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Abstract Since in recent years most of the heavy tetraquarks
are discovered by Belle, LHCb, BESIII, etc., it motivated us
to study these exotic hadrons. To the extent of our knowledge
about the mass characteristics of heavy tetraquarks, we utilize
the spinless relativistic Bethe–Salpeter equation by applying
the Cornell potential in order to calculate the eigenvalue and
mass of heavy tetraquarks. For this purpose, we present an
ansatz solution to obtained Schrödinger-like equation to cal-
culate the ground-state energy of diquarks and tetraquarks.
Eventually, we compare our obtained predictions for heavy
tetraquark masses with available experimental and theoreti-
cal data.

1 Introduction

The strong interaction is one of the fundamental forces of
nature, which guides the dynamics of quarks and gluons. The
theory that describes the dynamics of the strong interaction,
quarks and gluons, is quantum chromodynamics (QCD). It
also explains the whole nuclear physics, from the hadronic
mass spectrum to the synthesis of the heavy elements in
the cosmos. The quark model [1,2] classifies hadrons into
conventional mesons (qq̄) and baryons (qqq or qqq). Fur-
thermore, it advocates the existence of exotic hadrons like
tetraquarks (qqqq) and pentaquarks (qqqqq). These newly
discovered particles are clearly exotic states. Exotic states
provide an unrivaled environment to peruse the confinement
mechanism and the strong interaction [3]. The posibility of
existence of exotic multiquark hadrons was proposed at the
beginning of the quark model, although the lack of convinc-
ing experimantal evidence for such multiquark states made
their investigation of unusual interest. To date, more and more
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tetraquark and pentaquark states have been discovered and
confirmed by various experiments. The first tetraquark (TQ)
candidate was the particle X(3872), discovered in 2003 by
the Belle collaboration [4], and a number of other candi-
dates followed, referred to as “X,” “Y,” and “Z” [5]. The
Z+
c (3900) discovered by BESIII in 2013 clearly cannot be

explained by a conventional heavy quarkonium state [6].
In 2020, LHCb reported a narrow X(6900) structure in the
di-J/� channel [7]. The structure could be interpreted as
a tetraquark with four charm quarks, Tccc̄c̄. Amplification
near the di-J/� mass threshold was also observed in the
LHCb data, which may be due to final-state rescattering, the
interference of two resonances, or reflections associated with
genuine resonances [8]. Experimental data on mesons with
hidden-charm and exotic properties were published in Table
1, [9–13]. The XYZ-naming scheme, where X are neutral
exotic charmonium-like states observed in hadronic decays,
Y are neutral exotic charmonium-like states withJ PC = 1−−
observed in e−e+ collisions, and Z are charged (isospin
triplet I = 1) charmonium-like states [14]. The experimen-
tally determined quantum numbers J PC , the masses M, the
observational channels, and the names of the experiments in
which they were first observed are given in Table 1 [11–13].
In this work, we consider only diquarks and antidiquarks in
the ground state.

The manuscript is structured as follows. In Sect. 2, we
introduce the spinless Betht-Salpeter equation to achieve
the two-body equation. The QCD-motivated Coulomb-plus-
linear potential, also known as Cornell potential, it has
received a great deal of attention in particle physics, more pre-
cisely in the context of meson spectroscopy in Sect. 3. We cal-
culated the mass od diquarks in Sect. 4. In Sect. 5, we invoke
using the spinless Bethe–Salpeter equation for calculating
of the energy eigenvalue and mass spectrum, the tetraquark
masses then becomes the sum of diquar-anidiquark masses
and the energy of perturbed system. Finally, in summary we
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Table 1 Experimental data on hidden-charm exotic mesons

State J PC M (MeV) Observed in Experiment

X(3872) 1++ 3871.69 ± 0.17 B± → K±π+π− J/ψ Belle

Zc(3900)± 1+− 3888.4 ± 2.5 e+e− → π+π− J/ψ BESIII

X (4140) 1++ 4146.8 ± 2.4 B+ → φ J/ψK+ CDF, LHCb

Y (4230) 1−− 4218.7 ± 2.8 e+e− → ωχc0 BESIII

Y (4260) 1−− 4230 ± 8 e+e− → γI SRπ+π− J/ψ BaBar

Y (4390) 1−− 4392 ± 7 e+e− → π+π−hc BESIII

Zc(4430)± 1+− 4478+15
−18 B → Kπ±ψ(2S) Belle

X (4500) 0++ 4506 ± 11+12
−15 B+ → J/ψφK+ LHCb

X (4700) 0++ 4704 ± 10+14
−24 B+ → J/ψφK+ LHCb

X (6900) ??+ 69.5 ± 11 ± 7 pp → J/ψ J/ψX LHCb

give a preliminary study about the mass spectra of heavy
tetraquarks in Sect. 6.

2 The spinless relativistic Bethe–Salpeter

The relativistic wave-Salpeter equation [15–18] is estab-
lished by considering the kinetic energies of the constituents
and the interaction potential. The spinless Salpeter (SS) for
the case of two particles with unequal masses m1 and m2

interacting via a spherically symmetric potential V(r) in the
centre-of-mass system of the two particles is given by

⎡
⎣ ∑
i=1,2

√
−	N + m2

i + V (r) − M

⎤
⎦χ(r) = 0, (1)

where the kinetic terms involving the operation
√

−	N + m2
i

are non-local operators and χ(r) = Yl,m(θ, φ)Rn,l(r)
denotes the Salpeter wave function. For heavy quarks, the
kinetic energy operators in Eq. (1) can be approximated (cf.
e.g. Jaczko and Durand in Refs. [19–22]), as

∑
i=1,2

√
−	 + m2

i = m1 + m2 − 	N

2μ
− 	2

N

8η3 + · · · , (2)

where μ = m1m2
m1+m2

denotes the reduced mass and η =
μ( m1m2

m1m2−3μ2 )1/3 is a useful mass parameter. This equation
of type SS retains its relativistic kinematics and is suitable
for describing the spin-averaged spectrum of two bound par-
ticles of masses m1 and m2 and the total binding mass Mnl .
The Hamiltonian containing the relativistic corrections up to
order v2

c2 is called the generalized Breit–Fermi Hamiltonian
(see, Lucha et al. from Refs. [23–25]). Therefore, the spin-
less Salpeter equation (in units h̄ = c = 1) [15–18] can be
written as

[
−	N

2μ
− 	2

N

8η3 + V (r)

]
Rn,l(r) = En,l Rn,l(r), (3)

where En,l = Mn,l −m1 −m2 refers to the Salpeter binding
energy with Mn,l is the semi-relativistic-bound-state masses
of the tetraquark and 	N = ∇2

N
1. To obtain a Schrödinger-

like equation, the perturbed term in Eq. (3) is treated using
the reduced Schrödinger equation [27]

p4 = 4μ2[En,l − V (r)]2, (4)

with p4 = 	2
N , and consequently, one would reduce Eq. (3)

to the Schrödinger form [15–18]
[
−	N

2μ
− μ2

2η3 [E2
n,l + V 2(r)−2En,l V (r)]+V (r)

]
Rn,l(r)

= En,l Rn,l(r) (5)

Furthermore, the N-dimensional space operator in spherical
polar coordinates is

	N = ∂2

∂r2 + N − 1

r

∂

∂r
− L2

N−1

r2 , (6)

with L2
N−1 = l(l + N − 2). After applying the following

transformation

Rn,l(r) = un,l(r)

r (N−1)/2
, (7)

l is the angular momentum number, for N = 3 we obtain
[15–18]

	 = ∂2

∂r2 − l(l + 1)

r2 , (8)

1 This approximation is correct up to O v2

c2 . The term 	2
N in Eq. (3)

should be properly treated as a perturbation using trial wave functions
[26].
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and

	2 = ∂4

∂r4 − 2l(l + 1)

r2

∂2

∂r2

+4l(l + 1)

r3

∂

∂r
+ l(l + 1)[l2 + l − 6]

r4 . (9)

Using Eqs. (8) and (9), and after a lengthy but straightforward
manipulation, we can write Eq. (5) in a simpler, clearer and
less ambiguous form than for 3D space

[
− 1

2μ

d2

dr2 + l(l + 1)h̄2

2μr2 + Wn,l (r) − Wn,l (r)
2

2m̃

]
un,l (r) = 0,

(10)

with

Wn,l(r) = V (r) − En,l , (11)

and the effective mass

m̃ = η3

μ2 = (m1m2μ)

(m1m2 − 3μ2)
. (12)

It is worth noting that Eq. (10) is in complete agreement
with the expansion formula of Durand in Refs. [19–22].
The perturbation term, Wn,l(r)2; that is, ( v2

c2 ) term in Eq.
(10) is significant only when it is small (i.e., Wn,l(r)/m̃ �
1). This condition is confirmed by the confining poten-
tials used to describe heavy−quark systems, except near the
colour−Coulomb singularity at the origin, and for r → ∞
(i.e. the wave function vanishes at 0 and ∞). However, on
average it is always satisfied, as stated by Durand [19–22].

3 Cornell potential

The static potential we consider is the Cornell potential,
which is one of the earliest QCD-motivated Coulomb-plus-
linear potentials

V (r) = a

r
+ br, (13)

where

a = κsαs = −4

3
αs

for (qq − qq̄) system and

a = κsαs = −2

3
αs

for (qq and q̄q̄) system. Where αs is the QCD coupling con-
stant. b is constant and r is the hyperradius (0 < r < 1 f m)

[28]. Then, in order to respect the Pauli principle (the two
quarks of the same flavor are identical fermions), the diquark

total spin S must be 1. To calculate diquark mass, we took the
color factor as − 2

3 and for calculating the tetraquark mass,
we took the color factor as − 4

3 . In other words, substituting
the color factor κs = − 4

3 (for quark–antiquark system in
color singlet state) with κs = − 2

3 (quark–quark system in
the anti triplet color state) is equivalent of introducing a fac-
tor of 1

2 in the Coulomb part of the Cornell potential for the
conventional quark–antiquark system. It has received consid-
erable attention in particle physics, more specifically in the
context of meson spectroscopy, where it is used to describe
systems of bound quark and antiquark states [29]. The poten-
tial includes the Coulomb interaction of quarks over short
distances, known from perturbation-theoretic quantum chro-
modynamics (QCD), and quark confinement over long dis-
tances, known from lattice QCD, via the linear term in simple
form. The Coulombic term alone is not sufficient, as it would
allow free quarks to ionize out of the system. All results pre-
sented in this paper are based on the Cornell potential, i.e..
In the first step, by substituting the Cornell potential Eq. (13)
into Eq. (10). We obtain
[
− 1

2μ
+

(
l(l + 1)

2μ
− b2

2m̃

)
1

r2 − a2

2m̃
r2

+
(
a + En,la

m̃

)
r +

(
En,lb

m̃
− b

)
1

r

]
un,l(r) = 0. (14)

where a and b in Eq. (14) are the Cornell potential coeffi-
cients. Now we introduce an ansatz of the form Refs. [30]

un,l(r) = hn(r) exp (sl(r)), (15)

hn(r) =
{

1, i f n = 0,∏n
i=1(r − αn

i ), i f n ≥ 1.
(16)

The exponential term is

s(r) = αr2 + βr + γ ln(r), (17)

we have

4α2 = − μa2

m̃h̄2 ,

γ 2 − γ = L(L + 1) − μb2

m̃h̄2 ,

4αβ = 2μa

h̄2 + 2μEa

m̃h̄2 ,

2βγ = 2μ

h̄2

(
Eb

m̃
− b

)
,

β2 + 4αγ + 2α = 2μ

h̄2

(
ab

m̃
− E − E2

2m̃

)
.

(18)
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The parameters of the given potential can be obtained by Eq.
(18)(h̄ = c = 1)

α = a

2

√
μ

m̃
,

β = m̃

2
√

μ
m̃ + m̃

2μb

,

γ = 1

2
.

(19)

where the α, β and γ coefficients are obtained according to
μ and m̃ parameters and γ = 1

2 for l = 0. We will get Eq.
(21) by having of the Cornell potential coefficients, μ and m̃.
Eventually, we calculate the energy-eigenvalue equation of
the system

En,l = −m̃ +
√
m̃2 − f , (20)

where f is

f = −2ab + 2a
√

m̃
μ

+ m̃

μ

⎛
⎝ m̃

2
√

m̃
μ

+ m̃
2μb

⎞
⎠

2

. (21)

4 Mass of diquark–antidiquark

The contribution of spin-dependent potentials, a spin-spin
VSS(r), spin-orbit VLS(r), and tensor VT (r), that makes sig-
nificant contributions particularly for excited states, is nec-
essary to better understand the splitting between orbital and
radial excitations of different combinations of quantum num-
bers of tetraquarks. All three spin-dependent terms are driven
by the Breit–Fermi Hamiltonian for one-gluon exchange
[23–25,31] and yields

VSS(r) = CSS(r)S1 · S2, (22)

VLS(r) = CLS(r)L · S, (23)

VT (r) = CT (r)S12, (24)

The matrix element S1 · S2 acts on the wave function, and
generates a constant factor, but the VSS(r) remains a function
of only r , and the expectation values of 〈S1 · S2〉 are available
through a quantum-mechanical formula [32].

〈S1 · S2〉 =
〈

1

2
(S2 − S2

1 − S2
2 )

〉
(25)

where, S1 and S2 denote the spins of constituent quarks
for quarkonium and diquarks for tetraquarks, respectively.
CSS(r) may be defined as follows

CSS(r) = 2

3m2 ∇2VV (r) = −8κsαsπ

3m2 δ3(r), (26)

A fair agreement may be achieved by adding spin-spin inter-
actions in a zero-order potentials using the Schrödinger equa-
tion in heavy quarkonium spectroscopy by including the spin-
spin interaction using the artefact providing a new parameter
σ instead of the Dirac delta. So now VSS(r) can be redefined
as

VSS(r) = −8κsαsπ

3m2

(
σ√
π

)3

exp−σ 2(r)2
S1 · S2, (27)

The expectation value of operator 〈L · S〉 is mainly dependent
on the total angular momentum J which is calculated using
the formula J = L + S,

〈L · S〉 =
〈

1

2
(J 2 − L2 − S2)

〉
(28)

where, L denotes the total orbital angular momentum of
quarks and diquarks, respectively, in the case of quarkonium
and tetraquark. The following equation may be used to com-
pute CLS(r),

CLS(r) = −3κsαsπ

2m2

1

(r)2 − c

2m2

1

(r)
(29)

The second component in the spin-orbit interaction is called
Thomas Precession, and it is proportional to the scalar term.
It is thought that confining interaction originates from the
Lorentz scalar structure. In higher excited states, the con-
tribution of the spin-tensor becomes quite important, which
requires a little algebra and may be calculated by

VT (r) = CT (r)

(
(S1 · (r))(S2 · (r))

(r)2 − 1

3
(S1 · S2)

)
(30)

where

CT (r) = −12κsαsπ

4m2

1

(r)3 (31)

The results of (S1 · S2) may be obtained by solving the diag-
onal matrix elements for the spin 1

2 and spin 1 particles, as
detailed in the following references [33]. To solve the tensor
interaction, the simpler formulation may be used.

S12 = 12

(
(S1 · (r))(S2 · (r))

(r)2 − 1

3
(S1 · S2)

)
(32)

and which can be redefined as

S12 = 4[3(S1. ˆ(r))(S2. ˆ(r)) − (S1 · S2)] (33)

Pauli matrices and spherical harmonics with their corre-
sponding eigenvalues may be used to achieve the results of
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the S12 term. The following conclusions are valid for bot-
tomonium and diquarks [37]

〈S12〉 1
2 ⊗ 1

2 →S=1,l �=0 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 2l
2l+3 f or J = l + 1,

− 2(l+1)
(2l−1)

f or J = l − 1,

2 f or J = l,

(34)

when l = 0 and S = 0 the 〈S12〉 always vanishes, but it yields
a non-zero value for exited states in mesons

〈S12〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 2
5 f or J = 2,

+2 f or J = l,

−4 f or J = 0,

(35)

these value are valid only for bottomonium and diquarks
that are specifically spin-half particles, but in the case of
tetraquarks when spin-1 diquarks are involved, it needs a
laborious algebra, which is not discussed in depth here, rather
one can refer Refs. [37] for detailed discussion. When the
two-body problem is solved to obtain the masses of the
tetraquarks, the interaction between the two (anti) quarks
inside the (anti) diquark is identical; because (anti) diquarks
are only considered in the S-wave state, only the spin-spin
interaction is relevant; the spin-orbit and tensor are both iden-
tically zero. We have obtained the mass-spectra of diquarks.

Mdiquark = Mq1. + Mq2. + En,l + 〈VSS(r)〉 . (36)

In the present work there are four fitting parametersαs , b, c, σ .
The existence parameters [28,36] are 0.5, 0.14 GeV 2,

0.19 GeV 2, and 0.4 GeV respectively. To obtain the mass-
spectra of diquarks and to obtain the mass-spectra of diquarks
and tetraquarks. The (qq) diquark, which is made of quarks
of various flavours, may have spins S = 0,1 (scalar [qq],
axial vector {qq} diquarks), while the {qq} diquark, which is
composed of quarks of the same flavour, can only have spin
S = 1. Because of the stronger attraction owing to the spin-
spin interaction, the scalar S diquark is frequently referred to
as a “good” diquark, while the heavier axial vector A diquark
is referred to as a “bad” diquark [34].

5 Heavy tetraquark masses

This work encourages us to further investigate the heavy
tetraquarks. We use the spinless Bethe–Salpeter equation to
calculate the energy-eigenvalue (Eq. (20)) and mass spectrum
(Eq. (36)). For this purpose, we calculate the masses of the

heavy tetraquarks, which are considered as bound states of
diquark and antidiquark. For the potential of the diquark–
antidiquark interaction, we obtain the Cornell potential.
The tetraquark masses are then the sum of the diquark–
antidiquark masses and the energy of the perturbed system
[35].

Mtetraquark = Mdiqu.+Manti−diqu.+En,l+〈VSS(r)〉 . (37)

In order to properly calculate the spin-dependent correc-
tions we need to remember that the diquarks have spin 1.
Then, for the coupling of a spin 1 diquark and spin 1 antidi-
quark, we will have the total tetraquark spin ST = 0, 1, 2.
The spin contribution is added to the Eq. (35) as a perturba-
tion term. The calculated masses M of the ground states [39]
of the neutral QQQ̄Q̄ tetraquarks composed of the heavy
diquark QQ,= b, c, and heavy antidiquark Q̄ Q̄ are given
in Table 3 estimate the masses of tetraquark states, so we
need some diquarks masses, These conventional diquarks
are listed in Table 2.

As we know in QQ heavy diquark with two identical fla-
vors, the spin can be 0 or 1, considering that L + S must be
odd, in the ground state of L = 0, the diquark spin must be
equal to 1. That is, we have the axial vector diquark. For this
reason, in Table 2, for heavy diquarks {Q, Q}, we only have
the A state.

The double and four heavy tetraquarks are considered
as the bound system of the heavy(light) diquark and the
light(heavy) antidiquark. It is important to study the possible
stability of tetraquarks since they are explicitly exotic states
with a heavy flavour number of 1, 2 or larger. Thus, their
observation would be a direct proof for the existence of the
multiquark states. Estimates of the production rates of such
tetraquarks indicate that they could be produced and detected
in present and future facilities. We calculated the masses M
of the ground states (1 S) tetraquarks with open charm and
bottom composed of the heavy diquark, containing two heavy
quarks and the light antidiquark.

Tables 3 and 4 lists the calculated masses M of tetraquarks
consisting of a diquark and an antidiquark. It is important to
note that the comparison of the masses of heavy tetraquarks
in Tables 3 and 4, gives the values of the lowest thresholds T
for decays into two corresponding heavy-light mesons cal-
culated using the measured masses of these mesons [36].
We also show the values of 	 = Mtetra − Mthreshold , where
Mtetra is the tetraquark mass and Mthreshold is the mass of its
lowest meson-meson threshold. A negative 	 means that the
tetraquark lies below the threshold of the fall-apart decay into
two mesons and thus should be a narrow state. Besides that
a state with small positive 	 value could also be observed
as a resonance since its decay rate will be suppressed by
the phase space. All other states with large positive 	 val-
ues are expected to be broad and difficult to observe in the
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Table 2 The masses of conventional diquarks are calculated in units of MeV. S and A denote scalar and axial vector diquarks which are antisymmetric
[· · · ] and symmetric {· · · } in flavour, respectively. δ is the percentage difference between our results and [38]

Composition Diquark Diquark type Our work [38] δ

q [q, q] S 667 710 6

{q, q} A 832 909 8

[q, s] S 906 948 5

{q, s} A 1016 1069 5

s {s, s} A 1176 1203 2

c {c, c} A 3175 3226 2

[c, s] S 2013 2091 4

{c, s} A 2081 2158 4

[c, q] S 1893 1973 4

{c, q} A 1952 2036 4

b {b, b} A 9772 9778 0.06

[b, s] S 5387 5462 1.4

{b, s} A 5403 5482 1.5

[b, q] S 5240 5359 2

{b, q} A 5238 5381 3

cb [c, b] S 6430 6519 1.4

{c, b} A 6439 6526 1

Table 3 Masses M of the neutral heavy diquark (QQ)-antidiquark
(Q̄ Q̄) states are calculated by us. T is the threshold for decays into two
heavy-(QQ̄) mesons and the percentage difference is 	 = (M−T )100

and δ1 and δ2 are the percentage difference between our results and Refs.
[41,42] respectively. D.C., is the diquark content and Eb is the binding
energy. All values are given in MeV

Composition State J PC D.C. Eb M T 	 δ1 δ2

ccc̄c̄ 1S 0++ AĀ −210 6140 5968 3 2.8 4.9

1+− AĀ 6297 6081 3.4 8 2.3

2++ AĀ 6387 6194 3 2.3 2.6

bbb̄b̄ 1S 0++ AĀ −605 18940 18797 0.8 1.8 1.8

1+− AĀ 19201 18859 1.8 1.7 1.7

2++ AĀ 19281 18920 1.8 1 1.8

experiments. The results are presented in Tables 3 and 4, we
considered 	 in these tables as the percentage difference. For
cc and bb because the two quark flavors in diquark are the
same, so only axial vector diquark exists, then the ground
tetraquark is composed of two axial vector diquark (AA).
Also, in tetraquarks ccūd̄ and bbūd̄ due to the fact that the
heavy diquark spin is 1 (A state), we do not have the SS state,
so we have the AS̄ state.

6 Summary

In summary, we present a preliminary study of the mass spec-
tra of heavy tetraquarks. Despite the drawback of insuffi-
cient experimental data, these studies have become a topic
of interest in recent years, with calculations yielding satis-

factory results as more and more data are collected. In this
work, we have calculated the masses of the ground states
of tetraquarks with two and four heavy quarks assuming
the diquark–antidiquark structure. Such an approximation
allowed us to reduce the very complicated four-body rela-
tivistic problem to the solution of much simpler two-body
relativistic problems. We then turn to calculating the energy-
eigenvalues for tetraquarks via the Bethe–Salpeter equation,
using the Cornell potential. We then determine the masses
of these particles. These values are in remarkable agreement
with previous measurements, both experimental and theoret-
ical. We sincerely hope that our calculations will motivate
others to become more involved in this subject and expect
that further experimental information may reveal more fea-
tures of exotic particles.
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Table 4 Comparison of theoretical predictions for the masses of the
ground states of the heavy tetraquarks. Eb is the binding energy. δ1 and
δ2 are the percentage difference between our results and Refs. [40,54].

δ3 is the percentage difference between our results and Refs. [28,40]. T
is the lowest threshold for decays into two mesons and 	 = (M−T )100
is the percentage difference between our results and T [40](in MeV)

Composition State J P D.C. Eb M T 	 δ1 δ2 δ3

cuūb̄ 1S 0+ SS̄ −146 6987

0+ AĀ −142 7048 7144 −1.36

1+ AĀ 7132 7190 −0.8

2+ AĀ 7177 7332 −2

cus̄b̄ 1S 0+ SS̄ −144 7136

0+ AĀ −156 7200 7247 −0.65

1+ AĀ 7267 7293 −0.36

2+ AĀ 7321 7437 −1.6

css̄b̄ 1S 0+ SS̄ −147 7254

0+ AĀ −153 7331 7336 −0.07

1+ AĀ 7395 7381 0.2

2+ AĀ 7448 7525 −1

ccūd̄ 1S 1+ AS̄ −47 3895 3871 0.6 1.3

0+ AĀ −60 3947 3729 5.8 2.8

1+ AĀ 4109 3871 5.7 0.7

2+ AĀ 4156 4014 3.4

bbūd̄ 1S 1+ AS̄ −42 10497 10604 −1 0.05 0.3

0+ AĀ −55 10549 10558 −0.08 0.9

1+ AĀ 10561 10604 −0.4 0.9

2+ AĀ 10580 10650 −0.6 0.9

cbūd̄ 1S 0+ SS̄ −41 7056 7144 −1.2 2.6

0+ AĀ −54 7217 7144 1 2.3

1+ AĀ 7237 7190 0.6 2

2+ AĀ 7265 7332 −0.9 2

cbc̄b̄ 1S 0++ SS̄ −425 12453 12383 0.6 1.5

0++ AĀ −424 12436 12383 0.4 1.3

1+− AĀ 12719 12444 2 0.85

2++ AĀ 12751 12557 0.1 0.8

Data Availability Statement This manuscript has associated data in a
data repository. [Authors’ comment: All data included in this manuscript
are available upon request by contacting with the corresponding author].
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