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Abstract The elusive nature of Dark Matter (DM) remains
a mystery far from being solved. A vast effort is dedicated
to search for signatures of feeble DM interactions with Stan-
dard Model particles. In this work, we explore the signatures
of axion DM boosted by interactions with Supernova neu-
trinos: Neutrino-Boosted Axion DM (νBADM). We focus
on νBADM converting into photons in the Galactic mag-
netic field, generating a peculiar gamma-ray flux. This signal
falls in the poorly explored MeV energy range, that will be
probed by next generation gamma-ray missions. Once more,
astrophysical searches might act as a probe of fundamental
physics, unveiling the nature and properties of DM.

1 Introduction

Dark Matter (DM), precisely cold DM, is a key ingredient of
contemporary physics to understand a series of astrophysical
and cosmological observations [1–8]. However, its nature
still remains an open problem. Remarkably, we do not have
any indication that DM interacts with Standard Model (SM)
particles [9]. Cosmic fluxes (as cosmic rays, gamma-rays
and neutrinos) are a powerful tool to reveal whether DM
is coupled with SM particles or not because, traveling on
large distances, these particles maximize the probability of
interactions with DM.

Many extensions of the SM include Axion-Like Particles,
in the following simply ‘axions’, light pseudoscalar particles
with feeble interactions with ordinary matter. For instance,
effective theories derived from string theory predict several
axions in a wide range of masses [10,11], typically in the
ultralight range, populating the so-called string axiverse [12]
(see also [13,14]). It is suggestive to explain the nature of
DM with axions [15–17] (see also [18–22] ). As a matter
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of fact, this DM candidate is receiving special attention in
the last decade. A common feature of many axions models
is a coupling with SM fermions, important in astrophysical
and laboratory searches. In particular, in this work we focus
on the interesting and largely unconstrained interaction of
axions with neutrinos [23–26].

Here, we propose that neutrinos produced in a Galactic
Supernova (SN) explosion might undergo elastic scattering
with DM axions, boosting them and producing a relativistic
flux of Neutrino-Boosted Axion DM (νBADM). We charac-
terize the flux of νBADM for the first time, and show that
the phenomenology associated to νBADM is broad. As a
first preliminary study, we discuss the signatures of νBADM
in presence of axion-photon interactions. Indeed, the vast
majority of axion models predict an interaction with photons
through the Lagrangian term

Lint = 1

4
gaγ aFμν F̃

μν, (1)

where Fμν is the electromagnetic tensor, F̃μν is its dual and
gaγ denotes the axion-photon coupling. This coupling makes
it possible for photons to oscillate into axions (and vice versa)
in an external electromagnetic field. This peculiarity is at the
foundation of experimental axion searches, e. g. [27–31]. For
our purpose, we note that a fraction of the νBADM flux might
convert into photons when traversing the Galactic magnetic
field. The associated gamma-ray signal falls in the so-called
MeV gap [32], in the reach of future gamma-ray experiments.

This work is organized as follows. In Sect. 2 we describe
some important features of the νBADM flux. In Sect. 3, we
discuss the gamma-ray signal associated with νBADM con-
verting into photons in the Galactic magnetic field. More-
over, we estimate the background to assess the detectability
of such a signal in experiments at MeV energies. A descrip-
tion of these experiments is given in Sect. 4. In Sect. 5 we
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discuss the region of the axion parameter space accessible
by these experiments and conclude.

2 Supernova boosted axion dark matter

The recent idea that DM might be boosted by scattering
with high-energy particles is applied in various cases, pro-
viding interesting phenomenology and promising detection
perspectives, i.e. [33–48].

In this work we discuss the possibility of boosting DM
axions by means of elastic scattering with Supernova (SN)
neutrinos. Indeed, SNe are famously known as neutrino
factories since most of their energy is emitted in a neu-
trino burst of all flavors with O(10) MeV energies [49–51].
The axion-neutrino interaction is dictated by the following
Lagrangian [25]1

L = gaν ν̄γ μγ 5ν∂μa, (2)

where ν is the neutrino field and gaν the dimensionful axion-
neutrino coupling. We consider an axion model coupled only
to tau neutrinos, a largely unconstrained interaction, and we
consider gaν = 3 GeV−1, that is currently unconstrained
but lies within the reach of future neutrino oscillation exper-
iments [25], like JUNO [52] and DUNE [53]. Precisely, in
the mass range of interest the strongest constraint is the cos-
mological one, excluding gaν � 10 GeV−1 [25].

The interaction in Eq. (2) allows neutrinos to boost axion
DM through the Compton scattering νa → νa. The spin-
summed matrix element of the process, neglecting the axion
mass, is calculated to be2

∑
|M|2 � 32g4

aνm
4
ν

E2
a

Eν(Eν − Ea)
, (3)

for a neutrino of mass mν , with energy and momentum Eν

and pν , respectively, interacting with an axion of mass ma ,
initially at rest, and boosting it to an energy Ea . Since this
interaction depends on the absolute value of the neutrino
masses, we take these values to follow a normal hierarchy
with values mν,1 � mν,2 � mν,3 = 50 meV, suggested by

1 Note that the choice of the derivative form of the Lagrangian in Eq. (2)
is mandatory instead of the pseudoscalar form because in the considered
process, aν → aν, two axion lines are attached to a single fermion
line [51]. This conclusion is valid under the assumption that axions are
Goldstone bosons.
2 The matrix element in Eq. (3) does not take into account that axions
interact with a neutrino flavor eigenstate, different from the mass eigen-
state. To include this effect under our assumption of normal hierar-
chy, the matrix element in Eq. (3) has to be multiplied by a factor
cos2 θ13 cos2 θ23 and consider only the heaviest mass eigenstate to con-
tribute to the process. The relevant neutrino oscillations parameter are
sin2 θ13 = 0.22 and sin2 θ23 = 0.55 [28].

neutrino oscillation data [28] and the absolute value of the
heavy neutrino state is compatible with both laboratory [54–
56] and cosmological constraints [57,58]. The cross section
of this process is easily obtained as

dσ

dEa
= |M|2

32πma |pν |Eν

, (4)

where the neutrino energy necessary to boost an axion to
energy Ea is Eν � mν

√
Ea/2ma , making possible to transfer

most of the neutrino energy to the axion forma � 10−11 eV in
the considered scenario. We mention that a similar flux might
be induced by different types of axion-neutrino interactions,
as L ∼ a2ν̄ν that could be interpreted as a low-energy effec-
tive interaction mediated by a heavy particle. For simplicity,
in this work we only consider the more theoretically moti-
vated interaction in Eq. (2).

The energy-dependence of the resulting νBADM flux
strongly depends on the properties of the incident SN neu-
trino flux. The time-integrated SN neutrino spectrum can be
approximately described by

dNν

dEν

= C0

(
Eν

E0

)β

e
−(1+β) Eν

E0 , (5)

where for the tau-neutrino spectrum C0 = 5×1056 MeV−1,
E0 = 15 MeV and β = 1.3 [59]. Note that we neglect the
effect of neutrino oscillations on the SN neutrino spectrum
since it would amount to a deviation smaller than 30% from
the considered spectrum and it is within the uncertainties of
our calculation. Here we assume that only ντ interact with
axion DM with the same coupling in Eq. (2). Interactions
with neutrinos of other flavors might lead to a comparable
additional flux and, in the case of coupling with electron
neutrinos, it might give an interesting phenomenology asso-
ciated with the neutronization burst. We leave this possibility
for future studies.

The cross section in Eq. (4) is typically small, O(10−50

cm2), but the huge neutrino flux3 and the large number
density of axion DM targets makes this interaction rele-
vant in our context. Precisely, for an axion of mass ma ∼
10−8 eV, the local DM number density would be na =
200 MeV cm−3 /ma � O (

1016 cm−3
)
.

Within 1 kpc from the Sun, there are 31 SN candi-
dates [61]. The most famous is Betelgeuse, at 0.197 kpc, and
the closest one is Spica, at 0.08 kpc. Considering a nearby
Galactic SN (dSN � 1 kpc) and approximating the DM den-
sity with the local one on these small scales, we calculate the

3 This is the reason why the Diffuse SN Neutrino Background [60],
with a flux of � 1 cm−2 s−1, is not expected to efficiently boost axion
DM. Indeed, for comparison, the SN neutrino flux (for the parameters
considered in this work) is ∼ 1.6 × 1013 cm−2 s−1.
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Fig. 1 νBADM flux for the benchmark values gaν = 3 GeV−1, mν =
50 meV and two axion masses, ma = 10−11 eV (black solid line) and
ma = 10−12 eV (red line). For comparison, the SN Primakoff flux for
massless axions with a coupling gaγ = 10−12 GeV−1 (black dashed
line) is shown. These fluxes refer to a SN at dSN = 0.197 kpc

time-integrated flux of νBADM per unit energy to be

d
a

dEa
= dSNna

4πd2
SN

∫ ∞

Emin

dEν

dNν

dEν

dσ

dEa
, (6)

where

Emin = Ea − ma

2
+ 1

2

√
E2
ama − m3

a + 2(Ea + ma)m2
ν

ma
,

(7)

is the lower limit of integration on the neutrino energy.
The flux obtained from Eq. (6) is shown in Fig. 1 for two

representative axion masses, ma = 10−11 eV (black solid
line) and ma = 10−12 eV (red line), and compared with the
Primakoff flux of light SN axions with gaγ = 10−12 GeV−1

(black dashed line). The considered SN is at a distance
dSN = 0.197 kpc, as Betelgeuse. The energy range in which
the νBADM flux falls depends on the energy of the incident
neutrinos. Therefore, this flux is characterized by lower peak
energies (O(MeV)) compared to an axion flux thermally pro-
duced in the SN core.

3 Detectability of νBADM

As discussed in the previous section, in Fig. 1 we notice that
the νBADM flux is peaked in the few MeV energy range. This
observation suggests that, if axions couple to photons through
Eq. (1), a fraction of the νBADM flux might be converted
into photons while traveling in the Galactic magnetic field.
The conversion probability in the direction of Betelgeuse, for

example, is given by [63,64]

Paγ = 8.7 × 10−6
(

gaγ

10−11 GeV−1

)2 (
BT

1µG

)2

×
(

dSN
0.197 kpc

)2 sin2(qdSN )

(qdSN )2 ,

(8)

where BT = 1.4µG is the modulus of the transverse Galactic
magnetic field and the momentum transfer is

qdSN =
[

77
( ma

0.1neV

)2 − 0.14

]
dSN

0.197 kpc

1 keV

Ea
. (9)

Equations (6)–(8) completely characterize the gamma-ray
signature associated with the νBADM flux. We note that the
expected gamma-ray emission from a core-collapse SNe is
significant only after days from the bounce and at sub-MeV
energies [65,66]. Therefore, we expect a gamma-ray signal
in coincidence with the neutrino burst to be originated only
from exotic physics.

We briefly comment that the Gamma Ray Spectrome-
ter of the Solar Maximum Mission, that was, in principle,
able to set an upper limit on the gamma-ray flux associated
with νBADM in coincidence with SN 1987A [67–69]. The
upper bound on the gamma-ray flux in the energy range 4.1–
6.4 MeV sets a constraint on νBADM converting into pho-
tons. For this estimate we conservatively considered that neu-
trinos travel for 1 kpc in the Large Magellanic Cloud, where
the DM density is taken to be comparable with the local one
(ρDM = 200 MeV cm−3 [70]). The obtained constraints lies
below other existent astrophysical bounds [69,71–75].

It is clear that to improve the detectability of this signal,
experiments at MeV energies should be employed. Indeed,
the gamma-ray signal associated with νBADM conversion
might be detectable in current or future experiments opera-
tive in this energy range, which is informally known as MeV
gap [32], in view of the lack of observational measurements
at these energies. Indeed, since the Imaging Compton Tele-
scope (COMPTEL) [76] on board the Compton Gamma Ray
Observatory (operating until the 2000), the gamma-ray sky
above a few MeV remained mostly unexplored.

To understand if the νBADM signal is observable, we have
to estimate the number of background events that a detector
would observe in coincidence with a SN explosion, during
the ∼ 10 s window where we expect the neutrino burst and
the associated νBADM flux. For this purpose we employ
the model for the diffuse gamma-ray background derived in
Ref. [62] from the local flux of cosmic rays [77,78] and the
local HI gamma-ray emissivity spectrum [79]. This model is
able to reproduce the measured diffuse gamma-ray emission
from the MeV [80] within the uncertainties related to solar
modulation [81]. In addition, it also includes lines produced
from the decay of unstable nuclei. We emphasize that the
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06 background emission below a hundred MeV is really uncer-

tain due to the lack of experimental data and the uncertainties
related to the modeling of that region. Therefore, this estimate
is taken just to set a reference for the number of background
events, but it should be remarked that uncertainties can be as
large as a factor of 2.

In Table 1 we report the differential flux and fluence (num-
ber of events detected per unit of area) obtained from the
reference background model. Namely, we report the average
flux within 1◦ (similar to the angular resolution of near-future
detectors in the MeV region) around the position of the sky
corresponding to Betelgeuse (b = 9◦ l = 199◦), as a candi-
date for a nearby SN. Since the νBADM signal is expected to
have a duration of around 10 s (a burst for the detector), the
fluence is computed for this exposure time. From Table 1 we
notice that the background decreases as the energy increases.
Therefore, the detection strategy is to look at energies of a
few MeV, to maximize the signal-to-noise ratio (SNR).

Once the background is characterized, in the next section
we summarize some running and future experiments able to
probe this energy range.

4 Experiments in the MeV gap

Nearly all current measurements of gamma-rays are limited
to energies above hundreds of MeV, with most of the efforts
devoted to identify signatures of Weakly Interacting Massive
Particles (WIMPs) (see e. g. [28] and references therein).
There has only recently been a renewed interest in exploring
the few MeV range. Many proposed missions are designed
to cover the MeV gap, showing the strong interest of the sci-
entific community in observing this energy band (it is often
said that MeV astronomy is for nuclear physics what opti-
cal astronomy is for atomic physics). As an example of the
potential of observations in this energy range, we comment
that different DM models could generally produce distinc-
tive photon signatures at � 1–100 MeV, such as lines or
boxes [82]. Moreover, these measurements would improve
our knowledge of the Galactic center (related to the Galactic
Center Excess [83]) and the injection of leptons from pulsars,
among other relevant astrophysical phenomena.

In this section, we explore the detection perspectives of the
proposed model for present and future gamma-ray missions,
sensitive to the ∼ sub-MeV to GeV range. Table 2 summa-
rizes, for each experiment, the optimal energy range for the
detection of νBADM and the corresponding averaged effec-
tive area. Moreover, we remark that the emission produced
from axions thermally produced in the SN and converting
into photons, which is peaked at higher energies and poten-
tially detectable in Fermi-LAT [84], would not be detectable
in the MeV range.
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4.1 NuSTAR

The Nuclear Spectroscopic Telescope Array (NuSTAR) [85]
is a high-energy (its efficiency is peaked in the range ∼
2−79 keV) X-ray telescope that was launched in 2012 and
mainly consists of two co-aligned grazing incidence tele-
scopes able to extend the sensitivity to higher energies as
compared to previous missions such as Chandra and XMM
with better temporal resolution. Although NuSTAR was
designed for relatively long observations (1 day - weeks
in duration), it can be used for the observation of very
fast transient emissions due to its good temporal resolu-
tion (< 0.1 ms). NuSTAR has a maximum effective area
of � 800 cm2 at ∼ 10 keV while it goes down to an average
effective area of ∼ 200 cm2 between 20–80 keV.

4.2 COSI

The Compton Spectrometer and Imager (COSI) [86,87], is
a gamma-ray telescope expected to be launched in 2025.
A first version of COSI, was successfully operating aboard
NASA’s super pressure balloon in 2016 for a 46-day flight.
The main goals of this mission are the determination of the
nature of Galactic positrons, the study of stellar evolution
and nucleosynthesis in the Milky Way, and measurements of
the polarization of gamma-ray bursts (GRBs) and compact
objects. Moreover, this experiment recently gained attention
in the context of exotic physics searches [88]. COSI is able
to perform measurements of the diffuse and transient events
in the 0.2-5 MeV region, having a good background rejec-
tion and allowing for detection of GRBs or other gamma-ray
flares over > 50% of the sky. Its effective area is about 8 cm2

in the range 0.5–1.5 MeV. In fact, this mission seems to be
optimal for the detection of the νBADM emission (see also
Ref. [88] for detailed information on other prospects for DM
searches from COSI).

4.3 MeVCube

The MeVCube experiment is a Compton telescope based on
the CubeSat standard that has been proposed to probe the
100 keV −1 MeV energy range [89] and is expected to be a
powerful instrument for transient observations. The average
effective area in this range is approximately A = 6 cm2 for
normal incidence gamma-rays in its standard configuration
(called 6U , which stands for 6 Cubesat units combined), but
this can be increased by using the combination of more mod-
ules. Current studied extensions consist of 12 and 16 units
combined. The 12U extension of MeVCube is expected to
have an average effective area of ∼ 15 cm2. Its maximum
effective area is of 20 cm2 for the 12U extension and of
10 cm2 for the 6U configuration at 1 MeV.

4.4 e-ASTROGAM

e-ASTROGAM [90] is a γ -ray telescope, whose proposal is
in review by ESA, operating from about 150 keV to 3 GeV by
combining the detection of Compton photons (0.15–30 MeV)
and pair photons (> 10 MeV), similarly to AMEGO. This
experiment expects to explore the MeV gap with an improve-
ment of one-two orders of magnitude in sensitivity compared
to the current state of the art (particularly, COMPTEL) and
achieve a great improvement on source localisation accuracy
(angular resolution � 1◦ for 0.3–2 MeV. It is designed to
substantially improve the characterisation of the emission of
GRBs, disentangling the high energy prompt emission from
the afterglow component and measure the delay time with
respect to the prompt keV–MeV component. Its effective area
is 120–560 cm2 (300 cm2 at 1 MeV) with an average effective
area from 3 to 10 MeV is around 100 cm2. Above 10 MeV
(the pair-production domain of the satellite) the effective area
increases to above 103 cm2 in the energy range between 50
and 3 × 103 MeV.

4.5 ComPair

The Compton-Pair Production Space Telescope (ComPair)
[91,92] is a mission-concept proposed as a prototype of the
AMEGO experiment to investigate the energy range from
200 keV to more than 500 MeV with high angular resolution
and much better sensitivity than COMPTEL (around a factor
of 20–50 better). It also operates detecting both Compton-
scattering events at lower energy and pair-production events
at higher energies. Its effective area is 50–400 cm2 below
10 MeV and 200–1200 cm2 above.

4.6 AMEGO

The All-sky Medium Energy Gamma-ray Observatory
(AMEGO) [93] (and its upgraded version, AMEGO-X [94])
is a mission expected to provide essential contributions to
multimessenger astrophysics in the next years. This satel-
lite would operate both as a Compton and pair-conversion
telescope with great sensitivity between ∼ 200 keV and
> 5 GeV. This experiment is focused on the observation
of astrophysical objects that produce gravitational waves
and neutrinos in the extreme Universe through the study of
extreme environments, such as kilonovae and supernovae,
gamma-ray bursts and active galactic nuclei. AMEGO has
an effective area that ranges from 500 to 1000 cm2 across
four decades of energy. For events of 10 MeV to ∼ 5 GeV
its effective area is ∼ 500 cm2. For events of 1–10 MeV
its effective area is ∼ 300 cm2. For events labelled as non-
tracked (from 0.1 to 100 MeV) the effective area is around
3 × 103 cm2.
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4.7 GECCO

The Galactic Explorer with a Coded Aperture Mask Comp-
ton Telescope (GECCO) [95] is a telescope designed to con-
duct high-sensitivity measurements of the gamma-ray light
in the energy range from ∼ 0.2 to 10 MeV and create inten-
sity maps with high spectral and spatial resolution (∼ 1−2′
angular resolution in the full energy range in mask mode).
While most of the gamma-ray missions covering the MeV
gap mainly focus on a Compton telescope, the GECCO mis-
sion combines a Compton telescope with the photoelectric
regime with a coded mask. It will be able to perform sensitive
observations of the sky at MeV energies with unprecedented
high spatial resolution that allows disentangling sources from
diffuse emission (with special interest on the Galactic cen-
tre, the origin of the Fermi Bubbles and that of the 511 keV
line). It will also focus on the study of Galactic winds and
the role of low-energy cosmic rays in Galactic evolution and
their sources, while being able to precisely localise transients.
Preliminary simulations of the performance of this telescope
shows that its operation in the 0.1–10 MeV energy range will
have an energy resolution of < 1% and that its effective area
will be of ∼ 1200 cm2 between 0.3–3 MeV.

4.8 Advanced particle astrophysics telescope

The Advanced Particle astrophysics Telescope (APT) [96]
is a space-based mission proposed to explore the gamma-
ray sky with two main goals: confirm or rule out the thermal
WIMP dark matter paradigm and localize the prompt electro-
magnetic counterparts of gravity-wave/neutron-star mergers.
This mission is expected to improve Fermi [97] sensitivity
at GeV energies by one order of magnitude, while providing
sub-degree MeV transient localization over a large field of
view. It is designed to operate from 300 keV to 10 MeV for
the Compton detector and from 20 MeV to 1 TeV for the pair-
conversion detector. Its maximum effective area for Compton
events is expected to be ∼ 104 cm2 (200 times larger than that
of COMPTEL’s effective area [76]) and of ∼ 7 × 104 cm2

above 100 MeV. Therefore, this mission is expected to sig-
nificantly improve the study of transient emissions beyond
AMEGO or e-ASTROGAM.

5 Discussion and conclusions

From the discussion above, we identify, for each experiment,
the optimal energy range for νBADM detection. This is sum-
marized in Table 2, with the corresponding effective area
averaged over the energy bin. Note that COSI and MeVCube
have an effective area small enough that the expected back-
ground events are less than 1, perhaps much less. In this case
we assume that the detection of a single νBADM event is a

Table 2 Optimal energy range, �E , for the detection of νBADM for
each experiment discussed in the text. The average effective area, Aeff ,
in the chosen energy bin is also shown

�E(MeV) Aeff (cm2)

NuSTAR 0.05−0.1 200

COSI 0.5–1 8

MeVCube (12U) 0.5–1 15

e-ASTROGAM 1–5 100

ComPair 1–5 250

Amego 1–5 300

GECCO 1–5 1.2 × 103

APT 1–5 104

Fig. 2 Region of the parameter space giving more than 1 event in
MeVCube 12U (red line) from νBADM converting into photons. For
experiments in the 1–5 MeV energy bin, we show the region with a
SNR larger than 2 (green line). Here, we have considered a SN at
dSN = 0.197 kpc, gνa = 3 GeV−1 and mν = 50 meV. Astrophysi-
cal constraints listed in Refs. [69,71–75] are shown in grey

sufficiently strong indication of non-standard physics. There-
fore, in Fig. 2 we show a red line where we expect 1 event
observed in MeVCube, while the sensitivity region of COSI
falls in an already excluded region of the parameter space.

Experiments with a large effective area in the 1–5 MeV
range are ideal to probe νBADM. In these experiments, we
expect more than 1 event associated with the background.
Therefore, with the green line we show where the SNR is
equal to 2, independently of the experiment. We emphasize,
however, that the detection of the νBADM signal would be
more significant for those detectors with higher acceptance
area. NuSTAR observations cannot set a constraint compet-
itive with astrophysical limits at lower masses because of
the limited effective area and large background. Figure 2 is
obtained by considering a SN at dSN = 0.197 kpc, like Betel-
geuse. The region potentially probed by a νBADM signal
extends to low axion masses, down to ma ∼ 10−12 eV, and
small axion-photon coupling down to gaγ ∼ 10−13 GeV−1.
We also highlight that the signature discussed in this work
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is different and complementary to the signal coming from
axions thermally produced in the SN and converting into
photons, which is peaked at higher energies and potentially
detectable in Fermi-LAT [84]. It might be relevant especially
in the case of a detection of an axion-associated signal. In
that case, by looking at lower energies it might be possible to
understand another property of axions. Therefore it is impor-
tant and timely to discuss the possibility of probing the nature
of DM, the existence of axions and their properties thanks to
the next Galactic SN explosion.
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