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Abstract Extremely large angular orbital momentum can
be produced in non-central heavy-ion collisions, leading to a
strong transverse polarization of partons that scatter through
the quark-gluon plasma (QGP) due to spin-orbital coupling.
We develop a perturbative approach to describe the forma-
tion and spacetime evolution of quark polarization inside the
QGP. Polarization from both the initial hard scatterings and
interactions with the QGP have been consistently described
using the quark-potential scattering approach, which has
been coupled to realistic initial condition calculation and the
subsequent (3 + 1)-dimensional viscous hydrodynamic sim-
ulation of the QGP for the first time. Within this improved
approach, we have found that different spacetime-rapidity-
dependent initial energy density distributions generate differ-
ent time evolution profiles of the longitudinal flow velocity
gradient of the QGP, which further lead to an approximately
15% difference in the final polarization of quarks collected
on the hadronization hypersurface of the QGP. Therefore, in
addition to the collective flow coefficients, the hyperon polar-
ization may serve as a novel tool to help constrain the initial
condition of the hot nuclear matter created in high-energy
nuclear collisions.

1 Introduction

High-energy nucleus–nucleus collisions at the Relativistic
Heavy-Ion Collider (RHIC) and the Large Hadron Collider
(LHC) create a color deconfined state of nuclear matter,
known as the Quark-Gluon Plasma (QGP), whose strongly-
coupled nature has been confirmed by both the collective
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flow of soft hadrons and the quenching phenomena of jets
observed in these energetic collisions [1,2]. In addition to
the hottest and densest environment one may obtain in lab-
oratory, non-central heavy-ion collisions also deposit huge
amount of angular momentum (on the order of 105) into the
nuclear matter [3], leading to the most vortical system (vor-
ticity on the order of 1021 s−1) one may create [4,5].

It was proposed in Ref. [6] that this large angular momen-
tum can generate polarization of quarks via their spin-orbital
interactions, and in the end be observed as the global polariza-
tion of hyperons, e.g. �, � and �. Other possible observables
include vector meson spin alignment [7] and the emission of
circularly polarized photons [8]. On the experimental side,
search for the � polarization in heavy-ion collisions was
initiated by the STAR Collaboration [9] and recently con-
firmed in Refs. [10,11]. The non-trivial dependences of the
� polarization on the collision energy, rapidity region and
the transverse momentum of � have attracted tremendous
theoretical efforts on exploring the detailed mechanisms that
generate polarization [12].

A major category of theoretical approaches is based on
the assumption that the spin degrees of freedom are at
local equilibrium on the hadronization hypersurface of the
QGP [13,14], allowing one to extract the polarization of the
final-state hadrons from the extended Cooper–Frye formal-
ism for particles with spin. The key quantity that drives the
development of polarization is the thermal vorticity [13,15].
The evolution of the QGP can be either simulated with a
perturbative-based transport model (e.g. APMT) [16–18] or
be considered as a strongly-coupled medium (e.g. hydro-
dynamics) [19–33]. While many of these studies provide a
reasonable description of the experimental data, in order to
address non-equilibrium effects on polarization, it is neces-
sary to introduce the quantum kinetic theory. This have been
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recently developed in Refs. [34–38], where crucial questions
like conservation of angular momentum in a transport model
and evolution towards local equilibrium have been explored.
Instead of a full transport description of interactions between
quark pairs, an alternative microscopic approach was pro-
posed in Ref. [39], where each quark is considered interacting
with a mean field of the medium background. The perturba-
tive scattering picture from the earliest study [6] has been
extended to multiple scatterings of quarks through the QGP,
from which one can observe the development of the quark
polarization driven by the longitudinal velocity gradient of
the fluid background.

In the present study, we will further develop this pertur-
bative approach [39] in several aspects. We will consistently
apply this perturbative scattering picture to both the initial
hard collisions between nuclei and quark scatterings through
the QGP for the first time, which allows us to study the ini-
tial production of polarization and its subsequent evolution
within the same framework. A simplification was usually
applied in earlier perturbative calculations [6,39] where a
projectile quark is constrained in a half hemisphere rela-
tive to the target potential. Realistic spatial distributions of
projectile and target will be taken into account for a more
precise evaluation of the average quark polarization in this
work. In addition, a (3+1)-D viscous hydrodynamic model
CLVisc [40,41] will be introduced to provide a realistic evo-
lution of the longitudinal flow velocity profile of the QGP.
Impacts of using different initial conditions for the hydrody-
namic expansion on the final-state global polarization will
be investigated in detail. We will focus on the global polar-
ization that results from the large angular momentum with a
direction perpendicular to the reaction plane of non-central
heavy-ion collisions. The other crucial branch of polariza-
tion, the local (or longitudinal) polarization due to the QGP
expansion in the transverse plane [42–44] is beyond the scope
of this work.

The rest of this paper will be organized as follows. In
Sect. 2, we will discuss the quark polarization produced by
the initial hard collisions, and investigate how it is affected by
the nucleon density distribution. In Sect. 3, we will study the
evolution of the global polarization through the QGP phase,
and explore how the final-state polarization depends on the
initial energy density profile of the hydrodynamic evolution
of the QGP. A summary will be presented in Sect. 4.

2 Initial polarization from hard scatterings

We consider a non-central collision event between two
nuclei, as demonstrated in Fig. 1. The momentum ( �p) of each
nucleon from the projectile nucleus (B) is assigned along the
+ẑ direction, while the momentum of each nucleon from the
target (A) is the opposite. The impact parameter (�b), point-

Fig. 1 Side view (left panel) and top view (right panel) on a non-central
heavy-ion collision event

ing from the target to the projectile, is assigned along the
+x̂ direction. The reaction plane is then defined as the z–x
plane, whose direction can be determined as n̂ = +ŷ. This
non-central collision would deposit huge angular momentum
into the overlapping region between the two nuclei, leading to
the polarization of quarks that constitute the QGP medium
via the spin-orbital coupling. In this section, we study the
formation of the polarization from this initial hard nucleus–
nucleus scattering, and discuss how the magnitude of polar-
ization depends on the initial nucleus geometry.

Following Ref. [6], we investigate a scattering between a
quark and a static potential A0(qT) = g/(q2

T + μ2), where
g2 = αs/(4π) is the strong coupling constant, qT represents
the momentum transfer and μ is Debye screening mass of
the exchanged gluon. This potential scattering picture can
be consistently applied to the initial hard scattering and the
subsequent quark scattering through the QGP medium. For
the initial hard scattering in vacuum, we take μ = 0.5 GeV
as in Ref. [6]; while for the in-medium scattering, μ2 =
g2(Nc + N f /2)T 2/3 will be adopted in the next section,
with T being the local temperature of the QGP and Nc =
N f = 3 in the present study. For a given initial momentum
(E, �p) and a final spin λ/2 of the outgoing quark along n̂,
the differential cross section for an initially unpolarized quark
can be obtained as [6]

d2σλ

d2xT
= CT

∫
d2qT

(2π)2

d2kT

(2π)2 e
i(�kT−�qT)·�xTIλ, (1)

with

Iλ = 1

2

∑
λi

Iλλi

= g2

2(2E)2

∑
λi

ūλ(pq) /A(qT)uλi (p)ūλi (p) /A(kT)uλ(pk)

= g2

2(2E)2 ūλ(pq) /A(qT)(/p + m) /A(kT)uλ(pk). (2)
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Fig. 2 Cartoon for the static potential scattering process

In the above equations, CT = 2/9 is the color factor associ-
ated with the target, Aμ = (A0, �0) is the scattering potential,
�qT (�kT) is the momentum transfer between the quark and
the potential in the real (complex conjugate) space, �xT is the
relative transverse distance pointing from the scattering cen-
ter to the quark (as illustrated in Fig. 2), and m is the quark
mass. After being scattered, the outgoing quark momentum
is �pq(k) = �p + �qT(�kT). Here, we have averaged over the
initial spin states (λi ) for the unpolarized projectile quark.

For a high energy quark, one may assume a small scatter-
ing angle (qT, kT ∼ μ � E), which simplifies the Iλ part
as

Iλ

g2 ≈ 1

2
A0(qT)A0(kT)

[
1 − iλ

(�qT − �kT) · (n̂ × �p)
2E(E + m)

]
. (3)

The first part in the square bracket is spin-independent, which
contributes to the total cross section as

dσ

d2xT
= dσ+

d2xT
+ dσ−

d2xT
= 4CTα2

s K
2
0 (μxT); (4)

while the second term is spin-dependent, contributing to the
difference between positive and negative spin configurations
as

d	σ

d2xT
= dσ+

d2xT
− dσ−

d2xT

= −4CTα2
s μ

�p · (x̂T × n̂)

E(E + m)
K0(μxT)K1(μxT). (5)

Here, x̂T = �xT/xT and Kn’s are the modified Bessel func-
tions. The polarization of quarks is then defined as the ratio
between the integrated 	σ and σ above, P = 	σ/σ .
Although this ratio does not explicitly depend on αs (or g),
the strong coupling constant will affect the magnitude of
polarization through the Debye screening mass, as will be
discussed later in this work. When using the above equa-
tion to evaluate the initial polarization, we take the center-
of-mass momentum p = 100 GeV along ±ẑ directions for

Au–Au collisions at
√
sNN = 200 GeV, and the quark mass

m = 100 MeV for estimating their energy E . We have ver-
ified that varying the quark mass within 5 ∼ 300 MeV has
no visible impact on the polarization result.

Observed from Eq. (5), the sign of the cross section differ-
ence depends on the relative position between the projectile
quark and the scattering center. As sketched in Fig. 2, if the
projectile quark (e.g. quark 1) is in the x > 0 hemisphere
with respective to the scattering center, d	σ/d2xT is neg-
ative; contrarily, for the x < 0 hemisphere (e.g. quark 2),
d	σ/d2xT is positive. We note that in earlier studies [6,39],
a simplified assumption is adopted for two-particle scat-
tering, where one quark from B is always in the x > 0
hemisphere relative to the other quark from A. By inte-
grating over the corresponding half hemisphere, a heuris-
tic approximation for the quark polarization is obtained as
P = −πμp/[2E(E + m)].1 To improve the estimation of
polarization from non-central nuclear collisions, we extend
this two-particle scattering picture with relative position
restricted in the half hemisphere to scatterings between all
pairs of nucleons that are realistically distributed in the two
colliding nuclei. We will show that the finite polarization in
the end is not because one quark from B is always above
(x > 0) the other quark from A, but because the nuclear
matter contributed by B is on average above that by A.

To take into account the configurations of nuclei A and B,
we need to integrate Eqs. (4) and (5) over the whole trans-
verse plane, weighted by the thickness functions of A and B.
Two different models of the nuclear matter distribution are
used and compared here. The first one is the Hard Sphere
Model, where the nuclear matter is assumed to be strictly
constrained within a radius R. The corresponding thickness
function reads

THS
A,B(x, y) = 3A

2πR3

√
R2 − (x ± b/2)2 − y2

×
(R −
√

(x ± b/2)2 + y2), (6)

where the centers of nuclei A and B are placed at (−b/2, 0)

and (b/2, 0) in the transverse plane respectively, and A on
the right hand side denotes the nucleon number (same for A
and B in this work). Another model for the nuclear matter
density is the Woods–Saxon distribution, written as

TWS
A,B(x, y) =

∫
dz

ρ0

1 + e

(√
(x±b/2)2+y2+z2−R

)
/a

, (7)

where ρ0 is the equilibrium density of nuclear matter, and a
is the surface thickness parameter. Unlike the Hard Sphere
Model, the nuclear matter density in the Woods–Saxon model
decreases smoothly, though rapidly, when the position is over
R + a away from the nucleus center.

1 If one integrates over the entire xT plane instead, zero polarization
will be obtained.
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Since only nucleons that participate in the initial nucleus–
nucleus collisions contribute to the QGP medium, we only
include those participant nucleons in our calculation. For the
above two models, the participant number density read [3]

THS
1,2 (x, y) = THS

A,B
(R −
√

(x ∓ b/2)2 + y2), (8)

TWS
1,2 (x, y) = TWS

A,B

[
1 − exp(−σNN × TWS

B,A)
]
, (9)

respectively, in which σNN is the inelastic cross section of
nucleon-nucleon collision, and the subscript 1(2) is used to
represent participants from nucleus A(B). For Au–Au colli-
sions at

√
sNN = 200 GeV, parameters in Eqs. (6)–(9) are set

as A = 197, R = 6.38 fm, ρ0 = 0.17 fm−3, a = 0.535 fm
and σNN = 42 mb [45].

With these participant number density distributions, the
final-spin-summed probability for a quark from nucleus A at
a given location (xA, yA) to scatter with the entire nucleus B
can be written as

PA(xA, yA) =
∫

T2(xB, yB)
dσ(xA, yA, xB, yB)

dxBdyB
dxBdyB,

(10)

where an integral weighted by the participant density in B
is implemented. The same definition can also be applied for
the spin difference in the scattering probability 	PA(xA, yA)

from its corresponding cross section d	σ . Similarly, one can
also obtain the spin-summed and spin-different probability –
PB(xB, yB) and 	PB(xB, yB) – for a quark in nucleus B at
(xB, yB) to scatter with the entire nucleus A. By combining
contributions from A and B, we obtain the following polar-
ization of nuclear matter at a given location:

P(x, y) = T1(x, y)	PA(x, y) + T2(x, y)	PB(x, y)

T1(x, y)PA(x, y) + T2(x, y)PB(x, y)
.

(11)

In Fig. 3, we first present the spatial distribution of the
initial polarization calculated via Eq. (11) above. A Au–Au
collision system at

√
sNN = 200 GeV is used here, with

the impact parameter set as b = 6.7 fm, approximating the
5–40% centrality region. Comparing between the two sub-
figures, one can observe the dependence of polarization on
the nuclear distribution function. In the upper panel, we find
large polarization values mainly distribute around the bound-
ary of the overlapping region between the two nuclei for the
Hard Sphere distribution. This could be understood with the
illustration in Fig. 4. For location 1 that is at the center of
the overlapping region, a quark from A interacts with similar
number of participants from B on its left (x < 0) and right
(x > 0), cancelling polarization due to our earlier discussion
for Eq. (5). On the other hand, for location 2 that resides on
the boundary, a quark from A “sees” most participants from B
on its right, contributing to a negative polarization. Although

Fig. 3 Initial spatial distribution of polarization in Au–Au collisions
at

√
sNN = 200 GeV with impact parameter b = 6.7 fm, compared

between Hard Sphere (upper panel) and Woods–Saxon (lower panel)
distributions of nuclear density

Fig. 4 Illustration of quark scatterings at different locations

the opposite conclusion (positive polarization) is drawn for
a quark from B at location 2, its density [T2 in Eq. (11)] is
much smaller than that from A [T1] at this location, lead-
ing to a net negative value of polarization in the end. Since
there is no interaction outside the overlapping region within
the Hard Sphere model, polarization is also zero in the cor-
responding region. Different distribution of polarization can
be observed in the lower panel for the Woods–Saxon model.
While the polarization is also small at the center and max-
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Fig. 5 The initial global polarization as a function of the impact param-
eter, compared between Hard Sphere and Woods–Saxon nuclear density
distributions

imized around the boundary of the overlapping region, its
magnitude decreases smoothly outside the boundary instead
of suddenly vanishes because of the different location (x, y)
dependences of the nuclear density between Eqs. (6) and (7).
It is interesting to note that for the case of Woods–Saxon
model, one can also observe positive polarization value far
away from the center. As illustrated in Fig. 4, at location 3,
a quark from A is polarized along −ŷ by interacting with
nucleus B; while a quark from B is polarized along ŷ by
interacting with A. Since the scattering cross section Eqs. (4)
and (5) rapidly decreases with distance, the magnitude of the
above polarization for the quark in A [	PA in Eq. (11) from
Eq. (10)] is much smaller than that of the quark in B [	PB],
leading to a net positive polarization in the end. However,
since the participant number densities [both T1 and T2 in
Eq. (11)] are small at location 3, this positive value has little
contribution to the global polarization after we integrate over
the entire transverse plane, as will be shown later in this work.

By integrating over the transverse plane, we may define
the global polarization as follows,

P =

∫
[T1(x, y)	PA(x, y) + T2(x, y)	PB(x, y)] dxdy

∫
[T1(x, y)PA(x, y) + T2(x, y)PB(x, y)] dxdy

.

(12)

The corresponding value is presented in Fig. 5 as a function
of the impact parameter for Au–Au collisions at

√
sNN =

200 GeV. As expected, the global polarization is along the
−ŷ direction, reflected by its negative value, because on aver-
age participants from B is on the right (x > 0) of participants
from A. As the impact parameter increases, the magnitude
of polarization first increases due to more asymmetric colli-
sions, but then decreases due to vanishing participant nucle-

ons in the initial hard scatterings. The maximum magnitude
is obtained when b is around 2R for sideswipe between the
two nuclei. Beyond that, the polarization suddenly disap-
pears for the Hard Sphere model due to the hard cut-off of its
nuclear overlap function, while smoothly decreases to zero
for the Woods–Saxon model. Results from these two nuclear
density distributions are almost identical to each other for
small impact parameter (b � R); noticeable difference is
only observed at larger b. In this work, we initialize polar-
ization according to smooth nuclear density distributions.
Effect from event-by-event fluctuations on the global polar-
ization was shown small in Ref. [46]. On the other hand, the
local polarization along the longitudinal direction due to the
radial flow of the QGP might be more sensitive to the initial
state fluctuation. This will be explored in our future work by
implementing our current framework using the Monte-Carlo
method.

3 Evolution of polarization through the QGP phase

3.1 Polarization of initially polarized quarks

In the previous section, we discussed the production of global
polarization from initial hard collisions between nuclei,
where Eqs. (1)–(5) were derived for initially unpolarized
quarks. To investigate the further evolution of polarization
through the QGP phase, one needs to extend these equations
to the scenario where the projectile quark already possesses
non-zero polarization. This has been developed in Ref. [39],
where Eq. (1) is re-written as

dσλ f

d2xT
= CT

∑
λi

∫
d2qT

(2π)2

d2kT

(2π)2 e
i(�kT−�qT)·�xT

×RλiIλ f λi (
�kT, �qT, E), (13)

in which Rλi = (1+λi Pi )/2, with Pi being the initial polar-
ization of the projectile quark. Using the small scattering
angle approximation as before, the Iλ f λi part can be approx-
imated with

Iλ f λi

g2 ≈ 1

2
A0(qT)A0(kT)

[
1 + λiλ f

− i(λi + λ f )
(�qT − �kT) · (n̂ × �p)

2E(E + m)

]
, (14)

which returns to Eq. (3) after the initial spin states (λi ) are
averaged over. The differential cross section is then simplified
to
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dσλ f

d2xT
= 1

2
g4CT

[
1

4π2 (1 + λ f Pi )K
2
0 (μxT) (15)

− μ

4π2

(λ f + Pi ) �p · (x̂T × n̂)

E(E + m)
K0(μxT)K1(μxT)

]
.

The final-spin-independent sum of the cross section reads

dσ

d2xT
= dσ+

d2xT
+ dσ−

d2xT

= 4α2
s CT

[
K 2

0 (μxT) − μPi
�p · (x̂T × n̂)

E(E + m)
K0(μxT)K1(μxT)

]
,

(16)

while the final-spin-dependent difference reads

d	σ

d2xT
= dσ+

d2xT
− dσ−

d2xT

= 4α2
s CT

[
Pi K

2
0 (μxT) − μ

�p · (x̂T × n̂)

E(E + m)
K0(μxT)K1(μxT)

]
.

(17)

Instead of integrating over the half x-y plane for scattering
centers always on one side of the projectile quark, as assumed
in Ref. [39], we obtain the total cross section by integrating
over the entire transverse plane, weighted by the local entropy
density (or particle number density) of the QGP. Therefore,
the final polarization of a quark residing at a given location
(x, y) is given by

Pf (x, y) =

∫
dx1dy1s(x1, y1)

d	σ(x, y, x1, y1)

dx1dy1∫
dx1dy1s(x1, y1)

dσ(x, y, x1, y1)

dx1dy1

, (18)

where the local entropy density s can be taken from a hydro-
dynamic simulation of the QGP medium, as will be discussed
in the next subsection.

The change of polarization after the scattering is then
obtained as

	P(x, y) = Pf (x, y) − Pi (x, y)

= −
{∫

dx1dy1s(x1, y1)
[ (

1 − P2
i (x, y)

) μ �p · (x̂T × n̂)

E(E + m)

× K0(μxT)K1(μxT)
]}/{∫

dx1dy1s(x1, y1)

×
[
K 2

0 (μxT) − Pi (x, y)
μ �p · (x̂T × n̂)

E(E + m)
K0(μxT)K1(μxT)

]}
.

(19)

For multiple scatterings inside the QGP medium, the rel-
ative momentum �p in Eq. (19) is taken as Evz for estimating
the polarization along the ŷ direction, where E = ε/ρ rep-
resents the energy of a quark with ε and ρ being the local
energy and particle number densities inside the QGP, and
vz is the local fluid velocity along the ẑ direction. In addi-
tion, we assume the mean free path of a quark is τq , which

Fig. 6 Illustration of the initial energy density distribution on the x-
ηs plane, left for our Case (A) and Case (B) that include a counter-
clockwise tilt, and right for our Case (C) that only includes a longitudinal
shift

can be roughly related to the shear viscosity of the QGP
via ηv ≈ (1/3)ρ〈pth〉(4/9)τq ≈ (4/9)Tρτq for a thermal
ensemble of gluons [39,47], with 〈pth〉 = 3T being the aver-
age thermal momentum at temperature T . This leads to the
following equation for the time evolution of polarization:

dP(x, y)

dt
= 	P(x, y)

τq
= 4Tρ

9s

s

ηv

	P(x, y). (20)

We will use this equation to evolve the quark polarization at
each location (x, y) inside the QGP. The local temperature
(T ), number density (ρ) and entropy density (s) can be pro-
vided by the hydrodynamic model, and the shear-viscosity-
to-entropy-density ratio is taken as ηv/s = 0.08.

3.2 Hydrodynamic simulation of the QGP

In this work, we use the (3 + 1)-dimensional viscous hydrody-
namic model CLVisc [40,41] to simulate the spacetime evo-
lution of the QGP medium. Following our earlier work [48],
three different model setups are used to generate the initial
energy density distribution of the medium, which is fed as the
initial condition into the hydrodynamic evolution. By com-
paring between these three model setups, one may explore
how the final-state global polarization depends on the initial
geometry of the medium.

Case (A) Bozėk–Wyskiel parametrization.
Our first parametrization of the initial condition is based
on Refs. [49,50], which is one of the earliest and most
widely applied initialization scheme that takes into account
the deformation of nuclear matter in the reaction plane due to
non-central collisions, as illustrated in Fig. 6. In this model,
the transverse (x , y) and longitudinal (spacetime rapidity
ηs) distribution of the energy density is parametrized with
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a wounded nucleon weight function as follows,

WN(x, y, ηs) = 2[T2(x, y) f+(ηs) + T1(x, y) f−(ηs)], (21)

in which T2,1 is the participant nucleon density distributions
of the ±ẑ-going nucleus, as discussed in Eq. (9). The Woods–
Saxon model of the nucleon distribution is used for initializ-
ing the hydrodynamic evolution. The f± function is designed
to introduce the geometric asymmetry along the longitudinal
direction as

f+(ηs) =
⎧⎨
⎩

0, ηs < −ηm,
ηs+ηm

2ηm
, −ηm ≤ ηs ≤ ηm,

1, ηs > ηm,

and

f−(ηs) =
⎧⎨
⎩

1, ηs < −ηm,
−ηs+ηm

2ηm
, −ηm ≤ ηs ≤ ηm,

0, ηs > ηm,

where ηm defines the range of rapidity correlations, which
affects the relative contribution from forward and backward
participating nucleons. This parametrization introduces not
only a longitudinal shift but also a counter-clockwise tilt in
the x-ηs plane to the 3-dimensional geometry of the medium,
as illustrated in the left panel of Fig. 6.

The full expression of the initial energy density distribu-
tion is then given by

ε(x, y, ηs) = K · W (x, y, ηs) · H(ηs), (22)

where K is an overall normalization factor that is fitted to
the final charged particle yield (dNch/dη with η being the
pseudorapidity) observed in relativistic heavy-ion collisions.
A function H(ηs)

H(ηs) = exp

[
− (|ηs| − ηw)2

2σ 2
η

θ(|ηs| − ηw)

]
(23)

is introduced to describe the plateau pattern of dNch/dη with
respect to η, with ηw and ση as two model parameters. The
total weight function

W (x, y, ηs) = (1 − α)WN(x, y, ηs) + αnBC(x, y)

[(1 − α)WN(0, 0, 0) + αnBC(0, 0)]|b=0
,

(24)

combines contributions from wounded nucleons and binary
collisions – the latter is given by

nBC(x, y) = σNNTA(x, y)TB(x, y). (25)

The parameter α determines the relative contribution from
wounded nucleons and binary collisions, which can be
extracted from the impact parameter dependence ofdNch/dη.
Related model parameters will be listed later in this subsec-
tion when we calculate for a given collision system.

Case (B) CCNU parametrization.

An alternative parameterization of the deformed initial
energy density was developed in Ref. [51], which is similar
to the above Bozėk–Wyskiel ansatz – Eqs. (22)–(25), except
that the longitudinal dependence of the wounded nucleon
weight function is parametrized as

WN(x, y, ηs) = [T1(x, y) + T2(x, y)]
+Ht[T2(x, y) − T1(x, y)] tan

(
ηs

ηt

)
. (26)

Two parameters – Ht and ηt – are introduced to describe the
unbalanced energy deposition, between the projectile and tar-
get nuclei at different transverse locations, into the medium at
different spacetime rapidities. Similar to the Bozėk–Wyskiel
setup, this CCNU parameterization will also cause both shift
and tilt of the initial energy density distribution as illustrated
in the left panel of Fig. 6.

Case (C) Shen–Alzhrani parametrization.
The third ηs-dependent initial condition model was adopted
from Refs. [32,52], which ensures the local energy–momentum
conservation when convert the two colliding nuclei into the
energy density profile of the hot nuclear medium. One first
defines the local invariant mass M(x, y) and the center-of-
mass rapidity yCM as,

M(x, y) = mN

√
T 2

1 + T 2
2 + 2T1T2cosh(2ybeam), (27)

yCM(x, y) = arctanh

[
T2 − T1

T1 + T2
tanh(ybeam)

]
, (28)

where ybeam = arccosh(
√
sNN/2mN) is the rapidity of each

nucleon inside the colliding beams, with mN being its mass.
The initial energy density profile is then constructed

as [52],

ε(x, y, ηs; yCM) = K · Ne(x, y)

× exp
[

− (|ηs − (yCM − yL)| − ηw)2

2σ 2
η

× θ(|ηs − (yCM − yL)| − ηw)
]
. (29)

Same as the previous two models, K is the overall normal-
ization factor, and ηw and ση are the width parameters for
the plateau width of dNch/dη distribution with respect to
η. A new parameter – yL = f yCM with f ∈ [0, 1] – is
introduced in this model to describe the deformation of the
medium along the longitudinal direction. The transverse den-
sity distribution Ne is determined by the local invariant mass
M(x, y) as

Ne(x, y) = M(x, y)

M(0, 0)
[
2 sinh(ηw) +

√
π
2 σηe

σ 2
η /2Cη

] , (30)

Cη = eηw erfc

(
−

√
1

2
ση

)
+ e−ηw erfc

(√
1

2
ση

)
, (31)
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where erfc(x) is the complementary error function. Differ-
ent from Bozėk–Wyskiel and CCNU parameterizations, this
Shen–Alzhrani parametrization only generates a shift defor-
mation along the longitudinal direction, as illustrated in the
right panel of Fig. 6; tilt of the medium profile has not been
included yet. A detailed comparison of this deformation can
be found in our earlier work [48].

In many hydrodynamic calculations, including our previ-
ous study [48], local flow velocities are initialized with zero.
While this simplification has minor effect on observables
that are mainly driven by the QGP expansion, e.g. the yield
of charged particles and their harmonic flow coefficients,
it ignores the initial orbital angular momentum deposited
into the system and thus would fail in describing observables
related to the global polarization. As revealed in Ref. [39],
the velocity gradient ∂vz/∂x is the main origin of the global
polarization generated inside the QGP. Therefore, for all
cases (A, B and C above), we follow Ref. [52] to initial-
ize the off-diagonal components of the energy–momentum
tensor as

T ττ (x, y, ηs) = ε(x, y, ηs) cosh(yL), (32)

T τηs(x, y, ηs) = 1

τ0
ε(x, y, ηs) sinh(yL). (33)

The initial flow velocity in the longitudinal direction is then
given by their ratio as

vηs = T τηs/T ττ . (34)

From the above equations, one notices that the yL (or f )
parameter designed in Case (C) determines the amount of
the longitudinal momentum from the beam nucleons that is
deposited into the QGP medium as its initial longitudinal
velocity. In the present study, we only introduce the non-zero
initialization of the longitudinal velocity, the transverse com-
ponents of the energy–momentum tensor (T τ x and T τ y), or
the corresponding flow velocities (vx and vy) are still initial-
ized as zero, since they are not expected to affect the global
polarization which aligns with the ŷ direction.

Based on the above initial energy density and flow veloc-
ity, we then apply the CLVisc hydrodynamic model [40,41]
to simulate the subsequent spacetime evolution of the QGP
profiles, starting from an initial proper time τ0. The hydro-
dynamic equations read:

∂μT
μν = 0, (35)

where the energy–momentum tensor is given by

Tμν = εuμuν − (P + �)	μν + πμν. (36)

Here, ε is the local energy density, uμ is the fluid four-
velocity, P is the pressure, πμν is the shear stress tensor,

Table 1 Model parameters for the hydrodynamic evolution [51] for
Au–Au collisions at

√
sNN = 200 GeV with impact parameter b =

6.7 fm, among which ηm is for our Case (A), Ht and ηt are for Case
(B), and the other parameters are commonly applied to all models here

τ0 [fm] K [GeV/fm3] ηw ση α

0.6 35.5 1.3 1.5 0.05

Tfrz [MeV] ηm Ht ηt f

137 2.8 2.9 8.0 0.15

Fig. 7 Time evolution of the average temperature 〈T 〉, compared
between three different initial condition setups

and � is the bulk pressure (taken as zero in our current cal-
culations); gμν = diag(1,−1,−1,−1) is the metric tensor
and 	μν = gμν−uμuν is the projection tensor. These hydro-
dynamic equations are solved together with the lattice QCD
Equation of State (EoS) from the Wuppertal–Budapest work
(2014) [53].

In this study, we apply the isothermal freeze-out condi-
tions [40], in which the freeze-out hypersurface is determined
by a constant temperature Tfrz. Interaction between a projec-
tile quark and its surrounding medium, and thus the evolution
of its polarization, ceases when the local temperature drops
below Tfrz.

In the rest of this paper, we will use the 5–40% Au–Au
collisions at

√
sNN = 200 GeV, if not otherwise specified, as

an example to study the evolution of quark polarization inside
the QGP. In Table 1, we summarize all our model parameters
mentioned earlier in this subsection, which were constrained
in our previous study [51] by the soft hadron yield and their
directed flow coefficient.

As previously discussed for Eq. (19), the evolution of
quark polarization inside the QGP depends on the medium
temperature (T ) and longitudinal velocity (vz) profiles.
Therefore, we first investigate how different initial conditions
affect these quantities during the hydrodynamic expansion.
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In Fig. 7, we study the time evolution of the average temper-
ature of the QGP fireball. The average is conducted on the
ηs = 0 (or z = 0) plane over the hydrodynamic cells with
local temperature above Tfrz. The local entropy density s is
applied as the weight for the average. As shown in Fig. 7,
the average temperature decreases with time towards Tfrz.
No visible difference can be observed for the temperature
evolution between the three initial condition setups, because
they are all adjusted to describe the soft hadron yield data in
our earlier work [51].

Shown in Fig. 8 is the vz distribution along the x-axis (y =
z = 0) at different times. Due to the asymmetric collision,
one expects to see vz > 0 in the x > 0 half plane while vz < 0
in the x < 0 half plane at the initial time. As time evolves, the
magnitude of vz becomes smaller. It is interesting to note that
while the magnitude of vz starting from the Shen–Alzhrani
initial condition (bottom panel) decreases with time towards
zero, the sign of vz from the other two initial conditions (top
and middle panels) can flip at later time (e.g. t = 6 fm),
leading to vz < 0 at x > 0 and vz > 0 at x < 0. This
could be understood with the tilted geometry in the Bozėk-
Wyskiel and CCNU initial conditions as illustrated in the left
panel of Fig. 6, whose further expansion produces negative vz
component in the x > 0 plane, while positive vz component
in the x < 0 plane. This drives a quicker decay of vz from
these two initial conditions (compared to the Shen–Alzhrani
initial condition without such tilt) and in the end can also
reverse the sign of vz . Since the velocity gradient is the key
origin of the development of quark polarization inside the
QGP, we expect to obtain different magnitudes of the final-
state global polarization from these initial conditions, as will
be presented in the coming subsection. We also note that the
magnitude of vz obtained from the realistic hydrodynamic
simulation here is much smaller than the relativistic laminar
flow model applied in the earlier study [39], which will affect
the magnitude of global polarization for the final state.

3.3 Evolution of the global polarization

Using the temperature and longitudinal velocity profiles pro-
vided by the hydrodynamic simulation, we are able to calcu-
late the evolution of the quark polarization at a given position
via Eq. (20).

Shown in Fig. 9 are the snapshots of the spatial distribu-
tion of the quark polarization at different times. The strong
coupling constant is taken as g = 2 (αs = 0.3) for these
calculations. The upper four panels evolve from the initial
polarization evaluated with the Hard Sphere nucleon density
distribution (the upper panel of Fig. 3), while the lower four
panels are from the Woods–Saxon distribution (the lower
panel of Fig. 3). The hydrodynamic expansion is initialized
with the CCNU model. From the figure, one can see that as
time evolves, the quark polarization generally increases in

Fig. 8 The longitudinal velocity distribution along the x-axis at dif-
ferent times. Results from three different initial condition setups are
presented in the three panels

magnitude (or becomes more negative). Compared between
the two nucleon density functions, we find a smoother distri-
bution for the quark polarization across the transverse plane
from the Woods–Saxon than the Hard Sphere distribution.
It is interesting to note that positive values of polarization
exist at locations far away from the QGP center not only for
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Fig. 9 Spatial distribution of quark polarization in the transverse plane
at different times, compared between Hard Sphere (HS) and Woods–
Saxon (WS) distributions of the initial nucleon density. The hydrody-
namic evolution is initialized with the CCNU model

the Woods–Saxon distribution, but also for the Hard Sphere
distribution. This is driven by the negative ∂vz/∂x gradient
at large |x | at the initial time (as shown in Fig. 8). As time
evolves, these positive values can disappear at locations far
away from the QGP center, but start to appear near the center,
which can be understood with the sign flip of ∂vz/∂x both at
large |x | and around x = 0 during the hydrodynamic expan-
sion that starts with the CCNU initial condition (middle panel
of Fig. 8). At each time step, the polarization of each quark is
only affected by fluid cells with local temperature above the
freeze-out temperature Tfrz here. We have verified that no vis-
ible difference can be observed between the CCNU and the
Bozėk-Wyskiel initial condition. In Fig. 10, we present the
similar snapshots of quark polarization to Fig. 9, except that
the hydrodynamic simulation starts with the initial energy
density from the Shen–Alzhrani model. Compared between
Fig. 10 and Fig. 9, we observe a quicker increase (in magni-
tude) of the quark polarization within the QGP regime, which
could be understood with the slower decay of the longitudinal
flow velocity gradient with the Shen–Alzhrani initialization
than the CCNU initialization, as we previously discussed in
Fig. 8. No inversion is observed for either the positive value

Fig. 10 Spatial distribution of quark polarization in the transverse
plane at different times, compared between Hard Sphere (HS) and
Woods–Saxon (WS) distributions of the initial nucleon density. The
hydrodynamic evolution is initialized with the Shen–Alzhrani model

of polarization away from the center or the negative value
near the center here, because the sign of ∂vz/∂x remains
during the hydrodynamic evolution if it is initialized with
the Shen–Alzhrani model.

In the end, we calculate the average polarization over the
entire transverse plane. We assume that when the local tem-
perature drops below Tfrz, the fluid cell hadronizes and stops
participating in subsequent scatterings. Therefore, the cor-
responding polarization also freezes. For each time step of
the hydrodynamic evolution, we first calculate the change of
polarization at each location as 	P(x, y, t). The change of
the average polarization within this time step is then con-
tributed by fluid cells above Tfrz and is given by

	P(t) =

∫
T>Tfrz

dxdys(x, y, t)	P(x, y, t)
∫

dxdys(x, y, t)
. (37)

This 	P(t) is then applied to calculate the time evolution of
the transverse-plane-averaged polarization as

P(t + 	t) = P(t) + 	P(t), (38)
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Fig. 11 Time evolution of the transverse-plane-averaged polarization,
compared between using different initial conditions for the hydrody-
namic evolution (upper panel), different density functions of the initial
nucleon distribution and different values of g (middle panel), and dif-
ferent impact parameters (lower panel)

which starts from an initial value produced by the primordial
hard scatterings (shown in Fig. 5).

In Fig. 11 we present the time evolution of the transverse-
plane-averaged polarization at mid-spacetime-rapidity. Alth-
ough positive values of polarization can exist at certain space-
time, due to the relatively small entropy (energy) densities at

these locations, the average polarization is still negative as
expected. In the upper panel, we use g = 2 as for Figs. 9
and 10, and compare between hydrodynamic expansion with
different initial conditions. One observes that the fluid veloc-
ity profiles of the QGP have a non-negligible impact on the
final average polarization. The tilted geometry of the initial
energy density, as implemented in the Bozėk–Wyskiel and
CCNU models, leads to a slower increase (in magnitude) of
polarization compared to that from the Shen–Alzhrani ini-
tialization. This can be understood with the faster decay of
the longitudinal velocity gradient in the former case than
the latter, as discussed earlier. The dependence of the global
polarization on the initial condition of the QGP has also been
discussed in Refs. [11,54]. We also notice that the global
polarization mainly develops during the first 2 fm of the QGP
evolution due to the large vz gradient and energy density at
the early time. The global polarization we obtain for the final
state is around 0.095% ∼ 0.109% (about 15% uncertainty),
depending on the selected initial condition. This is qualita-
tively consistent with (though quantitatively smaller than)
the � polarization – 0.277 ± 0.040 (stat) ± 0.039

0.049 (sys) [%]
– observed at the top RHIC energy [11]. The magnitude of
polarization we obtain here using a (3 + 1)-D relativistic
hydrodynamic model is much smaller than that in the earlier
study [39] using the relativistic laminar flow model, because
of the weaker longitudinal flow velocity from our simulation.

In the middle panel of Fig. 11, we investigate effects of the
initial nucleon density distribution and the strong coupling
constant on the final-state global polarization. Although dif-
ference between the Hard Sphere and Woods–Saxon distri-
butions could be observed in the spatial distribution of polar-
ization previously in Figs. 9 and 10, it can be hardly seen here
after the polarization has been averaged over the transverse
plane. As discussed in Sect. 2, the strong coupling constant
can affect the quark polarization through the Debye screen-
ing mass. Since μ appears on both the numerator and the
denominator of Eq. (19), and the value of polarization can
be either positive or negative across the transverse plane, the
g-dependence of the quark polarization differs from location
to location. After averaging over the entire transverse plane,
we find a larger magnitude of the quark polarization when g
is reduced from 2 to 1.

In the lower panel of Fig. 11, we study the impact param-
eter dependence of this time evolution of polarization. As
the impact parameter increases, a significantly larger mag-
nitude of global polarization is obtained. This is consistent
with the stronger orbital angular momentum deposited into
the nuclear matter in more peripheral collisions. Note that as
b increases, not only the initial polarization from the primor-
dial hard scatterings becomes larger, as was also shown in
Fig. 5, the increase of polarization during the QGP evolution
becomes stronger as well because of the larger fluid velocity
gradient ∂vz/∂x formed in more peripheral collisions.
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4 Summary and outlook

We have investigated the production and evolution of the
global polarization of quarks in relativistic heavy-ion colli-
sions within a perturbative approach. The spin-independent
and dependent parts of the quark-potential scattering cross
sections have been consistently applied to both the initial
hard scatterings between colliding nuclei and the subsequent
quark scatterings through the QGP. Compared to earlier stud-
ies, we have improved this perturbative approach in two
aspects: (1) the two-body scattering model where the pro-
jectile quark is constrained in a half hemisphere relative to
the target potential has been extended to realistic spatial dis-
tributions of targets and projectiles; and (2) a (3 + 1)-D vis-
cous hydrodynamic model is adopted for simulating the QGP
expansion. Effects of the nucleon density function and the
initial geometry of the QGP medium on the final-state quark
polarization have been explored in detail.

Within this improved approach, we have found that the
spatial distribution of quark polarization depends on the
nucleon density function inside the colliding nuclei. While
polarization sharply centers around the edge of the over-
lapping region between the colliding nuclei with the Hard
Sphere model, a smoother distribution across the transverse
plane with possible positive values far away from the over-
lapping region can be seen with the Woods–Saxon model.
However, after averaging over the transverse plane, these two
density functions provide consistent magnitudes of the quark
polarization, except for very peripheral collisions. Three dif-
ferent setups of the initial energy density distributions of the
QGP have been compared in this work. It has been found that
with a counter-clockwise tilted initial geometry in the reac-
tion plane, the QGP expansion leads to opposite longitudinal
flow velocity (vz) to its initial direction. This can accelerate
the decay of vz and even reverse its direction at late time,
thus resulting in a smaller magnitude of quark polarization
compared to calculation without using the tilted initial con-
dition. The transverse-plane-averaged global polarization we
obtain is about 0.095% ∼ 0.109% at mid-spacetime-rapidity
when the strong coupling constant is taken as g = 2 inside
the QGP. The approximately 15% uncertainty quantifies the
sensitivity of the global polarization to the longitudinal flow
velocity profiles of the QGP, and may serve as a novel tool
to help constrain the initial energy density distribution of the
QGP in the future, when both theoretical calculations and
experimental measurements become more precise.

While our study constitutes a step forward in a more quan-
titative understanding of the production and evolution of the
global polarization using perturbative calculations, it should
be further extended in several directions. For instance, our
current calculation is limited at the quark level. A sophis-
ticated hadronization scheme [34,55] and decay contribu-
tions to polarized resonant states [22] should be introduced

to connect our current result to the realistic polarization of
� hyperons measured by experiments. In addition, it is also
important to study the beam energy and rapidity dependences
of the global polarization, as have already been measured by
the STAR experiments [10,11]. To achieve this, one may
also need to release the small angle approximation applied
in our current calculation [Eqs. (3) and (14)], which might
not be valid when the center-of-mass energy of a colliding
quark pair is small [3]. We will address these aspects in our
follow-up efforts.
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