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Abstract Black hole solutions in general relativity come
with pathologies such as singularity and mass inflation
instability, which are believed to be cured by a yet-to-be-
found quantum theory of gravity. Without such consistent
description, one may model theory-agnostic phenomenolog-
ical black holes that bypass the aforesaid issues. These so-
called regular black holes are extensively studied in the liter-
ature using parameterized modifications over the black hole
solutions of general relativity. However, since there exist
several ways to model such black holes, it is important to
study the consistency and viability of these solutions from
both theoretical and observational perspectives. In this work,
we consider a recently proposed model of regularized stable
rotating black holes having two extra parameters in addition
to the mass and spin of a Kerr solution. We start by com-
puting their quasi-normal modes under scalar perturbation
and investigate the impact of those additional parameters on
black hole stability. In the second part, we study shadows
of the central compact objects in M87∗ and Sgr A∗ mod-
elled by these regularized black holes and obtain stringent
bounds on the parameter space requiring consistency with
Event Horizon Telescope observations.

1 Introduction

Einstein’s theory of general relativity (GR) predicts the exis-
tence of compact dark objects such as black holes (BHs).
Under the assumption of strong energy condition, collapsing
matter in GR leads to spacetime singularities [1–3]. These set
of results are known as Hawking–Penrose singularity theo-
rems that suggest a generic existence of singularities in BH
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solutions of GR. At the location of a spacetime singular-
ity, various curvature scalars diverge, indicating breakdown
of the underlying gravity theory and its predictive power. It
is widely believed that at small enough length scales, gen-
eral relativity would be replaced by a quantum theory of
gravity, which will ultimately resolve this issue. However,
in the absence of a fully consistent quantum gravity frame-
work, one may consider a phenomenological approach in
which the known BH solutions are modified to regularize
the central singularity with a non-singular core. In general,
such approaches are highly non-unique and theory agnostic
in nature. Several interesting regularized BH solutions (both
static and rotating) have been proposed over years [4–13].
Such solutions contain one or more additional parameters
over the usual hairs, namely the mass and spin of a Kerr
BH. Usually these regularized BHs possess Cauchy horizons
with nonzero surface gravity causing an exponential growth
of perturbations at its vicinity known as the mass inflation
singularity [14–18]. However, the recently proposed regular-
ized BH solutions in Ref. [19] (spherically symmetric) and
in Ref. [20] (rotating) circumvent both the issues of singular
core and mass inflation instability. Due to its astrophysical
relevance, we focus on this regularized rotating BH geome-
try which we refer as regularized stable Kerr BH and study
various properties in the subsequent sections.

As discussed previously, the approach of regularizing the
singularity is highly non-unique and as a result, it leads to a
plethora of regularized BHs of different types. In the absence
of a unique approach, an effective way to check the viabil-
ity of these models could be to perform various consistency
tests. In this paper, we explore the regularized BH solution
presented in Ref. [20] and attempt to constrain the deviations
from Kerr BH by theoretical and observational studies. The
central theme of this article is of two folds. Firstly, inspired
by seminal works of Regge, Wheerle and Vishweswara, we
check the stability of such solutions by analysing the scalar
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quasi-normal mode (QNM) spectrum [21–26]. Ensuring the
stability of a BH solution is essential not only from a math-
ematical perspective but also due to its astrophysical rele-
vance. For a comprehensive review on the subject of BH
QNMs and stability, we refer the reader to Refs. [27–29]. If
the regularized BH under consideration is found to be unsta-
ble in certain region of the parameter space, one can rule out
those regions. This is a very powerful method to check the
viability of any classical BH solution and constrain any addi-
tional parameter present in the theory. Conversely, any well
behaved BH solution must also be stable against small pertur-
bation in the entire range of the parameter space. One of the
aims of this work is to look for any instabilities present in this
BH spacetime. Our study suggests that the regularized BH
under consideration is a stable configuration against scalar
perturbation. As a result, to constrain possible deviation from
Kerr solution, we resort to observational techniques, which
corresponds to the second part of our work.

The bending of light by a strong gravitational field is
one of the fascinating features of the spacetime curvature,
which gives rise to the existence of spherical/circular null
orbits around BHs. As far as observational implications are
concerned, these null orbits further lead to BH shadow, a
dark patch around BHs seen by a distant observer. The
recent observations of M87∗ and Sgr A∗ shadows by the
Event Horizon Telescope (EHT) collaboration [30–35] are
the first direct detection of isolated BHs, providing us with
an unprecedented platform to test the viability of modified
Kerr solutions. However, since the EHT observations are in
strong agreement with the Kerr paradigm, any deviation from
Kerr present in the theory are highly constrained [36–43].
Assuming the central compact objects in M87∗ and Sgr A∗
are modelled by the regularized stable Kerr BHs, we com-
pare the angular shadow sizes with the EHT observations and
obtain upper bounds on the additional parameters.

The rest of the article is organized as follows: In Sect. 2 we
briefly review the regularized stable Kerr solution and discuss
some of its properties. In Sect. 3 we discuss the consistency
conditions on the mass profile suggested in Ref. [20]. This
in some sense represents a study similar to the weak cosmic
censorship [44–47]. The computation of scalar quasi-normal
modes and stability analysis is presented in Sect. 4. In Sect. 5,
we study the shadow cast by this BH and constrain various
model parameters requiring consistency with EHT observa-
tions. Finally, we conclude with a brief discussion of main
results and possible future extensions of our work.

Notations and conventions: In this work we follow the
mostly positive signature convention (−,+,+,+) for the
metric. Indices referring the four dimensional spacetime are
represented by Greek letters. Unless specified otherwise, we
also set the fundamental constants to unity, i.e., c = 1 = G.

2 Constructing the metric

An astrophysical BH with Arnowitt–Deser–Misner (ADM)
mass M and spin a < M is well described by the Kerr met-
ric, which is an exact solution of Einstein field equations.
However, it is infected with three major issues: (i) the central
singularity where various curvature scalars blow up and GR
looses its predictive power, (ii) the instability originating due
to the mass inflation at the Cauchy horizon, and (iii) the exis-
tence of closed timelike curves in the spacetime. Over years,
several attempts have been made to get rid of one such issue
at a time by introducing some modified phenomenological
metrics. However, in a recent work [20], the authors used the
following “inner-degenerate” regularized stable Kerr metric
that is free from all these issues,

ds2 = C(r, θ)

[
−

(
1 − 2m(r) r

�(r, θ)

)
dt2

− 4 a m(r) r sin2 θ

�(r, θ)
dt dφ + �(r, θ)

�(r)
dr2

+ �(r, θ) dθ2 + A(r, θ) sin2 θ

�(r, θ)
dφ2

]
. (1)

This metric can be easily obtained from from the metric
presented in Eq. (16) of Ref. [10]. And, the special case where
C(r, θ) ≡ 1 corresponds to the well-known Gürses-Gürsey
metric [48]. Here, we have used the notations: �(r, θ) =
r2 + a2 cos2 θ, �(r) = r2 − 2m(r) r + a2, A(r, θ) =(
r2 + a2

)2 − � a2 sin2 θ , and m(r) is the mass profile intro-
duced to remove the mass inflation instability at the Cauchy
horizon r−. Note that the locations of the horizons r+ and
r− < r+ are given by the real positive roots of �(r) = 0. On
the other hand, the conformal factor C(r, θ) is there to tame
the central curvature singularity of the Kerr metric.

We are interested in investigating the QNM stability and
the shadow observables of this modified Kerr BH and put
constraints on various parameters of the metric. To keep our
analysis as general as possible, we shall work with the mass
profilem(r) and the conformal factorC(r, θ) unspecified, and
only fix them when necessary. However, in the same spirit of
Ref. [20], we impose two minimal criteria on the conformal
factor in order to avoid any additional singularity: C(r, θ) >

0 everywhere, and to keep the spacetime indistinguishable
from Kerr metric to a distant observer: C(r, θ) → 1+O(r−n)

with n ≥ 2. The second condition implies that the ADM
mass and the specific angular momentum of the black hole
are M = limr→∞m(r) and a, respectively.

Also, we follow the same efficient way of Ref. [20] for
parameterizing m(r) = F(r; r±) in terms of the event hori-
zon at r+ = M + √

M2 − a2 and a degenerate Cauchy hori-

zon at r− = a2
[
M + (1 − e)

√
M2 − a2

]−1
:
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m(r) = M
r2 + α r + β

r2 + γ r + μ
. (2)

To remove the mass inflation singularity, we should choose
β �= 0 and α �= γ so that the inner horizon is degenerate
and surface gravity is zero there. Following Ref. [20], the
coefficients are given by

α = a4 + r3− r+ − 3 a2 r− (r− + r+)

2 a2 M
, (3)

β = a2 (2 M − 3 r− − r+) + r2− (r− + 3 r+)

2 M
, (4)

γ = 2 M − 3 r− − r+ , (5)

μ = r3− r+
a2 . (6)

Then, for a given value of e, the extremal limit r− → r+
remains same as the Kerr case (namely a = M), which we
shall refer as “a-extremality”. Moreover, to ensure 0 < r− <

r+, we need to choose the parameter e such that 0 �= e < 2.
The metric in Eq. (1) reduces to a conformal Kerr BH by
setting e = 0. On the other hand, e → 2 is the “e-extremal”
limit for any fixed a ≤ M .

One may ask whether the above parameterization of the
mass profile m(r) is consistent and physical. It may seem
hard to answer this question in the absence of the hitherto
unknown field equation that may support the phenomeno-
logical metric in Eq. (1) as a solution. However, there are
two ways to tackle this issue. Assuming the metric to be a
non-vacuum solution of GR, one may write down an effective
energy-momentum tensor and check whether various energy
conditions are satisfied. It is discussed in detail in Ref. [20].
The authors conclude that for α < γ , not only weak but null
and dominant energy conditions are met. Though the strong
energy condition is always violated, one should not be too
alarmed with it since the metric may not be a solution to Ein-
stein’s field equations. For the same reason and to keep our
analysis theory-agnostic, we will not put any prior constrain
on the parameter space of e except what is dictated by the reg-
ularity of the metric itself, namely e ∈ (−3−3/

√
1 − a2∗, 2]

with a∗ := a/M [20]. Another way to check the consistency
of the mass profile is to consider its evolution under test par-
ticles absorption, which we shall discuss in the next section.

3 Consistency criterion on the mass profile

As discussed in the previous section, we want to impose a spe-
cific parameterization on the mass profile m(r) = F(r; r±).
This is only possible up to the a-extremal (a = M) configu-
ration of the BH given by Eq. (1). Now consider the process
in which such a BH with a ≤ M absorbs a test particle with
energy E << M and angular momentum L << M2. This

may change both the ADM mass and the angular momentum
of the initial black hole in such a way that the final configura-
tion has (a M+L) > (M+E)2 and r± becomes complex. As
a result, occurrence of such a process puts the viability of the
aforesaid parameterization in question. Thus, we want to put
some constraints on m(r) that can prevent such difficulties.

The above inequality holds if the particle’s energy sat-
isfy the upper bound E < Emax = aL/(M2 + a2). On
the other hand, such a particle will be absorbed by the
BH if it does not come across any turning points before
crossing the event horizon at r+. Neglecting back reactions
and using geodesic equations, the entering condition can be
translated to a lower bound on the test particle’s energy:
E ≥ Emin = (a σ L) /

[
2 Mr+ + a2(σ − 1) sin2θ

]
, where

σ = m(r+)/M . Thus, to prevent such a process we must
require, Emin ≥ Emax . It implies the consistency condi-
tion: σ ≥ r2+/M2, that is strictest for all allowed values of
θ ∈ [0, π). Therefore, if the mass profile satisfy the inequal-
ity m(r+) ≥ r2+/M , the BH will not absorb those particle
that could have made the parametrization inconsistent in the
final configuration.

For the mass profile given in Ref. [20], this consistency
criteria is not satisfied if the initial BH is sub-extremal with
a < M . Therefore, one may choose a different mass pro-
file which satisfies the consistency criteria under test particle
approximation. However, in the same spirit of [46], it is rea-
sonable to expect that the situation improves and the apparent
inconsistency in the parametrization of Ref. [20] goes away
as one properly takes into account the back reaction effects.
In contrast, if we start with an a-extremal BH, the consis-
tency condition becomes m(r+) ≥ M , which is satisfied by
the choice of m(r) given in Ref. [20] even under test particle
approximation.

Though it looks similar to the calculation done to check the
validity of the weak cosmic censorship (WCC) conjecture for
BHs [44–47], there is a subtle difference. WCC protects the
predictive power the underlying gravity theory, it is necessary
to censor out those BH solutions in which there is a possibility
of destroying the horizon and exposing the central singularity
by test particle absorption. However, for the metric in Eq. (1),
there is no such curvature singularity inside the event horizon.
Thus, the inequality derived above is not a strict necessity,
it is just to make the aforesaid parameterization consistent.
If we use different parameterization, we would have got a
different criteria on m(r). However, for the purpose of this
paper, we shall stick to the same parameterization for the
mass profile as given in Ref. [20].

4 Scalar QNM spectrum

Note that, so far we have not specified any particular form for
the conformal factor C(r, θ) or the mass profile m(r) except
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putting some conditions on them. However, to calculate the
QNM spectrum and shadow of this BH in later sections, we
have to specify their functional forms. For the mass pro-
file, we consider the same form as given in Eqs. (28–32) of
Ref. [20].

However, we choose a different conformal factorC(r, θ) =
1 + b/r2z (with b > 0, so that the conformal factor is non-
zero everywhere) than what are proposed in Ref. [20]. This
choice for C(r, θ) is motivated by two facts. Firstly, it is much
simpler to work with and performs the job that it is designed
for, namely it regularizes the central curvature singularity
of the Kerr metric if z ≥ 2. In addition, such a choice of
the conformal factor makes the scalar wave equation sepa-
rable, which we shall exploit in finding the QNM spectrum.
However, for the purpose of this paper, we shall consider the
simplest case z = 2.

Consider that a massless scalar field �(xμ) perturbs the
the stationary and axisymmetric BH geometry given in 1
with C(r, θ) = ψ(r) = 1 + b/r4, and m(r) as pre-
scribed in Ref. [20]. Owing to the symmetries of the back-
ground spacetime, we can decompose the field as �(xμ) =
Rlm(r) Slm(θ)e−i (ω t−m φ), where Slm(θ) is the spheroidal
harmonics which satisfies the angular Teukolsky equation
[49],
[
d

dx

(
1 − x2) d

dx
+

(
Elm + a2 ω2 x2 − m2

1 − x2

)]
Slm(x)

= 0, (7)

with x = cos θ and Elm is the separation constant. Note that
even in the presence of conformal factor ψ(r), we can cast
the radial equation into the standard Teukolsky form [49]:

[
d

dr

(
�1

d

dr

)
+

(
K 2

�1
− λlm ψ

)]
Rlm(r) = 0, (8)

by introducing a function �1(r) = ψ(r)�(r). Here, λlm =
Elm + a2 ω2 − 2 a m ω and K = ψ(r)

[
ω

(
a2 + r2

) − a m
]
.

The QNMs are the solution of the above equations with ingo-
ing boundary conditions at the event horizon and outgoing
boundary conditions at infinity,

Rlm(r → r+) ∼ e−iωr∗ and Rlm(r → ∞) ∼ eiωr∗ ,

(9)

where r∗ is the tortoise coordinate defined by dr/dr∗ :=
�1(r)/(r2+a2). The radial function Rlm , subject to the above
QNM boundary conditions, can be expressed as follows [50,
51],

Rlm = ulm(z)

r
ei B1(r) z−2 i B2(r+) . (10)

Here, z = (r − r+)/(r − r−), B1(r) = K (r)/�1(r),
and B2(r+) = K (r+)/�′

1(r+). Replacing the above expres-

sion in Eq. (8), we obtain an equation for ulm(z). Note
that both the radial and angular equation depends on ω

and λlm . Thus, to obtain the desired QNMs, we need to
solve these two equations simultaneously. We use theBlack
Hole Perturbation Toolkit [52] to solve the angu-
lar Teukolsky equation in Eq. (7), and QNMSpectral pack-
age [53] to solve the equation for ulm(z) numerically. For
given values of (a, b, e, �), the output of this analysis is the
set of QNM frequencies and separation constants. The real
and imaginary part of the scalar QNMs are shown in Fig. 1 for
various choice of parameters (e, b, a) for the case of � = 0
fundamental mode. As it can be seen from Fig. 1, the imag-
inary part of QNM remains negative for the entire range of
the additional parameters e and b, indicating the regularized
black hole to be stable in the entire parameter space. Fur-
thermore, we interestingly find that with increasing values
of the conformal parameter (b), the imaginary part of the
scalar QNM frequency decreases for the entire range of e.
As the conformal factor is introduced to tame the central
curvature singularity, we can conclude that BHs with regular
cores are more stable as compared to the singular ones. Also,
Fig. 1 clearly demonstrates the dependence of QNMs on the
parameter e. For a given value of b, the decay time of the per-
turbation increases (or, stays the same for non-rotating case)
with increasing values of e.

Although we have specified a form of the conformal factor
in the previous section, we shall see that for the study of
the BH shadow, no particular form for C(r, θ) needs to be
assumed. It is because for any choice of the conformal factor
C(r, θ), null geodesic equations are separable and take the
following form,

Because of the complicated structure of the perturbation
equations in a general curved spacetime, it is often difficult to
obtain any analytical results. In such a scenario, one resorts
to numerical techniques, as we did previously. However, in
some limited cases, it is indeed possible to solve the pertur-
bation equation analytically. One such approximation is the
eikonal limit or geometric optics limit. We have cross-verified
our results for eikonal modes (presented in Fig. 2) with ana-
lytical Lyapunov methods [54–56], which are in excellent
agreement with each other. In the eikonal limit (� >> 1
keeping m = �), the QNMs can be interpreted in terms of
various properties of the equatorial null geodesics trapped
at the photon sphere at r = rc. The real parts of the QNMs
are proportional to the angular frequency �c of these null
geodesics at the photon sphere. In contrast, the imaginary
part is related to the Lyapunov exponent �Lya, which dic-
tates the instability timescale of the equatorial null geodesics
at the photon sphere. Thus, the eikonal QNMs take the form
[55]:

ωn� = ��c − i (n + 1

2
) |�Lya| , (11)
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Fig. 1 The variation of both real (left panel) and imaginary parts (right panel) of � = 0 scalar QNM modes are shown. The parameters are taken
to be: M = 1, a ∈ {0.4, 0.8}, e ∈ (−3 − 3/

√
1 − a2, 2], and b ∈ {0.01, 1, 10}

Fig. 2 In this figure, we represent the real and imaginary part of the QNM computed analytically in the eikonal limit with � = 10. The parameters
are taken to be: M = 1, a ∈ {0, 0.4, 0.8}, e ∈ (−3 − 3/

√
1 − a2∗, 2], and b = 0.1

where n is the overtone number. The expression for the �c

and �Lya can be written in terms of the metric coefficients as
[57],

�c = gtφ + gtt y

gφφ + gtφ y

∣∣∣∣
r=rc

,

�2
Lya = g2

tφ − gtt gφφ

grr

⎧⎨
⎩
gtt g′′

φφ − g′′
t t gφφ − 2 y

(
g′′
t t gtφ − gtt g′′

tφ

)

2 gtt
(
gφφ + y gtφ

)2

⎫⎬
⎭

∣∣∣∣
r=rc

,

(12)

where gμν denotes the metric coefficient given in Eq. (1),
prime (′) denotes derivative with respect to r and y is the
impact factor, the expression of which can be written as fol-
lows [57],

y = −gtφ
gtt

+
√(

gtφ
gtt

)2

− gφφ

gtt

∣∣∣∣
r=rc

. (13)

To summarize, this section considers the scalar perturbation
of the regularized stable Kerr metric and computed the QNM
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spectrum both analytically and numerically. We found that
both for small and large values of �, the imaginary part of
the QNM modes are always negative, implying the stability
of the underlying BH in the entire parameter space, namely
b > 0 and e ∈ (−3 − 3/

√
1 − a2∗, 2] with a∗ = a/M .

Thus, it is not possible to constrain these extra parameters
from the stability analysis. As a result, we resort to shadow
observations in order to obtain any possible bounds on the
additional parameters, which is discussed in the next section.

5 Bounds from shadow observations

BH shadow provides us with a powerful tool to constrain
various parameters of the metric under consideration. In this
section, we shall study the shadow cast by the regularized
stable Kerr BH and compare it with the EHT observations
for M87∗ and Sgr A∗ shadows [30,32,34]. The goal is to
restrict the parameter space of these regularized BHs such
that their shadow sizes match with EHT observations.

Although we have specified a form of the conformal factor
in the previous section, we shall see that for the study of
the BH shadow, no particular form for C(r, θ) needs to be
assumed. It is because for any choice of the conformal factor
C(r, θ), null geodesic equations are separable and take the
following form,

C2(r, θ)�2(r, θ) ṙ2 = −Q �(r) +
[
(r2 + a2) E − a Lz

]2

:= R(r), (14)

and C2(r, θ)�2(r, θ) θ̇2 = Q −
[ Lz

sinθ
− a E sinθ

]2

:= �(θ) . (15)

Here, E and Lz are two constants of motion associated
to photon’s energy, and the z-components of the angular
momentum. The separability implies the existence of another
constant of motion Q, namely the Carter constant. Now, to
construct the BH shadow, we require the presence of a photon
region filled with unstable spherical null geodesics satisfying
R(rp) = R′(rp) = 0 with R′′(rp) < 0. Solving these two
equations simultaneously, we obtain two useful quantities,

ξ := Lz

E
= 1

a

[
r2
p + a2 − 2 rp �(r)

rp − M(rp)

]
, and

η := Q

E2 = 4 rp �(rp)[
rp − M(rp)

]2 , (16)

where M(r) = m(r) + r m′(r) with the mass profile m(r)
given in Ref. [20]. However, one can not put any arbitrary
values of rp in the above set of equations. It is because the
spherical null geodesics are confined only in a finite portion
of the spacetime outside the BH known as the photon region.

Fig. 3 This figure shows the shadow corresponding to metric (Eq. 1)
if used to model M87∗ BH shadow (M = 1) for a∗ = 0.5 and dif-
ferent values of e. Beyond a critical value e > ec ≈ 1.75, the shadow
size becomes bigger than 45 μas and becomes inconsistent with EHT
observations [30]

This region is represented by the inequality �(θ, ξ, η) ≥ 0.
At any fixed value of θ , this inequality is satisfied when rp
varies between two end points

[
r p−, r p+

]
where equality holds

true. In particular, at the equatorial plane, these end points
correspond to light rings. In fact, the existence of at least
one light ring outside the ergoregion is assured by a theorem
proved in Ref. [58].

One can use (ξ, η) to span the observer’s sky with suitably
defined celestial coordinates (α, β). For a distant observer,
these coordinates are given in terms of the inclination angle
θi :

α = −ξ cosecθi , and β = ±
√

η −
(
ξ cosecθi − a sinθi

)2
.

(17)

For a Schwarzschild BH, the shadow boundary is a circle
of radius Rsh = 3

√
3 M . In contrast, rotation makes the

size of a Kerr shadow varies away from Rsh . Usually, such
variation is negligible if the BH is not rotating very rapidly.
However, in our case, the shadow of a regularized stable Kerr
BH depends on an extra parameter e. For a fixed values of
(M, a), the BH shadow will have different angular sizes as e
varies in the range (−3 − 3/

√
1 − a2∗, 2] (with a∗ = a/M)

as prescribed in Ref. [20]. For example, see Fig. 3 in which
M87∗ shadow sizes (in M = 1 unit) are shown for a∗ = 0.5
and different choices of e values.

Thus, for fixed values of (M, a∗, θi , D), there can be a
range of e-values for which the shadow will be inconsis-
tent with the angular size θd [60,61] as observed by EHT,
check Table 1. For this purpose, let us first consider the
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Table 1 EHT observational data for M87∗ and Sgr A∗ shadows

Central BHs Mass (M/M�) Spin (a∗) Distance (D) Inclination (θi ) Shadow size (θd ) References

M87∗ 6.5 × 109 0.5–0.94 16.8 Mpc 17◦ 42 ± 3µas [30,32]

Sgr A∗ 4.0 × 106 0.44 8 kpc < 50◦ 51.8 ± 2.3 μas [34,59]

Fig. 4 Contour plots for angular size of M87∗ shadow if modelled by the metric in Eq. (1). Values of a∗ ∈ [0.5, 0.94], and e ∈ (−5, 2) for which
the shadow size is less than 39 μas or greater than 45 μas are disallowed. Values of b do not effect the shadow size

M87∗ shadow. In this case, since the angular momentum
parameter consistent with observation can take a range of
values a∗ ∈ [0.5, 0.94], we have shown below the variation
in shadow size using contour plots Fig. 4. From these plots,
it is very easy to identify the disallowed regions which are
inconsistent with EHT observations.

For the case of Sgr A∗, a unique spin parameter a∗ ≈ 0.44
can be fixed by studying the multiple quasi-periodic oscil-
lations of radio emissions [59,62]. However, EHT shadow
observation is consistent with all inclination angles that are
less than 50◦. Therefore, we can show the variation in shadow
size using contour plots for different choices of (θi , e), see
Fig. 5. It is interesting to note that the Sgr A∗ shadow
size is consistent with EHT observations for all values of
e ∈

(
− 3 − 3/

√
1 − (0.44)2 ≈ −6.341, 1.7

]
with θi < 50◦

and a∗ ≈ 0.44. Whereas all values of e > 1.7 are disallowed
by EHT observations [34].

6 Discussion and conclusion

BHs are inevitable consequence of Einstein’s field equations.
The recent observation of shadow by the EHT along with the
detection of gravitational wave by the LIGO-Virgo-KAGRA
(LVK) collaboration provide direct and compelling evidence
for the existence of such objects in nature. These astrophys-
ical observations are in consistent with the Kerr paradigm,
namely the central compact object being a Kerr BH com-
pletely described by the mass (M) and spin (a). However, as
discussed in the introduction, the Kerr solution suffers from

various pathologies such as the existence of spacetime singu-
larities and mass inflation singularity at the Cauchy horizon.
It is widely believed that such issues are consequence of the
limitations of classical GR and will be resolved by a full quan-
tum gravity formalism. However, in the absence of a consis-
tent quantum theory of gravity, one may try to tackle the
these problems using phenomenological models. One such
model of regularized stable Kerr BH has been recently devel-
oped in Refs. [19,20]. In addition to mass and spin, these BH
solutions depend on two additional parameters: a conformal
factor b, and a deviation parameter e that regularizes and sta-
bilizes the Kerr solution. In this work, we have studied some
observational signatures of these parameters on BH QNMs
and shadow observations.

Astrophysical BHs are expected to be stable under per-
turbations. As a result, stability turns out to be an important
criteria for any well behaved BH spacetime. One of the main
goal of this work is to put bounds on (b, e) requiring stabil-
ity of regularized stable Kerr BH when perturbed. For this
purpose, we compute the scalar QNM modes and investi-
gate whether the imaginary part of these modes are negative
needed for the stability. Our analysis shows that the regu-
larized Kerr BHs are stable under scalar perturbation for all
allowed values of (b, e). Interestingly, for a fixed value of
e, the imaginary parts ωI of QNM frequencies decrease as
we increase the values of b, which makes the BHs “more”
stable as it will take less relaxation time to shake off the
perturbation. Also, for a fixed a < M , in the “e-extremal”
limit (e → 2), both imaginary and real parts of QNM fre-
quencies tend towards zero. This gives us a way to identify
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Fig. 5 Contour plots for angular size of Sgr A∗ shadow if modelled by the metric in Eq. (1). Values of θi ∈ [5, 50], and e ∈ (−5, 2) for which the
shadow size is less than 49.5 μas or greater than 54.1 μas are disallowed. Value of b does not effect the shadow size

“e-extremality”. Since small values ωI lead to longer relax-
ation time, near-extremal values of e make the BH “less”
stable.

We have also studied the shadow structure of these reg-
ularized BH and its dependence on the additional parame-
ters (e, b). Since the parameter b appears in the conformal
factor, it doesn’t affect the null geodesics and the shadow
radius. In contrast, choice of e values has a sharp impact on
the angular shadow size, which we compare with M87∗ and
Sgr A∗ images. Consistency with EHT shadow observations
put stringent restrictions on the parameter space of e, but
keep b unconstrained. For the allowed values of the e, these
regularized BHs mimic the Kerr shadow of corresponding
mass and spin, but can still be distinguished from Kerr using
QNM structure. To the best of our knowledge, this is the first
observational bounds on the parameters of regularized BHs
in consideration.

In future, one may try to extend the consistency criteria
discussed in Sect. 3 on the mass profile m(r) by taking back
reaction into account. Also, we want to study other important
properties of these BHs, such as their response to an exter-
nal tidal field and check whether these BHs have zero Love
number like Kerr. Further constraints in the parameter space
can come from the study of gravitational lensing as well.
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