged compared to
the single set of flavours.

The extension to the massive operator basis gives rise to no
new values in the spectrum apart from those already found
for the non-mixed action case. Of course some values in the
spectrum now have a higher degeneracy or, if they are Nq,Q

f
dependent, will split into two different values. We omit stat-
ing the full massive mixing matrix to keep the results some-
what compact. Keep in mind that this additional mixing is
one-directional such that it does not affect the spectrum for
γ̂i already found in the massless case. Also, the spectrum
γ̂i for the full massive case is known but some matching
coefficients of the massive operators are unknown, i.e. some
tree-level matching coefficients may vanish thus suppressing
those contributions by at least one power in ḡ2(1/a) further.

5.4 Renormalisation of contact term interactions

When considering unimproved Wilson fermions relying on
maximal chiral twist to achieve automatic O(a) improve-
ment8 due to the continuum T1-symmetry from Eq. (30), also
contact terms from double insertions of the allowed mass-
dimension 5 operators μ2χ̄χ and i/4χ̄σμνFμνχ come into
play at O(a2). Since we cannot access the massive mixing in
the chirally twisted theory without repeating the entire renor-
malisation procedure in the twisted theory, we will restrict
considerations to the renormalisation of the double insertion
of i/4χ̄σμνFμνχ in the massless case. Working in the mass-
less theory ensures that any chiral twist does not affect the
continuum QCD action and we thus can reuse the setup of the
untwisted theory. For dimensional reasons, i/4χ̄σμνFμνχ is
anyway the only double insertion that can affect the match-
ing coefficients of the massless mass-dimension 6 operator
basis. This contribution remains unchanged when going to
the massive theory due to working in a mass-independent
renormalisation scheme.

To determine what impact this double insertion has on
the matching coefficients, we then need to renormalise the
UV divergences arising from the contact interactions. Con-
sequently we also consider the 1PI graphs in Fig. 2, which
gives the additional mixing contributions δZ

[Õ(1)
1 (0)Õ(1)

1 (0)]MS = Z (1)
1i Z (1)

1 j Õ(1)
i (0)Õ(1)

j (0)

+ δZkÕ(2)
k (0). (59)

The appropriate mass-dimension of the mixing operatorO(2)
k

is fixed by the canonical mass-dimension of O(1)
1 since ε =

(4−D)/2 and thus δZ is dimensionless, which does not allow
mixing with operators of another mass-dimension. Of course
O(2)

k would still contain massive operators of appropriate
mass-dimension, if we considered the massive case.

8 The same argument actually holds for general massless Wilson
quarks.
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Fig. 2 Graphical representation of all considered 1PI graphs when renormalising the UV poles arising from contact interactions of double operator
insertions. Each operator is again inserted via an “anchor” field, which is indicated via the double line. Both insertions are at zero momentum
q1 = q2 = 0

Formally, the resulting additional mixing can be imple-
mented by adding one row (and a trivial column, see Eq. (59))
to the existing mixing matrix. The double insertion will only
get mixing contributions from the existing minimal opera-
tor basis and not introduce any new mixing beyond that. We
restrict considerations to the case, where only one flavour
subset contributes a double insertion of i/4Q̄σμνFμνQ,
e.g. when using twisted Wilson fermions as valence quarks.

For the massless case and two flavour subsets, we then
find the mixing contributions

δZ =
(
01×3 δ(NQ

f ) 0 δL|R(NQ
f ) δL|R(2NQ

f ) 01×6 δV 01×6

)

× ḡ2

(4π)2ε
+ O(ḡ4),

�(Nf ) = (
0 0 − Nf

12 0
)
,

δL|R(Nf ) =
(

0 3
8 − 3

8N2
7N
24 + 1

3N − Nf
12

3
2N − 3N

8

)
,

δV =
(

3
2N2 − 3

2 0 0 3N
2 − 6

N 0 N
16

)
, (60)

where the columns correspond to the same massless operator
basis used in Sect. 5.3. As we can see, 4-fermion operators
both preserving and breaking chiral symmetry are required to
renormalise the contact interactions, such that these operators
will have non-vanishing tree-level matching coefficients in
the basis in Jordan normal form as introduced in the following
subsection.

5.5 Renormalisation Group invariants and the asymptotic
lattice spacing dependence

For a generic Renormalisation Group invariant (RGI) spectral
quantity P , the asymptotic lattice spacing dependence is, see
also [9],

P(a) = P(0) − anmin
∑

i

cOi (ḡ)δPO
i (1/a) + O(anmin+1),

(61)

where δPO
i (1/a) is the contribution of the operator Oi to the

lattice artifacts renormalised at scale μ = 1/a and

cOi (ḡ) = ωO
j Z

−1
j i = c̄Oi + O(ḡ2) (62)

are the matching coefficients with tree-level value c̄Oi . The
remaining lattice spacing dependence of δPO

i (1/a) is dic-
tated by the Renormalisation Group equation (RGE)

μ
dδPO

i (μ)

dμ
= γO

i j (ḡ)δPO
j (μ) (63)
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and thus depends only on the anomalous dimensions of our
minimal operator basis. A formal solution to the RGE is

δPO
i (μ) = Pexp

⎡

⎢
⎣

ḡ(μ)∫

ḡ(μ0)

dx
γO(x)

β(x)

⎤

⎥
⎦

i j

δPO
j (μ0), (64)

where β(ḡ) = −ḡ3(b0 + O(ḡ2)) is the β-function and Pexp
denotes the path-ordered exponential with increasing x from
the right to the left. The path-ordering is needed due to mixing
of the operators under renormalisation, i.e. γO is in general
not diagonal.

Next we switch the basis O → B such that our 1-
loop anomalous dimension matrix γB

0 has Jordan normal
form, which takes care of the fact that γO

0 can be a non-
diagonalisable matrix. While for the cases of Nf > 0 or
Nq,Q

f > 0 considered here this is not an issue and the Jordan
normal form becomes just a diagonal matrix, both quenched
and mixed actions can yield a non-diagonalisable 1-loop mix-
ing matrix and thus require special care. To pull out γB

0 from
the path ordered exponential we need to solve another RGE,9

see [58],

μ
dW (μ)

μ
=
[
γB(ḡ),W (μ)

]

− β(ḡ)

{
γB(ḡ)

β(ḡ)
− γB

0

b0 ḡ(μ)

}

W (μ) (65)

with leading order solution W (μ) = 1+ O(ḡ2). This allows
to rewrite

δPB
i (μ) = W−1

i j (μ)

× exp

[
γB

0

b0
ln

(
ḡ(μ)

ḡ(μ0)

)]

jk

Wkl(μ0)δPB
l (μ0),

(66)

where we used that γB
0 is in Jordan normal form and thus

can be written as a diagonal matrix plus one matrix contain-
ing only one off-diagonal. Both matrices forming γB

0 com-
mute with each other, such that the path-ordering plays no
role here. Eventually we can introduce the Renormalisation
Group Invariants

δPB
i;RGI = lim

μ→∞[2b0 ḡ
2(μ)]−γ̂

i j

× exp

[{

γ̂ − γB
0

2b0

}

ln
(

2b0 ḡ
2(μ)

)]

jk

δPB
k (μ), (67)

9 We thank Agostino Patella for pointing out the issue with path-
ordering at subleading orders.

where we introduced

γ̂ = diag

(
γB

0

2b0

)

. (68)

The factor 2b0 in front of ḡ2 is the common choice for the
normalisation. Finally this allows to rewrite

δPB
i (μ) = W−1

i j (μ)[2b0 ḡ
2(μ)]γ̂jk

exp

[{
γB

0

2b0
− γ̂

}

ln
(

2b0 ḡ
2(μ)

)]

kl

δPB
l;RGI (69)

= [2b0 ḡ
2(μ)]γ̂i j exp

[{
γB

0

2b0
− γ̂

}

ln
(

2b0 ḡ
2(μ)

)]

jk

× δPB
k;RGI ×

(
1 + O(ḡ2)

)
, (70)

where now all scale dependence is absorbed into the pref-
actor of the RGI quantity. By construction δPB

k;RGI is scale-
independent.

In the cases of Nf > 0 or Nq,Q
f > 0 considered here

the 1-loop anomalous dimension matrix can be diagonalised
such that the remaining exponential in Eqs. (69) and (70)
becomes the identity. For both quenched and mixed actions
we find terms with additional factors of ln(2b0 ḡ2) modi-
fying the simple power law [ḡ2(1/a)]γ̂ . These logs will in
general give the dominating contributions for operators with
the given leading power γ̂ in the coupling. However, these
particular contributions belong here to chiral symmetry vio-
lating 4-fermion operators that are typically suppressed by
one power in the coupling as will be discussed in the follow-
ing section.

6 Matching to lattice actions

With the full 1-loop mixing matrix computed in the previ-
ous section we are now able to compute the leading powers
in the coupling modifying the naive an behaviour. While
in general these leading powers are greater or equal to
γ̂

(n)
i = (γB

0 )
(n)
i i /(2b0), obtained from the 1-loop coefficients

of the mixing matrices listed in Sect. 5, we actually may gain
additional insight from (tree-level) matching. This means we
want to determine the tree-level values of the matching coef-
ficients c̄Oi ≡ ωO

i (0) in Eq. (4) or more importantly its coun-
terpart for the diagonal basis c̄Bi . If a tree-level matching coef-
ficient vanishes for an operator of our diagonalised basis, it
shifts the associated leading power in the coupling by (at
least) one power in the coupling further. Tree-level matching
has the particularly beneficiary feature that a naive expansion
of the lattice action in the lattice spacing suffices to obtain the
desired tree-level matching coefficients. Beyond tree-level,
the perturbative matching procedure requires l-loop compu-
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tations in perturbation theory for both the lattice theory and
continuum SymEFT to achieve matching to l-loops. Espe-
cially the lattice side then becomes very complicated due to
relying on lattice perturbation theory.

We therefore take only tree-level matching into account,
when computing the spectrum of leading powers in the cou-
pling. From tree-level matching we can only infer, whether a
leading power in the coupling vanishes and if so assume the
next-to-leading order (NLO) to be the truly leading power in
the coupling. We then introduce

�̂i = γ̂i + ni (71)

as the actual leading power in ḡ2(1/a), where ni takes
(ni − 1)-loop improvement into account, i.e. ni = 1 implies
absence of contributions from this operator at tree-level. The
various powers of ḡ2(1/a) for the different operators con-
tributing to the lattice artifacts may spread over more than
one power in the coupling, such that e.g. the subleading con-
tributions of one operator compete with the leading power
contributions of another operator.

6.1 Tree-level matching for O(a) improved massless action

We find as tree-level matching coefficients for the massless
mass-dimension 6 operator basis O(2)

i for a fully on-shell
O(a) improved lattice action

c̄O1 = e2

3
, c̄O2 = e1 − e3 + 1

12
, c̄O3 = 1

6
,

c̄O6 = −e2

3
− e3, c̄O4,5,7−13 = 0, (72)

where c̄O3 is universal for the action of either Wilson, Over-
lap or Domain wall quarks as they eventually all employ the
same Wilson Dirac operator. The reason for the suppression
of most of the 4-fermion operators due to vanishing tree-level
matching coefficients c̄O4,5,7−13 is explained in appendix B.

Notice that this leads to an additional power in ḡ2 on top of the
overall prefactor included in the definition of our 4-fermion
operator basis in Eqs. (11d) and (11e). Both tree-level coef-
ficients c̄O1 and c̄O2 for the gluonic operators have been taken
from [28], where ei are the coefficients for different terms
in the lattice action10 with the conventional normalisation
e0 + 8e1 + 8e2 + 16e3 = 1, namely the plaquette (e0), rect-
angle (e1), chair (e2) as well as twisted chair (e3) Wilson
loops. This general class of pure gauge actions covers a wide
range of possible lattice gauge actions. A common and nat-
ural choice is to set e2 = e3 = 0, which reduces the com-
putational effort as only two kinds of Wilson loops must be
computed. It also sets c̄O6 = 0, which is interesting as now

10 We renamed those coefficients to ei to avoid a clash with our notation.

only two coefficients remain nonzero, namely

c̄O2 = e1 + 1

12
, c̄O3 = 1

6
, c̄O1,4−13 = 0. (73)

A particularly useful choice for the remaining coefficient of
the Wilson loops in the lattice gauge action is e1 = −1/12,
which is known as the Lüscher–Weisz action [28]. It ensures
tree-level O(a2) improvement of the lattice gauge action such
that only c̄O3 remains nonzero. We already discussed this for
lattice pure gauge theory [9].

Having a vanishing tree-level coefficient in the basis O(2)
i

only ensures overall absence, if the corresponding operator
does not mix into another operator that has a non-vanishing
tree-level coefficient or mixes itself into another operator and
so on as the (tree-level) matching coefficients of the basis in
Jordan normal form can be obtained through

cBi = cOj T
−1
j i , B(2)

i = Ti jO(2)
j , (74)

where T is the change of basis such that the 1-loop mix-
ing matrix is in Jordan normal form, or diagonal as in
most cases discussed here. All chiral-symmetry breaking 4-
fermion operators have vanishing tree-level matching coef-
ficients.

The chiral-symmetry preserving 4-fermion operators can
mix into any other massless operator present in our on-shell
basis, such that they will generally be present at tree-level, if
any other tree-level matching coefficients are nonzero in the
basis O(2)

i .
Knowing the TL matching coefficients has already very

interesting consequences. Assuming use of only the plaque-
tte and rectangle term in the gauge action, i.e., the match-
ing coefficients from Eq. (73), we will find in the mass-
less case only the two operators O(2)

2 and O(2)
3 to have non-

vanishing tree-level matching coefficients, when considering
non-perturbatively O(a) improved Wilson quarks as well as
Ginsparg–Wilson quarks. In particular the choice of the tree-
level improved Lüscher–Weisz lattice gauge action [28] will
ensure that only O(2)

3 has then a non-vanishing tree-level
matching coefficient. This allows either to parametrise the
leading lattice artifacts in terms of this single coefficient or
alternatively to perform Symanzik tree-level improvement
at O(a2) by adding only one additional term to the lattice
fermion action like e.g.

δSlatt = −a6

12

∑

μ,x

�̄(x)γμ

{∇μ + ∇∗
μ

}∇∗
μ∇μ�(x), (75)

see also [59,60], where this has already been pointed out.
For a more in depth discussion of the (massive) tree-level

matching coefficients and their impact on the leading lattice
artifacts for O(a) improved Wilson quarks, Ginsparg–Wilson
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Fig. 3 Leading and subleading powers in the coupling �̂ j for the min-
imal on-shell operator basis of GW and Wilson quarks, describing the
leading order lattice artifacts for spectral quantities at Nf = 0, 2, 3, 4, 8.
Nf = 8 is added to highlight what happens when one gets closer to the
conformal window. While the solid lines correspond to the massless
operator basis (possibly containing massive mixing contributions), the
dash-dotted lines belong to the operators with overall mass-dependence.
In case the tree-level coefficient vanishes, the first power plotted is
regarded as NLO in the colour coding. Due to overlapping numerical
values leading powers may be hidden by the “subleading” powers of
other operators

quarks and Domain-Wall fermions, we refer the reader to
[16].

6.2 Tree-level matching for chirally twisted Wilson quarks

In case there are double insertions of mass-dimension 5 oper-
ators present that break chiral symmetry, as is the case for
twisted mass QCD relying on automatic O(a) improvement,
additional O(a2) corrections occur. These double insertions
then give rise to contact terms in the SymEFT, whose renor-
malisation affect the tree-level matching coefficients of the 4-
fermion operators, including chiral-symmetry violating ones,
in the basis B(2)

i as we can see in Eq. (60).
Taking this generalisation into account is achieved in a

very sloppy way by enlarging the mixing matrix and thus T
in Eq. (74) by one row and column (in the massless case)
formed by Eq. (60). Apart from this, the general remarks
from the O(a) improved case remain the same. Regarding

Fig. 4 Leading and subleading powers in the coupling �̂ j for the min-
imal on-shell operator basis of Wilson quarks with maximal chiral twist
and mass-degenerate flavour doublets. Only the case without explicit
O(a) improvement is plotted as the case with improvement is identical
to O(a) improved Wilson quarks, see Fig. 3. These powers describe the
leading order lattice artifacts for spectral quantities at Nf = 0, 2, 4, 8.
Nf = 8 is added to highlight what happens when one gets closer to
the conformal window. Again the solid lines correspond to the overall
massless operator basis (possibly containing massive mixing contribu-
tions), the dash-dotted lines belong to the operators with overall mass-
dependence. In case the tree-level coefficient vanishes the first power
plotted is regarded as NLO in the colour coding. Due to overlapping
numerical values leading powers may be hidden by the “subleading”
powers of other operators. Notice that we do not know the tree-level
matching coefficients for the massive case, which are therefore assumed
to be non-vanishing. For the fully quenched case Nf = 0, the lowest
power may be estimated too low as it could potentially be shifted to the
first massless contribution instead

the matching for the massive twisted theory, we lack some
information as currently only the massless mixing matrix
is known. This allows to determine γ̂

(2)
i for all operators

including the massive ones, but we do not know, whether
any tree-level matching coefficients of the massive operators
in the basis B(2)

i vanish. We thus assume they do not vanish.

6.3 Leading powers in the coupling incorporating tree-level
matching

Taking all of this into account, we find the leading pow-
ers and up to next-to-next-to-next-to-leading orders (N3LO)
in the coupling, here denoted as �̂i , for the various cases as
depicted in Figs. 3, 4 and 5. Going that far into the subleading
powers is done only to highlight the overall spread of the lead-
ing powers from the various contributions as some of them
are severely suppressed by up to three powers in ḡ2(1/a)

compared to the lowest power �̂min, depending on Nf . There
also the extension to the massive case is included, where of
course the same considerations for tree-level matching can
and should be applied to ensure sorting out any vanishing
tree-level coefficients. As we can see, the various powers in
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Fig. 5 Leading and subleading powers in the coupling �̂ j for the min-
imal on-shell operator basis describing the leading order lattice artifacts
for spectral quantities at Nf = 2, 3, 4. Here two distinct sets of flavours
are assumed either in a mixed action with the setup described in [61]
or using different lattice discretisations for light and heavy quarks, here
GW and Wilson quarks respectively. While the solid lines correspond to
the massless operator basis (possibly containing massive mixing contri-
butions), the dash-dotted lines belong to the operators with overall mass-
dependence. In case the tree-level coefficient vanishes, the first power
plotted is regarded as NLO in the colour coding. Due to overlapping
numerical values leading powers may be hidden by the “subleading”
powers of other operators

ḡ2(1/a) form a dense spectrum. For use in an ansatz for the
continuum extrapolation we give in Table 1 the numerical
values of the three (five) leading powers in ḡ2(1/a) for the
massless (massive) case for the lattice discretisations dis-
cussed in this paper at N = 3 and various values of Nf . For
other choices of Nf or N we refer the reader again to the
Mathematica notebook [57].

Considering e.g. the case of Nf = 3 for O(a) improved
Wilson or GW quarks, even the lowest powers are only sepa-
rated by roughly ��̂ ∼ 0.4 in the massless case. For increas-
ing number of flavours the truly leading power in the coupling
then becomes clearly separated from the subleading powers,
but at Nf = 8 it is negative. For non-perturbatively O(a)

improved Wilson quarks the spectrum becomes even denser
at subleading powers in the coupling due to the presence of
(1-loop matching contributions of) chiral-symmetry breaking
4-fermion operators, but the leading power in the coupling
remains the same for Nf ≤ 8 although the first subleading
power may be less suppressed depending on the value of Nf ,
see also Fig. 3.

An interesting, pedagogical example are Wilson quarks
at maximal chiral twist either relying on automatic O(a)

improvement at this twist angle or making explicit use of
non-perturbative O(a) improvement just like for non-twisted
Wilson quarks. Removing explicitly the O(a) lattice arti-
facts eliminates the double operator insertions contributing
to O(a2). Thus no contact terms may arise ensuring that no
chiral-symmetry violating 4-fermion operators are allowed
at tree-level matching, which otherwise results in a slightly
negative 1-loop anomalous dimension at Nf = 2, namely
�̂min ≈ −0.12, becoming worse towards larger Nf . To com-
pare both choices of O(a) improvement, one can compare
the spectrum in Fig. 4 with the case of Wilson in Fig. 3 at
even number of flavours. Evidently, the spectrum of lead-
ing powers in the coupling is denser without having explicit
improvement.

As was probably to be expected, introducing two sets of
flavours, either dynamical or quenched, introduces even more
operators and thus severely increases the density of the spec-
trum compared to having only one lattice discretisation, see
e.g. Figs. 3 and 5. For the cases considered here, this will
also impact the leading power in the coupling for the mass-
less case. While e.g. at Nf = 3 we only find a slight decrease
from �̂min ≈ 0.247 to �̂min ≈ 0.198, this also abandons
the already weakly pronounced gap of the 1st to 2nd leading
power from ��̂ ≈ 0.42 to ��̂ ≈ 0.05. This effect holds true
for the other values for Nf considered here. Notably, the case
of a mixed action with two valence quarks considered here
yields a non-diagonalisable mixing matrix at 1-loop order.
This gives rise to an additional factor log(2b0 ḡ2(1/a)) mod-
ifying the pure power law in the coupling for �̂ ≈ 1.586,
which is however very suppressed compared to the leading
powers in ḡ2(1/a), namely �̂min ≈ 0.230 in the massless
case and �̂min ≈ −0.172 in the massive case. The spectra of
mixed action and light GW + heavy Wilson quarks in Fig. 5
are very similar, but a few important differences occur for the
latter case. Namely the use of Fierz identities for Nf = 2 +1
or Nf = 3+1 reduces the number of 4-fermion operators and
having light GW quarks also excludes some chiral-symmetry
violating 4-fermion operators as explained after Eq. (37).

In general, the additional contributions to the spectrum for
the massive case result again in a slightly denser spectrum,
but do not affect the spectrum of the massless operator basis
due to the tridiagonal form of the mixing matrix, see Eq. (47).
In all cases considered, except twisted Wilson quarks purely
relying on automatic O(a) improvement, the lowest power
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Table 1 Non-exhaustive examples for leading powers in the coupling

relevant for the leading order lattice artifacts a2[ḡ2(1/a)]�̂ at N = 3
and various values for Nf . Degeneracies are not listed as they cannot be
distinguished numerically. While vanishing matching coefficients have
been taken into account by shifting the corresponding leading power
by 1, hierarchies between the various coefficients are ignored and cer-
tainly should be looked at [16]. We limit considerations to commonly
used combinations and some interesting cases. For the gauge action we
assume use of a variant compatible to Eq. (73). The underlined numbers

belong to massive operators. If the Lüscher–Weisz action [28] is being
used rather than the more general case in Eq. (73) the leading powers
do not change, since the operator affected by this change of matching
is already sufficiently suppressed by γ̂i � 0.86 for 2 ≤ Nf ≤ 8. The
leading powers for O(a) improved tmQCD should be identical to the
Wilson case, but massive tree-level matching coefficients may differ
and are currently unavailable. We therefore assume those coefficients
to be non-vanishing

Lattice discretisation Flavours Leading powers �̂

Ginsparg–Wilson 0 0.273, 0.424, 0.597, 0.634, 0.727, . . .

2 −0.172, 0.271, 0.483, 0.638, 0.711, . . .

3 −0.111, 0.247, 0.519, 0.668, 0.760, . . .

4 −0.040, 0.209, 0.560, 0.698, 0.817, . . .

O(a) improved Wilson [10] 0 0.273, 0.424, 0.597, 0.634, 0.727, . . .

2 −0.172, 0.271, 0.483, 0.638, 0.711, . . .

3 −0.111, 0.247, 0.519, 0.668, 0.760, . . .

4 −0.040, 0.209, 0.560, 0.698, 0.699, . . .

Mixed action, see e.g. [61] 2,2 −0.172, 0.230, 0.271, 0.483, 0.638, . . .

(Wilson sea quarks, tmQCD 3,3 −0.111, 0.198, 0.247, 0.519, 0.583, . . .

valence quarks with SW term) 4,4 −0.040, 0.155, 0.209, 0.560, 0.580, . . .

O(a) improved action 2 + 1 −0.111, 0.198, 0.247, 0.519, 0.583, . . .

(light GW + heavy Wilson quarks) 3 + 1 or 2 + 2 −0.040, 0.155, 0.209, 0.560, 0.580, . . .

found at Nf = 2, 3, 4 is always from the massive operator
basis and actually slightly negative. At Nf = 8 the lowest
power is from the massless operator basis and negative as
well. Without counting double operator insertions, there are
eleven distinct massive operators at mass-dimension 6, but
only three distinct powers �̂i . Taking the subleading powers
into account, the spectrum of the massive operators modulo
1 has only two distinct powers. This is due to a severe degen-
eracy of the spectrum for these operators since additional
powers of the mass only shift the overall 1-loop anomalous
dimension by a constant. Introducing two sets of flavours
does not affect the powers for the massive contributions as
they do not depend on Nq,Q

f but Nf = Nq
f + NQ

f . Of course
the degeneracy in the spectrum grows even further.

From a numerical point of view this degeneracy sug-
gests to treat the different operators contributing with the
same power as one linear combination, because one can-
not distinguish them during a fit anyway (actually most of
the degeneracy in the power spectrum starts at subleading
orders due to vanishing tree-level matching coefficients of
some of the operators). For tmQCD relying only on auto-
matic O(a) improvement, the spectrum for the massive case
has two additional values, where one of those again increases
the degeneracy. Introducing the Wilson clover term with a
non-perturbative improvement coefficient eliminates all truly
new powers in the coupling and avoids any contact term
renormalisation of our operator basis, which otherwise would

affect O(a2) just like in the untwisted theory. In particular,
this ensures vanishing of tree-level matching coefficients for
the chiral symmetry violating 4-fermion operators. Only the
double insertion of one massive operator remains, that has a
degenerate power in the coupling and is thus indistinguish-
able from the contributions of massive mass-dimension 6
operators.

7 Discussion

We have computed the 1-loop anomalous dimensions of all
mass-dimension 5 and 6 operators relevant for the minimal
basis describing lattice artifacts from either the Wilson or
Ginsparg–Wilson action up to and including O(a2). This also
includes all relevant massive operators as well as the neces-
sary generalisation to the quenched case, mixed actions or
use of two distinct lattice discretisation for different quark
flavours. These 1-loop coefficients of the anomalous dimen-
sion matrix modify the leading asymptotic lattice spacing
dependence from the classical integer power an behaviour

to an[ḡ2(1/a)]�̂(n)
i . Only for the quenched case and mixed

actions considered here additional factors of log(ḡ2(1/a))

occur, see also Sect. 5.5. Here �̂
(n)
i = γ̂

(n)
i +ni takes suppres-

sions from matching coefficients by ḡ2ni (1/a) into account.
In practice we only know whether the tree-level matching
coefficients vanish for the lattice actions considered here
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except for the massive operators of tmQCD, where the full
mixing with massive operators is currently not available. We
explicitly write here the additional superscript in �̂

(n)
i , which

has been dropped until now, to include also O(a) corrections,
i.e. n = 1. We have discussed those effects already before [9]
without taking the massive operators into account. We only
mention those effects briefly.

For example at Nf = 3 we found the lowest values of the
massless spectrum to be �̂

(1)
min ≈ 0.074 for the O(a) lattice

artifacts of unimproved Wilson quarks and �̂
(2)
min ≈ 0.25 for

the O(a2) lattice artifacts of both non-perturbatively O(a)

improved Wilson quarks and Ginsparg–Wilson quarks. For
typical numbers of flavours Nf = 0, 2, 3, 4 all powers in
the coupling from the massless operator basis improve the
convergence towards the continuum limit as a ↘ 0 due
to being positive. Only maximally twisted Wilson quarks
without explicit O(a) improvement have e.g. at Nf = 2 one
slightly negative power in the coupling �̂

(2)
min ≈ −0.122 for

the massless operator basis arising from the contribution of
4-fermion operators that violate chiral symmetry. Those con-
tributions become worse for increasing number of flavours.
In contrast to the non-perturbatively O(a) improved lattice
actions those operators can arise here already at tree-level
matching due to the renormalisation of contact terms from
double insertions of the mass-dimension 5 operator basis in
the SymEFT.

The example of twisted Wilson quarks with automatic
O(a) improvement actually teaches us another lesson, namely
that relying on continuum symmetries for O(a) improvement
may worsen the approach to the continuum limit at O(a2) and
beyond compared to explicit Symanzik improvement. Per-
forming instead explicit O(a) improvement – already tree-
level improvement would suffice for that matter – ensures that
double operator insertions of mass-dimension 5 operators do
not occur or at least occur suppressed by at least two addi-
tional powers in ḡ2(1/a), which then also shifts any effects
from contact term renormalisation by this additional power
in the coupling. Fortunately the ETMC collaboration already
performs explicit O(a) improvement [31]. Under this impres-
sion the earlier attempts of obtaining a classically perfect
action, see e.g. [62], may have been a worthwhile endeavour,
since this argument of course occurs at any order in the lattice
spacing. If there are negative powers in the coupling present
at subleading powers in the lattice spacing, these will auto-
matically be shifted up by at least one power in the coupling
as will all �̂

(n)
i from tree-level contributions.

The additional massive operators must be considered,
when one is working in a mass-independent renormalisation
scheme rather than a hadronic scheme. Overall they increase
the density of the spectrum found for �̂

(2)
i even further, but

introduce only three distinct powers due to a fairly degener-
ate spectrum. In all cases considered here apart from twisted-

mass QCD relying on automatic O(a) improvement, the mas-
sive operators decrease the leading power in the coupling at
Nf = 2, 3, 4 slightly compared to the massless basis.

In either case all the leading powers encountered are much
better behaving than the dominant power mini (�̂

(2)
i ) = −3

found in the 2-d O(3) sigma model [7,8], which is good news.
However, due to the large number of operators we get many
different contributions �̂

(2)
i to the spectrum, which in addi-

tion lie in close proximity to one another, see also Figs. 3, 4
and 5. This will make it very difficult to decide, which contri-
butions actually dominate and therefore must be included in a
proper fit-ansatz for continuum extrapolations. The density in
the spectrum for �̂

(2)
i becomes even worse when introducing

two distinct lattice discretisations, like we discussed here in
form of mixed actions or different discretisations for dynami-
cal heavy and light quark flavours. Eventually the situation is
even more complicated since the sensitivity to contributions
from different operators of our minimal basis will presum-
ably depend on the (spectral) quantity to be extrapolated and
also different orders of magnitude of the various LO match-
ing coefficients will have an impact [16]. Also, there are of
course always corrections subleading in the power of the
lattice spacing that one must be wary about. All of this indi-
cates that one should be very careful when doing continuum
extrapolations regarding the systematic errors associated to
the extracted continuum values.

Before discussing possible extensions of this work we
should ask ourselves whether today’s lattice simulations are
at sufficiently small lattice spacings such that a perturbative
description of the leading asymptotic lattice spacing depen-
dence suffices. While there will never be absolute certainty
that the leading power in the lattice spacing really domi-
nates the picture, we may at least have a look at the running
couplings αMS(1/a) = g2

MS
(1/a)/(4π) associated with the

lattice spacings typically available, using perturbative 5-loop
running [50]. A non-exhaustive overview of lattice spacings
available in the literature is given in Table 2, where one
finds that at least the smallest lattice spacings clearly start
to reach the perturbative region.11 Of course, even smaller
lattice spacings would (always) be preferable, but may be
too costly at the moment. Meanwhile step-scaling analysis
in pure gauge theory [67] reach down to lattice spacings as
small as a < 10−3 fm. There, the absolute systematic effect
on the extracted continuum value should become less severe
when using the classical an power law instead of including
the logarithmic corrections discussed here.

In case one is interested in non-spectral quantities each
field introduces an additional minimal basis of higher
dimensional operators compatible with the transformation

11 We assume here that the upper bound of the perturbative region is
roughly αMS(1/a) ∼ 0.25 beyond which a perturbative description will
break down.
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Table 2 Non-exhaustive overview of typical lattice spacings in today’s
lattice QCD simulations combined with the MS coupling at scale
μ = 1/a obtained from 5-loop running [50]. The MILC HISQ ensem-

bles are only added for comparison as they involve staggered quarks,
which were not included in our discussion

Gauge action Wilson Iwasaki Lüscher–Weisz Lüscher–Weisz
Quark action Domain-Wall O(a) impr. Wilson MILC HISQ
Nf 0 [63] 2 + 1 [64] 2 + 1 [65] 2 + 1 + 1 [66]

a [fm] 0.01 0.09 0.07 0.11 0.04 0.09 0.04 0.09

α
5-loop
MS

(1/a) 0.11 0.21 0.25 0.32 0.21 0.28 0.22 0.29

behaviour of the local field. The associated spectrum must
then be taken into account as well. An analysis of such addi-
tional powers in the coupling for fermion bilinears is on its
way. In general such computations aiming only at 1-loop
anomalous dimensions should not be too complicated, but
finding the minimal basis is somewhat tedious. As men-
tioned before, once the minimal basis is found, the strategy
described here should be applicable also for the local fields
with the sole difference that the operators must be renor-
malised at non-zero momentum or in other words mixing
with total divergence operators must be taken into account
as well. In particular for precision physics observables, per-
forming these computations should become the norm as it
offers better control over the continuum extrapolation by
either reducing the error budget or providing a better esti-
mate for this uncertainty.

A more complicated issue is the generalisation to stag-
gered quarks [68], which requires a whole new class of oper-
ators that allow for flavour changing interactions, see e.g.
[69], and thus have a severely reduced flavour symmetry
compared to Ginsparg–Wilson quarks, whose operators of
course still contribute with the known values for �̂

(2)
i . For

the additional set of operators we do not know whether they
fall within the same range of values �̂

(2)
i or possibly under-

shoot them. The latter should of course give rise to concerns
as there is no theoretical lower bound. Due to the prominence
in the literature and low computational cost of this lattice dis-
cretisation in numerical simulations, this is probably the most
pressing gap in this work. However, this is not the only theo-
retical concern arising when using staggered quarks. Firstly,
there is no proof of perturbative renormalisability of stag-
gered quarks to all orders in perturbation theory available,
using the lattice power counting theorem generalised for stag-
gered quarks [70]. Such a proof exists for Wilson [71] and
Ginsparg–Wilson fermions [72]. Secondly, so called rooting
to reduce the number of flavours, makes rooted staggered
quarks a highly non-local theory, see e.g. [73]. Both aspects
may invalidate the applicability of Symanzik Effective theory
altogether. Nonetheless a Symanzik Effective theory analysis
can still be done keeping in mind that both issues mentioned
here must be resolved independently to have a solid theoret-
ical basis.

Supplementary information

A Mathematica notebook is included in the supplemen-
tary material (matchingMixedContact.nb). It allows
to obtain the leading powers for mixed actions with massless
quarks for other choices of number of flavours.
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Appendix A: Conventions

The gauge covariant lattice forward and backward derivatives
acting on quark fields are defined as

∇μ�(x) = U (x, μ)�(x + aμ̂) − �(x)

a
, (A1)

∇∗
μ�(x) = �(x) −U †(x − aμ̂, μ)�(x − aμ̂)

a
, (A2)

where U (x, μ) ∈ SU(N ) are the link variables connecting
x+aμ̂ and x . For improvement of the Wilson Dirac operator
we require a lattice discretisation of the field strength tensor,
which we assume here to be the clover term

a2 F̂μν = 1

8

{
Qμν(x) − Qνμ(x)

}
, (A3)

Qμν(x)

= U (x, μ)U (x + aμ̂, ν)U †(x + aν̂, μ)

×U †(x, ν)

+U (x, ν)U †(x − aμ̂ + aν̂, μ)U †(x − aμ̂, ν)

×U (x − aμ̂, μ)

+U †(x − aμ̂, μ)U †(x − aμ̂ − aν̂, ν)

×U (x − aμ̂ − aν̂, μ)U (x − aν̂, ν)

+U †(x − aν̂, ν)U (x − aν̂, μ)U (x + aμ̂ − aν̂, ν)

×U †(x, μ). (A4)

Appendix B: Matching for 4-fermion operators

The perturbative determination of the O(a2) matching coef-
ficients for the 4-fermion operator basis can be understood
in terms of connected graphs in lattice perturbation the-
ory (LPT) and their relation to vertex functions as sketched
in Eq. (B5).

(B5)

(B6)

Considering amputated graphs affects only whether we
need to insert 2-point vertex functions on the external legs.
Working in background field gauge for both the lattice theory
[41] and the SymEFT we can instead perform the matching
via vertex functions [75] of background gauge fields and
quark fields. Beyond tree-level we may need to add higher-
dimensional operators that account for lattice artifacts orig-
inating from the gauge-fixing of the quantum field on the
lattice as the matching strategy described here amounts to
off-shell matching. Those new terms remain invariant under
background gauge transformations and might also become
relevant for our renormalisation strategy beyond 1-loop. The
remnant background gauge invariance is the main benefit of
working in this particular gauge. Once those vertex functions
are perturbatively matched, so are all gauge-invariant parts
relevant to get on-shell equivalent results.

With this reasoning in mind we find that the tree-level
matching coefficients of 4-fermion operators in the basisO(2)

i

are zero except for O(2)
6 , i.e., c̄4,5,7−13 = 0. The sole excep-

tion for O(2)
6 arises because a general lattice gauge action

might give rise to a term 1
g2

0
tr([Dμ, Fμρ][Dν, Fνρ]), which

then by EOMs will be absorbed into O(2)
6 . On the level of

our vertex functions this implies that we need to take those
EOM-vanishing operators from Eq. (41) into account as well
to get the correct matching coefficients. Strictly speaking, the
4-fermion vertex-functions will still vanish to O(ḡ2) in the
SymEFT as contributions from the EOM-vanishing operator
E (2)

4 cancel exactly with those from O(2)
6 to this order in the

coupling. Only the connected graph may have an O(a2) term
contributing at O(ḡ2), that can be traced back to the pres-
ence of 1

g2
0

tr([Dμ, Fμρ][Dν, Fνρ]) in the naive a-expansion

of the lattice action. Notice that finding �̄γμ[Dν, Fνμ]� in
the naive a-expansion of the lattice action would have a sim-
ilar effect through use of the EOM-vanishing operator E (2)

2 .
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Equivalently, we could have considered the aforemen-
tioned connected graphs of fundamental fields with some
gauge-fixing and proper choices for the momenta of the exter-
nal legs, i.e., analytical continuation to Minkowski space
and on-shell momenta. In either case, working at tree-level
ensures that we can use the naively-a-expanded lattice action
to derive the relevant Feynman rules12 for vertices and prop-
agators of the lattice theory. This reassures us that we could
have stopped the tree-level matching immediately after the
naive a-expansion of the lattice action. Beyond tree-level,
proper use of LPT is required.
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