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Abstract We calculate the complete T matrices of the elas-
tic light pseudoscalar meson and heavy meson scattering to
the third order in heavy meson chiral perturbation theory.
We determine the low-energy constants by fitting the phase
shifts and scattering lengths from lattice QCD simulations
simultaneously and predict the phase shifts at the physi-
cal meson masses. The phase shifts in the Dπ(I = 1/2),
DK (I = 0), DK̄ (I = 0), Ds K̄ , Dη and Dsη S waves are
so strong that bound states or resonances may be generated
dynamically in all these channels. The DK (I = 0) channel
corresponds to the well-known exotic state D∗

s0(2317). The
DK (I = 0) channel corresponds to the well-known exotic
state D∗

s0(2317). The coupled-channel Dπ , Dη and Ds K̄
scattering corresponds to D∗

0(2400). The coupled-channel
Dπ , Dη and Ds K̄ scattering corresponds to D∗

0(2400). We
also predict the scattering lengths and scattering volumes and
observe good convergence in the scattering volumes. Our cal-
culations provide a possibility to accurately investigate the
exotic state in the light pseudoscalar meson and heavy meson
interactions.

1 Introduction

Investigations of the meson–meson scattering allow to
discover interesting features of quantum chromodynamics
(QCD) at hadronic energy scales, and also provide a basis
for further research on hadron spectroscopy. In the past
decades, the precision experimental data involving the charm
quark have revealed many surprising features in hadron spec-
troscopy. For instance, some of the charmonium-like XYZ
states lie very close to the two-meson thresholds.

As the fundamental theory of strong interaction, QCD
becomes nonperturbative at low energies. Therefore, it is very
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difficult to use perturbative methods to derive the meson–
meson interactions. Weinberg proposed an effective field the-
ory (EFT) for the purpose of solving this problem in a semi-
nal paper [1]. The EFT is formulated in terms of the most
general Lagrangian consistent with the general symmetry
principles, and the degrees of freedom are hadrons at low
energy. The corresponding formalism is called chiral per-
turbation theory (ChPT) [2]. ChPT is a useful and efficient
tool to study hadronic physics at low energies [3]. However,
a power-counting problem in heavy hadron ChPT occurs
because of the nonvanishing heavy hadron mass in the chiral
limit. Heavy baryon chiral perturbation theory (HBChPT)
was proposed and developed to solve the power-counting
problem that occurs in baryon ChPT [4–6]. Many achieve-
ments have been obtained in the light flavor hadronic physics
using SU(2) HBChPT [7–14]. Furthermore, the investiga-
tions in the SU(3) HBChPT also led to reasonable predictions
[15–22]. The infrared regularization of the covariant baryon
ChPT [23] and the extended-on-mass-shell scheme [24,25]
for solving the power-counting problem are two popular rel-
ativistic approaches and have led to substantial progress in
many aspects as documented in Refs. [26–32].

However, HBChPT is still a well-established and versatile
tool for the study of the low-energy hadronic physics. The
expansion in HBChPT is expanded simultaneously in terms
of p/�χ and p/M0, where p represents the meson momen-
tum or its mass or the small residue momentum of a baryon
in the nonrelativistic limit. Similar to the HBChPT formal-
ism in the light flavor meson-baryon and baryon–baryon
interactions, we can use the heavy meson chiral perturba-
tion theory (HMChPT) to address the charmed mesons, as
done in Ref. [33]. This framework can also be extended to
the heavy flavor hadron interactions and new hadron states
[34–37] (for a review of the heavy hadron systems in ChPT,
see Refs. [38]).
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Since the discoveries of the charm-strange meson
D∗
s0(2317) [39–41] and the hidden-charm meson X (3872)

[42], many investigations have been devoted to various exotic
states that cannot be classified into conventional hadrons
[43–55]. The D∗

s0(2317) has inspired various explanations
with the different methods and pictures [56–69] (for a
detailed review see Ref. [70]). Some lattice QCD simula-
tions [65,66,68] seem to support the interpretation of the
D∗
s0(2317) as a DK molecule. Thus, a detailed study of the

DK scattering will help us to understand the nature of this
exotic state. However, in lattice calculations, the light pseu-
doscalar meson masses are always larger than their physical
masses because of the shortage of computational resources
at physical quark masses. Therefore, the extrapolation of the
light pseudoscalar meson and heavy meson scattering from
the nonphysical meson mass to the physical value is neces-
sary with the help of ChPT.

In our previous papers [71,72], we calculated the light
pseudoscalar meson and heavy meson scattering lengths up
to O(p4) in HMChPT. The scattering lengths were cal-
culated through both perturbative and iterated methods as
described in Ref. [72]. The value of the scattering length
for the channel DK (I = 0), which involves D∗

s0(2317), was
obtained correctly with the iterated method. In fact, the chan-
nel DK (I = 0) has a sufficiently strong attractive interaction
and can lead to a quasi-bound state with the iterated methods,
as shown in Refs. [65,73–79]. Note that a repulsive interac-
tion has a negative scattering length or phase shift in our
convention. The scattering length is an important quantity of
the scattering process, which encodes the information of the
underlying interaction.

The partial-wave phase shifts contain the complete infor-
mation of a scattering process in the physical region. In
this work, our study is concerned not only with the scat-
tering lengths but also with the partial-wave phase shifts.
We calculate the complete T matrices of the elastic pseu-
doscalar meson and heavy meson scattering to the third order
in HMChPT. Then, we determine the low-energy constants
(LECs) by fitting the phase shifts and scattering lengths
simultaneously. From the complete pseudoscalar meson and
heavy meson scattering amplitudes up to O(p3), we can
judge directly whether the attraction in a scattering chan-
nel is strong enough to generate a bound state. Furthermore,
the detailed features of QCD at hadronic energy scales can
be obtained from the phase shifts based on the O(p3) cal-
culation. Hopefully, the phase shifts of the light meson and
heavy meson scattering (e.g., the D−K+ channel) may be
extracted from the LHCb group or BelleII measurements in
the future.

This paper is organized as follows. In Sect. 2, the chiral
Lagrangians are presented up to O(p3). In Sect. 3, the Feyn-
man diagrams and the results of the T matrices are presented.
In Sect. 4, we outline how to derive partial-wave phase shifts

and scattering lengths from the T matrices. Section 5 con-
tains the numerical results and discussions. The last section
gives a brief summary.

2 Chiral Lagrangian

Our calculation of the elastic light pseudoscalar meson and
heavy meson scattering is based on the effective chiral
Lagrangian in HMChPT,

Leff = Lφφ + LHφ. (1)

Here, the SU(3) matrix φ represents the pseudoscalar Gold-
stone fields (φ = π, K , K̄ , η). The lowest-order chiral
Lagrangian for the Goldstone meson–meson interaction
takes the form [80]

L(2)
φφ = f 2tr

(
uμu

μ + χ+
4

)
. (2)

The axial vector quantity uμ = i
2 {ξ†, ∂μξ} contains an

odd number of meson fields. The SU(3) matrix U =
ξ2 = exp(iφ/ f ) collects the pseudoscalar Goldstone boson
fields. The quantities χ± = ξ†χξ† ± ξχξ with χ =
diag(m2

π ,m2
π , 2m2

K −m2
π ) introduce explicit chiral symme-

try breaking terms. The parameter f is the pseudoscalar
decay constant in the chiral limit. The lowest-order chiral
Lagrangian for the heavy mesons in the heavy quark sym-
metry limit can be written as

L(1)
Hφ = − 〈

(iv · ∂H)H̄
〉 + 〈

Hv · 	 H̄
〉 + g

〈
Huμγ μγ5 H̄

〉
,

(3)

where vμ = (1, 0, 0, 0) is the heavy meson velocity, 〈· · · 〉
means the trace for gamma matrices, the chiral connection
	μ = i

2 [ξ†, ∂μξ ] contains an even number of meson fields
and the doublet of the ground state heavy mesons reads

H = 1 + /v

2
(P∗

μγ μ + i Pγ5),

H̄ = γ 0H†γ 0 = (P∗†
μ γ μ + i P†γ5)

1 + /v

2
, (4)

P = (D0, D+, D+
s ), P∗

μ = (D0∗, D+∗, D+∗
s )μ. (5)

For the calculation of the complete T matrices up to the third
order, the heavy meson Lagrangians L(2)

Hφ and L(3)
Hφ in the

heavy quark symmetry limit read

L(2)
Hφ = c0

〈
H H̄

〉
tr(χ+) + c1

〈
Hχ+ H̄

〉

− c2
〈
H H̄

〉
tr(v · u v · u) − c3

〈
Hv · u v · uH̄ 〉
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Fig. 1 Tree and nonvanishing loop diagrams in the calculation of the
Goldstone-heavy meson scattering amplitudes to the third order in
HMChPT. The dashed lines represent the Goldstone bosons and solid
lines represent the pseudoscalar heavy mesons. The heavy dots and
filled squares refer to the vertices from L(2)

Hφ and L(3)
Hφ , respectively

− c4
〈
H H̄

〉
tr(uμuμ) − c5

〈
Huμuμ H̄

〉
, (6)

L(3)
Hφ = κ1

〈
H [χ−, v · u]H̄ 〉

+ iκ2
〈
H [v · u, [v · ∂, v · u]]H̄ 〉

+ iκ3
〈
H [uμ, [v · ∂, uμ]]H̄ 〉

. (7)

3 T matrices

In this work, we are considering only the elastic light
pseudoscalar meson and heavy meson scattering processes
M(q) + H(−q) → M(q′) + H(−q′) in the center-of-mass
frame with |q| = |q′| = q. The leading order (LO) ampli-
tudes resulting from diagram (a) in Fig. 1 read

T (1/2,LO)
πD = 2wπ

f 2
π

, T (3/2,LO)
πD = −wπ

f 2
π

,

T (LO)
πDs

= 0, T (1,LO)
K D = 0, T (0,LO)

K D = 2wK

f 2
K

,

T (LO)
K Ds

= −wK

f 2
K

, T (1,LO)

K̄ D
= −wK

f 2
K

,

T (0,LO)

K̄ D
= wK

f 2
K

, T (LO)

K̄ Ds
= wK

f 2
K

, T (LO)
ηD = 0, T (LO)

ηDs
= 0,

(8)

where K = (K+, K 0)T , K̄ = (K̄ 0, K−)T . The first super-
scripts of the T matrices denote the total isospin. In the chan-
nels with an isoscalar η-meson or Ds-meson, the total isospin
is unique and does not need to be specified. The quantities
wφ = (m2

φ + q2)1/2 with φ = (π, K , η) denote the center-
of-mass energy of the light pseudoscalar mesons. We take
the renormalized decay constants fφ with the nonzero quark
mass instead of f in the chiral limit.

At the next-to-leading order (NLO), one has the contribu-
tions from diagram (b) of Fig. 1, which involves the vertex
from the LagrangianL(2)

Hφ . The amplitudes involving the low-
energy constants (LECs) read

T (1/2,NLO)
πD = 1

f 2
π

[8c0m
2
π + 4c1m

2
π + 2c2w

2
π + c3w

2
π

+ 2c4(w
2
π − q2z) + c5(w

2
π − q2z)], (9)

T (3/2,NLO)
πD = 1

f 2
π

[8c0m
2
π + 4c1m

2
π + 2c2w

2
π + c3w

2
π

+ 2c4(w
2
π − q2z) + c5(w

2
π − q2z)], (10)

T (NLO)
πDs

= 1

f 2
π

[8c0m
2
π + 2c2w

2
π + 2c4(w

2
π − q2z)],

(11)

T (1,NLO)
K D = 1

f 2
K

[8c0m
2
K + 2c2w

2
K + 2c4(w

2
K − q2z)],

(12)

T (0,NLO)
K D = 1

f 2
K

[8c0m
2
K + 8c1m

2
K + 2c2w

2
K + 2c3w

2
K

+ 2c4(w
2
K − q2z) + 2c5(w

2
K − q2z)], (13)

T (NLO)
K Ds

= 1

f 2
K

[8c0m
2
K + 4c1m

2
K + 2c2w

2
K + c3w

2
K

+ 2c4(w
2
K − q2z) + c5(w

2
K − q2z)], (14)

T (1,NLO)

K̄ D
= 1

f 2
K

[8c0m
2
K + 4c1m

2
K + 2c2w

2
K + c3w

2
K

+ 2c4(w
2
K − q2z) + c5(w

2
K − q2z)], (15)

T (0,NLO)

K̄ D
= 1

f 2
K

[8c0m
2
K − 4c1m

2
K + 2c2w

2
K − c3w

2
K

+ 2c4(w
2
K − q2z) − c5(w

2
K − q2z)], (16)

T (NLO)

K̄ Ds
= 1

f 2
K

[8c0m
2
K + 4c1m

2
K + 2c2w

2
K + c3w

2
K

+ 2c4(w
2
K − q2z) + c5(w

2
K − q2z)], (17)

T (NLO)
ηD = 1

3 f 2
η

[24c0m
2
η + 4c1m

2
π + 6c2w

2
η + c3w

2
η

+ 6c4(w
2
η − q2z) + c5(w

2
η − q2z)], (18)

123
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T (NLO)
ηDs

= 1

3 f 2
η

[24c0m
2
η + 16c1(2m

2
K − m2

π ) + 6c2w
2
η

+ 4c3w
2
η + 6c4(w

2
η − q2z) + 4c5(w

2
η − q2z)],

(19)

where z = cos θ is the cosine of the angle θ between q and
q′.

At the next-to-next-to-leading order (N2LO), one has con-
tributions from diagram (c) in Fig. 1, which involves the ver-
tex from the Lagrangian L(3)

Hφ . The amplitudes read

T (1/2,N2LO)
πD = 1

f 2
π

[16κ̄1m
2
πwπ + 4κ̄2w

3
π + 4κ̄3wπ(w2

π − q2z)],
(20)

T (3/2,N2LO)
πD = 1

f 2
π

[−8κ̄1m
2
πwπ − 2κ̄2w

3
π − 2κ̄3wπ(w2

π − q2z)],
(21)

T (N2LO)
πDs

= 0, (22)

T (1,N2LO)
K D = 0, (23)

T (0,N2LO)
K D = 1

f 2
K

[16κ̄1m
2
KwK + 4κ̄2w

3
K + 4κ̄3wK (w2

K − q2z)],
(24)

T (N2LO)
K Ds

= 1

f 2
K

[−8κ̄1m
2
KwK − 2κ̄2w

3
K − 2κ̄3wK (w2

K − q2z)],
(25)

T (1,N2LO)

K̄ D
= 1

f 2
K

[−8κ̄1m
2
KwK − 2κ̄2w

3
K − 2κ̄3wK (w2

K − q2z)],
(26)

T (0,N2LO)

K̄ D
= 1

f 2
K

[8κ̄1m
2
KwK + 2κ̄2w

3
K + 2κ̄3wK (w2

K − q2z)],
(27)

T (N2LO)

K̄ Ds
= 1

f 2
K

[8κ̄1m
2
KwK + 2κ̄2w

3
K + 2κ̄3wK (w2

K − q2z)],
(28)

T (N2LO)
ηD = 0, (29)

T (N2LO)
ηDs

= 0. (30)

At this order, one also has the amplitudes from the one-loop
diagrams. The nonvanishing one-loop diagrams generated by
the vertices ofL(2)

φφ andL(1)
Hφ are shown in the second and third

row of Fig. 1. Note that the third-order scale-independent
LECs κ̄1, κ̄2 and κ̄3 are used in the counterterm T matrices,
as done in Ref. [9]. Putting all amplitudes from the different
one-loop diagrams together, we have

T (1/2,LOOP)
πD = − wπ

12 f 4
π

{3wπ [3J0(−wπ,mK ) + 4J0(−wπ,mπ )

− 9J0(wπ ,mK ) − 17J0(wπ ,mπ )]
+ 12I2(t,mK ) + 16I2(t,mπ )}, (31)

T (3/2,LOOP)
πD = wπ

6 f 4
π

{3wπ [3J0(−wπ,mK ) + 7J0(−wπ,mπ )

+ J0(wπ ,mπ )] + 3I2(t,mK )

+ 4I2(t,mπ )}, (32)

T (LOOP)
πDs

= w2
π

2 f 4
π

[J0(wπ ,mK ) + J0(−wπ,mK )], (33)

T (1,LOOP)
K D = wK

2 f 4
K

{wK [J0(−wK ,mK ) + J0(wK ,mπ )]

+ 2I2(t,mπ ) − I2(t,mK )}, (34)

T (0,LOOP)
K D = wK

12 f 4
K

{3wK [2J0(−wK ,mK ) + 24J0(wK ,mη)

+ 22J0(wK ,mK ) + J0(wK ,mπ )]
− 10I2(t,mK ) − 36I2(t,mπ )}, (35)

T (LOOP)
K Ds

= wK

12 f 4
K

{3wK [12J0(−wK ,mη) + 7J0(−wK ,mK )

+ 5J0(−wK ,mπ ) + 2J0(wK ,mK )]
+ 14I2(t,mK )}, (36)

T (1,LOOP)

K̄ D
= wK

24 f 4
K

{3wK [24J0(−wK ,mη) + 22J0(−wK ,mK )

+ 3J0(−wK ,mπ ) + 4J0(wK ,mK )]
+ 16I2(t,mK ) + 24I2(t,mπ )}, (37)

T (0,LOOP)

K̄ D
= wK

24 f 4
K

{3wK [−24J0(−wK ,mη) − 22J0(−wK ,mK )

+ 5J0(−wK ,mπ ) + 4J0(wK ,mK )]
+ 8I2(t,mK ) − 72I2(t,mπ )}, (38)

T (LOOP)

K̄ Ds
= wK

12 f 4
K

{3wK [2J0(−wK ,mK ) + 12J0(wK ,mη)

+ 7J0(wK ,mK ) + 5J0(wK ,mπ )]
− 14I2(t,mK )}, (39)

T (LOOP)
ηD = 3w2

η

4 f 4
η

[J0(−wη,mK ) + J0(wη,mK )], (40)

T (LOOP)
ηDs

= 21w2
η

8 f 4
η

[J0(−wη,mK ) + J0(wη,mK )], (41)

with the finite parts of loop functions

J0(w,m)

= w

8π2
+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

4π2

√
w2 − m2ln

−w +
√

w2 − m2

m
(w < −m),

− 1

4π2

√
m2 − w2arccos

−w

m
(−m < w < m),

1

4π2

√
w2 − m2

(
iπ − ln

w +
√

w2 − m2

m

)
(w > m),

(42)

I2(t,m) = 1

48π2

{
2m2 − 5t

12
− (4m2 − t)3/2

2
√−t

ln

√
4m2 − t + √−t

2m

}
, (43)

and the squared invariant momentum transfer t = 2q2(z−1).

4 Partial-wave phase shifts and scattering lengths

The partial-wave amplitudes f (I )
l (q), where l refers to the

orbital angular momentum, are obtained from the T matrix

123
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by a projection:

f (I )
l (q) = MH

16π
√
s

∫ +1

−1
dz [T (I )

φH Pl(z)], (44)

where Pl(z) denotes the conventional Legendre polynomial
and

√
s = (m2

φ+q2)1/2+(M2
H +q2)1/2 is the total center-of-

mass energy. For the channels that may generate the bound
states or resonances, the T matrix must be iterated to the infi-
nite order. We consider the T matrix up to the third order only
in the calculation of the phase shifts and scattering lengths
since we do not aim to achieve the description of the bound
states or resonances. For the energy range considered in this
paper, the phase shifts without the effect of the bound states
or resonances δ

(I )
l (q) are calculated by (also see Refs. [9,81])

δ
(I )
l (q) = arctan[qRe f (I )

l (q)]. (45)

Based on relativistic kinematics, there is a relation between
the center-of-mass momentum and the momentum of the
incident light pseudoscalar meson in the laboratory system,

q2 = M2
H p2

lab

m2
φ + M2

H + 2MH

√
m2

φ + p2
lab

. (46)

The scattering lengths for the S waves and the scattering vol-
umes for P waves are obtained by dividing out the thresh-
old behavior of the respective partial-wave amplitude and
approaching the threshold [82]

a(I )
l = lim

q→0
q−2l f (I )

l (q). (47)

5 Results and discussion

In order to determine the low-energy constants, we start by
fitting both phase shifts and scattering lengths from lattice
QCD simulations at the nonphysical meson values simulta-
neously, and we then make predictions for the phase shifts
and the threshold parameters in all channels at the physical
meson values.

5.1 Fitting

Now, we determine c0,...,5 and κ̄1,2,3 using the phase shifts
and the scattering lengths from lattice data. We take the S-
wave phase shifts with I = 3/2 and the P-wave phase shifts
with I = 1/2 of the elastic Dπ scattering at mπ � 391 MeV
from Ref. [83]. The S-wave phase shift with I = 1/2 of the
Dπ scattering is not used in the fitting because there exists
a near-threshold bound state that cannot be obtained in the
perturbative method. The P-wave phase shift with I = 0 of

the elastic DK scattering at mπ � 239 MeV is taken from
Ref. [68]. Again, there exists a bound state, i.e., D∗

s0(2317),
in the S-wave I = 0 DK channel, and then the phase shift
from this channel is not used to determine the LECs. The
phase shifts of the elastic DK̄ scattering are obtained by
using a simple parametrization with the scattering lengths
in Ref. [68]. Therefore, we use the DK̄ scattering lengths
directly instead of the phase shifts. For the three phase shifts
that are used to determine the LECs, we take the data with
the pion (kaon) laboratory momentum between 5 and 300
MeV. In addition, the scattering lengths of the five channels
[DK̄ (I = 0), DK̄ (I = 1), Dπ(I = 3/2), DsK , Dsπ ]
are used to determine the LECs from Refs. [65,68,83]. We
take the scattering length of the channel [Dπ(I = 3/2)] at
mπ � 391 MeV from Ref. [83], the scattering lengths of the
channels [DK̄ (I = 0), DK̄ (I = 1)] at mπ = 239 MeV
and mπ = 391 MeV from Ref. [68], and the (M007, M010)
data for the five channels from Ref. [65]. The correspond-
ing lattice values of fπ and fK are from Ref. [84], and we
always choose fη = 1.2 fπ in this paper. The resulting LECs
with the correlations between the parameters can be found in
Table 1. The uncertainty for the respective parameter is statis-
tical, and it measures how much a particular parameter can be
changed while maintaining a good description of the fitting
data. Nevertheless, the parameters cannot truly vary indepen-
dently of each other because of the mutual correlations, as
detailed in Refs. [85,86]. Therefore, the large uncertainties
of some LECs in our fit cannot make the errors of the phase
shifts and the threshold parameters large because a full error
analysis requires a complete covariance matrix. However, we
obtain small uncertainties for some LECs (e.g., c4, c5, κ̄1).
Furthermore, the values of the LECs are mostly of natural
size; i.e., they are numbers of order one and the same order
of magnitude as the axial vector coupling constant gA = 1.27
[87,88]. We can see that the absolute values for most of the
LECs turn out to be between one and ten when one introduces
dimensionless LECs (e.g., c

′
i = �χci ). In fact, the values of

the LECs in the calculations of the pion-nucleon scattering
were obtained at the same order of magnitude and regarded
as of natural size in Refs. [9,10,20,21]. However, c2,3,4 are
around 5 − 9 GeV−1, which may be enhanced by including
D∗
s0(2317) explicitly. In comparison, the �(1232) resonance

enhanced the LECs in the pion-nucleon scattering. For the
channel DK (I = 0) involving D∗

s0(2317), we clearly see
that c2 and c3 can be combined into the linear combination
c2 + c3, which has a small value of 0.43 GeV−1. The abso-
lute value of the correlation between c0 and c1 is very close
to one, which is consistent with the fact that the terms with
these two parameters involve only the masses of the light
pseudoscalar mesons.

The corresponding phase shifts and scattering lengths
from the fitting are shown in Fig. 2. The S-wave phase shifts
with I = 3/2 and P-wave phase shifts with I = 1/2 of the
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Table 1 Results of fitting to various lattice data of the phase shifts and scattering lengths. For a detailed description, see the main text

Values c0 c1 c2 c3 c4 c5 κ̄1 κ̄2 κ̄3

c0 (GeV−1) − 0.77 ± 0.39 1.00 0.99 − 0.86 − 0.88 0.00 0.00 0.02 − 0.92 0.00

c1 (GeV−1) − 0.64 ± 0.35 1.00 − 0.86 − 0.89 0.00 0.00 0.01 − 0.93 0.00

c2 (GeV−1) − 5.04 ± 1.83 1.00 0.95 − 0.51 − 0.41 − 0.01 0.61 0.50

c3 (GeV−1) 5.47 ± 1.57 1.00 − 0.36 − 0.45 0.10 0.67 0.40

c4 (GeV−1) 8.99 ± 0.93 1.00 0.80 0.00 0.37 − 0.98

c5 (GeV−1) − 3.08 ± 0.70 1.00 0.00 0.34 − 0.90

κ̄1 (GeV−2) 0.21 ± 0.04 1.00 0.01 0.00

κ̄2 (GeV−2) 7.81 ± 3.88 1.00 − 0.38

κ̄3 (GeV−2) − 1.87 ± 1.47 1.00

χ2/d.o.f. 34.85
195−9 = 0.19

Dπ scattering at mπ � 391 MeV are in very good agree-
ment with the data from lattice QCD simulations up to the
pion laboratory momentum of 300 MeV. For the isoscalar
P-wave DK scattering at mπ � 239 MeV, the values of the
phase shifts are very consistent with the data from lattice
QCD simulations below the kaon laboratory momentum of
200 MeV. However, the P-wave phase shifts of DK (I = 0)

from lattice QCD simulations have large errors. The values of
the DK (I = 0) P-wave phase shifts are in agreement with
the results from lattice QCD within errors up to the kaon
laboratory momentum of 300 MeV. The scattering length of
Dπ(I = 3/2) at mπ � 391 MeV is in agreement with the
lattice QCD value from Ref. [83] within error. The scatter-
ing lengths of DK̄ (I = 1) at mπ = 239, 391 MeV and
DK̄ (I = 0) at mπ = 391 MeV are in good agreement
with the values of lattice QCD from Ref. [68]. The value
for DK̄ (I = 0) at mπ = 239 MeV has a small deviation
from lattice QCD. The reason is that there may exist a virtual
bound state in this channel. The scattering lengths of the five
channels [DK̄ (I = 0), DK̄ (I = 1), Dπ(I = 3/2), DsK ,
Dsπ ] at mπ � 301, 364 MeV are in agreement with lattice
QCD values from Ref. [65] within errors. There exist small
deviations at a few points because the lattice QCD values
are from different groups, which may cause some errors in
this fitting. We have obtained a good description of the three
phase shifts and the five scattering lengths at the nonphysical
meson values.

Due to the strong correlations in some parameters, we use
the linear combinations of the low-energy constants for fur-
ther analysis. The combinations c2+c4 and c3+c5 contribute
to the S-wave scattering. We also use c0 + c1 because they
have a large correlation. Thus, we have three linear combi-
nations instead of the separate ci . The results can be found in
Table 2. Unsurprisingly, we obtain small values and uncer-
tainties for the three linear combinations. However, we have
omitted the difference in the description of the P waves in this
fitting with the linear parameter combinations. On the other

hand, the values in Table 1 can describe exactly the corre-
sponding phase shifts and threshold parameters with the help
of the mutual correlations. Therefore, it is not necessary to
further analyze the phase shifts and threshold parameters in
this fitting. However, we can study the reason why the values
of the LECs in Table 1 are larger than the three linear com-
binations from Table 2. It is easy to find that the LECs in P
waves are only c4, c5, and κ̄3. Thus, we fit the three LECs
by using the P-wave phase shifts of the Dπ(I = 1/2) and
DK (I = 0) channels. We obtain c4 = 13.41±0.22 GeV−1,
c5 = −0.43 ± 0.16 GeV−1, and κ̄3 = −8.67 ± 0.34 GeV−2

with a very small χ2/d.o.f = 0.01, which is caused by the
large errors in the P-wave phase shifts. Nevertheless, the
large value for c4 is also not of natural size. This may be one
reason why the values in Table 1 are large. We need more
precise data of the P waves to improve the LECs in Table 1.

For the channel DK (I = 0), we can explicitly include
D∗
s0(2317) in the fitting to improve the values of LECs.

We note that the �(1405) was included for the K N scat-
tering [89] and �(1232) was included for the πN scat-
tering [30]. Unfortunately, the coupling constant involving
D∗
s0(2317) has not been determined. Thus, we cannot obtain

an additional constraint to determine the LECs. However,
we can use the scattering length of the channel DK (I = 0)

from lattice QCD to determine the coupling constant with
D∗
s0(2317). The value of the scattering length for the chan-

nel DK (I = 0) is −1.33(20) fm from Ref. [64] in a near
threshold lattice simulation. The corresponding formula can
be found in Appendix 7. We can obtain g2

R = 0.81 ± 0.04
by using the lattice values from Ref. [64] and the mass of the
D∗
s0(2317) from PDG [90]. The values of gR for D∗

s0(2317)

are not very large and have the same order of magnitude as the
coupling constant involving �(1405) (ḡ2

�R
= 0.15). There-

fore, the inclusion of D∗
s0(2317) in channel DK (I = 0) is

reasonable. Global fitting can be performed after the cou-
pling constant involving D∗

s0(2317) is determined. We can
see that Ds0(2317) affects only the S-wave behavior of the

123



Eur. Phys. J. C (2023) 83 :76 Page 7 of 17 76

DK (I = 0) channel in this method. The P-wave behavior
should not be affected by D∗

s0(2317) because D∗
s0(2317) is

always interpreted as a DK molecule with I (J P ) = 0(0+).
However, the P-wave behavior can be improved by includ-
ing the vector heavy mesons. We will discuss the issue in a
forthcoming calculation.

5.2 Phase shifts

In the following, we make predictions of the S- and P-
wave phase shifts for the eleven channels at the physical
meson values using the LECs from Table 1. We use the
values of the physical parameters: mπ = 139.57 MeV,
mK = 493.68 MeV, fπ = 92.07 MeV, fK = 110.03 MeV,
MD = 1869.66 MeV, MDs = 1968.35 MeV from PDG [90].
The numerical results of the phase shifts of the pion-, kaon-,
antikaon-, and eta-D meson scatterings are shown in Figs. 3,
4, 5, and 6, respectively. The error bands of the phase shifts
in the total contributions are estimated from the statistical
errors of the LECs using the standard error propagation for-
mula with the correlations. We can see that the bands from the
LECs are not too large to be unacceptable. The bands in the
different orders are not given because we do not determine
the LECs at the corresponding orders, although we present
the values of the phase shifts from the different orders. The
convergence is not good for most of the S-wave phase shifts,
which is not surprising because it is difficult to achieve good
convergence at the third chiral order, as in the case of the
pion-nucleon scattering in Ref. [9]. However, the P-wave
phase shifts at the third chiral order are much smaller than
those at the second chiral order, which indicates good conver-
gence. In Figs. 3, 4, 5, and 6, we also show the S-wave phase
shifts calculated by the unitary method from Refs. [91,92]
for making a more detailed comparison.

For the pion-D meson phase shifts, we obtain the repul-
sions in the Dπ(I = 3/2) S wave and all P waves, and attrac-
tions in the Dπ(I = 1/2) and Dsπ S waves. It is clear that
there exist no bound states or resonances in the channels with
repulsions. The attraction is weak below 200 MeV in the Dsπ

S wave. The attraction should not be strong enough to gener-
ate a bound state or resonance in this wave. The Dπ(I = 1/2)

S wave is particularly interesting. The attraction exists at each
order, and the total attraction is very strong even below 200
MeV. The results from lattice QCD simulations at nonphys-
ical meson values support that there exists a bound state or
resonance in this channel [83,93]. However, the production of
a bound state or resonance requires nonperturbative dynam-
ics through an iterated method. We can see that the same
direction is obtained between our calculations and the uni-
tary results for the S-wave phase shifts. More detailed calcu-
lations including nonperturbative dynamics will be presented
in forthcoming work.

For the kaon-D meson phase shifts, there are repulsions
in the DsK S wave and all P waves, and thus the bound
state or resonance cannot be dynamically generated in these
waves. The DK (I = 1) S wave has weak attractions that
cannot generate a bound state or resonance. As expected,
we obtain a strong attraction in the DK (I = 0) S wave,
while the result from the unitary method has the opposite
sign. This wave corresponds to the well-known bound state
D∗
s0(2317). However, this exotic state has not been directly

obtained in our perturbative calculation. Nevertheless, it is
not difficult to obtain D∗

s0(2317) by using an iterated method
(e.g., Schrödinger equation) with the strong attractive DK
interaction potential. The iterated method can generate the
bound state because the nonperturbative dynamics are con-
sidered, as done in Refs. [91,92]. A more detailed description
of D∗

s0(2317) will also be given in forthcoming work.
For the antikaon-D meson phase shifts, the DK̄ (I = 1) S

wave and all P waves have repulsions. Apparently, the bound
state or resonance cannot be found in these waves. Surpris-
ingly, we obtain strong attractions in both DK̄ (I = 0) and
Ds K̄ S waves. The first-order contribution almost cancels
the second-order contribution in the DK̄ (I = 0) S wave,
and the third-order contribution dominates this wave. How-
ever, the total contribution is still very large. The resulting
strong attraction in this wave is consistent with the lattice
QCD result, which indicates that there exists a virtual bound
state in the DK̄ (I = 0) S wave [68]. In the Ds K̄ S wave, the
attraction is obtained from each order. The total attraction is
very strong and supports the existence of a bound state. This
wave corresponds to the possible D∗

0(2400) signal based on
the coupled-channel analysis of the Dπ , Dη and Ds K̄ scat-
tering amplitudes in Ref. [94]. This is also consistent with
the strong attraction in the Dπ(I = 1/2) S wave. There are
also different signs between our perturbative calculation and
the unitary result in this wave.

For the eta-D meson phase shifts, there are repulsions in
all P waves and strong attractions in all S waves. The first-
and third-order contributions are almost zero in both Dη and
Dsη S waves since the tree amplitudes at the first- and third-
order are zero, and the one-loop amplitudes at the third order
are small. The Dη S wave also corresponds to the D∗

0(2400)

in the coupled-channel Dπ , Dη and Ds K̄ scattering ampli-
tudes [94]. It is interesting that the Dsη S wave also has
strong attractions and supports the existence of a bound state
or resonance, while the opposite signs exist from the unity
results of the Refs. [91,92]. This will be further studied in
future work.

From the phase shifts for the light pseudoscalar meson and
heavy meson scattering, we can see that there are repulsions
in all P waves, and the bound states or resonances cannot
be dynamically generated in these waves. However, we find
that the phase shifts in the Dπ(I = 1/2), DK (I = 0),
DK̄ (I = 0), Ds K̄ , Dη and Dsη S waves are so strong that
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Fig. 2 Fits for the light pseudoscalar meson and D meson phase shifts
and scattering lengths from various lattice data. The lattice phase shifts
and scattering length with the red error bars in the Dπ(I = 3/2) S-
wave, Dπ(I = 1/2) P-wave and a(3/2)

Dπ→Dπ are from Ref. [83]. The lat-

tice data with the blue error bars in the DK (I = 0) P-wave, a(1)

DK̄→DK̄

and a(0)

DK̄→DK̄
are from Ref. [68]. The lattice scattering lengths with

the black error bars are from Ref. [65]. For a detailed description of the
fits, see the main text
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Table 2 Results of fitting by
using the linear combinations of
the low-energy constants. For a
detailed description, see the
main text

Values c0 + c1 c2 + c4 c3 + c5 κ̄1 κ̄2 κ̄3

c0 + c1 (GeV−1) 0.04 ± 0.02 1.00 0.01 − 0.47 − 0.22 − 0.79 0.00

c2 + c4 (GeV−1) 0.89 ± 0.02 1.00 − 0.09 0.01 0.01 0.00

c3 + c5 (GeV−1) − 0.32 ± 0.04 1.00 0.95 0.77 0.00

κ̄1 (GeV−2) 0.21 ± 0.07 1.00 0.60 0.00

κ̄2 (GeV−2) − 7.13 ± 0.34 1.00 − 0.39

κ̄3 (GeV−2) 6.11 ± 0.14 1.00

χ2/d.o.f. 147
195−6 = 0.78

Fig. 3 Predictions for the pion-D meson phase shifts versus the pion
laboratory momentum at physical meson values. The dashed, dotted,
dash-dotted and solid lines denote the first-, second-, third-order, and
their total contributions, respectively. The open circles present the uni-

tary results from Refs. [91,92]. The error bands are estimated from
the statistical errors of the LECs using the standard error propagation
formula with the correlations
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Fig. 4 Predictions for the kaon-D meson phase shifts versus the kaon laboratory momentum at physical meson values. The notation is the same
as in Fig. 3

the bound states or resonances may be generated dynamically
in these channels.

5.3 Scattering lengths and scattering volumes

Finally, we calculate the scattering lengths for the S waves
and the scattering volumes for the P waves with Eq. (47)
at the physical meson values. Analytical expressions for the
threshold parameters can be found in Appendix 8. The scat-
tering lengths are shown in Table 3, and the scattering vol-
umes are shown in Table 4. The errors of the scattering
lengths and the scattering volumes in our calculations are
estimated from the statistical errors of the LECs using the
error propagation formula with the correlations. Similarly,

the errors at the different orders are not given, although we
present the values of the scattering lengths and the scattering
volumes from the different orders. Good convergence is not
achieved for the scattering lengths, while good convergence
is obtained for the scattering volumes.

The scattering lengths in the channels Dπ(I = 1/2),
DK (I = 0), DK̄ (I = 0), Ds K̄ , Dη and Dsη have large
values. A bound state or resonance may be generated in these
channels. The other scattering lengths are either small or neg-
ative, where a bound state or resonance cannot be dynami-
cally generated. We obtain a large positive value for the chan-
nel DK (I = 0), which corresponds to D∗

s0(2317). A chan-
nel with a bound state should have a large negative scattering
length, as obtained from Refs. [65,79]. The correct scatter-
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Fig. 5 Predictions for the antikaon-D meson phase shifts versus the antikaon laboratory momentum at physical meson values. The notation is the
same as in Fig. 3

ing length for this channel was obtained in our previous work
[72] through the iterated method.

We obtain the negative values for the scattering volumes
in all channels. Therefore, a bound state or resonance cannot
be generated in the P waves. The values from the first-order
contributions are zero, and the values from the third-order
contributions are small. Then, the second-order contributions
dominate the total values. Good convergence is obtained for
the scattering volumes at the third chiral order.

6 Summary

In summary, we have calculated the complete T matrices of
the elastic light pseudoscalar meson and heavy meson scat-

tering up to the third order in HMChPT. We fitted the phase
shifts and the scattering lengths from lattice QCD at non-
physical meson values to determine the LECs. This led to
a good description of the phase shifts below the 200 MeV
pion/kaon momentum and the scattering lengths at the non-
physical meson values for the channels excluding a bound
state or resonance. We also obtained the LEC uncertainties
and their mutual correlations through statistical regression
analysis. We predicted the S- and P-wave phase shifts for
light pseudoscalar meson and heavy meson scattering using
these LECs at the physical meson values. We found that the
phase shifts in the Dπ(I = 1/2), DK (I = 0), DK̄ (I = 0),
Ds K̄ , Dη and Dsη S waves are strong enough to generate
a bound state or resonance. The channel DK (I = 0) corre-
sponds to the well-known D∗

s0(2317). The coupled channels
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Fig. 6 Predictions for the eta-D meson phase shifts versus the eta laboratory momentum. The notation is the same as in Fig. 3

Dπ(I = 1/2), Ds K̄ and Dη may correspond to D∗
0(2400).

The channels DK̄ (I = 0) and Dsη may generate the respec-
tive bound state or resonance. However, as expected, we can-
not obtain directly a bound state or resonance in our perturba-
tive calculations. This issue can be successfully solved by the
nonperturbative method, and the calculations including the
nonperturbative dynamics will be presented in a forthcom-
ing work. The P wave phase shifts in all channels are repul-
sive, and the bound states or resonances cannot be dynami-
cally generated in these waves. We also predicted the scat-
tering lengths and the scattering volumes using the LECs at
the physical meson values. The scattering lengths also have
large values in the channels Dπ(I = 1/2), DK (I = 0),
DK̄ (I = 0), Ds K̄ , Dη and Dsη, which indicate that a bound
state or resonance may be generated in these channels. How-
ever, the correct scattering lengths for these channels should
be obtained through the iterated method. We obtained nega-
tive values for the scattering volumes in all channels, and a
bound state or resonance cannot be generated in the P waves.
In addition, we obtained good convergence for the scatter-
ing volumes at the third chiral order. In order to study the
bound states or resonances directly, the calculation includ-
ing the nonperturbative dynamics is necessary. We hope our
present calculations contribute to the investigations on the
heavy meson–heavy meson interactions in HMChPT.

7 D∗
s0(2317) contribution

Denoting the D∗
s0(2317) by DR , the leading-order effective

Lagrangian with DR as explicit degree of freedom reads

LDR =D̄R(iv · ∂ − MR + MD)DR

+ (gR
〈
D̄Rv · A D

〉 + h.c.) (A.1)

where A = ∂μK
f with K = (K+, K 0)T or (K−, K̄ 0)T, and

D = (D0, D+). The leading D∗
s0(2317)-exchange Born-

term contribution resulting from Fig. 7 reads

T (0)
K D = 2w2

K g
2
R

f 2
K

(
1

MR − MD − wK
+ 1

MR − MD + wK

)
.

(A.2)

Putting the LO, NLO, N2LO amplitudes and the Eq. (A.2)
together in K D(I = 0) channel, we can obtain the complete
s-wave scattering lengths

a(0)
K D = MD

8π(MD + mK ) f 2
K

×
[

2mK + 2(4c0 + 4c1 + c2 + c3 + c4 + c5)
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Table 3 Predictions of the scattering lengths for the light pseudoscalar meson and D meson at the physical meson values. The scattering lengths
are in units of fm

Sca. Len. O(p) O(p2) O(p3) Total Liu2013 [65] Guo2019 [79]

a(3/2)

(0,Dπ) − 0.24 0.23 − 0.16 − 0.17(6) − 0.100(2) − 0.103+0.003
−0.003

a(1/2)

(0,Dπ) 0.48 0.23 0.00 0.71(16) 0.37+0.03
−0.02 0.40+0.03

−0.02

a(0,Dsπ) 0.00 0.06 − 0.08 − 0.02(0) − 0.002(1) 0.012+0.003
−0.003

a(1)
(0,DK ) 0.00 0.45 − 0.24 0.21(1) 0.07+0.03

−0.03 + i0.17+0.02
−0.01 − 0.01+0.05

−0.03 + i0.39+0.04
−0.04

a(0)
(0,DK ) 1.01 2.90 2.65 6.57(318) − 0.84+0.17

−0.22 − 1.51+0.72
−2.35

a(0,Ds K ) − 0.51 1.69 − 1.96 − 0.78(19) − 0.18(1) − 0.20+0.01
−0.01

a(1)

(0,DK̄ )
− 0.51 1.67 − 2.38 − 1.21(19) − 0.20(1) − 0.20+0.01

−0.01

a(0)

(0,DK̄ )
0.51 − 0.78 2.86 2.58(19) 0.84(15) 21.9

a(0,Ds K̄ ) 0.51 1.69 0.78 2.98(161) − 0.09+0.06
−0.05 + i0.44+0.05

−0.05 − 0.57+0.06
−0.04 + i0.35+0.08

−0.07

a(0,Dη) 0.00 0.67 0.00 0.67(9) 0.29+0.15
−0.22 + i0.61+0.30

−0.26

a(0,Dsη) 0.00 2.97 0.00 2.97(139) − 0.39+0.05
−0.03 + i0.06+0.02

−0.02

Table 4 Predictions of the scattering volumes for the light pseudoscalar
meson and D meson at the physical meson values. The scattering vol-
umes are in units of fm3. Note that, the values for the O(p) in all
channels are zero, and are not shown

Sca. Vol. O(p2) O(p3) Total

a(3/2)

(1,Dπ) − 0.33 − 0.01 − 0.34(6)

a(1/2)

(1,Dπ) − 0.33 0.02 − 0.31(4)

a(1,Dsπ) − 0.40 0.00 − 0.40(4)

a(1)
(1,DK ) − 0.24 0.00 − 0.24(2)

a(0)
(1,DK ) − 0.16 0.05 − 0.11(0)

a(1,Ds K ) − 0.20 − 0.02 − 0.22(5)

a(1)

(1,DK̄ )
− 0.20 − 0.02 − 0.22(5)

a(0)

(1,DK̄ )
− 0.28 0.02 − 0.26(1)

a(1,Ds K̄ ) − 0.20 0.02 − 0.18(1)

a(1,Dη) − 0.22 0.00 − 0.22(3)

a(1,Dsη) − 0.18 0.00 − 0.18(3)

× m2
K + 4(4κ̄1 + κ̄2 + κ̄3)m3

K

+ 3m2
K

8π2 f 2
K

(
mK −

√
m2

η − m2
K arccos

−mK

mη

)

+ 2m2
K g2

R

(
1

MR − MD − mK
+ 1

MR − MD + mK

)]
.

(A.3)

8 Threshold parameters

In this appendix, we give the analytical expressions for the
threshold parameters up to third order. These read:

Fig. 7 The leading D∗
s0(2317)-exchange Born-term contribution. The

double solid, solid and dashed lines represent D∗
s0(2317), D meson,

and kaon, respectively. The crossed diagram is not shown

a(1/2)

(0,πD) = MD

8π(MD + mπ ) f 2
π

×
[

2mπ + (8c0 + 4c1 + 2c2 + c3 + 2c4 + c5)

× m2
π + 4(4κ̄1 + κ̄2 + κ̄3)m

3
π

− m2
π

16π2 f 2
π

(
6mπ +

√
m2

K − m2
π arccos

mπ

mK

− 3
√
m2

K − m2
π arccos

−mπ

mK

)]
, (B.1)

a(1/2)

(1,πD) = MD

16π(MD + mπ ) f 2
π

×
(

− 4

3
c4 − 2

3
c5 − 8

3
κ̄3mπ + 7

864π2 f 2
π

mπ

)
, (B.2)

a(3/2)

(0,πD) = MD

8π(MD + mπ ) f 2
π

×
[

− mπ + (8c0 + 4c1 + 2c2 + c3 + 2c4 + c5)

× m2
π − 2(4κ̄1 + κ̄2 + κ̄3)m

3
π

− m2
π

16π2 f 2
π

(
3mπ + 2

√
m2

K − m2
π arccos

mπ

mK

)]
, (B.3)

a(3/2)

(1,πD) = MD

16π(MD + mπ ) f 2
π

(
− 4

3
c4 − 2

3
c5 + 4

3
κ̄3mπ
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− 7

432π2 f 2
π

mπ

)
, (B.4)

a(0,πDs ) = MDs

8π(MDs + mπ ) f 2
π

[
2(4c0 + c2 + c4)m

2
π

− m2
π

8π f 2
π

√
m2

K − m2
π

]
, (B.5)

a(1,πDs ) = MDs

16π(MDs + mπ ) f 2
π

(
− 4

3
c4

)
, (B.6)

a(1)
(0,K D) = MD

8π(MD + mK ) f 2
K

{
2(4c0 + c2 + c4)m

2
K

+ m2
K

8π2 f 2
K

×
[√

m2
K − m2

π

(
iπ − ln

mK +
√
m2

K − m2
π

mπ

)]}
, (B.7)

a(1)
(1,K D) = MD

16π(MD + mK ) f 2
K

(
− 4

3
c4 + mK

288π2 f 2
K

)
, (B.8)

a(0)
(0,K D) = MD

8π(MD + mK ) f 2
K

×
[

2mK + 2(4c0 + 4c1 + c2 + c3 + c4 + c5)

× m2
K + 4(4κ̄1 + κ̄2 + κ̄3)m

3
K

+ 3m2
K

8π2 f 2
K

(
mK −

√
m2

η − m2
K arccos

−mK

mη

)]
, (B.9)

a(0)
(1,K D) = MD

16π(MD + mK ) f 2
K

(
− 4

3
c4 − 4

3
c5 − 8κ̄3

3
mK

− 23

864π2 f 2
K

mK

)
, (B.10)

a(0,K Ds ) = MDs

8π(MDs + mK ) f 2
K

×
[

− mK + (8c0 + 4c1 + 2c2 + c3 + 2c4 + c5)

× m2
K − (8κ̄1 + 2κ̄2

+ 2κ̄3)m
3
K − 3m2

K

16π2 f 2
K

(
mK +

√
m2

η − m2
K arccos

mK

mη

−
√
m2

K − m2
π ln

mK +
√
m2

K − m2
π

mπ

)]
, (B.11)

a(1,K Ds ) = MDs

16π(MDs + mK ) f 2
K

×
(

− 4

3
c4 − 2

3
c5 + 4κ̄3

3
mK + 7

864π2 f 2
K

mK

)
, (B.12)

a(1)

(0,K̄ D)
= MD

8π(MD + mK ) f 2
K

×
[

− mK + (8c0 + 4c1 + 2c2 + c3 + 2c4 + c5)

× m2
K − (8κ̄1 + 2κ̄2

+ 2κ̄3)m
3
K + m2

K

16π2 f 2
K

(
− 3mK − 3

√
m2

η − m2
K arccos

mK

mη

+
√
m2

K − m2
π ln

mK +
√
m2

K − m2
π

mπ

)]
, (B.13)

a(1)

(1,K̄ D)
= MD

16π(MD + mK ) f 2
K

×
(

− 4

3
c4 − 2

3
c5 + 4κ̄3

3
mK + 5

432π2 f 2
K

mK

)
, (B.14)

a(0)

(0,K̄ D)
= MD

8π(MD + mK ) f 2
K

×
[
mK + (8c0 − 4c1 + 2c2 − c3 + 2c4 − c5)

× m2
K + (8κ̄1 + 2κ̄2

+ 2κ̄3)m
3
K + 3m2

K

16π2 f 2
K

(
mK +

√
m2

η − m2
K arccos

mK

mη

+
√
m2

K − m2
π ln

mK +
√
m2

K − m2
π

mπ

)]
, (B.15)

a(0)

(1,K̄ D)
= MD

16π(MD + mK ) f 2
K

×
(

− 4

3
c4 + 2

3
c5 − 4κ̄3

3
mK − 1

54π2 f 2
K

mK

)
, (B.16)

a(0,K̄ Ds )
= MDs

8π(MDs + mK ) f 2
K

×
{
mK + (8c0 + 4c1 + 2c2 + c3 + 2c4 + c5)

× m2
K + (8κ̄1 + 2κ̄2

+ 2κ̄3)m
3
K − 3m2

K

16π2 f 2
K

×
[
mK −

√
m2

η − m2
K arccos

−mK

mη

+
(
iπ −

√
m2

K − m2
π ln

mK +
√
m2

K − m2
π

mπ

)]}
, (B.17)

a(1,K̄ Ds )
= MDs

16π(MDs + mK ) f 2
K

×
(

− 4

3
c4 − 2

3
c5 − 4κ̄3

3
mK − 7

864π2 f 2
K

mK

)
, (B.18)

a(0,ηD) = MD

8π(MD + mη) f 2
η

{
1

9
[4(24c0 + 6c2 + c3 + 6c4 + c5)

× m2
K − (24c0 − 12c1 + 6c2 + c3

+ 6c4 + c5)

× m2
π ] + 3m2

η

16π2 f 2
η

(iπ)

}
, (B.19)

a(1,ηD) = MD

16π(MD + mη) f 2
η

(
− 4

3
c4 − 2

9
c5

)
, (B.20)

a(0,ηDs ) = MDs

8π(MDs + mη) f 2
η

{
1

9
[8(12c0 + 12c1 + 3c2

+ 2c3 + 3c4 + 2c5)m
2
K − 2(12c0 + 24c1

+ 3c2 + 2c3 + 3c4 + 2c5)m
2
π ] + 3m2

η

8π2 f 2
η

(iπ)

}
, (B.21)

a(1,ηDs ) = MDs

16π(MDs + mη) f 2
η

(
− 4

3
c4 − 8

9
c5

)
. (B.22)
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