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Abstract We discuss gauge theories of scale invariance
beyond the Standard Model (SM) and Einstein gravity. A
consequence of gauging this symmetry is that their under-
lying 4D geometry is non-metric (∇μgαβ �= 0). Examples
of such theories are Weyl’s original quadratic gravity the-
ory and its Palatini version. These theories have spontaneous
breaking of the gauged scale symmetry to Einstein gravity.
All mass scales have a geometric origin: the Planck scale
(Mp), cosmological constant (�) and the mass of the Weyl
gauge boson (ωμ) of scale symmetry are proportional to a
scalar field vev that has an origin in the (geometric) R̃2 term
in the action. With ωμ of non-metric geometry origin, the
SM Higgs field also has a similar origin, generated by Weyl
boson fusion in the early Universe. This appears as a micro-
scopic realisation of “matter creation from geometry” dis-
cussed in the thermodynamics of open systems applied to
cosmology. Unlike in local scale invariant theories (with no
ωμ present) with an underlying pseudo-Riemannian geom-
etry, in our case: (1) there are no ghosts and no additional
fields beyond the SM and underlying Weyl or Palatini geom-
etry, (2) the cosmological constant is positive and is small
because gravity is weak, (3) the Weyl or Palatini connection
shares the Weyl (gauge) symmetry of the action, and: (4) there
exists a non-trivial, conserved Weyl current of this symme-
try. An intuitive picture of non-metricity and its relation to
mass generation is also provided from a solid state physics
perspective where it is common and is associated with point
defects (metric anomalies) of the crystalline structure.

a e-mail: dumitru.ghilencea@cern.ch (corresponding author)

1 Introduction

Scale symmetry may play a role in physics beyond the Stan-
dard Model (SM) and Einstein gravity. This is suggested by
the fact that the SM with a vanishing Higgs mass (parame-
ter) is scale invariant [1]. Moreover, at high energies or in the
early Universe, the states of the SM are essentially massless
and the theory can have a scale symmetry (global, local or
gauged scale symmetry)1. But Einstein gravity breaks such
symmetry, hence one can attempt to generate it as a spon-
taneously broken phase of a theory with a local or gauged
scale symmetry (regarding global scale symmetry, it does
not survive black hole physics [2]).

Since gravity “is” geometry, the first question is what the
underlying 4D space-time geometry of a theory beyond Ein-
stein gravity and SM is. If the action is locally scale invariant,
one could expect that this should also be, for consistency, a
symmetry of the underlying geometry i.e. of the connection.
But the (pseudo)-Riemannian geometry and its Levi-Civita
connection are not (Weyl) locally scale invariant. One may
then seek an alternative geometry whose connection has the
space-time symmetry of the action. A stronger motivation to
do so is the gauge principle: similarly to the SM as a (quan-
tum) gauge theory, we seek a gauge theory of scale invariance
that recovers Einstein gravity in its broken phase.

This principle leads us to consider the Weyl conformal
geometry [3–5] because Weyl connection does have a gauged
scale symmetry also known as Weyl gauge symmetry. We
also consider the Palatini approach to gravity [6] where the
offshell connection, being independent of the metric, has
this symmetry, too. In a gauged scale invariant theory its

1 In this work we make a distinction between local scale symmetry
and gauged scale symmetry in that in the former case there is no gauge
boson ωμ present (or it is “pure gauge” see later).
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underlying Weyl geometry is non-metric i.e. ∇̃μgαβ �= 0;
the Palatini version with such symmetry is also non-metric
[7]. This differs from other theories beyond SM and Einstein
gravity that assume that the underlying geometry is a metric
(pseudo)Riemannian geometry (∇μgαβ = 0), e.g. as in con-
formal gravity [8–11], supergravity [12] or strings embed-
ding [13,14]. In our case, non-metricity is present because
the gauge field of scale transformations (ωμ) is dynamical
as expected in a true gauge theory; this is not true in confor-
mal gravity [15] (also [16,17]) which is then a metric theory.
Briefly, non-metricity is due to the dynamics2 of ωμ and is
relevant for mass generation in gauge theories of scale invari-
ance, as we discuss.

Weyl geometry was criticised for its non-metricity [3]
but remained of interest [18] even though it failed to
describe gravity “plus” electromagnetism as Weyl had ini-
tially intended [3–5]. Actually, the same original theory
of Weyl, which is a quadratic gravity theory of action√

g (R̃2−F2
μν), defined by Weyl geometry, is indeed a realis-

tic theory of scale symmetry as first shown in [19,20]: it has
a spontaneous breaking (Stueckelberg mechanism) to Ein-
stein gravity plus a Proca action of the Weyl gauge boson of
scale symmetry. This boson3 is thus a massive gauge field
of dilatations that decouples at a high scale (mass ∝ Mp),
below which a (metric) (pseudo)-Riemannian geometry and
Einstein gravity are found [19–21]. So Weyl geometry and its
gauged scale invariance give a UV completion of (pseudo)-
Riemannian geometry and Einstein gravity. We thus have
a gauge theory embedding of Einstein gravity – the latter
is simply an effective theory and a “low energy” (sponta-
neously) broken phase of Weyl’s original quadratic gravity
theory.

In theories with a scale symmetry of the (canonical)
Lagrangian, dimensionful couplings are forbidden. Then
their mass scales e.g. Planck scale (Mp), cosmological con-
stant (�), are generated by vacuum expectation values (vev)
of some additional scalar field(s) beyond the SM Higgs.
These extra fields are added ad-hoc as a “patch up” solu-
tion and often are ghosts (see later). Further, sometimes the
local scale symmetry used is a “fake symmetry” since its
associated current is trivial. We want to avoid all these issues
that are detailed in Sect. 2. Finally, with gravity related to
the underlying geometry, could Mp and � have a common,
geometric origin?

In this work we review the role of non-metricity in solv-
ing these problems, based on our results in [7,19–21]. We
compare (Sect. 3) the special, metric case (where ωμ is not
dynamical) to the non-metric case of Weyl quadratic gravity

2 A dynamical ωμ agrees with the view that at fundamental level gravity
may be a theory of connections [22,23].
3 Which Weyl unfortunately (and wrongly) attempted to identify with
the massless, real photon.

[19–21] and of its Palatini version [7].4 We show how (non-
metric) geometry generates all mass scales in both Weyl and
Palatini cases, in the absence of matter, while avoiding the
aforementioned issues. These results remain valid if matter
is included e.g. the SM. We shall see (Sect. 4) how non-
metric geometry (in essence ωμ) can be responsible for gen-
erating the SM Higgs field: this gives a microscopic picture
of “matter creation from geometry” usually discussed in the
thermodynamics of open systems applied to cosmology [27–
30]. We also discuss the absence of a “second clock effect”
(the initial Einstein’s critique [3] of non-metricity) in a spon-
taneously broken gauge theory of scale invariance such as
Weyl or Palatini theory. Given its important role here, we
also provide a more intuitive picture of non-metricity from
the solid state physics perspective where it is associated with
point defects of the crystalline structure. After Conclusions
(Sect. 5), Appendices A and B present technical details.

2 A “metric” example

To detail the above ideas, consider first the (pseudo-)
Riemannian geometry and5

LE = −1

2
√

g (M2
p R + 2 M2

p�) (1)

where Mp is the Planck scale and � is the cosmological
constant. One can regardLE as a spontaneously broken phase
of a local scale invariant action. This symmetry is defined by
invariance under (i) below, extended by (ii) if real scalars (φ)
or fermions (ψ) are present

(i) ĝμν = 	q gμν,
√

ĝ = 	2q√
g,

(ii) φ̂ = 	−q/2φ, ψ̂ = 	−3q/4 ψ, (q = 1), (2)

where g = | det gμν |, 	(x) > 0 and we set the charge q =
1 without loss of generality.6 Consider implementing this
symmetry7 using [32,33], so one adds ‘by hand’ a scalar φ,
then

LE = √
g

{−1

2

[
1

6
φ2 R + (∂μφ)2

]
± λφ4

}
, (3)

is invariant under (2). By a formal transformation (2), with
	 = φ2/〈φ〉2, one fixes the gauge of this symmetry i.e. fixes
φ̂ to a constant vev, assumed to exist, 〈φ2〉 = 6M2

p, so gauge
fixing confirms a dynamical breaking (not vice-versa). Then

4 Prior to [7,19–21] realistic non-metric theories were linear-only in R
and had additional scalars to generate the Planck scale e.g. [24–26].
5 Our convention is gμν = (+,−,−,−), g = | det gμν | while the
curvature tensors are defined as in [31].
6 The case of arbitrary q in transformations (2) and (4) is recovered by
replacing α → qα in the results.
7 For some interesting models beyond the SM with this symmetry see
e.g. [34–40].
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one generates the first term in (1) and φ decouples. Regarding
the second term in (1), this can be obtained only if one is
adding “by hand” a φ4 term to (3) and with the right sign!

For our later comparison to “non-metric” cases, notice the
following (see also [41–43]):

(a) Symmetry (2) enforces the sign of the kinetic term to
be negative so φ is a ghost. It is common in confor-
mal/superconformal models that φ, which acts as a com-
pensator rather than a physical field, has a kinetic term
of negative sign.8 We would like to avoid a ghost in a
classical action.9 Note also that the sign of � ∼ 〈φ〉2 is
arbitrary, not fixed by symmetry (2) of action (3).

(b) In the absence of matter the current Jμ associated to
symmetry (2) is trivial Jμ = 0; this raised concerns on
the physical meaning of symmetry (2) which was thus
called “fake symmetry” [44,45]. We want to know if a
non-trivial current exists in more general cases.

(c) φ is added “by-hand” to enforce symmetry (2), as a “com-
pensator”, so it is not related to the underlying geometry
of Einstein gravity emergent in the broken phase. So the
Planck scale generated by 〈φ〉 is not related to the under-
lying geometry. Can Mp, � and φ have a geometric ori-
gin?

(d) while LE is invariant under (2), the underlying geometry
i.e. the Levi-Civita connection is not! Is it really consis-
tent to have a space-time symmetry of an action while
its underlying geometry (connection) does not have such
symmetry? Can we avoid this?

In the following we shall see how the above issues (a),
(b), (c), (d) are elegantly answered in the gauge theory of
scale symmetry of Weyl, based on Weyl geometry or in its
Palatini version. They ensure a geometric interpretation of
this symmetry, something that is not obvious in the local
scale symmetry of Eq. (2) (for a discussion on this [37,41]).

3 Non-metric geometry as the origin of mass

3.1 Weyl geometry: metricity vs non-metricity

• Metric (integrable) case:
Consider first the case of Weyl conformal geometry.10 Weyl
geometry is defined by classes of equivalence (gαβ, ωμ) of
the metric (gαβ ) and the Weyl gauge field (ωμ), related by the

8 This has additional implications e.g. for the scalar potential in 4D
N=1 supergravity [12].
9 Alternatively, if one changed the sign of LE , then 〈φ2〉 < 0, 	 < 0
but then gμν changes signature by (2).
10 For a brief introduction to Weyl conformal geometry and relevant
formulae see Appendix A in [21].

gauged scale symmetry (aso known as Weyl gauge symmetry)
transformation. This symmetry is defined by transformation
(2) together with that of ωμ given by:

ω̂μ = ωμ − 1

α
∂μ ln 	, (4)

with α the Weyl gauge coupling. By non-metricity we mean
the presence of dynamical ωμ in the theory, such that

∇̃μgαβ = −α ωμgαβ, (5)

∇̃ is defined by the connection �̃ of Weyl geometry, see
Eq. (B.4). The solution is (Eq. (B.6))

�̃λ
μν = �λ

μν + (1/2) α
[
δλ
μ ων + δλ

ν ωμ − gμν ωλ
]
. (6)

where � is the Levi-Civita connection �α
μν(g) = (1/2)gαλ

(∂μgλν + ∂νgλμ − ∂λgμν). �̃ is invariant under combined
(2), (4). If ωμ decouples (ωμ = 0) or is “pure gauge”, the
theory is called Weyl integrable and is metric !. Denote by
�̃ν

μν = �̃μ, �ν
μν = �μ, then

ωμ = (1/2) (�̃μ − �μ) (7)

ωμ measures the deviation (of the trace) of the connection
from the Levi-Civita connection. Since ωμ is part of the con-
nection �̃, it obviously has a (non-metric) geometric origin.

The simplest gravity action in Weyl geometry, with sym-
metry (2), (4) is

L1 = √
g

1

4! ξ2 R̃2, ξ < 1, (8)

where R̃ = R(�̃, g) is the scalar curvature of Weyl geometry,
defined by �̃ of (6) with the usual formulae. L1 is invariant
under (2), (4). This is because R̃ = gμν R̃μν(�̃) where �̃ and

thus R̃μν(�̃) are invariant, hence under (2), (4), ˆ̃R = R̃/	

and L1 is invariant. One can then show (see e.g. [21])

R̃ = R − 3 α ∇μωμ − 3

2
α2 ωμ ωμ, (9)

where the rhs is in a Riemannian notation, so ∇μωλ =
∂μωλ+�λ

μρ ωρ . One can replace (9) inL1. Since R̃2 contains
Riemannian R2, L1 is a higher derivative theory that propa-
gates a spin-zero mode (from R2), in addition to the graviton.
It is easy to “unfold” this higher derivative theory into a sec-
ond order one and extract this spin-zero mode from R̃2. To
this purpose, replace R̃2 → −2φ2 R̃ − φ4 in L1, where φ is
a scalar field, to obtain

L1 = √
g

1

4! ξ2

[
− 2φ2 R̃ − φ4

]
. (10)

The equation of motion of φ has solution φ2 = −R̃ which
replaced in the action recovers Eq. (8), so Eqs. (8) and (10)
are classically equivalent. Next, the equation of motion of
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ωμ is

ωμ = (1/α) ∂μ ln φ2, (11)

so ωμ is “pure gauge” and can be integrated out. Using this
back in the action, then

L1 = √
g

1

ξ2

{
− 1

2

[
1

6
φ2 R + gμν∂μφ ∂νφ

]
− 1

4! φ4
}
.

(12)

This is called a Weyl integrable case since ωμ is not
dynamical: its field strength Fμν = 0 due to (11). Hence,
the theory is metric: we apply (4) with 	 = φ2, therefore
ω̂μ = 0, �̃ = �, ∇̃μgαβ = 0 so the connection is Levi-Civita
and the geometry becomes (pseudo)Riemannian.

L1 has similarities to the case of previous section, see text
after Eq. (3), but there are some good features in the case
here. Firstly, unlike in (3), here φ was not added “ad-hoc”
but it came from the R̃2 term in the action. Secondly, the
last term in (3) has a definite sign. Assuming that φ acquires
a vev (e.g. at quantum level, etc), by applying (2) to (12)
with 	 = φ/〈φ〉, (or formally setting φ = 〈φ〉 in (12)),
one obtains Eq. (1) of Einstein action and a cosmological
constant term, with a Planck mass M2

p = 〈φ〉2/(6ξ2) and
� = 〈φ〉2/4.

Briefly, Weyl quadratic gravity in the integrable case has
certain advantages compared to the “metric” case in Sect. 2:
it generates Einstein gravity and it explains the origin of both
MP and � as due to (a vev of) φ which was not added by
hand but it has a geometric origin in the R̃2 term. The case
here predicts a non-zero (positive) �, because both �, Mp ∝
〈φ〉2. This also suggests a UV-IR connection in the physics
associated to these two scales.

However, similar to Sect. 2, for action (12) the current
Jμ associated to symmetry (2) is trivial Jμ = 0, see [44,
45], hence their conclusion that (2) is a fake symmetry. The
negative sign kinetic term in (12) may also be a concern in
some cases. We want to avoid these two issues, but to retain
the good features found above. This is possible in the non-
metric case.

• Non-metric case:
The above situation improves further if ωμ has a kinetic term.
This brings us to the original Weyl gravity action [3–5] which
has a gauged scale symmetry. The action is

L′
1 = √

g

[
1

4!
1

ξ2 R̃2 − 1

4
F 2

μν

]
. (13)

Here Fμν = ∇̃μων − ∇̃μων is the field strength of ωμ, with
∇̃μων = ∂μων − �̃

ρ
μνωρ . Since �̃α

μν = �̃α
νμ is symmetric,

Fμν = ∂μων − ∂νωμ, just like in flat space-time.
We “linearise” the R̃2 term in (13) by replacing R̃2 →

−2φ2 R̃ −φ4, where φ is a scalar field. In the new action, the
solution of the equation of motion of φ is φ2 = −R̃ which

replaced in the action recovers Eq. (13), therefore we obtain
a classically equivalent action. Then we replace R̃ in terms
of Riemannian R, Eq. (9), to find [19–21]:

L′
1 = √

g

{
1

4! ξ2

[ − 2φ2 R̃ − φ4] − 1

4
F2

μν

}

= √
g

{ −1

2 ξ2

[
φ2

6
R + (∂μφ)2 − α

2
∇μ(ωμφ2)

]

− φ4

4! ξ2 + α2

8 ξ2 φ2
[
ωμ − 1

α
∂μ ln φ2

]2

− 1

4
F2

μν

}
.

(14)

From this Lagrangian one finds (see Appendix A) that

Jμ = −α/(4ξ2) gμν (∂ν − α ων)φ
2 (15)

is a conserved current: ∇μ Jμ = 0 [7,19–21]. The presence
here of a non-trivial conserved Jμ is a fundamental differ-
ence from the metric/integrable cases discussed earlier and
avoids the criticisms of [44,45]. For the previous case of Weyl
integrable geometry of Eq. (12), with ωμ of (11) one easily
verifies that for action (12) Jμ = 0 i.e. the current is trivial.

From current conservation equation ∇μ Jμ = 0 or from
Eq. (A.16):

�φ2 − α∇ρ (ωρφ2) = 0, � = ∇μ∇μ. (16)

This shows that φ is a dynamical field, as also obvious from
(12) and because R̃2 contains the higher-derivative Rieman-
nian R2 that propagates a spin-zero mode beyond graviton.
This generalises a conserved current ∇μ(∇μφ2) = 0 of
global case [46–50] recovered here for α = 0.

One would like to “fix the gauge” of Weyl gauge symme-
try. As in the previous metric and integrable cases, assume
that φ develops a vev e.g. at the quantum level or as in
the global case [46–50]. For example in a Friedmann–
Robertson–Walker universe, with an “isotropic” ωμ =
(ω0(t), 0, 0, 0), if ω0(t) ∼ 1/φ(t)2, then (16) gives �φ2 ≈ 0
whose solution φ(t) evolves to a constant value (vev) at large
t [46–50], so φ → 〈φ〉. Then, on the ground state the cur-
rent conservation ∇μ Jμ = 0 gives ∇ρωρ = 0, specific to a
massive Proca field ωμ. This “fixes the gauge” of symmetry
(2), (4). At the level of the Lagrangian, this gauge fixing is
implemented by applying to L′

1 transformation (2), (4) with
a special 	 = φ2/〈φ2〉; (or formally replace φ → 〈φ〉 in
Eq. (14)). In terms of the transformed fields (with a “hat”),
L′

1 becomes:

L′
1 =

√
ĝ

[
− 1

2
M2

p R̂+ 1

2
m2

ω ω̂μω̂μ−� M2
p− 1

4
F̂2

μν

]
, (17)
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with

M2
p = 〈φ2〉

6 ξ2 , � = 1

4
〈φ2〉, m2

ω = α2〈φ2〉
4 ξ2 . (18)

Equation (17) is the Einstein–Proca Lagrangian for the Weyl
vector [19–21], in the Einstein gauge (“frame”). The Weyl
gauge field has absorbed the derivative of the field11 ∂μ(ln φ)

via a Stueckelberg mechanism [51], with the total number
of degrees of freedom (dof) conserved, as expected for a
spontaneous breaking: the massless ωμ (dof = 2) and real,
dynamical φ (dof = 1) are replaced by a massive Proca field
ωμ (dof = 3, since ∇ρωρ = 0) [19–21]. Notice that there
is no ghost in (17). The mass of ωμ, mω ∼ α Mp, is close
to Mp unless one is tuning α � 1; hence, any (unwanted)
non-metricity effects due to ωμ are suppressed by mω.

Since ωμ is massive, it decouples to leave in the broken
phase below mω the Einstein gravity and a positive cosmo-
logical constant. At the same time, since ωμ decouples from
the action, metricity is restored below mω: the connection �̃

of (6) becomes Levi-Civita (�) and the geometry becomes
Riemannian. Hence, Weyl geometry with its gauged scale
invariance acts as a non-metric ultraviolet (UV) completion
(above mω) of Riemannian geometry.

3.2 Palatini theories: metricity vs non-metricity

• Metric case:
Let us now consider the Palatini approach [6] to the quadratic
gravity actions with a Weyl gauge symmetry, such as Eqs. (8),
(13). In this approach the connection is independent of the
metric and so it is invariant under (2), (4). The connection is
then determined from its equations of motion and this solu-
tion is used back in the initial action. Hence, the underlying
geometry (connection) and thus its metricity or non-metricity
are determined by the action and by its symmetries, as we
shall see shortly: if the theory is invariant under (2) the theory
is metric; while if it is Weyl gauge invariant, it is non-metric.

To begin with, consider first an action with symmetry (2)
in a Palatini approach

L2 = √
g

1

4! ξ2 R(�̃, g)2 (19)

where

R(�̃, g) = gμν Rμν(�̃),

Rμν(�̃) = ∂λ�̃
λ
μν − ∂μ�̃λ

λν + �̃λ
ρλ�̃

ρ
μν − �̃λ

ρμ�̃
ρ
νλ. (20)

This is the Palatini version of action (8) in Weyl geometry, but
now �̃ is unknown. Rμν(�̃) is the metric-independent Ricci

11 See the second-last term in the last line of Eq. (14). Here ln φ has a
shift symmetry Eq. (2) and plays the role of a would-be Goldstone field
of the Weyl gauge symmetry. For a detailed discussion see [7,19–21].

tensor in the Palatini formalism. Since �̃ is independent of
the gμν , �̃ and Rμν(�̃) are invariant under transformation
(2). Therefore, R(�̃, g) transforms like gμν , so under (2):

R̂(�̃, ĝ) = 1

	
R(�̃, g). (21)

As a result, L2 is invariant under (2) and this is the simplest
Palatini case that has local scale symmetry (2). L2 can be
linearised as in the Weyl case (Eq. (10)): replace R(�̃, g)2 →
−2φ2 R(�̃, g) − φ4 to obtain a classically equivalent action
to (19). For this L2 one writes and solves the equation of
motion for �̃. The solution is (see [7, Section 2]):

�̃α
μν = �α

μν(g) + (1/2)
(
δα
ν uμ + δα

μuν − gαλgμνuλ

)
,

uμ ≡ ∂μ ln φ2, (22)

with � the Levi-Civita connection. With this �̃, one computes
the scalar curvature

R(�̃, g) = R(g) − 3∇μuμ − 3

2
gμνuμ uν . (23)

R(g) is the scalar curvature for gμν while ∇ is defined by the
Levi-Civita connection (�). Using the last equation back in
L2, one finds

L2 = √
g

1

ξ2

{
− 1

2

[
1

6
φ2 R(g) + (∂μφ)2

]
− 1

4! φ4
}
. (24)

This is the onshell version of (19) and contains a dynamical
φ. This is because the metric part of the Palatini quadratic
gravity12 makes the action a four-derivative theory: accord-
ing to (23) onshell R̃(�̃, g)2 contains R(g)2. Action (24) is
similar to that seen in Eqs. (3) and (12) and its associated
current vanishes again. Fixing the gauge of the symmetry
which essentially means setting φ → 〈φ〉 then

L2 =
√

ĝ

{−1

2
M2

p R̂(ĝ) − 3

2ξ2 M4
p

}
. (25)

And since φ is fixed to a constant, �̃ = �, so the theory is
metric, see e.g. discussion in [7]. This is similar to the Weyl
integrable (metric) case discussed earlier.

• Non-metric case:
The situation changes dramatically if the theory has a gauged
scale invariance. Consider

L′
2 = √

g

{
1

4! ξ2 R(�̃, g)2 − 1

4α2 R[μν](�̃) R[μν](�̃)

}
(26)

where R[μν] ≡ (1/2) (Rμν − Rνμ) with Rμν as in Eq. (20).
Additional scale invariant operators of dimension d = 4 can
be present. One can check that the two terms in the action

12 Due to the Levi-Civita contribution to �̃, Eq. (22).
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above are invariant under (2). Next, define

Fμν(�̃) = ∇̃μvν − ∇̃νvμ, where

vμ ≡ (1/2)(�̃μ − �μ), (�̃μ ≡ �̃ρ
μρ, �μ ≡ �ρ

μρ),

(27)

so Fμν is a function of �̃. Since �̃ is assumed symmetric in the
lower indices, then Fμν = ∂μvν − ∂νvμ = ∂μ�̃ν − ∂ν�̃μ =
−R[μν]. Hence, the last term in (26) acts as a kinetic term
for vμ. Under (2), vμ transforms like ωμ of the Weyl case,
while Fμν is invariant. Therefore, action (26) has a bigger
symmetry: it is Weyl gauge invariant, being invariant under
Eqs. (2) and (4) with ωμ → vμ i.e. v̂μ = vμ−(1/α) ∂μ ln 	.
We denoted by vμ the Weyl gauge field in the Palatini case,
playing the role of ωμ. With this, Eq. (26) is a Palatini version
of the Weyl action in Eq. (13) but now �̃ is unknown – it will
be determined by its equations of motion.

From (26) one proceeds as in the Weyl case to “linearise”
the R(�̃, g)2 term in (26) with the aid of an auxiliary scalar φ,
so replace R(�̃, g) → −2φ2 R(�̃, g) − φ4. From the result-
ing, equivalent Lagrangian one can then write the equations
of motion of the connection �̃

ρ
αβ which can be solved. The

solution is a function of φ and is used to evaluate Rμν(�̃)

and then R(�̃, g). Using this result back in action (26) one
finally finds [7] (Eq. 29):

L′
2 = √

g

{
− 1

2 ξ2

[
1

6
φ2 R + (∂μφ)2

]

− 1

4! ξ2 φ4 + α2

2ξ2 φ2
[
vμ − 1

α2 ∂μ ln φ2
]2

− 1

4
F2

μν

}
.

(28)

This result is similar to that in Weyl case Eq. (14), with vμ →
ωμ. Equation (28) is the “onshell” Lagrangian, that is using
the solution of �̃. L′

2 is invariant under combined Eqs. (2),
(4) (with ωμ → vμ). A conserved current exists similar to
that in Weyl case, see Eq. (15) and Appendix A.

To fix the gauge, the same discussion as in the Weyl case
applies. At the level of the Lagrangian this “gauge fixing”
may formally be implemented by setting φ to a constant vev;
this then brings us to the Einstein–Proca Lagrangian

L′
2 = √

g

{
− 1

2
M2

p R+3α2 M2
pvμ vμ − 1

4
F2

μν −� M2
p

}
,

� ≡ 1

4
〈φ〉2, M2

p ≡ 〈φ〉2

6 ξ2 . (29)

There is again a Stueckelberg mechanism, similar to the Weyl
case: vμ becomes massive after “absorbing” the dynamical φ
which disappears from the spectrum of (29) and the number
of degrees of freedom is conserved in going from (28) to
(29). The Einstein–Proca action of vμ is thus found. We see
that the Stueckelberg breaking of a gauged scale symmetry
is valid in a Palatini quadratic gravity model, too. This mass

mechanism may be common in gravity theories where the
connection is a dynamical variable [22,23,52].

There are however two differences from the Weyl case:
Firstly, there are additional quadratic operators [53] with
gauged scale invariance that were not included in this analysis
and that can affect the overall result. Secondly, the vectorial
non-metricity obtained in the Palatini case for action (26),
shown in the Appendix Eq. (B.18), is different from that in
the Weyl case Eq. (5). This explains a different numerical
coefficient in (28) versus (14).

The Weyl and Palatini cases above show that non-metricity
that follows from gauging the scale symmetry is accom-
panied by a Stueckelberg breaking of this symmetry to
Einstein–Proca action.13 They have further advantages com-
pared to their metric versions: (a) they have a non-trivial
conserved current Jμ and (b) there are no ghost fields in
actions (17), (29).

4 Phenomenology

4.1 Mass scales from non-metric geometry

We saw that Einstein gravity is a spontaneously broken phase
of the original Weyl quadratic gravity or its Palatini version,
with Weyl gauge symmetry. We have 3 mass scales: Mp, mω,
� that are all proportional to the vev of the Stueckelberg field
〈φ〉 eaten by ωμ (vμ), Eqs. (18), (29). Their exact values are
fixed by three parameters: 〈φ〉, ξ and α. Here φ is introduced
by a geometric term in the action (R̃2), so all masses have
a non-metric geometry origin! ωμ (vμ) is also part of the
underlying non-metric geometry, too. There is a difference
from the Higgs mechanism, since there is no φ present in
the final action. The cosmological constant is positive (and
non-vanishing), due to a φ4 term also induced by R̃2. This
suggests a UV - IR physics connection due to the common
origin (∝ 〈φ〉) of the scales � and Mp.

As in all theories with scale symmetry one can only predict
ratios of scales in terms of dimensionless couplings of the
theory (ξ , α). One can obtain the correct ratios

�/M2
p ∼ ξ2, m2

ω/M2
p ∼ α2 (30)

for suitable (perturbative) values of α and ξ . If the Planck
scale Mp is fixed to its value, we see that � is small because
gravity is ultraweak (coupling ξ � 1).

We also see that issues (a), (b), (c), (d) encountered in the
(pseudo-)Riemannian case with Weyl symmetry of Sect. 2
are now nicely solved. To detail:

(a) There is no ghost degree of freedom in the final spec-
trum, since φ is eaten by ωμ. Also, the Einstein gravity is

13 For a related scale invariant de Sitter gauge theory see [54].

123



Eur. Phys. J. C (2023) 83 :176 Page 7 of 15 176

recovered and the sign of � is predicted positive, due to the√
gR̃2 term;
(b) The current associated to Weyl gauge symmetry is non-

trivial (Jμ �= 0) and is related to the existence of a dynamical
ωμ i.e. to non-metricity;

(c) The field φ was not added by hand, but was “extracted”
from the

√
gR̃2 term, hence it has an origin in (non-metric)

geometry and the same is true about �, Mp and mω that 〈φ〉
generated;

(d) Finally, the Weyl or Palatini connections are Weyl
gauge invariant, hence both the action and its underlying
geometry have this symmetry.

4.2 Higgs from non-metric geometry

The discussion so far was in the absence of matter, hence
it was about “geometry”. The next step is to see the effect
of non-metricity in the presence of the SM. Consider then
embedding the SM in Weyl conformal geometry – this is
indeed possible, as shown in [21]. We refer the reader to this
work for the technical details how this is done. This embed-
ding is truly minimal and natural and does not require any
additional degrees of freedom beyond those of the SM and
of Weyl geometry (φ, ωμ, gμν). This is possible because the
SM with a vanishing Higgs mass parameter is scale invariant.
In fact, one can easily notice that the Lagrangian of the SM
gauge bosons and fermions in the Weyl conformal geome-
try has a form identical to that in the (pseudo-)Riemannian
geometry and has a gauged scale symmetry. Hence, the SM
gauge bosons and fermions do not have any direct couplings
to the Weyl gauge boson [55,56] (with one special exception
for the SM fermions discussed in Section 2.3 of [21]).

However, the SM Higgs sector is modified by the Weyl
gauge symmetry [21]. First, there is a non-minimal coupling
of the Higgs to Weyl geometry

√
g H† H R̃ which is Weyl

gauge invariant; here H is the SU (2)L Higgs doublet. The
Higgs kinetic term is also modified: the SM covariant deriva-
tive DμH is “upgraded” to also become Weyl-covariant;
hence the derivative DμH is replaced to include the Weyl
gauge boson of scale invariance:

DμH → (Dμ − α/2 ωμ)H, (31)

so that this derivative transforms like the Higgs under trans-
formations (2), (4). Hence, the Weyl gauge invariant Higgs
kinetic term becomes

√
g gμν

[
Dμ − α/2 ωμ) H

]†
(Dν − α/2 ων) H. (32)

Further, the neutral Higgs boson mixes with the field φ that
“linearised” R̃2; their “radial direction” combination is now
the new Stueckelberg field eaten by ωμ (as shown earlier),
while the “angular direction” field becomes the SM neutral
Higgs, hereafter called σ .

In the canonical Lagrangian, the coupling of ωμ to σ is
(see eqs.(32), (38) in [21]):

LH = 1

8
√

g α2 ωμωμ σ 2 + O(σ 2/M2
p). (33)

This coupling comes from the Higgs kinetic term mentioned
earlier.14 This is the only direct coupling of the SM to the
Weyl gauge boson. It has interesting consequences. In the
early Universe, assuming there was no Higgs boson, this
coupling can generate the Higgs from the Weyl vector boson
fusion

ωμ + ωμ → σ + σ. (34)

Since ωμ is part of the non-metric geometry (connection), the
Higgs boson itself can have a non-metric, geometric origin!
And since the Higgs generates the masses of the SM states
while the Stueckelberg field (“extracted” from the R̃2 term)
generated Mp, � and mω, one concludes that ωμ and non-
metric geometry are the origin of all the masses of the theory.
This happens without additional degrees of freedom beyond
the SM or Weyl geometry!

Interestingly, the Weyl boson fusion can have an additional
effect at a cosmological level, of mitigating any anisotropy
that the Weyl vector would otherwise bring. This deserves
careful study. A similar coupling and generation of the Higgs
via Weyl boson fusion exists when considering the Higgs
sector in Palatini gravity with Weyl gauge symmetry [7] (Eq.
45).

The generation of the Higgs field alone, from non-metric
geometry (Weyl or Palatini), via ωμ-ωμ fusion in the early
Universe is interesting.15 This process appears as a possible
microscopic realisation of “matter creation from geometry”
discussed in a phenomenological macroscopic description in
the thermodynamics of open systems applied to cosmology
[27–29]. In such approach the creation of matter occurs as a
process corresponding to transfer of energy from the gravi-
tational field(s) (in our case ωμ) or space-time curvature (R̃2

that depends on ωμ) to the matter created (in our case Higgs).
The second law of thermodynamics allows space-time geom-
etry transform into matter but the inverse transformation is
forbidden. Therefore the process of matter creation from the
underlying geometry is irreversible. However, this result is
not valid in general but only if the specific entropy per par-
ticle (s) is ṡ ≤ 0 (otherwise matter destruction takes place)
[30]. If so, it would be interesting to study how irreversibil-
ity could emerge from the microscopic picture provided by
our SM Lagrangian in Weyl geometry. Notice however that

14 The non-minimal coupling
√

g H† H R̃ impacts on the form of the
Higgs potential and the mixing with initial φ, see Section 2.5 in [21].
15 Matter generation from metric geometry is however familiar: e.g.
MSSM states as zero modes of string compactifications [13,14],
Kaluza–Klein modes of SM states in field theory orbifolds, gravita-
tional particle production during inflation, etc.
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what from the Weyl geometry viewpoint looks like matter
creation from (Weyl) geometry (ωμ), from a Riemannian
picture obtained after the symmetry breaking, ωμ looks just
like another field of the theory that interacts with the Higgs!
Similar considerations apply in the Palatini case.

4.3 Non-metricity and mass hierarchy

With the Higgs and Planck scale related to the underlying
non-metric geometry, their hierarchy may be related to this,
too. The scale of non-metricity is given by the mass of the
gauge boson of scale invariance, mω ∼ αMp; below this
scale metricity is restored. In general, one would expect that
this scale be close to the Planck scale. But it must be men-
tioned that the current lower bound on the non-metricity scale
is very low, of few TeV only [57,58]. Theoretically, this is
realised by tuning the coupling α � 1. Such small α is
actually natural, because it is one of the gravity couplings
of the theory (ξ, α). For detailed numerical estimates of the
couplings ξ , α and Higgs non-minimal coupling, due to con-
straints from EW precision data and inflation, see [21].

If the non-metricity scale mω is low, in the TeV region,
then the Higgs mass is natural, as already noticed in [21]. To
see this note that quantum corrections δm2

σ to the Higgs mass
are quadratic in the scale of “new physics” which in our case
is mω, so

δm2
σ ∼ m2

ω. (35)

Above the mass of ωμ, the gauged scale symmetry is restored
together with its UV protection for the Higgs mass; indeed,
this is so since no mass counterterm is then allowed and quan-
tum corrections above mω could at most be of logarithmic
type. This indicates a solution to the hierarchy problem that
is technically natural, based on a gauged scale symmetry.16

4.4 Non-metricity in solid state physics

We saw that there is a link of non-metric geometry to mass
generation which is an essentially geometric mechanism,
valid even in the absence of matter fields; only the degrees
of freedom of the Weyl geometry, like the metric, connec-
tion and curvature-squared terms were involved. The same
applied to the Palatini case. One question is whether there is
a more intuitive, physical interpretation of non-metricity and
its link to mass generation in the condensed matter physics,
as it was the case for the Higgs mechanism.

Non-metricity is common in solid state physics where it
is associated with some crystalline defects. For our discus-
sion on non-metricity in solid state physics we follow [59–

16 It would also be interesting to construct a supersymmetric version of
Weyl quadratic action (13) – to our knowledge there is no such version
in the current literature.

62]. For this one needs the notion of “material space” of a
crystalline solid. This is a natural configuration of a body
where it is described only in terms of the intrinsic structure
of constituting matter. The material space is the configura-
tion found by relaxing the solid of all internal and external
stresses. If the crystalline structure has no defects, the cor-
responding geometry of this material space is Euclidean. If
there is a (continuous) distribution of defects, that destroy the
crystalline order, the associated geometry is non-Euclidean.

For a 3D crystalline structure we have defects of dimen-
sion d = 0, also known as point defects or metric anomalies,
which are destroying the crystalline order; they are modifying
the local notion of length, usually associated with this order.
These defects can be vacancies (missing atoms), interstitials
(extra atoms of same kind), substitutionals (extra atoms of
different kind). Further, there are d = 1 defects such as dis-
locations and disclinations; d = 2 defects (phase boundary,
domain walls, etc.) or d = 3 defects (inhomogeneities). With
these defects distributed continuously, they give rise to effec-
tive fields of defect densities.

The material space is then described geometrically by an
affine connection of a non-Riemannian space that has non-
vanishing curvature, non-metricity and torsion [59–61]. Non-
metricity, which we know by definition it modifies the local
notion of length must therefore be related to a density of the
d = 0 defects. Then the relation of mass generation to non-
metricity that we found is somewhat expected, given that
mass terms in the action break the local Weyl symmetry of the
action, much like d = 0 defects destroy the local order of the
crystalline. At low energy we saw that metricity is recovered
in our case, just like the local d = 0 crystalline defects are not
observable from large distances relative to the lattice size.
This view gives an intuitive picture to non-metricity and its
relation to mass generation.

Further, the curvature tensor is associated with a density
of disclinations. In the absence of torsion (as in our Weyl and
Palatini cases) the material connection is similar to Weyl con-
nection and the geometry is then Weylian. If present, torsion
is associated with dislocations and the geometry is modified.
The material connection can then be expressed in terms of
the torsion, non-metricity and metric. Note there is a physical
distinction of these concepts, something not obvious in gen-
eral gravity theories [63]. This concludes our brief descrip-
tion of curvature, torsion and non-metricity from a solid state
physics perspective.

4.5 The multiple roles of the Stueckelberg field (φ)

It is worth noting the multiple role plaid by the scalar mode
φ of R̃2 in Weyl and Palatini cases: (1) It acts as a Stueckel-
berg field eaten by ωμ, (2) Its vev generates Mp, �, mω,
playing the role of the dilaton (note that ln φ has a shift
symmetry in (2)). (3) When the SM is embedded in Weyl
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geometry, it mixes with the Higgs, leading to a Stueckelberg-
Higgs potential which for small Higgs field values recov-
ers the SM potential [21]. (4) The contribution of φ to this
potential drives inflation in such R̃2 models [7,21,64,65].
This explains why the inflation prediction for the tensor-to-
scalar ratio (r ∼ 10−3) in Weyl case is similar to that in the
Starobinsky model [66? ,67] (r is larger in the Palatini case
due to different coefficients in the scalar potential caused by
different vectorial non-metricity) [68].

4.6 Renormalizability

In a most general case, the action in the Weyl theory (13) can
include (up to a topological term) only one additional opera-
tor that also has a gauged scale invariance. This is C̃2

μνρσ ,

where C̃μνρσ is the Weyl tensor in Weyl geometry. This
is related to the usual Riemannian Weyl tensor Cμνρσ via
C̃2

μνρσ = C2
μνρσ +(3/2)α2 F2

μν where F2
μν is the kinetic term

of ωμ. The operator C̃2
μνρσ is essentially spectator under the

mechanism of symmetry breaking presented earlier and does
not affect the results shown. In a quantum analysis, it might
be generated as a loop counterterm. The Riemannian ver-
sion of this term (C2

μνρσ ) was extensively analysed [8–11],
while the extra F2

μν contribution only brings a redefinition of
coupling α.

Given the gauged scale invariance of the action, there are
no operators of dimension larger than four that can be present
in the action, since there is no scale to suppress them. In a
Riemannian notation, the overall Lagrangian thus involves
only (R − 3α∇μωμ − 3/2 α2 ωμωμ)2 coming from R̃2 that
is linearised with the aid of φ, then F2

μν, and C2
μνρσ . The Weyl

vector is massive and anomaly free [21], of mass acquired via
spontaneous breaking which cannot affect renormalizability.
Further, it is known that the usual quadratic gravity in the
(pseudo)-Riemannian case is renormalizable [69]. For the
Weyl theory, based on the symmetry of the action forbidding
higher dimensional counterterms, the analysis of [69] and
power-counting arguments, one expects this theory be renor-
malizable (but not unitary, due to spin-2 ghost of C2

μνρσ ).
In the Palatini approach a similar discussion is difficult:

there are many additional Weyl gauge invariant operators that
can be present in the action [7,53], then solving analytically
the equations of motion for the connection and finding the
non-metricity is very difficult.

4.7 Non-metricity: Weyl vs Palatini

There has been a long held view since Einstein’s critique
[3] that non-metricity makes a theory unphysical.17 Firstly,

17 This was the original critique of Einstein to Weyl’s failed theory of
gravity “plus” electromagnetism.

since ∇̃μgαβ �= 018 under the parallel transport of a (Weyl-
covariant constant) vector, this vector changes not only the
direction (as in the Riemannian geometry) but also its norm.
Hence, the norm of a vector or the clock rate are path depen-
dent (in the symmetric phase). This is detailed in Appendix B
for both the Weyl and Palatini cases under the assumption of
a massless Weyl boson ωμ (Weyl gauge symmetry present).
The critique is that the physical consequence of this effect is
that in an experiment the distance between the spectral lines
of two identical atoms of different path history will then dif-
fer, in contrast to experience (second clock effect) [3]. In the
light of our result that ωμ is actually massive, this claim must
be reviewed.

In our view the above critique19 is implicitly assuming a
formalism which appears to break the Weyl gauge symmetry
of the action; this is seen when setting the momenta on the
mass shell p2 = m2 as done in [71]. This means that a
mass term is actually present in the action but that means
we are actually in a broken phase, or we already explained
that in a broken phase the theory becomes metric, hence the
formalism and critique cannot apply.

More generally, in the (non-metric) symmetric phase i.e.
without masses or other dimensionful couplings present in
the action, it is difficult to explain how this experiment could
actually be physically realised. Indeed, if there is no mass
there is no clock rate! Secondly, comparing a gauge theory (of
scale invariance in our case) to the experiment first requires
a “gauge fixing” of this symmetry! From the equations of
motion of the Weyl field [21] and Weyl current conservation
∇μ Jμ = 0 [19–21] the gauge fixing follows (∇μωμ = 0)
after fixing the vev of φ, which in turn breaks this symmetry!
Hence we are back to the broken phase of the theory which
is metric, ωμ is massive, decouples and the critique cannot
apply! This line of reasoning implies that in Weyl’s original
theory the second clock effect is not there or it is suppressed
by (large) mω as first shown for this theory in [19,20]. Hence,
our results are not affected by this critique.

To summarise, we know that the gauged scale symmetry is
broken, both in the Weyl quadratic gravity and in the Palatini
case. When this symmetry is broken, the massive ωμ decou-
ples (at some high scale) from the Lagrangian and its under-
lying geometry: the connection becomes Levi-Civita and the
theory is then metric; any non-metricity effects and implica-
tions mentioned above (if present) are then suppressed by mω.
As long as mω is large enough, such effect can be ignored. As
mentioned, the current lower bound on non-metricity (mω)
derived from its effect on e+ e− → e+ e− scattering, is actu-
ally very low, 1 TeV [57,58]!

Finally, we would like to comment on the different vecto-
rial non-metricity of Weyl versus the Palatini case, compare

18 For a discussion of metric versus non-metric theories see [70].
19 This is reviewed recently in [71].
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Eqs. (B.3)–(B.18). This has additional implications for the
parallel transport of the vectors. As shown in the Appendix,
in the Weyl case the ratio of the norms of two vectors u, v

of equal (non-zero) Weyl charge is invariant under parallel
transport

d
|u|2
|v|2 = 0. (36)

So the relative length is actually invariant and this is consis-
tent with physics being independent of the units of length. In
the Palatini case, however, this ratio is not invariant, as seen
from Eq. (B.20) in the Appendix

d
|u|2
|v|2 �= 0. (37)

Compared to (36), one may consider on physical grounds
that the Weyl case is the only acceptable. We note, however,
that the Palatini case is affected by additional operators not
included in our analysis that can change (37). It may even
be possible that a most general Palatini quadratic gravity
with gauged scale invariance may yield onshell (after solv-
ing the equations of motion for the connection) a Weylian
non-metricity and connection. This would give an interest-
ing offshell realisation of Weyl quadratic gravity.

5 Conclusions

We discussed phenomenological aspects of non-metricity in
theories beyond the SM and Einstein gravity that have a
gauged scale symmetry. One argument in favour of this sym-
metry is the gauge principle: similarly to the SM as a gauge
theory, we seek a gauge theory of scale invariance that recov-
ers Einstein gravity in its broken phase.

What is the 4D underlying geometry of such theories? One
can consider theories based on the Weyl geometry which has
a gauged scale symmetry built in i.e. the Weyl connection
has this symmetry. A second option is to consider the Pala-
tini approach to gravity in which the (offshell) connection of
the underlying geometry also has this symmetry, being inde-
pendent of the metric and its Weyl transformation. The con-
sequence is that the underlying geometry of these theories is
non-metric i.e. ∇̃λgμν �= 0; in other words, non-metricity is
a result of gauging the scale symmetry (ωμ dynamical). This
situation is different from theories in which ωμ is not dynami-
cal, based on the (metric) pseudo-Riemannian geometry with
a local scale symmetry (no ωμ present) under which its Levi-
Civita connection is not invariant – in such case the geometry
does not share the space-time symmetry of the action – which
raises concerns about their consistency.

Rather than being a problem (as it was thought in the past),
non-metricity of Weyl or Palatini cases plays a crucial role
in mass generation in gauge theories of scale invariance: it

brings mass generation via a Stueckelberg breaking of this
symmetry in Weyl or Palatini quadratic gravity in the absence
of matter. There are additional advantages of non-metricity.
Firstly, there is a non-trivial, conserved current associated
with the Weyl gauge symmetry and secondly, there are no
ghost degrees of freedom in the action with this symmetry.
This is unlike (metric or integrable) theories with local scale
symmetry only (no dynamical ωμ) where Weyl current is
trivial, as shown by Jackiw and Pi [44,45] and a ghost is
present.

Our results show that in the absence of matter, all mass
scales have a geometric origin: the Planck mass, the cosmo-
logical constant � and the mass of ωμ are proportional to 〈φ〉
which is the spin-zero mode propagated by the geometric R̃2

term. Unlike in local scale invariant theories (no ωμ present)
based on the (metric) pseudo-Riemannian geometry, in our
Weyl and Palatini cases, no scalar fields were added “ad-
hoc” or needed to generate these mass scales. A hierarchy of
scales (�, Mp, mω) is related to the smallness of the dimen-
sionless gravitational couplings ξ , α at a classical level: with
Mp fixed, the cosmological constant is small because grav-
ity is weak (ξ � 1). There is a UV–IR physics connection
associated with Mp and �, respectively, since these scales
have a common origin (∝ 〈φ〉). Finally, � > 0 because it is
due to the φ4 term induced again by geometric R̃2.

Metricity is recovered below mω after the massive Weyl
gauge boson of scale symmetry decouples from the spectrum.
In this decoupling limit the connection becomes Riemannian
(Levi-Civita) and the geometry is metric. The scale where this
happens (mω) is naively expected to be high (∝ αMp), but
current bounds on the non-metricity scale are actually very
low (TeV scale). A low value of mω can be realised for a small
coupling α � 1. These results, obtained in the absence of
matter, also apply to the Palatini case.

The above picture remains valid if matter is present, when
the SM (with a massless Higgs) is embedded in Weyl geom-
etry. This is a natural embedding, without new degrees of
freedom beyond the SM and Weyl geometry. Of the SM
spectrum only the Higgs field (σ ) has a direct coupling to
ωμ of the form ωμωμσ 2. This leads to the interesting pos-
sibility that the Higgs be generated by Weyl vector fusion
ωμ + ωμ → σ + σ in the early Universe. Since ωμ has geo-
metric origin, this means that the Higgs itself has an origin
in Weyl’s non-metric geometry, too. Therefore, not only the
scales of quadratic gravity are of geometric origin but this
extends, in a sense, to all SM masses generated by the Higgs.
This shows that Weyl geometry is more fundamental and it
provides a UV completion of the (pseudo)Riemannian geom-
etry; correspondingly, the associated Weyl quadratic gravity
provides a gauge theory embedding of Einstein gravity. These
results also apply to the Palatini case; however, in this case
there are unknown corrections from additional operators not
included in our study.
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Non-metricity is common in solid state physics where it
is associated with crystalline structure defects of dimension
d=0 (point defects or metric anomalies). They destroy the
crystalline order and modify the local notion of length asso-
ciated with this order. Then the relation of mass generation
to non-metricity that we found is expected, given that mass
terms in the action break the Weyl (local or gauged) scale
symmetry much like point defects destroy the local order/size
of the lattice. At low energy we saw that metricity is recov-
ered, much like the local crystalline defects are not observ-
able from large distances relative to the lattice size. This gives
an intuitive picture of non-metricity.

Can these ideas about non-metricity be tested experimen-
tally? One possibility is to analyse a possible imprint on the
gravitational waves due to the Weyl gauge boson of scale
symmetry. The second possibility is in Higgs physics, assum-
ing a light ωμ near its lower bound; in this case the term
ωμωμσ 2, relating Higgs physics to non-metricity, brings cor-
rections to the Higgs couplings (e.g. quantum corrections to
the quartic coupling). In this way one may set lower bounds
on mω which is the scale of “new physics” in this case. A third
possibility is via the Stueckelberg-Higgs inflation, which pre-
dicts a low (∼ 10−3) tensor-to-scalar ratio (r ) value, testable
in the near future experiments. Work to explore these inter-
esting possibilities is in progress.
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Appendix A: Weyl gauge invariant theories and con-
served current

• For an arbitrary Weyl gauge invariant action we show there
is a non-trivial, conserved current Jμ. We then detail this for

Weyl and Palatini quadratic gravity. This information was
used in the text, Sect. 3, Eq. (15) and also in the Palatini
case, see text after Eq. (28).

Consider a Weyl gauge transformation:

ĝμν = 	 gμν, φ̂ = 	−1/2φ,

ω̂μ = ωμ − 1

α
∂μ ln 	 (A.1)

where φ is some scalar field. For an infinitesimal transfor-
mation δ	

δĝμν = δ(ln 	) ĝμν, δφ̂ = −1

2
δ(ln 	) φ̂,

δω̂μ = − 1

α
δ ∂μ ln 	 = − 1

α
∂μ δ ln 	. (A.2)

Consider a Weyl gauge invariant total action which we
write as a sum Sg + S, where Sg is the Weyl gauge field
kinetic term while S is the remaining part of the action that
can depend on ωμ but not on Fμν , hence:

Sg = −1

4

∫ √
g F2

μν, S =
∫ √

g L (A.3)

Sg and S are each Weyl gauge invariant. Under (A.2)

δS =
∫ √

ĝ

[
− 1

2
θμν δĝμν + Jμ δω̂μ + δL

δφ̂
δφ̂

]
, (A.4)

where we denoted

θμν ≡ − 2
√

ĝ

δL

δĝμν

, Jμ ≡ 1
√

ĝ

δL

δω̂μ

, (A.5)

are the “stress-energy”-like tensor associated with S and the
Weyl gauge symmetry current, respectively. The last term
in δS vanishes by the equation of motion for φ. Since S is
Weyl gauge invariant (δS = 0) and using (A.2), then (after
removing the “hat” notation):

0 = δS ≡
∫ √

g

[
− 1

2
θμνgμν δ ln 	 − 1

α
Jμ ∂μδ ln 	

]

=
∫ √

g

[
− 1

2
θμ
μ − 1

α
∇μ Jμ

]
δ ln 	, (A.6)

where
√

g∇μ Jμ = ∂μ(Jμ√
g) was used. Therefore, for a

Weyl gauge invariant action:

θμ
μ = − 2

α
∇μ Jμ. (A.7)

Finally, from the total action S + Sg one can easily write the
equation of motion for ωμ:

Jμ + ∇σ Fσμ = 0. (A.8)

Next, multiply this equation by
√

g and apply ∂μ on it, then
use the antisymmetry of Fσμ to find that ∇μ Jμ = 0. Thus,
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there is a conserved current, as discussed in the text. Finally,
using (A.7), then onshell

θμ
μ = 0, (A.9)

as expected for a theory with this classical symmetry.
• Let us now detail the above results for our cases of Weyl
and Palatini quadratic gravities that are Weyl gauge invari-
ant, discussed in Sect. 3. Consider our initial action in Weyl
non-metric case Eq. (14) which is similar for Palatini case,
Eq. (28). Therefore our S becomes

S ≡
∫ √

g L

=
∫ √

g

{ −1

12ξ2 φ2
[

R − 3α∇μωμ − 3

2
α2 ωμωμ

]

− φ4

4! ξ2

}
. (A.10)

Using definition (A.5), we find a current

Jμ = 1√
g

δL

δωμ
= 1√

g

∂L

∂ωμ
= − α

4ξ2 (∂μ − α ωμ)φ2. (A.11)

The total action S + Sg is identical to action (14) in the text
and gives the following equation of motion for ωμ

√
g

{
α2

4 ξ2 φ2 ωρ − α

4ξ2 ∇ρφ2 + ∇σ Fσρ

}
= 0. (A.12)

This equation is Weyl gauge invariant, as expected (since the
action is invariant). Applying ∂ρ on the last equation, using
that

√
g ∇σ Fσμ = ∂σ (

√
g Fσμ) and the antisymmetry of

Fσρ , we then find

∇μ Jμ = 0. (A.13)

Therefore, there exists a non-trivial, conserved current. This
result was used in Weyl case, Eq. (15), and in the Palatini
case in the text after Eq. (28).

Let us now check explicitly Eq. (A.7) for our case. From
action (A.10) one has the trace:

gμν δL

δgμν
=

√
g

12 ξ2

[
φ2

(
R − 3

2
α2 ωμωμ − 3α ∇ρωρ

)

+φ4 − 3�φ2 + 3α∇ρ(ωρφ2)

]
= 0. (A.14)

This vanishes by the equation of motion for gμν . This result
is actually valid for the total action S + Sg = ∫ √

g
[
L −

(1/4)F2
μν

]
since the contribution to the trace by the (confor-

mal) gauge kinetic term F2
μν

√
g is vanishing. Finally, from

the equation of motion of φ (which is also Weyl gauge invari-
ant) one finds, after multiplying it by φ

√
g

12 ξ2

[
φ2 (R − 3α∇ρωρ − 3

2
α2ωρωρ) + φ4

]
= 0. (A.15)

Equation (A.15) is just another form of equation φ2 = −R̃
which we already know from the “linearisation” of the R̃2

term, described in the text. Using Eq. (A.15) in Eq. (A.14)
we find

−2√
g

gμν δL

δgμν
= 1

2 ξ2 ∇ρ(∇ρ − αωρ)φ2 = 0. (A.16)

The last equation also shows that φ which was “extracted”
from the R̃2 term, is indeed a dynamical field, as discussed
in the text. This equation gives again the current conserva-
tion (also found earlier directly from (A.12)). Using notation
(A.5), then from (A.16) we have

θμ
μ =

(−2

α

)(−α

4ξ2

)
∇ρ (∇ρ − αωρ)φ2 = 0 (A.17)

in agreement with general result (A.7) and also with (A.11),
(A.12). The analysis for the Palatini case Eq. (28) is very
similar (with ωμ → vμ). For more details, see also [19–21]
(Appendix B) and [7].

AppendixB: Parallel transport inWeyl andPalatini cases

We present here a brief review of the parallel transport of a
vector in Weyl and Palatini geometries, discussed in Sect. 4.7:

•Weyl case: Weyl geometry20 is represented by classes of
equivalence of (gμν, ωμ) related by (B.1). Scalars φ and
fermions ψ transform under (B.1) as shown in (B.2) below:

ĝμν = 	q gμν,
√

ĝ = 	2 q√
g,

ω̂μ = ωμ − 1

α
∂μ ln 	 (B.1)

φ̂ = 	−q/2 φ, ψ̂ = 	−3q/4ψ (B.2)

where, to be more general, we now allow an arbitrary Weyl
charge q for the metric (one usually sets q = 1, as done so
far in this work). The gauge covariant derivative of the scalar
φ transforms just like the scalar itself and equals Dμφ =[
∂μ − (q/2) α ωμ

]
φ.

Weyl geometry has vectorial non-metricity

∇̃μgαβ = −α q ωμ gαβ, (B.3)

where ∇̃ is defined by the Weyl connection �̃

∇̃μgαβ = ∂μgαβ − �̃ρ
αμgρβ − �̃

ρ
βμgρα. (B.4)

Equation (B.3) may be written in a “metric” format

∇̃′
μgαβ = 0, ∇̃′ ≡ ∇̃

∣∣∣
∂μ→∂μ+α q ωμ

. (B.5)

20 For a brief introduction to Weyl conformal geometry see Appendix A
in [21].
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Therefore the Weyl connection �̃ is found from the Levi-
Civita connection (�) in which one makes the same substitu-
tion: �̃ = �|∂λ→∂λ+α q ωλ , or by “standard” calculation as for
the Levi-Civita connection in Riemannian case. Either way,
one finds

�̃λ
μν = �λ

μν + (q/2) α
[
δλ
μ ων + δλ

ν ωμ − gμν ωλ
]
. (B.6)

Consider now a vector uμ of some Weyl charge (zu/2):

ûμ = 	zu/2uμ. (B.7)

The parallel transport of a constant vector (in a Weyl-
covariant sense) is defined by

D uμ

dτ
= 0, where D ≡ dxλ Dλ,

Dλ uμ = ∇̃λuμ
∣∣∣
∂λ→∂λ+(zu/2) α ωλ

, (B.8)

with

∇̃λuμ = ∂λuμ + �̃
μ
λρ uρ, (B.9)

and x = x(τ ). Then from (B.8) the “standard” differential
variation of the vector is

d uμ = −dxλ
[
(zu/2) α ωλ uμ + �̃

μ
λρ uρ

]
, where

d uμ ≡ dxλ ∂λuμ. (B.10)

Then under the parallel transport, the product 〈u, v〉 =
uμ vν gμν of vectors u, v changes as

d〈u, v〉 = dxλ
[
∇̃λgμν − α ωλ gμν(zu + zv)/2

]
uμvν. (B.11)

This can immediately be integrated along a given path γ (τ).
Using non-metricity (B.3), then the norm |u| of the vector

varies according to

d|u|2 = dxλ|u|2 ωλ (−α) (q + zu), (B.12)

or, integrating this along a path γ (τ):

|u|2 = |u0|2 e−α (q+zu)
∫
γ ωλdxλ

. (B.13)

The integral and the norm are path-dependent, except when
ωμ is an exact one-form. In this case, if the path is closed the
integral vanishes and the norm is invariant. This is the case
of Weyl integrable geometry.

In Weyl geometry the ratio of two vectors (of same Weyl
weight) is invariant under the parallel transport. This is seen
by using (B.12)

d
|u|2
|v|2 = (−α)

|u|2
|v|2 (zu − zv) ωλ dxλ. (B.14)

This vanishes if the charges of the two vectors are equal
zu = zv , result used in Sect. 4.7. This is of interest since
for all physical purposes it is actually the relative length that

should be invariant under parallel transport. This is consistent
with physics being independent of the units of length.

•Palatini case: In the Palatini case the non-metricity is found
from action (26) or equivalent (28) by solving the equations
of motion of the connection �̃. This is a rather technical
exercise detailed for this action in Ref. [7] (section 3.1). One
finds

∇̃λ(φ
2gμν) = (−2)(gμν Vλ − gμλ Vν − gνλ Vμ)φ2 (B.15)

where

Vλ = vλ − ∂λ ln φ2 (B.16)

and where vλ is the Weyl gauge boson in the Palatini case.
From this result, one finds the connection [7]

�̃α
μν = �α

μν(g) + (1/2) (δα
ν ∂μ + δα

μ ∂ν − gαλ gμν ∂λ) ln φ2

−(3gμνVλ − gνλ Vμ − gλμ Vν) gλα. (B.17)

After φ acquires a vev 〈φ〉, (B.15) becomes

∇̃λgμν = (−2)α q (gμν vλ − gμλvν − gνλ vμ), (B.18)

to be compared to the Weyl case, Eq. (B.3). With this result,
the change of the norm of a vector under the parallel trans-
port can be computed from (B.11) in which one is using the
Palatini non-metricity. One finds

d |u|2 = α dxλ
[

− ωλ(2q + zu) |u|2 + 4 q uλ(uβvβ)
]
. (B.19)

From this one also finds the change of the ratio of the norms
of two vectors is non-zero

d
|u|2
|v|2 = dxλ α

[
(zu − zv) ωλ

+4 q ωβ

(
uλuβ

|u|2 − vλvβ

|v|2
)]

. (B.20)

Unlike in Weyl geometry, the ratio of the norms of u and v

changes under parallel transport even if they have the same
Weyl charge zu = zv . This result was used in Sect. 4.7.

Finally, in a most general case, in the Palatini quadratic
gravity there are more quadratic operators in curvature that
can be present in action (26) and this makes the analysis much
more difficult in such case. A list of the quadratic operators
(in curvature) that can be present is found in [72], see also
[52]. In such case there are additional states propagated by
these (higher derivative) operators, other than φ (propagated
by R̃2); some of these may even be ghost-like; in such case it
is unclear if one can still solve algebraically the second-order
differential equations of motion for the Palatini connection,
since these equations acquire new terms with new indices
structure and new states present.
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