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Abstract It is reported that the Large High Altitude
Air Shower Observatory (LHAASO) observed thousands
of very-high-energy photons up to ∼18 TeV from GRB
221009A. We study the survival rate of these photons via
considering the fact that they are absorbed by the extragalac-
tic background light. By performing a set of 106 Monte-Carlo
simulations, we explore the parameter space allowed by cur-
rent observations and estimate the probability of predicting
that LHAASO detects at least one photon of 18 TeV from
GRB 221009A. We find that the standard physics is compat-
ible with the observations of 18 TeV photons within 3.5σ

confidence interval. Our research method can be straightfor-
wardly generalized to study more data sets of LHAASO and
other experiments in the future.

1 Introduction

More than 5000 photons above 0.5 TeV emitted from GRB
221009A at redshift z � 0.1511 were observed by the Large
High Altitude Air Shower Observatory (LHAASO)2 within
2000 s after the first detection by Swift, Fermi-GBM, Fermi-
LAT, and so on.3 The highest energetic photons were reported
to reach ∼ 18 TeV, representing the first observation of pho-
tons above 10 TeV from gamma-ray bursts (GRBs). Such
observations intrigued studies on photon mixing with axion-
like particles [1–9], Lorentz symmetry violation [3,10–16],
ultra-high-energy cosmic rays [17], dark photon [5], sterile

1 https://gcn.gsfc.nasa.gov/gcn3/32648.gcn3.
2 https://gcn.gsfc.nasa.gov/gcn3/32677.gcn3.
3 https://gcn.gsfc.nasa.gov/gcn3_archive.html.
a e-mail: wangsai@ihep.ac.cn (corresponding author)

neutrinos [18–20], and misidentification of the showers [3].
In our work, we will investigate the survival probability of
multi-TeV photons from GRB 221009A by considering the
fact that they are significantly absorbed by the extragalac-
tic background light intervening between the GRB and the
Earth. We will further show whether the standard physics is
still capable to interpret current observations.

Very-high-energy photons can dissipate their energies via
annihilation with photons in cosmic microwave background
(CMB) and extragalactic background light (EBL), produc-
ing electron-positron pairs. The threshold of this channel to
happen is Eth = m2

e/Eb, where me and Eb are the mass
of electrons and the averaged energy of background light,
respectively. Therefore, for CMB photons, this threshold is
hundreds of TeV, implying that we can safely disregard the
effect of CMB photons. However, the energy of EBL photons
can be higher by several orders of magnitude than the CMB
photons, changing the threshold to be lower by the same
magnitude. For example, the threshold is ∼ 2.6 TeV if we
consider Eb ∼ 0.1eV. Therefore, we should take into account
the suppression effect of EBL photons on the detected flux
of ∼ 18 TeV photons by LHAASO.

2 Flux of TeV photons and EBL attenuation

The EBL-suppressed flux Fo depends on the intrinsic flux Fi
and the optical depth e−τ due to absorption by EBL. There-
fore, we have

Fo(E) = Fi (E)e−τ(E,z) , (1)
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where E is the observed energy of photons and z is the red-
shift of GRB 221009A. We use the tabulated data of the EBL
and optical depth measured by Ref. [21]. The intrinsic flux
of photons is approximated to be a power-law [22]

Fi (E) = Ai

(
E

0.5TeV

)αi

e− E
Ecut , (2)

where Ai is an intrinsic flux at a pivot energy scale 0.5 TeV,
αi denotes a spectral index, and Ecut is a cutoff energy scale.
Based on the reports of Fermi-LAT, we have two measured
values of αi , namely, −1.87±0.044 and −2.12±0.11.5 How-
ever, they were obtained at 0.1–1 GeV, which is an energy
range beyond the capability of LHAASO. Meanwhile, there
is not a report of spectral index from LHAASO at present.
During our parameter inference processes, we assume that
the spectral index αi is −2 and −3, respectively. Our results
can be adjusted to fit any value of αi between −2 and −3
if it is reported by LHAASO in the future. Due to the same
reason, we fix Ecut to 2 TeV, 5 TeV, and 10 TeV, respectively.
Therefore, we leave Ai to be determined by the data sets of
LHAASO.

By considering the performance of LHAASO [23], we
predict the number of events within energy range 0.5 − 10
TeV to be

N>0.5TeV = T
∫ 10TeV

0.5TeV
Fo(E)Seff(E, θ)dE , (3)

where Seff is the effective area of LHAASO-WCDA, as pro-
vided in Fig. 6 of Chapter 3 in Ref. [23], θ � 28◦ is the zenith
angle of GRB 221009A, and T = 2000 s is the duration of
LHAASO observing run.

To explore the parameter space, we perform Bayesian
analysis by considering the fact that the number of photons
above 0.5TeV is more than 5000, as reported by LHAASO.6

We assume that the event number follows Poisson distribu-
tion with probability distribution function (PDF), i.e.

p(k) = λke−λ/k! (4)

with λ = 5000 being the expectation and k = N>0.5TeV. Our
results and conclusion are robust when choosing other value
of λ within a range [5000, 6000). If we consider smaller val-
ues of λ, e.g., λ = 4000, our results would not be altered sig-
nificantly, i.e., a difference of around 15%, which would not
destroy our conclusions. We implement the Bayesian infer-
ence by using the affine-invariant Markov chain Monte Carlo
(MCMC) ensemble sampler in emcee [24]. We assume that
Ai has a uniform prior in the range [10−5, 10−2.5] in units of
TeV−1m−2s−1. The optical depth is sampled by following

4 https://gcn.gsfc.nasa.gov/gcn3/32658.gcn3.
5 https://gcn.gsfc.nasa.gov/gcn3/32637.gcn3.
6 https://gcn.gsfc.nasa.gov/gcn3/32677.gcn3.

the tabulated data of median value and uncertainties of τ ,7

as described in Ref. [21].
The results of Bayesian parameter inferences are shown

as the one-dimensional posterior PDFs of Ai in Fig. 1. The
left panel shows the results in the case of αi = −2 while the
right one shows those in the case of αi = −3. For any case,
we find Ai � few × 10−4 TeV−1m−2s−1. In the following,
we do Monte Carlo simulations via sampling Ai following its
posterior PDF and τ following the aforementioned tabulated
data.

3 Probability of detecting TeV photons

Based on the above results, we will estimate the probability of
predicting that LHAASO observes at least one photon ∼18
TeV from GRB 221009A. During an observation of T =
2000 s, the event number of photons with energy centered at
E is given by

N (E) = T
∫

10TeV
Fo(E

′)Seff(E
′, θ)P(E, E ′)dE ′ , (5)

where P(E, E ′) ∝ exp[−(E ′/E − 1)2/(2σ 2)] stands for
a Gaussian PDF with σ = ΔE/E being the energy resolu-
tion of LHAASO-KM2A [25]. We consider the energy range
above 10 TeV, with an emphasis on 18 TeV. For each given
energy E , we perform a set of 106 Monte-Carlo simulations.
We count the number of models that predict N (E) ≥ 1 and
compute the corresponding probability via dividing this num-
ber by 106.

Our results of Monte Carlo simulations are shown in
Fig. 2. For a given energy, we estimate a probability of
predicting that LHAASO detects at least one photon. The
left (right) panel shows the results in the case of αi = −2
(αi = −3). The labeling of Ecut is the same as in Fig. 1. In
particular, the dotted vertical lines denote 18 TeV in the two
panels, while the dotted horizontal lines denote the probabil-
ities of predicting that LHAASO is capable to detect at least
one photon of 18 TeV from GRB 221009A. Correspond-
ingly, we also list these probabilities in Table 1. We find that
in either case the standard physics is compatible with the
observations of 18 TeV photons from GRB 221009A within
3.5σ confidence interval. This prediction could be further
tested with the observational data sets of LHAASO in the
future.

4 Summary

In this work, we have investigated the survival rate of
very-high-energy gamma rays within the energy range of

7 http://side.iaa.es/EBL/.
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Fig. 1 Posterior probability distribution functions of Ai estimated in the case of Ecut = 10, 5, 2 TeV for αi = −2 and αi = −3, respectively

Fig. 2 Probability of predicting that LHAASO observes at least one
photon of multi-TeV from GRB 221009A within 2000 s for Ecut =
10, 5, 2 TeV respectively. The left panel shows the case of αi = −2

and the right panel shows the case of αi = −3. The dotted vertical
lines denote 18 TeV photons while the dotted horizontal lines denote
probabilities of observing at least one photon of around 18 TeV

LHAASO, by taking into account the effect of EBL atten-
uation. In the framework of standard physics, we simu-
lated the probability of detecting the multi-TeV events from
GRB 221009A. When considering the energy resolution of
LHAASO, we found that the standard physics is still com-
patible with the observations of 18 TeV photons from GRB
221009A within 3.5σ confidence interval. The above con-
clusions might be altered if we consider other measurements
of EBL and optical depth [26–32], that are beyond the scope
of this paper. If the report of LHAASO can be confirmed
in the future, we may derive a novel constraint on the mod-
els of EBL or even discriminate different models of EBL.

We would leave such detailed studies to future works. Our
research method can also be straightforwardly generalized
to study more data sets of LHAASO and other experiments
in the future. In addition, we did not consider other sources
of astrophysical uncertainties, e.g., the effect of intergalactic
magnetic fields. This effect may be considerable for GRB
221009A, especially in the Fermi-LAT energy band. In fact,
the intergalactic magnetic field strength had been estimated
to be ∼ 10−16 Gauss, if considering the delayed cascade pho-
tons observed by Fermi-LAT, as shown in Ref. [33]. Mean-
while, it was shown that LHAASO might have observed the
cascade photons from this GRB. However, it is challenging
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Table 1 List for probabilities of predicting that LHAASO observes at
least one photon of ∼ 18 TeV from GRB 221009A within 2000 s

Ecut = 10 TeV Ecut = 5 TeV Ecut = 2 TeV

αi = −2 24.5 % 12.4 % 0.6 %

αi = −3 3.3 % 1.2 % 0.1 %

to discriminate them from photons due to other astrophysical
processes in practice.

We also noticed that other experiments detected photons
from GRB 221009A, but at energy bands different from
LHAASO. For example, the Carpet-2 experiment8 reported
a single event ∼ 251 TeV in coincidence with GRB 221009A
with statistical significance of ∼ 3.8σ . This event might
imply an evidence of new physics due to such a high energy
scale. However, another possibility was also proposed to be a
cosmic-ray origin due to secondary emission from ultra-high-
energy cosmic rays [17,34,35]. Therefore, further observa-
tions in future are necessary to remove these debates.
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