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Abstract Recent ultra-intense lasers of subcritical fields
and proposed X-ray polarimetry for highly magnetized neu-
tron stars of supercritical fields have attracted attention to
vacuum birefringence, a unique feature of the nonlinear vac-
uum under strong electromagnetic fields. We propose a for-
mulation of the vacuum birefringence in a strong magnetic
field (B) and a weak electric field (E), including the effect
of electromagnetic wrench (G ≡ −E · B �= 0). To do
so, we derive a closed expression of the one-loop effective
Lagrangian for the combined magnetic and electric fields by
using the formula of the one-loop effective Lagrangian for an
arbitrarily strong magnetic field. We then employ the expres-
sion to derive the polarization and magnetization of the vac-
uum, from which we obtain the permittivity and permeabil-
ity for a weak probe field. Specifically, we find the refractive
indices and the associated polarization vectors of the probe
field for the case of parallel magnetic and electric fields. The
proposed formulation reproduces the known results for pure
magnetic fields in the proper limit. Finally, we apply the for-
mulation to the Goldreich–Julian pulsar model. Our formula-
tion reveals the importance of the electromagnetic wrench in
vacuum birefringence: it can reduce the difference between
refractive indices and rotate polarization vectors to a signif-
icant degree. Such a quantitative understanding is crucial to
the X-ray polarimetry for magnetized neutron stars or mag-
netars, which will demonstrate the fundamental feature of the
strongly-modified quantum vacuum and estimate the extreme
fields surrounding those astrophysical bodies.

a e-mail: chulmin@gist.ac.kr (corresponding author)
b e-mail: sangkim@kunsan.ac.kr

1 Introduction

Strong electromagnetic fields polarize the quantum vacuum
and produce charged particle-antiparticle pairs. The corre-
sponding electromagnetic theory is described by the effec-
tive Lagrangian consisting of the usual Maxwell Lagrangian
and the loop corrections due to the strong fields. Heisen-
berg and Euler found the one-loop effective Lagrangian in a
uniform electromagnetic field by solving the Dirac equation
[1]. Schwinger implemented quantum field theory to derive
the effective Lagrangian in the form of the proper-time inte-
gral, in which the fermion or scalar boson coupled to the
electromagnetic field is integrated out [2]. The simple poles
in the proper-time integral endow the effective Lagrangian
with an imaginary part, which is interpreted as the loss of the
vacuum persistence due to pair production. In fact, a pure
electric field or an electric field parallel to a magnetic field in
a proper Lorentz frame can produce electron-positron pairs
from the Dirac sea via quantum tunneling through the tilted
mass gap. Even when pair production does not occur, strong
electromagnetic fields polarize the vacuum so that photons
propagating through the vacuum experience the prominent
phenomena of vacuum polarization such as vacuum birefrin-
gence, photon splitting, and photon-photon scattering (for
review, see [3,4]).

The pair production, called the Schwinger effect, is an
epitome of non-perturbative quantum field effects. Electron-
positron pairs can be efficiently produced when the electric
field is comparable to the critical field Ec = m2c3/eh̄ =
1.3 × 1016 V/cm as the pair production per unit four Comp-
ton volume is given by a Boltzmann factor of which exponent
is given as the negative of the ratio of the critical field to the
electric field. An magnetic field comparable to the critical
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field Bc = m2c3/eh̄ = 4.4 × 1013 G makes the lowest Lan-
dau level energy equal to the electron rest mass energy. The
extreme field strengths Ec and Bc are called the Schwinger
limit. The physics under such strong electromagnetic fields,
described by the effective Lagrangian, should drastically dif-
fer from that under weak fields.

In experiments, the Schwinger pair production is still
impossible to realize because no terrestrial mean provides an
electric field comparable to the Schwinger limit. In spite of
the recent progress in high-intensity lasers based on chirped
pulsed amplification (CPA) technique, the current highest
laser intensity is 1.1×1023 W/cm2, achieved by CoReLS [5],
of which field strength is still lower than Ec by three orders.
Several laser facilities are being constructed for higher inten-
sities, but the target field strengths are still lower by order one
or two [6].

In contrast, the effects of vacuum polarization such as
photon-photon scattering have been experimentally investi-
gated. The Delbrück scattering, in which a photon is scat-
tered by a Coulomb field, was observed with MeV photons
[7,8]. Photon splitting, in which a photon is split into two
by a Coulomb field, was also observed by exploiting the
strong nuclear Coulomb field [9]. The photon-photon scat-
tering without a Coulomb field is more difficult to realize
but was recently evidenced from heavy ion collision experi-
ments: the ATLAS experiment [10,11], the CMS experiment
[12], and the STAR experiment [13,14].

Photon-photon scattering can also occur under a magnetic
field. The Delbrück scattering by a magnetic field leads to
vacuum birefringence: the vacuum under a strong magnetic
field can act as a birefringent medium to low-energy pho-
tons. Compared to the Schwinger pair production and the
photon-photon scattering by the nuclear Coulomb field, vac-
uum birefringence has the advantage of accumulating the
effect over a macroscopic length scale. To realize vacuum
birefringence, the PVLAS project used the magnetic field
of a strong permanent magnet as the background field and
optical laser photons as the probe photons [15]. Also, it was
proposed to use the field from an ultra-intense laser as the
background field and the strong X-rays from an X-ray free
electron laser as the probe photons [16,17]. These proposals
rely on the state-of-arts scientific technologies such as ultra-
intense lasers [6], X-ray free electron lasers [18], and ultra-
high-precision X-ray polarimetry [19]. Albeit challenging,
the goal of the PVLAS project and the laser-based proposals
is limited to the vacuum birefringence in subcritical fields.

On the other hand, neutron stars can have magnetic fields
comparable to the critical field, and particularly magne-
tars (highly magnetized neutron stars) have magnetic fields
stronger than the critical field by a factor of up to 50 [20–
23]. Thus, the study of QED vacuum polarization effect in
such supercritical magnetic fields can provide a diagnostics
for the strong magnetic fields of those stars [24]. Recently, a

polarimetry of the X-rays from a magnetar has been reported
[25], and similar projects has been proposed [26,27]. The
macroscopic length scale of field variation, comparable to
the radius of neutron stars, would facilitate the formulation
because the Heisenberg–Euler–Schwinger (HES) one-loop
effective Lagrangian for uniform electromagnetic fields [1,2]
can be used locally for such a large-scale variation.

To analyze the vacuum birefringence in supercritical mag-
netic fields, a closed analytic expression of one-loop effective
action is necessary instead of the proper-time integral expres-
sion obtained by Heisenberg–Euler and Schwinger. Dittrich
employed the dimensional regularization method to perform
the proper-time integral in terms of the Hurwitz zeta-function
and logarithmic functions in either a pure magnetic field or
an electric field perpendicular to the magnetic field [28,29].
In Ref. [30], the in-out formalism leading to the proper-time
integral also directly gives another closed analytic expres-
sion for the one-loop effective Lagrangian in the same field
configuration, which is identical to the Dittrich’s formula.
Furthermore, the imaginary part of the one-loop Lagrangian
in the closed form yields the same result obtained by sum-
ming the residues of all simple poles of the proper-time inte-
gral [30].

In this paper, we further develop the method in [31] to
find a closed analytic expression for the one-loop effective
Lagrangian in a supercritical magnetic field combined with
a subcritical electric field. Provided that the fields vary little
over the Compton length and time, one may use the HES
one-loop effective Lagrangian in the gauge-and Lorentz-
invariant form as a good approximation and can express the
Lagrangian as a power series of a small quantity representing
the electric field component along the magnetic field.1 Using
the closed expression, we study the propagation modes of
weak low-energy probe photons in a vacuum under such elec-
tromagnetic fields. For this purpose, we find the permittivity
and permeability tensors, work out the vacuum birefringence
for parallel electric and magnetic fields, and apply the results
to the Goldreich–Julian model.

To provide a more accurate formulation of the X-ray
polarimetry for neutron stars, especially magnetars, we
include electric field in our formulation. According to the
Goldreich and Julian’s rotating dipole model, the dipole’s
rotation induces a weak electric field so that an electromag-
netic wrench is produced (G = −E · B �= 0) [39]. The elec-
tromagnetic wrench can significantly change vacuum bire-
fringence. Previous studies on vacuum birefringence have
focused on the wrenchless case (G = 0) [4,40–43], due to

1 The accuracy of uniform field approximation was analyzed for the
Schwinger pair production in the Sauter-type electric field [32]. The
derivative expansion method was used to find the correction to the effec-
tive Lagrangian due to non-uniformity [33–38], according to which the
correction is negligible for the macroscopic scale variation considered
here.
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the lack of a sufficiently concise closed expression of the one-
loop effective Lagrangian with the electromagnetic wrench.
Although the results without wrench may give a lowest-order
description, an accurate quantitative analysis requires a for-
mulation incorporating wrench. In this paper, we provide
such a concise closed expression of the one-loop Lagrangian,
the optical response functions of field-modified vacua, and
the photon propagation modes for parallel electric and mag-
netic fields to reveal that electromagnetic wrench can sig-
nificantly alter the vacuum birefringence around astrophysi-
cal bodies. Our work will have an immediate application to
the space missions that include X-ray polarimetry for neu-
tron stars, especially magnetars, such as the Imaging X-ray
Polarimetry Explorer (IXPE) [25], the enhanced X-ray Tim-
ing and Polarimetry (eXTP) [26], and the Compton Telescope
project [27].

This paper is organized as follows. In Sect. 2, an explicit
expression of the one-loop effective Lagrangian is derived for
the vacuum under an arbitrarily strong magnetic field super-
posed with a weaker electric field. The expression is given
as a Taylor series in a parameter that quantifying the elec-
tric field component along the magnetic field with respect
to the magnetic field. Then, in Sect. 3, the series is used to
obtain the permittivity and permeability tensors for a weak
low-frequency probe field. These tensors are used in Sect. 4
to find the modes of the probe field (the refractive indices
and associated polarization vectors) for the configuration in
which the electric field is parallel to the magnetic field. As a
concrete application of the formulation, we analyze the vac-
uum birefringence in a hypothetical neutron star’s magneto-
sphere described by the Goldreich–Julian model. Finally, a
conclusion is given with a discussion on further development.
We use the Lorentz–Heaviside (LH) units with h̄ = c = 1,
in which the fine structure constant is α = e2/(4π) (e is the
elementary charge).

2 One-loop QED effective Lagrangian in a uniform
electromagnetic field: L̄(1)(ā, b̃)

2.1 Invariant parameters and classification of uniform
electromagnetic fields

When dealing with the QED effective Lagrangian in a
uniform electromagnetic field, the following Lorentz- and
gauge-invariant parameters are convenient for analysis [44]:

a =
√√

F2 + G2 + F, b =
√√

F2 + G2 − F, (1)

where F = FμνFμν/4 and G = FμνF∗
μν/4, i.e., the

Maxwell scalar and pseudoscalar; Fμν and F∗μν = εμναβ

Fαβ/2 (ε0123 = 1) are the field-strength tensor and its dual,
respectively [45]. Then F and G are given as

F = 1

4
FμνFμν = 1

2

(
B2 − E2

)
= 1

2

(
a2 − b2

)
,

G = 1

4
FμνF∗

μν = −E · B = σab, (2)

where σ denotes the sign of G. As will be shown later, the
formulation in terms of a and b, instead of F and G or E
and B, has the advantage to facilitate the expansion of the
effective Lagrangian as a series. These symbols and their
values in the special conditions considered in this paper are
summarized in Table 1.

The parameters a and b can be used to classify the cases of
uniform electromagnetic fields, as shown in Fig. 1. The sign
of the Maxwell scalar F determines which field is stronger
between the electric and magnetic fields, dividing the ab-
plane into two regions: the upper left where the electric field
is stronger and the lower right where the magnetic field is. The
condition G = 0 shrinks each region to its attached coordi-
nate axis. The cases with G = 0 are called wrenchless, while
the fields with G �= 0 are said to have an electromagnetic
wrench [3]. In the wrenchless case, an appropriate Lorentz
transformation can eliminate the weaker field between the
magnetic field and the electric field [45]. Thus, the a-axis (b-
axis) in Fig. 1 represents the condition of essentially being
under a magnetic (electric) field; of course, it includes the
case of a pure magnetic (electric) field. In studying the vac-
uum birefringence of astrophysical relevance, the magnetic
field is much stronger than the electric field, and thus the
region of a � b in Fig. 1 is of our interests.

2.2 Integral expression of L̄(1)(ā, b̃) and closed expression
of L̄(1)(ā, 0)

The physics of the vacuum in intense electromagnetic fields
has been studied with the effective Lagrangian, which is
obtained by integrating out the matter field degrees of
freedom in the complete Lagrangian [46]. In the effec-
tive Lagrangian, the term other than the free-field part, the
Maxwell theory (L(0)(a, b) = (b2 − a2)/2), is responsible
for the phenomena such as pair production, vacuum bire-
fringence, photon splitting, etc. As the term is dominantly
contributed from the one-loop [47–49] at least for the mag-
netic field strengths of astrophysical relevance, we consider
the effective Lagrangian up to the one-loop:

Leff(a, b) = L(0)(a, b)+L(1)(a, b) = b2 − a2

2
+L(1)(a, b).

(3)
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Table 1 Symbols referring to
electric and magnetic fields and
their values in special conditions

Symbol Definition Value (E =E0 ẑ and B = B0 ẑ) Value (E = 0 and |B| = B0)

F FμνFμν/4
(
B2

0 − E2
0

)
/2 B2

0 /2

G FμνF∗
μν/4 −E0B0 0

a
√√

F2 + G2 + F B0 B0

b
√√

F2 + G2 − F E0 0

ā m2/(2ea) Bc/(2B0) Bc/(2B0)

b̄ m2/(2eb) Ec/(2E0) ∞
b̃ b/a E0/B0 0

Fig. 1 Classification of uniform electromagnetic fields in theab-plane.
The diagonal line b = a corresponds to the condition of equally strong
electric and magnetic fields, i.e., |B| = |E| (F = (

B2 − E2
)
/2 = 0).

The horizontal and vertical axes correspond to the wrenchless condition,
i.e., G = −E · B = 0

The one-loop contribution L(1)(a, b) for the spinor QED is
given as a proper-time integral [1,2,50]:

L(1)(a, b)

= − 1

8π2

∫ ∞

0
ds

e−m2s

s3

{
(eas) coth(eas)(ebs) cot(ebs)

−
[

1 + (eas)2 − (ebs)2

3

]}
, (4)

where m is the electron mass, and 1 + (es)2
(
a2 − b2

)
/3 is

subtracted to remove the zero-point energy and renormalize
the charge and fields for yielding a finite physical quantity
[2]. This expression can be rewritten in a form convenient
for the case of a � b, i.e., b̃ = b/a � 1:

L(1)(a, b) = L̄(1)(ā, b̃)

= m4

8π2

1

4ā2

∫ ∞

0
dz

e−2āz

z3

[
1 + z2(1 − b̃2)

3

−b̃z2 coth(z) cot(zb̃)

]
, (5)

where the dimensionless quantities are

z = eas, ā = m2

2ea
, b̄ = m2

2eb
, b̃ = b

a
= ā

b̄
. (6)

For a pure magnetic field, ā = Bc/(2B0) and b̄ = ∞, where
Bc = m2/e = 4.4 × 1013 G = 1.2 × 1013 LH units2 is the
critical magnetic field strength (see Table 1).

This integral can be numerically evaluated as described in
Appendix A, but an explicit closed expression is favored for
theoretical analysis. For the case of b = 0, an explicit expres-
sion was obtained either by the dimensional regularization of
(4) [28] or by the Schwinger–DeWitt in-out formalism com-
bined with �-function regularization [30]:

L̄(1)(ā, 0) ≡ m4

8π2ā2 H(ā)

= m4

8π2ā2

[
ζ ′(−1, ā) − 1

12
+ ā2

4
−

(
1

12
− ā

2
+ ā2

2

)
ln ā

]
,

(7)

where ζ(s, ā) is the Hurwitz zeta function, and ζ ′(−1, ā) =
dζ(s, ā)/ds|s=−1 [51] (see Appendix B for more details).
This expression perfectly matches the numerical evaluation
of (5) with b̃ = 0, as shown in Fig. 2.

2.3 Imaginary part of L̄(1)(ā, b̃)

The effective Lagrangian L̄(1)(ā, b̃) in (5), despite an integral
of real functions along a real axis, acquires an imaginary
part due to the simple poles at z = nπ/b̃ (n = 1, 2, . . .)
arising from cot(zb̃). The imaginary part represents the loss
of vacuum persistence due to the Schwinger pair production
and can be obtained analytically by using the Sokhotski–
Plemelj theorem [2,52]:

L̄(1)(ā, b̃) = L̄(1)
Re + iL̄(1)

Im

= P.V. + i
m4

8π2

1

4ā2

∞∑
n=1

b̃

n
e−2b̄nπ coth

nπ

b̃
, (8)

where P.V. refers to the principal value of the integral, which
is real. The factor e−2b̄nπ implies that the imaginary part L̄(1)

Im
is small unless 2b̄π � 1, which reduces to E0 � πEc for
the parallel field configuration in Table 1; the Schwinger pair

2 One unit of magnetic field strength in the Lorentz–Heaviside system
corresponds to

√
4π G.
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Fig. 2 Comparison of the integral and closed expressions of L̄(1)(ā, 0).
The integral expression is (5) with b̃ = 0, and the closed one is (7). The
plotted values are in units of m4/8π2. The parameter ā ranges from
0.001 to 100, corresponding to B/Bc from 500 to 0.005 for the purely
magnetic case. The inset shows the values in linear scale for the range of
ā from 0.002 to 0.01. The plots of the two expressions perfectly overlap
each other

production is appreciable only when the electric field is com-
parable to or larger than Ec. In such a case, the refractive
indices for probe photons becomes complex, as is shown by
Heyl and Hernquist for a pure electric field [42]. More gener-
ally, the generation and subsequent dynamics of pair plasmas
becomes significant to eventually induce the vacuum’s back-
reaction to the applied fields [3,53]. The formulation includ-
ing such effects is beyond the scope of the present paper and
will be studied in a future work.

In developing a formulation without L̄(1)
Im , we need to iden-

tify the parameter region where it can be neglected to a good
approximation. Noting that the polarization and the magne-
tization are obtained by differentiating L̄(1)(ā, b̃) by E and
B, respectively (see Sect. 3), we may use the ratios, the imag-
inary polarization to the real polarization and the imaginary
magnetization to the real magnetization, as the parameters
representing the significance of L̄(1)

Im compared to L̄(1)
Re . The

ratios are given in the parallel field configuration as

PIm

PRe
= ∂b̃ IIm(ā, b̃)

∂b̃ IRe(ā, b̃)
,

MIm

MRe
= (−2 + ā∂ā + b̃∂b̃)IIm(ā, b̃)

(−2 + ā∂ā + b̃∂b̃)IRe(ā, b̃)
,

(9)

where IRe(ā, b̃) and IIm(ā, b̃) are the real and imaginary
parts of the integral in (5), respectively (except the factor
m4/(32π2ā2)). Not understanding the exact physical mean-
ing of PIm and MIm for now, we treat them as mathematical
variations induced by L̄(1)

Im .
Figure 3 shows the ratios PIm/PRe and MIm/MRe for

b̃ = 0.2, 0.1, 0.05, 0.025. In Fig. 3a, the array of filled
squares marks the points of E0 = Ec for different B0, indi-

cating that E0 dominantly determines PIm/PRe. The array
of empty squares marks the points of E0 = 0.5Ec, and
the dependence is similar. When the electric field is suffi-
ciently strong, e.g., ā = 0.04 and b̃ = 0.2 corresponding
to E0 = 2.5Ec, PIm/PRe reaches 1 and become even larger
at higher E0 values. As the criterion for neglecting L̄(1)

Im , we
choose PIm/PRe � 10−2, which implies E0 � 0.33Ec (con-
sider the points at which the horizontal line at PIm/PRe =
10−2 crosses the other curves). Unlike the polarization ratio,
the magnetization ratio MIm/MRe has a strong dependence
on the magnetic field, as is indicated by the arrays of filled
and empty squares in Fig. 3b. It also never overcome 0.2
in the investigated parameter regime, indicating that L̄(1)

Im
is the minor in determining the magnetization. The condi-
tion MIm/MRe = 10−2 gives a threshold value higher than
0.33Ec. One may consider to plot the ratio of the Langrangian
itself L̄(1)

Im /L̄(1)
Re . Although not shown here, the curve shows

a behavior lying between the behavior of PIm/PRe and that
of MIm/MRe.

We adopt the validity condition E0 � Ec/3 obtained from
PIm/PRe as it is the most restrictive. The condition can be
rewritten as b̄ � 3/2 or ā � āthres ≡ 3b̃/2 for general field
configurations, resulting in the exponential factor e−2b̄π �
8 × 10−5. Below we neglect L̄(1)

Im in our formulation, and
L̄(1)(ā, b̃) refers only to its real part.

2.4 Expansion of L̄(1)(ā, b̃) in b̃

In the magnetosphere of neutron stars, the magnetic field
is much stronger than the electric field, and thus a � b,
or equivalently ā � b̄, from (1) and (2). For example, the
Goldreich–Julian model [39] gives b̃ (= b/a = ā/b̄) as a
function decreasing with the distance from the star center:
b̃(r = R) ≤ 0.2 and b̃(r = 10R) ≤ 0.02, where R is the
star’s radius. For such a condition, the expansion of L̄(1)(ā, b̃)
in b̃ is useful for analysis.

In the integral expression of L̄(1)(ā, b̃), (5), cot(b̃z) has
poles at z = nπ/b̃ (n = 1, 2, . . . ), which may make the
integral diverge. However, the principal value of the integral
is finite because the symmetric behavior of the cotangent
function around the poles. Furthermore, if exp(−2āz) sup-
presses the integrand sufficiently much before the first pole,
i.e., 1/(2ā) � π/b̃, or equivalently b̄ � 1/(2π), an asymp-
totic expression valid for b̄ � 1/(2π) can be obtained. The
condition b̄ � 1/(2π) is reasonably satisfied by the validity
condition b̄ � 3/2 given in Sect. 2.3.

To proceed, we substitute the series form of (b̃z) · cot(b̃z)
in (5) (4.19.6 of [51]):

(b̃z) · cot(b̃z) =
∞∑
n=0

B2n(−1)n(2b̃z)2n

(2n)! , (10)
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Fig. 3 The influence of the imaginary part of part of L̄(1)(ā, b̃): (a)
PIm/PRe and (b) MIm/MRe. The parallel field configuration in Table 1
was assumed, and L̄(1)(ā, b̃) was calculated numerically with the first
10 poles, as described in Appendix A. The filled squares mark the

points of b̄ = 0.5 (E0 = Ec), and the empty ones do the points of
b̄ = 1 (E0 = 0.5Ec). In (a), the horizontal cut at PIm/PRe = 10−2

crosses the others at ā = 0.034, 0.068, 0.14, 0.30, corresponding to
(B/Bc, E/Ec) = (15, 0.37), (7.4, 0.37), (3.6, 0.36), (1.7, 0.33)

where B2n are the Bernoulli numbers. The series is conver-
gent only for |b̃z| < π due to the nearest poles at b̃z = ±π .
Upon substitution, the contribution outside the region of con-
vergence asymptotically vanishes as b̄ → ∞. Then, the inte-
gral in (5) is written as

∫ ∞

0
dz

e−2āz

z3

{
1 + z2(1 − b̃2)

3

−z coth(z)
∞∑
n=0

(−1)n B2n(2b̃z)2n

(2n)!

}
. (11)

To evaluate the integral, we use the integral representation
of H(ā) in (7), which is derived by comparing (7) with (B3):

H(ā) = 1

4

∫ ∞

0
dz

e−2āz

z3

{
1 + z2

3
− z coth(z)

}
. (12)

Differentiating (12) 2n times by ā yields a useful formula:

(
d

dā

)2n

H(ā) ≡ H (2n)(ā)

= 22n

4

∫ ∞

0
dz

e−2āz

z3

{
1 + z2

3
− z coth(z)

}
z2n, (13)

of which closed form is given as (see App. C for the deriva-
tion).

H (2n)(ā) = ψ(2n−2)(ā) + 1

12

�(2n)

ā2n + 1

2

�(2n − 1)

ā2n−1

+�(2n − 2)

ā2n−2 θ(n − 2) − δn1 ln ā, (n ≥ 1),

(14)

where ψ(m)(ā) is the polygamma function. By using (13)
and (14) and the integral representation of the � function,
one can integrate (11) term-by-term to obtain an asymptotic
series of L̄(1)(ā, b̃):

L̄(1)(ā, b̃) = m4

8π2

[
H(ā)

ā2 +
(

1

144ā4 − H (2)(ā)

12ā2

)
b̃2

]

+ m4

8π2

∞∑
n=2

(−1)n B2n

[
H (2n)(ā)

(2n)!ā2

− 1

2n(2n − 1)(2n − 2)ā2n − 1

24nā2n+2

]
b̃2n, (15)

in which all the terms are given in terms of special func-
tions. Thus, (15) provides a systematic explicit expression
of L̄(1)(ā, b̃) in powers of b̃ for an arbitrary value of ā. For
example, the first three leading orders are given as

L̄(1)(ā, b̃) = m4

8π2

1

ā2

[
ζ ′(−1, ā) − 1

12
+ ā2

4

−
(

1

12
− ā

2
+ ā2

2

)
ln ā

]

+ m4

8π2

(
− 1

24ā3 + ln ā − ψ(0)(ā)

12ā2

)
b̃2

+ m4

8π2

(
− 1

720ā5
− ψ(2)(ā)

720ā2

)
b̃4 + O(b̃6).

(16)

A concise expression of the one-loop effective Lagrangian
for general field configuration such as (15) and (16) is crucial
for the analysis of the vacuum birefringence, especially for
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the case with an electromagnetic wrench. The lack of such a
systematic expression has limited the vacuum birefringence
analysis to the wrenchless case. Previously, Heyl and Hern-
quist obtained the lowest-order correction due to electromag-
netic wrench in the strong magnetic field limit [54].

When both electric and magnetic fields are highly sub-
critical, i.e., ā � 1 and b̄ � 1 hold, the lowest order can
be obtained from the expansion up to O(b̃4), and the second
lowest from the expansion up to O(b̃6):

L̄(1)(ā, b̃) = m4

8π2

1

ā4

[
1

720
+ b̃2

144
+ b̃4

720

]

+ m4

8π2

1

ā6

[
− 1

5040
− b̃2

1440
+ b̃4

1440
+ b̃6

5040

]

= m4

8π2

[
1

720ā4 + 1

144ā2b̄2
+ 1

720b̄4

]

+ m4

8π2

[
− 1

5040ā6 − 1

1440ā4b̄2

+ 1

1440ā2b̄4
+ 1

5040b̄6

]
(17)

The term with the first bracket is written in terms of E and B
as

e4

360π2m4

[
(B2 − E2)2 + 7(E · B)2

]
, (18)

which was obtained by Heisenberg and Euler [1], and
Schwinger [2].

It is worthy to mention that the one-loop effective
Lagrangian L(1)(a, b) (4) can be expressed as a convergent
series of which terms are some special functions of a and b
[55–57]. The expansion may be exact but is not very con-
venient for the condition of an arbitrarily strong magnetic
field combined with a weak electric field because the expan-
sion needs an infinite sum. The convergence of the sum is
slow, and thus its evaluation needs acceleration techniques
[56]. In this regard, the expansion (16) is more convenient
for theoretical analysis and practical applications.

2.5 Behavior of L̄(1)(ā, b̃) and the validity of its expansion
form

The exact dependence of L̄(1)(ā, b̃) with b̃ can be investi-
gated by numerically evaluating the integral expression (5),
as described in Appendix A. As L̄(1)(ā, 0) is completely
known, the ratio L̄(1)(ā, b̃)/L̄(1)(ā, 0) represents the depen-
dence on b̃ alone. In Fig. 4, the offset difference of L̄(1)(ā, b̃)
from L̄(1)(ā, 0) (the difference as ā → ∞) increases with
b̃. Furthermore, additional significant differences appear as

Fig. 4 L̄(1)(ā, b̃)/L̄(1)(ā, 0) for b̃ = 0.2, 0.1, 0.05, 0.025. L̄(1)(ā, b̃)
was obtained by the direct integration of (5) with the first 10 poles

ā decreases below certain onset values. For example, when
b̃ = 0.2, the ratio is close 1.2 until ā decreases to 1, but,
as ā decreases below 1, it significantly increases and then
decreases. When b̃ is smaller, the behavior is similar except
that the offset difference is smaller, and the onset value of ā
for the additional difference decreases. This additional differ-
ence is attributed to the pair production because it becomes
significant as the validity condition ā � āthres ≡ 3b̃/2 begins
to be violated.

By using the numerical evaluation of L̄(1)(ā, b̃), we can
find the parameter range in which the expansion (15) is
accurate. The ratio L̄(1)

exp(ā, b̃, n)/L̄(1)
int (ā, b̃) is plotted for

n = 0, 1, 2, 3 and b̃ = 0.2, 0.05, where L̄(1)
exp(ā, b̃, n) is the

expansion (15) up to O(b̃2n), and L̄(1)
int (ā, b̃) is the numeri-

cal evaluation of (5). In Fig. 5a, L̄(1)
exp(ā, b̃ = 0.2, n ≥ 1) is

accurate within 1% for ā ≥ 0.3. The 1%-accuracy thresh-
old of ā, denoted by ā1%, decreases slightly as n increases,
but a higher-n expansion blows up faster below ā1%: a typi-
cal behavior of Taylor expansions. When b̃ is not taken into
account, the error becomes larger than 17%, as can be seen
in the n = 0 plot in Fig. 5a. Therefore, the correction due to
b̃ �= 0 should be taken into account for accuracy. At a lower
value of b̃ = 0.05 (Fig. 5b), the overall behavior is similar
to the case of b̃ = 0.2, but ā1% is lowered to 0.025, and the
minimum error of the n = 0 expansion decreases to 2%.

Actually ā1% is closely connected to the validity condition
ā � āthres ≡ 3b̃/2. Note that āthres = ā1% for b̃ = 0.2 and
āthres = 3ā1% for b̃ = 0.05: āthres is more restrictive than
ā1%. Figure 5 suggests the n = 2 expansion as the optimal
expansion, albeit the n = 1 expansion is reasonable within
the valid parameter space.
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Fig. 5 L̄(1)
exp(ā, b̃, n)/L̄(1)

int (ā, b̃) for n = 0, 1, 2, 3 when (a) b̃ = 0.2 and (b) b̃ = 0.05. L̄(1)
exp(ā, b̃, n) is the expansion (15) up to O(b̃2n), and

L̄(1)
int (ā, b̃) is the numerical evaluation of (5) including the first 10 poles

3 Response of the vacuum in strong electromagnetic
fields

In contrast to the classical vacuum, the quantum vacuum
in electromagnetic fields behaves as a medium, of which
response is quantified by the polarization (P) and the magne-
tization (M), or equivalently by the electric induction (D) and
magnetic field strength (H). These quantities can be obtained
by considering the variation of the effective Lagrangian with
respect to that of the electromagnetic field [1,58]:

D = E + P = ∂Leff

∂E
= E + ∂L(1)

∂E
,

H = B − M = −∂Leff

∂B
= B − ∂L(1)

∂B
. (19)

In this section, we derive expressions of P and M for an arbi-
trary L(1)(a, b) and use the result to obtain the permittivity
and permeability tensors for weak low-frequency (ω � m)
probe fields. These tensors are necessary to analyze the vac-
uum birefringence in the next section. These results can be
obtained also in an explicitly Lorentz covariant manner by
using photon polarization tensors [3,43,44,59–61].

3.1 Polarization and magnetization of the vacuum in
uniform electric and magnetic fields

The effective Lagrangian is a function of a and b (1) and (2),
and thus we consider the variation of a general differentiable
function f (a, b):

δ f = δa · ∂a f + δb · ∂b f. (20)

As a and b are functions of F and G, the variations δa and
δb can be written in terms of the variations δF and δG:

δa = ∂a

∂F
δF + ∂a

∂G
δG, δb = ∂b

∂F
δF + ∂b

∂G
δG. (21)

In turn, the variations of δF and δG can also be written in
terms of δE and δB:

δF = ∂F

∂E
· δE + ∂F

∂B
· δB, δG = ∂G

∂E
· δE + ∂G

∂B
· δB.

(22)

Thus, using the chain rules, the coefficients in these variations
can be calculated by using (1) and (2) to express δ f in terms
of δE and δB:

δ f = δE ·
(
−EŜ − B Â

)
f + δB ·

(
BŜ − E Â

)
f, (23)

where

Ŝ = (a · ∂a − b · ∂b)

a2 + b2 = ∂F , Â = σ (b · ∂a + a · ∂b)

a2 + b2 = ∂G ,

Ŝ Â = ÂŜ = ∂F∂G . (24)

The operators Ŝ and Â are symmetric and anti-symmetric
under the parity inversion, respectively. Note that (a2 +b2)Ŝ
measures the difference of homogeneity of polynomials such
that (a2 + b2)Ŝ(ambn) = (m − n)(ambn), while (a2 + b2) Â
measures the mixed homogeneity of polynomials such that
(a2 + b2) Â(ambn) = (mb2 + na2)(am−1bn−1). In addition,
(a2+b2)Ŝ preserves the polynomial order (m, n), while (a2+
b2) Â changes it to (m − 1, n + 1) and (m + 1, n − 1) while
maintaining the sum of the orders of a and b. Replacing
f with L(1) and using (19), one can obtain P and M from
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L(1)(a, b):

P = ∂L(1)

∂E
= −EŜL(1) − B ÂL(1),

M = ∂L(1)

∂B
= BŜL(1) − E ÂL(1). (25)

Despite the appearance, this relation is not linear in E and B,
as ŜL(1) and ÂL(1) are nonlinear functions of E and B.

3.2 Permittivity and permeability tensors for weak
low-frequency probe fields

The material-like vacuum with the nonlinear response rela-
tion (25) affects the propagation of photons. When the photon
energy is much smaller than the electron’s rest mass energy
(ω � m = 0.5 MeV), the photon can be treated as a weak
perturbation field (probe field) added to the strong back-
ground field [62,63]. Then, E, B, D, H, P, and M can be
decomposed as

A = A0 + δA, (26)

where A0 (δA) refers to the quantities of the background
(probe) field. Furthermore, as A0 is uniform, while δA
is varying, the relation (19) should be satisfied separately
between the uniform and varying quantities:

D0 = E0 + P0, H0 = B0 − M0, (27)

δD = δE + δP, δH = δB − δM. (28)

Then, δD and δH can be obtained by varying the relation (25)
around (E0,B0), for which the formula (23) is convenient.
A straightforward but lengthy calculation yields the linear
relations among the varying quantities relevant to the probe
field:

δD = εE · δE + εB · δB, δH = μ̄B · δB + μ̄E · δE, (29)

where εE , εB , μ̄B , and μ̄E are 3-by-3 tensors. Their compo-
nents are as follows:

εE,i j = δi j (1 − L(1)
S )

+
[
E0i E0 jL(1)

SS + (
E0i B0 j + B0i E0 j

)L(1)
SA + B0i B0 jL(1)

AA

]
,

εB,i j = −δi jL(1)
A

+
[
−E0i B0 jL(1)

SS + (
E0i E0 j − B0i B0 j

)L(1)
SA + B0i E0 jL(1)

AA

]
,

μ̄B,i j = δi j (1 − L(1)
S )

+
[
−B0i B0 jL(1)

SS + (
B0i E0 j + E0i B0 j

)L(1)
SA − E0i E0 jL(1)

AA

]
,

μ̄E,i j = δi jL(1)
A

+
[
B0i E0 jL(1)

SS + (
B0i B0 j − E0i E0 j

)L(1)
SA − E0i B0 jL(1)

AA

]
,

(30)

where

L(1)
S = ŜL(1)|0, L(1)

A = ÂL(1)|0,
L(1)
SS = Ŝ ŜL(1)|0, L(1)

SA = Ŝ ÂL(1)|0, L(1)
AA = Â ÂL(1)|0.

(31)

Here, the subscript 0 means that Ŝ and Â are evaluated at
(E0,B0). Note that these formulae are valid for any effec-
tive Lagrangian. From now on, we shall focus on the HES
Lagrangian (4).

The tensors εB and μ̄E represent the magneto-electric
response to the probe field, in which a magnetic (electric)
field induces polarization (magnetization) [64], unlike usual
dielectric and magnetic materials (see [65,66] for the recent
studies of the magneto-electric response in condensed mat-
ter). Such response disappears as the background electric
field vanishes: when E0 = 0, L(1)

A and L(1)
SA in (30) vanishes

for the Lagrangian (4) to yield εB = μ̄E = 0.
The quantities in (31) have the complete information for

the analysis of vacuum birefringence because they immedi-
ately lead to the permittivity and permeability for an arbi-
trary background field configuration through (30). By using
the expansion (16), we can obtain the formulae of (31) con-
tributed from each order of b̃. For example, the contributions
from the lowest three orders are shown in Tables 2, 3, and 4.
In Table 2, the dependence on b̄ appears due to the b · ∂a
term in Â although L̄(1)(ā, 0) does not depend on b̄. As the
combined field of the background field and the probe field is
not wrenchless in general, the expression of L̄(1)(ā, b̃ �= 0)

is necessary for wrenchless background fields.
For the case of b = 0 with an arbitrary value of a, i.e.,

the wrenchless case, the exact expressions of (31) can be
obtained first by combining the results in Tables 2 and 3 and
then by taking the limit of b̄ = ∞. Higher order contributions
are absent in this case. The results are shown in Table 5. The
same results were obtained by Karbstein and Shaisultanov
[43], who expanded the one-loop effective action up to the
second order of the probe field and specified the calculation
to the wrenchless case.

In the special limit of weak fields, the quantities in (31)
can be obtained by combining the results in Tables 2, 3, and 4,
and finding the asymptotic form for the limit of ā, b̄ → ∞.
Alternatively, the weak-field limit of the effective Lagrangian
(17) can be used to evaluate (31):

L(1)
S = e2

360π2

(
1

ā2 − 1

b̄2

)
, L(1)

A = 7e2σ

720āb̄π2
,

L(1)
SS = e4

45m4π2 , L(1)
SA = 0, L(1)

AA = 7e4

180m4π2 , (32)
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Table 2 Contribution to L(1)
S ,

L(1)
A , L(1)

SS , L(1)
SA, and L(1)

AA from
the O(b̃0) term in the expansion
of L̄(1)(ā, b̃) (16). Each
contribution is obtained by
multiplying the quantities in the
second and third columns

L(1)
S − b̄2e2

24(ā2+b̄2)π2 6ā2 − 6 ln(2π)ā + 12 ln(�(ā))ā + (2 − 6ā) ln(ā) − 24ζ ′(−1, ā) + 1

L(1)
A − āb̄e2σ

24(ā2+b̄2)π2 6ā2 − 6 ln(2π)ā + 12 ln(�(ā))ā + (2 − 6ā) ln(ā) − 24ζ ′(−1, ā) + 1

L(1)
SS

ā2 b̄4e4

3(ā2+b̄2)
3
m4π2

6(ψ(0)(ā) + 1)ā4 + 6ā4 + 9 ln(ā)ā3 − 12ā3 − 6b̄2ā2 − 4 ln(ā)ā2

+6b̄2(ψ(0)(ā) + 1)ā2 + 48ζ ′(−1, ā)ā2 − ā2 − 3b̄2 ln(ā)ā

−3
(
5ā2 + b̄2

)
(2ā − ln(2π) + 2 ln(�(ā)) − 1)ā + b̄2

L(1)
SA

ā3 b̄3e4σ

3(ā2+b̄2)
3
m4π2

−12ā4 + 3 ln(ā)ā3 + 9 ln(2π)ā3 − 18 ln(�(ā))ā3 + 3ā3 − 2 ln(ā)ā2

+6
(
ā2 + b̄2

)
ψ(0)(ā)ā2 + 3b̄2ā − 9b̄2 ln(ā)ā − 3b̄2 ln(2π)ā

+6b̄2 ln(�(ā))ā + 2b̄2 + 2b̄2 ln(ā) + 24
(
ā2 − b̄2

)
ζ ′(−1, ā)

L(1)
AA

ā2 b̄2e4σ 2

6(ā2+b̄2)
3
m4π2

−18ā6 + 12 ln(2π)ā5 − 24 ln(�(ā))ā5 + 6ā5 − 2 ln(ā)ā4

+12
(
ā2 + b̄2

)
ψ(0)(ā)ā4 + ā4 + 6b̄2ā3 − 18b̄2 ln(ā)ā3 − 6b̄2 ln(2π)ā3

+12b̄2 ln(�(ā))ā3 − 6b̄4ā2 + 4b̄2ā2 + 4b̄2 ln(ā)ā2 + 6b̄4 ln(ā)ā

+6b̄4 ln(2π)ā − 12b̄4 ln(�(ā))ā − b̄4 − 2b̄4 ln(ā)

+24
(
ā2 − b̄2

)2
ζ ′(−1, ā)

Table 3 Contribution to L(1)
S ,

L(1)
A , L(1)

SS , L(1)
SA, and L(1)

AA from
the O(b̃2) term in the expansion
of L̄(1)(ā, b̃) (16). Each
contribution is obtained by
multiplying the quantities in the
second and third columns

L(1)
S

āe2

48(ā2+b̄2)π2 2ψ(1)(ā)ā2 − 4 ln(ā)ā + 4ψ(0)(ā)ā − 2ā + 1

L(1)
A

e2σ

48b̃(ā2+b̄2)π2 2ψ(1)(ā)ā4 − 2ā3 − ā2 + 4b̄2 ln(ā)ā − 4b̄2ψ(0)(ā)ā − 2b̄2

L(1)
SS − ā3 b̄2e4

12(ā2+b̄2)
3
m4π2

2ψ(2)(ā)ā5 + 2b̄2ψ(2)(ā)ā3 − 4ā3 − ā2 − 12b̄2ā − 16b̄2 ln(ā)ā

+16b̄2ψ(0)(ā)ā + 3b̄2 + 2
(
3ā4 + 7b̄2ā2

)
ψ(1)(ā)

L(1)
SA − ā2 b̄e4σ

12(ā2+b̄2)
3
m4π2

2ψ(2)(ā)ā7 + 2b̄2ψ(2)(ā)ā5 − 4ā5 − ā4 − 8b̄2ā3 − 8b̄2 ln(ā)ā3

+b̄2ā2 + 4b̄4ā + 8b̄4 ln(ā)ā + 8b̄2
(
ā2 − b̄2

)
ψ(0)(ā)ā − 2b̄4

+2
(
3ā6 + 5b̄2ā4 − 2b̄4ā2

)
ψ(1)(ā)

L(1)
AA − āe4σ 2

12(ā2+b̄2)
3
m4π2

2ψ(2)(ā)ā9 + 2b̄2ψ(2)(ā)ā7 − 2ā7 − 4b̄2 ln(ā)ā5 + 3b̄2ā4

+10b̄4ā3 + 8b̄4 ln(ā)ā3 + b̄4ā2 − 4b̄6 ln(ā)ā

+4b̄2
(
ā2 − b̄2

)2
ψ(0)(ā)ā + 2b̄6 + 2

(
2ā8 + b̄2ā6 − 5b̄4ā4

)
ψ(1)(ā)

Table 4 Contribution to L(1)
S ,

L(1)
A , L(1)

SS , L(1)
SA, and L(1)

AA from
the O(b̃4) term in the expansion
of L̄(1)(ā, b̃) (16). Each
contribution is obtained by
multiplying the quantities in the
second and third columns

L(1)
S

āe2

1440b̄2(ā2+b̄2)π2 ψ(3)(ā)ā4 + 6ψ(2)(ā)ā3 + 3

L(1)
A

e2σ

1440b̄3(ā2+b̄2)π2 ψ(3)(ā)ā6 − ā2 − 4b̄2 + 2
(
ā5 − 2ā3b̄2

)
ψ(2)(ā)

L(1)
SS − ā3e4

360(ā2+b̄2)
3
m4π2

ψ(4)(ā)ā7 + b̄2ψ(4)(ā)ā5 + 3ā2 + 15b̄2

+24
(
ā5 + 2b̄2ā3

)
ψ(2)(ā) + (

11ā6 + 15b̄2ā4
)
ψ(3)(ā)

L(1)
SA − ā2e4σ

360b̄(ā2+b̄2)
3
m4π2

ψ(4)(ā)ā9 + b̄2ψ(4)(ā)ā7 − 3ā4 − 3b̄2ā2 − 12b̄4

+12
(
ā7 + b̄2ā5 − 2b̄4ā3

)
ψ(2)(ā) + (

9ā8 + 9b̄2ā6 − 4b̄4ā4
)
ψ(3)(ā)

L(1)
AA − āe4σ 2

360b̄2(ā2+b̄2)
3
m4π2

ψ(4)(ā)ā11 + b̄2ψ(4)(ā)ā9 + (
6ā4 + b̄2ā2 − 9b̄4

)
ψ(3)(ā)ā6

+9b̄2ā4 + 9b̄4ā2 + 12b̄6 + 6
(
ā9 − 3b̄4ā5 + 2b̄6ā3

)
ψ(2)(ā)

Table 5 L(1)
S , L(1)

SS , and L(1)
AA for

b̃ = 0. L(1)
A = L(1)

SA = 0. Each
quantity is obtained by
multiplying the quantities in the
second and third columns

L(1)
S − e2

24π2 6ā2 − 6 ln(2π)ā + 12 ln(�(ā))ā + (2 − 6ā) ln(ā) − 24ζ ′(−1, ā) + 1

L(1)
SS

ā2e4

3m4π2 6ψ(0)(ā)ā2 − 6ā2 − 3 ln(ā)ā + 3 ln(2π)ā − 6 ln(�(ā))ā + 3ā + 1

L(1)
AA − āe4σ 2

6m4π2 6ā3 − 6 ln(ā)ā2 − 6 ln(2π)ā2 + 12 ln(�(ā))ā2 + 2ψ(0)(ā)ā

−24ζ (1,0)(−1, ā)ā + ā + 1
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Fig. 6 Configuration of the background fields (E0, B0) and the probe
field. The probe field has its propagation vector k on the xz-plane and
its two polarization vectors δE± associated with the refractive indices
n±. Unless E0 = 0 (thus ε2 = 0), δE+ is not along the y-axis, and δE−
is not on the xz-plane

which are obtained with the quantities of the first bracket
in (17) only. When b̄ = ∞, these expressions yields the
permittivity and permeability tensors obtained by Adler for
the case of a weak magnetic field [63]:

εE,i j = δi j

(
1 − 2κ

4π
B2

0

)
+ B0i B0 j

7κ

4π
, εB.i j = 0,

μ̄B,i j = δi j

(
1 − 2κ

4π
B2

0

)
− B0i B0 j

4κ

4π
, μ̄E,i j = 0 (33)

where κ = e4/
(
45πm4

)
. If the quantities in the sec-

ond bracket of (17) is used, higher-order contributions are
obtained.

4 Vacuum birefringence for B0 ‖ E0 and |B0| � |E0|

In this section, we work out the refractive indices and the
polarization vectors for the case of an arbitrarily strong
magnetic field superposed with a weak electric field in
the direction of the magnetic field, as shown in Fig. 6. In
such a configuration, a = B0, b = E0, ā = Bc/(2B0),
b̄ = Ec/(2E0), and b̃ = E0/B0 (see Table 1). This configu-
ration, looking too restrictive at a first glance, is actually gen-
eral enough to include the non-parallel cases, too. By choos-
ing an appropriate Lorentz transformation, one can transform
non-perpendicular configurations into parallel ones and the
perpendicular configuration into that of a pure magnetic one
as far as the electric field is weaker than the magnetic field
[3,45]. However, the Lorentz transformation of the permit-
tivity and permeability of anisotropic media is a highly non-
trivial issue [67], and thus eventually we need a formulation
for an arbitrary field configuration [68]. In this paper, we
focus on the parallel configuration to reveal the effect of the
electromagnetic wrench in the simplest setting.

The refractive indices and the associated polarization vec-
tors are found by solving the Maxwell equations for the probe

field. When the probe field is a plane wave with the propaga-
tion vector k and the angular frequency ω (k = ωn = ωnk̂),
the Maxwell equations for the probe field reduce to

ωδB = k × δE, ωδD = −k × δH. (34)

By substituting (29) into these equations, we obtain a matrix–
vector equation for the polarization vector:

εE ·δE+εB ·n×δE+n×(μ̄B · n × δE + μ̄E · δE) = �·δE = 0,

(35)

where � is a 3×3 matrix incorporating εE , εB , μ̄B , μ̄E , and
n. For this equation to have non-trivial solutions, det� = 0
should hold, from which refractive indices (n±) are obtained.
Substituting each of the refractive indices into the matrix–
vector equation, one can obtain the associated polarization
vectors (δE±).

In the configuration in Fig. 6, the parallel field condition
B0 = B0 ẑ and E0 = E0 ẑ (E0 ≥ 0 and B0 > 0) forces the
permittivity and permeability tensors εE , εB , μ̄B , and μ̄E in
(29) to have the following structure:

r =
⎛
⎝
r 0 0
0 r 0
0 0 r + r̃

⎞
⎠ , (36)

where r and r̃ are given in Table 6 for each tensor. Further-
more, without loss of generality, the propagation vector can
be assumed to be in the xz-plane: k = ωn(sin θ, 0, cos θ).
Then the matrix � becomes

� =
⎛
⎝

1 − n2 cos2 θ 0 n2 sin θ cos θ

0 1 − n2(1 + μ sin2 θ) ε2n sin θ

n2 sin θ cos θ ε2n sin θ 1 + ε1 − n2 sin2 θ

⎞
⎠ ,

(37)

where

μ = ˜̄μB

εE
, ε1 = ε̃E

εE
, ε2 = ε̃B

εE
. (38)

By solving det(�) = 0, which is a quadratic equation in n2,
two values of n2 are obtained, i.e., birefringence:

n2± = 1 + ε1 cos2 θ + sin2 θ · f±(ε1 + μ + ε1μ, ε2
2)

(1 + ε1 cos2 θ)(1 + μ sin2 θ) + ε2
2 cos2 θ sin2 θ

,

(39)

where

f±(η, λ) ≡ (η + λ) ± √
(η + λ)2 + 4λ

2
. (40)
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Table 6 Components of the
permittivity and permeability
tensors for the configuration in
Fig. 6. These tensors have the
shape of (36)

r r r̃

εE εE = 1 − L(1)
S ε̃E = E2

0L
(1)
SS + 2E0B0L(1)

SA + B2
0L

(1)
AA

εB εB = −L(1)
A ε̃B = −E0B0L(1)

SS + (
E2

0 − B2
0

)L(1)
SA + B0E0L(1)

AA

μ̄B μ̄B = 1 − L(1)
S

˜̄μB = −B2
0L

(1)
SS + 2E0B0L(1)

SA − E2
0L

(1)
AA

μ̄E μ̄E = L(1)
A

˜̄μE = E0B0L(1)
SS − (

E2
0 − B2

0

)L(1)
SA − B0E0L(1)

AA

Fig. 7 Behavior of f±(η, λ) (40) near η = 0, where η = ε1 +μ+ε1μ

and λ = ε2
2

When λ �= 0 (non-zero wrench), f+(η, λ) and f−(η, λ)

undergo an avoided crossing, as shown in Fig. 7. In con-
trast, when λ = 0 (wrenchless), f+(η, λ) and f−(η, λ) are
swapped to each other in the crossing. Consequently, n2+ and
n2− exhibit the same behaviors for ε2 �= 0 and ε2 = 0 as
ε1 +μ+ ε1μ crosses the origin (η = ε1 +μ+ ε1μ, λ = ε2

2 ).
The avoided crossing is the consequence of the electromag-
netic wrench because ε2 vanishes as E0 does (In Table 6,
L(1)
SA = 0 when E0 = 0) for the configuration in Fig. 6. By

the same token, the swapping is a signature of the wrenchless
case.

With the two indices (39), the matrix equation � · δE = 0
can be solved straightforwardly, but the general results are
too lengthy to be presented. Instead, noting that ε2 vanishes
in the wrenchless case, we present only the expansions of the
refractive indices and the polarization vectors up to O(ε2

2).
The swapping behavior for ε2 = 0 makes the expansion
depend on the sign of ε1 + μ + ε1μ. From now on, it is
assumed that ε1 + μ + ε1μ < 0 (the region of η < 0 in
Fig. 7) below as it holds in the most wrenchless cases. Then
the two refractive indices are expanded from (39) as

n2+  1

1 + μ sin2 θ
− (1 + μ) sin2 θ

(ε1 + μ + ε1μ)(1 + μ sin2 θ)2
ε2

2 ,

n2−  1 + ε1

1 + ε1 cos2 θ

+ (1 + ε1) sin2 θ

(ε1 + μ + ε1μ)(1 + ε1 cos2 θ)2 ε2
2 . (41)

Then, the polarization vectors corresponding to n2± are
obtained by solving �± · δE± = 0, where �± is � (37)
with n2 = n2±. The components of �± are denoted by �±,i j .
However, a blind application of the Gauss elimination fails to
find the correct solution that becomes the wrenchless solution
as ε2 vanishes. By considering the limiting behavior of �±,i j

for ε2 → 0 and requiring the solution’s limiting behavior be
consistent with that of �±,i j , one can make �±, δE±, and
�± · δE± = 0 safely reduce those of the wrenchless case as
ε2 → 0.

For example, as ε2 → 0, �+,22 → ε2
2 , and �+,23 → ε2,

while other non-zero components do not vanish. Then, the
solution of the type (O(ε2), 1, O(ε2))

T yields the correct
solution in terms of �+,i j :

δE+ =

⎛
⎜⎜⎝

�+,13�+,23

�+,11�+,33−�2+,13

1

− �+,11�+,23

�+,11�+,33−�2+,13

⎞
⎟⎟⎠ 

⎛
⎝

0
1
0

⎞
⎠

+

⎛
⎜⎜⎝

1
ε1+μ+ε1μ

cos θ√
1+μ sin2 θ

0
− 1

ε1+μ+ε1μ
(1+μ) sin θ√

1+μ sin2 θ

⎞
⎟⎟⎠ ε2, (42)

where the denominator �+,11�+,33 − �2+,13 does not van-
ish as ε2 → 0. In solving �+ · δE+ = 0, one obtains two
sets of solutions, but they are the same for ε2 �= 0 because
of the constraint on the matrix elements, i.e., det(�+) = 0.
Between the two sets, we choose the set of which denom-
inators do not vanish for ε2 = 0 because the set correctly
reduces to the wrenchless solution in the limit of ε2 → 0.
Note that δE+ can be normalized arbitrarily for convenience
because solving the homogeneous equation �+ · δE+ = 0
determines δE+ up to an overall factor.

Similarly, as ε2 → 0, �−,23 → ε2, �−,33 − �2−,13/

�−,11 → ε2
2 , while other non-zero components do not van-
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ish. Then the solution of the type (x, O(ε2), 1)T , where x is
non-vanishing, yields the following solution:

δE− =
⎛
⎜⎝

−�−,13
�−,11

−�−,23
�−,22

1

⎞
⎟⎠ 

⎛
⎝

−(1 + ε1) cot θ
0
1

⎞
⎠

+
⎛
⎜⎝

0√
1+ε1

ε1+μ+ε1μ

√
1+ε1 cos2 θ

sin θ

0

⎞
⎟⎠ ε2 +

⎛
⎝

− (1+ε1) cot θ
ε1+μ+ε1μ

0
0

⎞
⎠ ε2

2 ,

(43)

where �−,11 and �−,22 do not vanish as ε2 → 0.
In the wrenchless case, E0 = 0 and, thus, ε2 = 0 hold.

The corresponding refractive indices and polarization vec-
tors are the zeroth-order terms in (41) and (43), which are
consistent with those obtained by Melrose [3]. Unlike in
the background-field-free vacuum, k, δE+, and δE− do not
form an orthogonal triad in general, albeit k ⊥ δE+ and
δE+ ⊥ δE−. The polarization vector δE+ is along the y-axis,
while δE− lies in the xz-plane but not necessarily k ⊥ δE−
[69]. An orthogonal triad is formed only when θ = π/2: δE−
is aligned along the z-axis.

When θ = 0, i.e., k is along the z-axis, n2± = 1 and
δE±,z = 0 regardless of the wrench: the background field
does not affect the propagation of the probe field because of
the equal and opposite contributions from the virtual elec-
trons and positrons.

The electromagnetic wrench (b̃ �= 0) can significantly
affect the vacuum birefringence, as shown in Fig. 8. In
Fig. 8a, the difference of the two refractive indices, n+ −n−,
decreases noticeably in the supercritical region (ā ≤ 0.5) as b̃
increases: at ā = 0.3 (āthres for b̃ = 0.2), the decrease is 5.0%
when b̃ = 0.1 but increases to 17% when b̃ = 0.2. The abso-
lute decrease for (ā, b̃) = (0.15, 0.1) is 1.6 × 10−5, which
is quite close to the same as that for (0.3, 0.2), 1.7 × 10−5;
the electric field is Ec/3 at both cases.

In addition, the polarization vectors rotates due to the
wrench. When k is along the x-axis (θ = π/2), δE+ and
δE− on the yz-plane, being perpendicular to each other in
the wrenchless case. However, δE+ rotates further from the
y-axis toward the z-axis in the wrenched case, and the amount
of rotation increases with either ā or b̃, as shown in Fig. 8b.
In contrast to n+ − n−, the rotation angle is already as high
as 1◦ even with the small value of b̃ = 0.025. The rotation
angle is 5.5◦ for (ā, b̃) = (0.15, 0.1) but increases to 12.5◦
for (0.3, 0.2), albeit the electric field remains the same. These
results show that the rotation angle of the polarization vector
is a more sensitive indicator of the wrench.

Both the reduction of the differences of the refractive
indices and the rotation of polarization vectors are new fea-
tures of vacuum birefringence introduced by the non-zero
electromagnetic wrench. These results suggest that the elec-
tromagnetic wrench should be taken into account in ana-

lyzing the vacuum birefringence when the electric field is a
fraction of a supercritical magnetic field. Such a situation is
anticipated in the magnetosphere of neutron stars, especially
magnetars.

5 Vacuum birefringence in pulsar magnetosphere

For a more concrete connection of the results in the previous
sections to astrophysical phenomena, we consider the aligned
rotator model suggested by Goldreich and Julian [39,70].
The model provides the electric and magnetic fields around
a neutron star by considering it as a magnetic dipole rotat-
ing along its dipole axis. Albeit the model cannot describe
the pulsar radiation, it has been used as the basic model of
pulsar magnetospheres because it predicts some phenomena
observed in real pulsars and provides simple analytic expres-
sions. In our context, it plays the role of a theoretical model
for studying strong-field QED, classical and quantum. This
model contains the essential element of the vacuum birefrin-
gence considered in our study, i.e., the wrench effect due to
an electric field along the background magnetic field.

Using the model, we find that the region near the pole of
a pulsar realizes the parallel field configuration considered
in Sect. 4. According to the model, the electric and magnetic
fields around a pulsar and their inner product are given as
follows [70]:

B0(r, θn) = B
(r/R)3

(
cos θnr̂ + 1

2
sin θn θ̂n

)
,

E0(r, θn) = B
(r/R)4

R�

c

[(
3

2
sin2 θn − 1

)
r̂ − 1

2
sin 2θn θ̂n

]
,

E0 · B0 = − B2

(r/R)7

R�

c
cos3 θn, (44)

where B, �, and R are the magnetic field strength at the
north pole, the angular frequency of rotation, and the pulsar’s
radius, respectively. The position is specified by (r, θn, ϕ) in
the spherical coordinate system of the pulsar; ϕ is absent in
these expressions due to the azimuthal symmetry. As illus-
trated in Fig. 9a, the electric and magnetic fields are anti-
parallel near the poles. The degree of parallelization, defined
as (E0 · B0)

2 /
(
E2

0B
2
0

)
, is over 0.99 when θn < 11.2◦ and

over 0.95 when θn < 22.9◦, regardless of the other parame-
ters. Moving from the pole to the equator, the magnetic field
becomes tangential, while the electric field reverses its sign
in the radial direction at θn < 54.7◦. Therefore, we can use
the results in Sect. 4 to analyze the vacuum birefrigence in
the region with θn � 10◦. Figure 9b shows the configuration
of the background fields and the photon propagation vector k
at a position r with a polar angle of θn : the magnetic field B0

is inclined by an angle α  θn/2 with respect to r. The elec-
tric field E0 is almost anti-parallel to the magnetic field. For
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Fig. 8 Effect of the electromagnetic wrench on vacuum birefringence:
(a) n+ − n− and (b) the angle (degree) of δE+ with respect to the y-
axis for b̃ = 0, 0.025, 0.05, 0.1, 0.2. The propagation vector k of the
probe field is chosen to be along the x-axis (θ = π/2) to maximize the

difference in a given field configuration. The vertical lines mark āthres
for b̃ = 0.1, 0.2: below āthres, the corresponding plots become to lose
its validity. The plots of the other b̃ values are valid in the whole range

the photon propagating along the z-axis, the angle between k
and B0 is θ  3θn/2. Furthermore, the parameter b̃ = b/a,
an indicator for the wrench effect, is significant in this region
for millisecond pulsars with a radius comparable to 10 km,
as shown in Fig. 9c.

The wrench effect on the vacuum birefringence near the
pole is seen in Fig. 9d, which shows the difference in the
refractive indices for the photons propagating in the +z direc-
tion. As the wrench parameter b̃ increases to 0.2, the differ-
ence decreases by about 2 × 10−6 at a polar angle of 10◦.
The difference increases with the polar angle mainly because
the angle between k and B0, i.e., θ in Fig. 9b, increases with
the polar angle. Though small, the difference can lead to a
substantial change because the birefringence effect accumu-
lates over a distance comparable to the pulsar radius, which
is much larger than the photon wavelength.

6 Conclusion

We have derived a concise expression of the one-loop effec-
tive Lagrangian for the vacuum under an arbitrarily strong
magnetic field superposed with a weak electric field (15);
G = −E · B can be non-zero to allow the electromagnetic
wrench. The expression is valid as far as the pair production
is not significant because, in the case of significant pair pro-
duction, a plasma of produced electron-positron pairs affects
the vacuum polarization. As a criterion for neglecting pair
production, we suggested the condition E0 � Ec/3, based
on the exact numerical evaluation of the one-loop effective
Lagragian. The lack of such a concise expression for general
field configuration has restricted the vacuum birefringence
analysis to the wrenchless case in the literature.

By using the derived one-loop effective Lagrangian, we
have calculated the linear optical response of such vacuum to
weak low-frequency fields. The permittivity and permeabil-
ity tensors are given as (30) for an arbitrary one-loop effective
Lagrangian. When the expansion form (16) of the HES effec-
tive Lagrangian is used, these tensors have values specified in
Tables 2, 3, and 4. The known results for the wrenchless and
the weak-field cases in the literature are obtained by taking
the limit of b → 0 for arbitrary a (the wrenchless case) and
a, b → 0 (the weak-field case) in our general expression,
respectively.

With the permittivity and permeability tensors, we have
worked out the modes of the probe field for the case where
the background electric and magnetic fields are parallel to
each other. The refractive indices (41) clearly exhibit bire-
fringence, with the associated polarization vectors (42) and
(43). In the case with an electromagnetic wrench, we have
found that the electromagnetic wrench can reduce the dif-
ference of the refractive indices and rotate the polarization
tensor significantly; these effects have not been reported so
far to our knowledge.

Our result is crucial for the X-ray polarimetry of highly
magnetized neutron stars and magnetars because the mag-
netospheres of such astrophysical objects have both a mag-
netic field comparable to or higher than the Schwinger limit
and a weak induced electric fields. The electric field along
the magnetic field can noticeably change the polarimetric
results, as shown in Fig. 8. For instance, when B = 1.7c and
E = 0.33Ec, the difference of the refractive indices changes
by 17%, and the polarization vectors rotate by 12.5◦ due to
the non-negligible electric field along the magnetic field. At
smaller values of E , the change is reduced but can accumu-
late to a significant level because the probe’s propagation
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Fig. 9 Vacuum birefringence in pulsar magnetosphere. a The direc-
tions of the magnetic (red arrow) and electric (green arrow) fields, b
the configuration of the background fields and the photon propagation
vector near the north pole (θ < 25◦), c the distribution of b̃ = b/a for a
pulsar with � = 2π/(1 ms) and R = 10 km, and d the difference of the

refractive indices multiplied by a factor of 106, i.e., (n+−n−)×106, for
the photon propagating along the z-axis (ā = 0.2 and b̃ = 0, 0.1, 0.2
corresponding to B0 = 2.5Bc and E0 = 0, 0.25Ec, 0.5Ec, respec-
tively). When ā = b̃ = 0.2, the ratio PIm/PRe is 0.07

length is comparable to the size of the stars. Thus, our for-
mulae incorporating the electromagnetic wrench enable us
to more accurately analyze the vacuum birefringence at such
astrophysical conditions and, therefore, have a direct impact
on the space missions such as Imaging X-ray Polarimetry
Explorer (IXPE), the enhanced X-ray Timing and Polarime-
try (eXTP), and the Compton Telescope project.

Our results have indicated the significance of the electro-
magnetic wrench in the vacuum birefringence around neu-
tron stars. However, for a more accurate analysis, we need
to extend the formulation in several aspects. First, the for-
mulation should be generalized to include the imaginary part
of the Lagrangian for the case pair production is significant.
Second, the mode analysis in Sect. 4 should be extended to
arbitrary angles among the photon propagation vector, the
electric field, and the magnetic field. Recently, we made such
an analysis for an arbitrary nonlinear Lagrangian and derived

the formulae of refractive indices and polarization vectors
[68]. We leave the application of the analysis with the current
Lagrangian for a future work. Third, the spatial variation of
electric and magnetic fields should be addressed. The formu-
lation discussed so far assumes homogeneous fields but effec-
tively gives the local values of the vacuum response because
the length scale of field variation is about the size of neutron
stars. Under such a spatial variation, the photon propagation
vector and the photon polarization vectors can change their
directions during the propagation. Then, the wave equation or
its approximated version needs to be solved. Fourth, the con-
tribution from the plasma surrounding neutron stars should
be included in addition to the contribution from nonlinear
vacuum discussed so far. Once the plasma distribution is esti-
mated, its contribution to photon propagation can be included
by using the standard formulae in plasma physics. Finally,
the gravity may need to be incorporated because neutron stars
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have non-negligibly strong gravitational fields. Each of these
points are highly non-trivial and requires substantial amount
of theoretical and numerical investigations.
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AppendixA:Numerical evaluation of the integral expres-
sion of L(1)(a, b)

We consider the numerical evaluation of the integral in (4).
The integrand has a proper singularity at z = 0 with a well-
defined limit (0) and thus poses no problem in principle. In
numerical evaluation, however, the functional form in (5)
leads to a serious loss of significant digits near z = 0. This
problem can be avoided by using the Taylor expansion of the
integrand around z = 0. More problematic are the poles of
the cot(b̃z) at z = nπ/b̃ (n = 1, 2, . . . ). As we are interested
only in the real part of L(1)(a, b) to study vacuum birefrin-
gence, we take the principal value of the integral.

Taking into account of these problems, we split the integral
into two parts, I = I1+ I2: one from 0 to zb (zb ∼ 0 and zb �
π/b̃, the first pole) and the other from zb to (n+1/2)π/b̃, the
midpoint between the n-th pole and (n + 1)-th pole. As the
number of poles increases, the numerical integration would
converge to the exact value of the integral in (5). In the first
part, we use the second-order Taylor expansion:

I1(ā, b̃, n) =
∫ zb

0
e−2āz z

945

[
21(1 + 5b̃2 + b̃4)

+z2(−2 − 7b̃2 + 7b̃4 + 2b̃6)
]

dz. (A1)

The second part is given as

I2(ā, b̃, n) = P.V.

∫ (n+1/2)π

b̃

zb

e−2āz

z3

×
[

1 + z2(1 − b̃2)

3
− b̃z2 coth(z) cot(zb̃)

]
dz,

(A2)

where P.V. means the Cauchy principal value. To numer-
ically evaluate the Cauchy principal value, we used Math-
ematica [71], which implements the algorithm presented in
2.12.8 of [72]. In the parameter range considered in our study,
zb = 0.01 and n ≤ 20 gave a good convergence. A small
number of poles are sufficient for convergence as a small
value of b̃ pushes the poles away from the origin, and the
contribution from the region far from the origin is signifi-
cantly suppressed by the factor e−2āz/z3.

Appendix B: Analytic expressions of L(1)(a, 0) and
L(1)(0, b)

The integral expression of the one-loop effective action with
b = 0 is obtained by taking the limit of b̃ = 0 and using
limx→0 x cot(x) = 1 in (5):

L(1)(a, 0) = m4

8π2

1

4ā2

∫ ∞

0

e−2āz

z3

[
1 + z2

3
− z coth(z)

]
dz,

(B3)

where ā = m2/(2ea). The integration can be performed by
expanding z coth z is expanded around z = 0:

z coth z =
∞∑
n=0

B2n(2z)2n

(2n)! , (B4)

where B2n are the Bernoulli numbers. This expansion is con-
vergent for |z| < π , as can be seen by the root test. How-
ever, it can be substituted into (B3) to yield an asymptotic
expression for ā → ∞ because exp (−2āz) suppresses the
contribution from the region of z � 1/(2ā) if the remaining
part of the integrand has a polynomial divergence at most.
By using the formula

∫ ∞
0 e−αz z p dz = �(p + 1)/α p+1, we

can obtain an asymptotic expression of L(1)(a, 0):

L(1)(a, 0) ∼ − m4

8π2

∞∑
n=2

B2n

2n(2n − 1)(2n − 2)

1

ā2n . (B5)

This series (B5) is divergent for any finite value of ā, which
can be found by the root test, and, as ā → ∞, it is asymp-
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totic to a function involving the Hurwitz zeta function ζ(s, ā)

(25.11.44 in [51]):

−
∞∑
n=2

B2n

2n(2n − 1)(2n − 2)

1

ā2n−2

∼ H(ā) = ζ ′(−1, ā) − 1

12
+ ā2

4
−

(
1

12
− ā

2
+ ā2

2

)
ln ā,

(B6)

where ζ ′(−1, ā) = dζ(s, ā)/ds|s=−1. Consequently,

L(1)(a, 0) ∼ m4

8π2

H(ā)

ā2 . (B7)

Remarkably, this asymptotic relation turns out to be equal-
ity. The formula (B7) is exactly the expression of L(1)(a, 0)

obtained either by the dimensional regularization of (B3)
[28,29] or by the Schwinger–DeWitt in-out formalism with
�-function regularization [30].

In a purely electric field, a = 0 and b > 0 from (1) and
(2). Instead of conducting a similar calculation, we employ
the symmetry of the HES Lagrangian (4) to find the formula
of L(1)(0, b). In (4),

L(1)(a, b) = L(1)(ib,−ia) (B8)

holds by construction. As the formula ofL(1)(a, 0) is already
known, L(1)(0, b) can be found as follows:

L(1)(0, b) = L(ib, 0) = − m4

8π2

H(−i b̄)

b̄2
. (B9)

Note that the imaginary part of (B9) is equivalent to the sum
of the residues from the simple poles of (4), which is shown
in [30].

Appendix C: Expression of H(2n)(z)

The even-order derivatives of H(z) can be explicitly obtained.
The function H(z) consists of two parts:

H(z) = ζ ′(−1, z) + h(z)

= ζ ′(−1, z) − 1

12
+ z2

4
−

(
1

12
− z

2
+ z2

2

)
ln z,

(C10)

where ζ ′(−1, z) = dζ(s, z)/ds|s=−1. The function ζ(s, z)
is the Hurwitz zeta function, defined as (25.11.1 in [51]):

ζ (s, z) =
∞∑
n=0

1

(n + z)s
(Re{s} > 1, z �= 0,−1,−2, . . . ).

(C11)

As far as s �= 1, the expression can be analytically contin-
ued. To calculate ∂2n

z ζ ′(−1, z), we begin with the following
identity (25.11.17 in [51]):

∂zζ(s, z) = −s ζ(s + 1, z), (s �= 0, 1 and Re{z} > 0).

(C12)

Differentiating with respect to s and setting s = −1, we
obtain

∂zζ
′(−1, z) = −ζ(0, z) + ζ ′(0, z)

= z − 1

2
+ ln �(z) − 1

2
ln(2π), (C13)

where ζ(0, z) = −z+1/2 and ζ ′(0, z) = ln �(z)−ln(2π)/2
are used for the second equality (25.11.13 and 25.11.18 in
[51]). Differentiating with respect to z successively and using
the definition of the polygamma function (5.2.2 and 5.15 in
[51])

ψ(m)(z) = dm+1 (ln �(z)) /dzm+1, (C14)

we obtain the formula of ∂2n
z ζ ′(−1, z):

∂2n
z ζ ′(−1, z) = δn1 + ψ(2n−2)(z), n ≥ 1. (C15)

The successive differentiation of h(z) in (C10) is straight-
forward, and, consequently, the formula of H (2n)(z) is given
as

H (2n)(z) = ψ(2n−2)(z) + 1

12

�(2n)

z2n + 1

2

�(2n − 1)

z2n−1

+�(2n − 2)

z2n−2 θ(n − 2) − δn1 ln z, (n ≥ 1),

(C16)

where θ(n) is the unit step function with θ(n ≥ 0) = 1.
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