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Abstract This paper is aimed at investigating the behav-
ior of gauge vector and tensor fields on thick brane in f (T )

gravity. This thick brane is not capable of providing a nor-
malizable zero mode for both gauge and Kalb Ramond fields.
To overcome this problem, we propose two distinct types of
gauge-invariant couplings. In the first coupling, the fields are
minimally coupled to the scalar field responsible for gener-
ating the thick brane. In the second coupling, we use the geo-
metric coupling in which the fields are non-minimally cou-
pled to torsion. Another issue that we investigate is resonant
modes, which allow us to understand the massive spectrum
of fields. Indeed we note that an internal structure appears
for the Kalb–Ramond massive solutions and both couplings
show resonant modes of the massive spectrum.

1 Introduction

Although General Relativity (GR) is a well-established phys-
ical theory and can successfully explain a wide range of
effects at an astrophysical scale, many modified gravity theo-
ries have attracted meaningful attention in recent years. Such
theories represent attempts of explaining open questions such
as accelerated universe expansion and dark matter. In the cos-
mological context, a gravity theory based on scalar curvature
R is the so-called f (R) gravity [1–3], which is a direct exten-
sion of general relativity. Another extension that has been
investigated is f (R,T ) gravity [4–6], where T is the trace
energy-momentum tensor.

Teleparallel gravity is an interesting gravity theory that
considers torsion instead of curvature. Moreover, the so-
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called tetrad field becomes the fundamental dynamical quan-
tity of teleparallel gravity. The formulation of teleparallel
gravity results from contractions of the torsion tensor and the
torsion scalar T [7–11]. Although the teleparallel gravity is
equivalent to GR, extensions as f (T ) gravity are not equiva-
lent to f (R) gravity since f (T ) gravity leads to second-order
field equations, whereas f (R) gravity has fourth-order equa-
tions. Therefore, studying topics such as black holes, worm-
holes, and cosmology in f (T ) gravity has recently become
attractive.

Proposed for the first time by Kaluza [12] and Klein [13]
as an attempt of unifying electromagnetism and general rel-
ativity, the existence of extra dimensions has been an attrac-
tive research field, where the braneworld scenarios have been
intensively investigated since the seminal work of Lisa Ran-
dall and Raman Sundrum (RS) [14,15], which considered the
existence of extra dimensions in a warped geometry. Such
work was proposed as an alternative way of solving the hier-
archy problem. Despite the great success, the original RS
model in the GR context presented some problems in the
location of the fermion and gauge fields, which motivates
the study of the braneworld scenario in other gravities than
the GR.

In recent years, the braneworld models have been investi-
gated in the context of modified gravity such as mimetic grav-
ity [16,17], f (R) gravity [18], f (R, T ) gravity [19–21] and
modified teleparallel gravity [22,23,25–27]. In addition to
the strong agreement with recent observations of the expan-
sion of the universe, it has been shown that it is possible
to build a thick brane with internal structure generated by a
single scalar field within gravity f (T ) [23,27].

Besides the localization of gravity, an interesting question
is to understand how matter fields, which can be bosonic or
fermionic, can be localized on a brane in the context of mod-
ified gravity. However, there are some problems that should
be circumvented. For instance, the gauge vector field, which
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describes the photon, can not be localized on brane following
the standard action for the field. Such a problem can be over-
come by introducing some kind of coupling. In the String
Theory, there is an antisymmetric tensor field known as Kalb
Ramond (KR) field which comes from the bosonic spectrum.
This field can be investigated in braneworld scenarios, but it
exhibits the same problem as the gauge vector field.

The localization of field on braneworld scenarios has been
analyzed in gravity based on curvature scalar [28,30–32,34–
38]. However, it would be unprecedented an investigation of
the behavior of gauge field and of KR field on branes in the
context of modified teleparallel gravity. Then, the main goal
of this work is to address that question. In order to study the
localization of the gauge field on the brane, we will consider
a coupling between the gauge field and the scalar field that
generates the thick brane. We also investigate a geometrical
coupling considering that the field is coupled to torsion. Both
couplings proposed are introduced in the kinetic part and
therefore keep gauge invariant the action that describes the
dynamics of the gauge field. We followed the same steps to
study the KR field.

This work is structured as follows. In Sect. 2 we review
some basic concepts of braneworld in f (T ) teleparallel grav-
ity. In Sect. 3 we study the localization of the gauge field and
Kalb Ramond field considering a coupling with the scalar
field. In addition, we analyze the massless and massive modes
as well as resonant modes. In Sect. 4, we introduce a geo-
metrical coupling between the fields (gauge field and Kalb
Ramond field) and the scalar torsion and we make the same
analysis as Sect. 3. Finally, our conclusions and perspectives
are outlined in Sect. 5.

2 Basic aspects of teleparallel gravity

Unlike general relativity, which is based on metric formal-
ism, teleparallel gravity has the vielbein as a dynamic vari-
able. The vielbein is related to metric through the following
relation [39]

gMN = ηabh
a

Mhb N . (1)

Besides, using the vielbein we define a curvature free connec-
tion ˜Γ P

MN = ha P∂Nha M , which is known as Weitzenbock
connection and leads to non vanishing torsion T P

MN =
˜Γ P

NM − ˜Γ P
MN . With the torsion we can define [39]

K P
MN = 1

2

(

TM
P

N + TM
P

N − T P
MN

)

, (2)

and

SP
MN = 1

2

(

KMN
P − δNP T

QM
Q + δMP T QN

Q

)

, (3)

where K P
NM and SP

NM are contortion and the superpo-
tential respectively. It is also possible to define the so-called
scalar torsion [39]

T = TPMN S
PMN . (4)

For f (T ) gravity, the gravitational action that describes
gravity coupled to scalar field in five dimensional spacetime
is given by [23]

S =
∫

d5xh
[

− 1

4
f (T ) + Lm

]

, (5)

where h = √−g and Lm represent the matter Lagrangian
that will be defined later. By varying the action 5 with respect
to vielbein, we get the following field equation

1

h
fT

[

∂Q(hSN
MQ) − h˜Γ R

SN SN
MQ

]

+ fT T SN
MQ∂QT + 1

4
f δN

M = TN
M , (6)

where f ≡ f (T ), fT ≡ ∂ f (T )/∂T and TN
M is a tensor

given by

TN
M = ha N

δLm

δha M
+ δN

MLm . (7)

2.1 Thick brane setup

The Randall–Sundrum metric reads

ds2 = e2Aημνdx
μdxν + dy2, (8)

where e2A is known as warp factor and ημν is the Minkowski
metric. We can choose the funfbein (vielbein defined in the
five-dimensional spacetime) as follows

ha M =
(

eAδ
μ
ν 0

0 1

)

, (9)

which represents a good choice among all possible vielbein,
as they generate gravitational field equations that do not
involve any additional restrictions on the function f (T )or the
scalars T [8,9]. As a matter of fact, the vielbein (9) is proved
to be a good choice for the teleparallel f (T ) [10,11,22,23],
f (T, B) [25,26], and f (T,T ) [40] gravity models.

The brane is generated by a single scalar field which
depends only on the extra dimension, whose Lagrangian is
given by

Lm = −1

2
∂Mφ∂Mφ − V (φ), (10)
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which leads to the following tensor

TMN = ∂Mφ∂Nφ − gMNLm . (11)

Thus, with the vielbein ansatz given by Eq. (9), the grav-
itational field equations are

φ′′ + 4A′φ = dV

dφ
, (12)

6A′2 fT + 1

4
f = 1

2
φ2 − V, (13)

1

4
f +

(

3

2
A′′ + 6A′2

)

fT − 36A′2A′′ fT T = −1

2
φ2 − V .

(14)

From Lagrangian 10, we define the energy density as

ρ(y) = −e2ALm . (15)

To simplify our analysis we can propose an ansatz warp
factor of the form [41]

e2A(y) = cosh−2p(λy), (16)

where p and λ are the parameters that determine the ampli-
tude and the width of the source.

Allow us to propose a model of f (T ) in the form f (T ) =
T + kT n , that is a model already analyzed in the braneworld
scenario [22–24]. This model is very interesting because it
represents a generalization of teleparallel gravity. The k and n
parameters control the modification of the usual teleparallel
theory.

Thus, the Eqs. (13) and (14) take the form

φ′2(y) = 3

2
pλ2sech2(λy)

{

1 + (−1)2(n−1)Bnkn

[

pλ tanh(λy)
]2(n−1)}

, (17)

V (φ(y)) = 3

4
pλ2sech2(λy) − 3[pλ tanh(λy)]2

+ (−1)2n3Bnk

4p

{

[

4p − n csch2(λy)
]

×
[

pλ tanh(λy)
]2n

}

. (18)

Through the Eq. (15), we have the energy density in the
form

ρ(y) = 3

2p

{

(pλ)2
[

2p tanh2(λy) − sech2(λy)
]

+(−1)2n Bnk
[

2p − n csch2(λy)
]

×
[

pλ tanh(λy)
]2n

}

cosh−2p(λy). (19)

The differential equation (17) gives us the solutions of
the scalar field. For n = 1 the scalar field has the form of a

kink-like solution independent of the parameter k. Through
Eq. (19) we obtain the form of the energy density in the
brane. For n = 1 the energy density presents a localized
profile satisfying the dominant and strong energy conditions
independent of the parameter k.

For n = 2 something interesting happens. The scalar field
solution presents a behavior similar to a double-kink. The
energy density has two peaks near the origin. This behavior
represents a brane splitting, which is very evident in Fig. 1.
In Fig. 1a, where k = −0.005, we observe that the scalar
field presents a kink-like behavior and the energy density is
well located around the origin. When we increase the value
from k to k = − 0.09 (Fig. 1b) we observe that the solution
of the kink-like scalar field tends to be a solution similar to
a double-kink and this behavior is influenced by the energy
density that tends to split into two peaks around the origin.
Finally, with the value of k = − 0.5, the emergence of a new
structure that tries to split a brane becomes more evident (Fig.
1c).

3 Field localization with minimal coupling

Once we have constructed the thick braneworld in the context
of f (T ) teleparallel gravity, we should analyze the localiza-
tion of the gauge field and Kalb Ramond field. For this pur-
pose, we will consider that the fields are minimally coupled
to the scalar field responsible for the generation of the thick
brane. The localization of gravity was investigated in Ref.
[22].

The braneworld scenario in a gravity f (T ), as well as the
other thick brane scenarios, is not capable of supporting the
localization of the gauge field zero modes. Indeed, as the warp
factor is factorized out of the effective action, one obtains
non-normalizable solutions from the equations of motion to
the gauge field. To overcome this difficulty, some models
have appeared in the literature. An additional scalar field (the
dilaton) has been introduced in the action of five dimensions,
making possible the location of the gauge field, through the
coupling between the dilaton and the kinetic term of gauge
fields [30,31]. In Ref. [42] gauge field localization is obtained
via kinetic terms induced by localized fermions. It is relevant
to note that there is no complete and standard mechanism for
the location of the gauge field on the brane [32], therefore,
leaving us free to choose a proper mechanism.

To make it possible to locate gauge fields in thick branes,
we introduce a coupling with a function of the scalar field
G(φ) [32,34,35]. This coupling is based on same mecha-
nism that provides the location of the fermion field in a five-
dimensional space-time braneworld scenario [10,23,43–
46,50–56].
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Fig. 1 Behavior of the solution of the scalar field and the energy density in the brane for n = 2 and p = λ = 1. a k = −0.005. b k = − 0.09. c
k = − 0.5

3.1 Gauge field

In order to investigate the behavior of the gauge field in the
bulk, we assume the following action [31,32]

S = 1

4

∫

d5xhG(φ)FMN F
MN , (20)

where FMN = ∂M AN − ∂N AM and G(φ) is a suitable func-
tion of scalar field, which yields a normalizable zero mode
for gauge field after dimensional reduction. The gauge field
governed by action 20 should satisfy the motion equation

∂M (hG(φ)FMN ) = 0. (21)

Now we consider the gauge ∂μAμ = A4 = 0, as it was
considered in Refs. [29–32]. Also, the Kaluza–Klein decom-
position is Aμ(xM ) = ∑

̂Aμ(xμ)χ(y), so that the Eq. (21)
becomes

χ ′′ +
(

2A′ + G ′

G

)

χ ′ = −m2e−2Aχ. (22)

3.2 Kalb–Ramond field

For Kalb–Ramond field, the action is given by [31,32]

S = 1

6

∫

d5xhG(φ)HLMN HLMN , (23)

where HLMN = ∂L BMN + ∂M BNL + ∂N BLM . Like gauge
field, we consider a function G(φ) which produces a nor-
malizable zero mode for Kalb–Ramond field. By varying the
action 23 with respect to the field BMN , we arrive at

∂L(hG(φ)HLMN ) = 0. (24)

By adopting the gauge choice ∂μBμν = B5ν = 0
[32,33], and Kaluza-Klein decomposition Bμν(xM ) =
∑

̂Bμν(xμ)χ(y), we obtain the following equation for χ

χ ′′ + G ′

G
χ ′ = −m2e−2Aχ, (25)
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3.3 Massless modes

We can transform Eqs. (22) and (25) into a single equation
of the form

χ ′′ +
(

q A′ + G ′

G

)

χ ′ = −m2e−2Aχ, (26)

where q is a constant. If q = 2 we have the equation for the
gauge field, and if q = 0 we have the equation for the KR
field.

Let us consider the conformal coordinate dz = e−Adx so
that the equation becomes

χ̈ (z) + 2H χ̇(z) = −m2χ(z), (27)

where

H = 1

2

[

(q − 1) Ȧ + Ġ

G

]

. (28)

Here, the dot ( ˙ ) denotes differentiation with respect to
conformal coordinate z. We can now write Eq. (27) in
Schrödinger-like form by employing the following change
χ(z) = eK (z)ψ(z), being K = − ∫

Hdz. Thus, with this
change, we get the following Schrödinger-like equation

−ψ̈ + Vψ = m2ψ, (29)

where we have defined the potential

V = Ḣ + H2. (30)

The Schrödinger-type Eq. (29) represents a supersymmet-
ric quantum mechanical equation, which guarantees the sta-
bility of the spectrum and allows a massless modes in the
form

ψ0 = N0e
1
2 (q−1)A+ 1

2

∫ Ġ
G dz, (31)

where N0 is a normalization constant. In order to recover the
four-dimensional gravity, the zero mode should be localized
on the brane.

To choose the form ofG(φ), we follow the following rules:
G(φ) should satisfy the asymptotically condition G(φ(y →
∞)) → c where c is a constant, and the finity condition at
the same time
∫ ∞

−∞
G(φ)dy < ∞, (32)

to preserve the canonical form of 4D action [31,32].
We propose two values for G(φ), namely

G1(φ) = b cos
(φ

b

)

, (33)

and

G2(φ) = b − φ2

b
, (34)

where b is a parameter that controls the model. We make
these choices based on the results found in Refs. [32,34,35].

The expression for the potentials is too big to be repre-
sented here. So, let us represent the behavior of potentials
graphically. When n = 1 the parameter k disappears, mak-
ing G1 and G2 invariant over the variation of k. For G1(φ)

with n = 1, the potential shows a potential well behavior for
both a gauge field and for the KR field (Fig. 2a). For n = 2
the influence of the torsion parameter k is evident (Fig. 2b,
c). Very similar to G1(φ), for G2(φ) the potential presents a
potential well behavior both for a gauge field and for the KR
field. With the Fig. 3a, b it is possible to see the influence of
the torsion parameter k for the case of n = 2.

As was to be expected from Eq. (31) massless modes are
localized for both the gauge and KR fields (Fig. 4a). The
massless modes are influenced by the changes caused in the
effective potential due to the torsion parameters. For G1 with
n = 2, when we decrease the value of the parameter k, we
make the massless modes more localized, both for the gauge
field (Fig. 4b) and for the KR field (Fig. 4c). The same goes
for G2 with n = 2 (Fig. 5a, b).

3.4 Massive modes

By knowing the behavior of the effective potentials, we can
see that they are even functions. Then we can find the mas-
sive modes by numerically solving Eq. (29), keeping in mind
that the wave functions will be even or odd. Therefore, the
boundary conditions are

ψeven(0) = c, ψ̇even(0) = 0,

ψodd(0) = 0, ψ̇odd(0) = c, (35)

where c is just a constant [26–28,55,56]. It is important to
note that here ψeven and ψodd respectively represent the even
and odd parity modes of ψ(z).

The behavior of the effective potential that presents a
potential well close to the brane, enables the emergence of
resonate modes. The study of resonances is very relevant, as
it provides important information about the massive modes
[55,56]. Although these modes are not located on the brane,
some of these massive states can present a large amplitude
very close to the brane [28].

The resonant modes can be obtained by the analog quan-
tum mechanical structure of massive modes, where the rela-
tive probability P(m) of finding a particle with mass m in a
narrow band 2zb is [28,55,56]

P(m) =
∫ zb
−zb

|ψ(z)|2dz
∫ zmax
−zmax

|ψ(z)|2dz , (36)
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Fig. 2 Effective potential behavior for G1(φ) with p = λ = 1. a n = 1. Being b = 4 and n = 2. b Gauge field. c KR field

Fig. 3 Effective potential behavior for G2(φ) with n = 2, b = 4 and p = λ = 1. a Gauge field. b KR field

where zmax stands for the domain limits. Larger values of the
parameter zb do not change the results for the position of the
resonance peaks, but small values of zb are more efficient to
identify the peaks.

For G1 with n = 1, it is possible to perceive the influence
of the mass eigenvalues in the field solutions (Fig. 6). In the
case of the gauge field, when we increase the mass eigen-

value, we increase the number of oscillations, decreasing the
amplitudes of the oscillations (Fig. 6a, b). The same happens
with the KR field (Fig. 6c, d), but something interesting hap-
pens at the origin of the even solution. Indeed, it is possible to
observe the formation of a division at the peak of oscillation
at the origin for low mass eigenvalues (Fig. 6c).
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Fig. 4 Behavior of massless modes for G1(φ) with p = λ = 1. a n = 1. Being b = 4 and n = 2. b Gauge field. c KR field

Fig. 5 Behavior of massless modes for G2(φ) with n = 2, b = 4 and p = λ = 1. a Gauge field. b KR field

The relative probability P(m), for G1(φ), with n = 2
is shown in Fig. 7. The odd solutions for the gauge field,
show a sharp peak for m2 = 0.41, which indicates a massive
resonate state (Fig. 7a). Something similar happens for the
KR field, but the peak appears in a more discrete way at
m2 = 0.23 (Fig. 7b). It is interesting to note that the even

solutions, both for the gauge field and for KR field, do not
clearly show resonance peaks.

The influence of torsion is evident when we analyze the
variation of the parameter k. We do this analysis for n = 2
(Fig. 8). For the gauge field, when we decrease the value of
k, we modify the amplitude of the oscillations that tend to

123
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Fig. 6 The behavior of massive modes for G1(φ), with n = 1 and b = 2 and p = λ = 1. To the Gauge field, a ψeven b ψodd . KR field, c ψeven . d
ψodd

Fig. 7 The behavior of the relative probability P(m) for G1(φ) with n = 2, b = 4 k = −0.3 and p = λ = 1. a Gauge field. b KR field

move away from the origin of the brane (Fig. 8a, b). For the
KR field, when we vary k, we modify the amplitudes of the
oscillations, but they do not depart from the origin (Fig. 8c, d).

In Fig. 9, we show the behavior of the relative probability
P(m), for G2(φ), with n = 2. The odd solutions for the
gauge field show a sharp peak for m2 = 0.45 (Fig. 9a). On

the other hand, even solutions do not show evident peaks. For
the KR field, the odd solutions show a peak at m2 = 0.19
(Fig. 9b). Something similar happens with even solutions.

For G2 with n = 2, in the case of the gauge field, when
we decrease the value of k, we modify the amplitudes of the
oscillations that tend to move towards the origin (Fig. 10a,
b). The same is true for the KR field (Fig. 10c, d).

123
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Fig. 8 The behavior of massive modes for G1(φ), with n = 2, b = 4 and p = λ = 1. To the Gauge field, a ψeven with m = 1.001. b ψodd with
m = 0.741. KR field, c ψeven with m = 0.685. d ψodd with m = 0.580

Fig. 9 The behavior of the relative probability P(m) for G2(φ) with n = 2, b = 4 k = −0.1 and p = λ = 1. a Gauge field. b KR field

4 Field localization with geometric coupling

In this section, we will use the geometric coupling in which
the fields are non-minimally coupled to torsion. Therefore,
this section is dedicated to studying the effects of the f (T )

modified teleparallel gravity on scalar, gauge and Kalb–
Ramond fields by considering geometric coupling. It is worth

mentioning that this kind of coupling have been considered
in the context of gravitational waves and cosmology [47–49].
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Fig. 10 The behavior of massive modes for G2(φ), with n = 2, b = 4 and p = λ = 1. To the Gauge field, a ψeven with m = 0.847. b ψodd with
m = 0.762. KR field, c ψeven with m = 0.635. d ψodd with m = 0.508

Fig. 11 Effective potential behavior for G1(T ) with n = 2 and p = λ = 1. a Gauge field. b KR field

4.1 Massless modes

Similar to the Sect. 3, we can write the gauge field and KR
field equations as a single equation of the form

χ ′′ +
(

q A′ + G ′

G

)

χ ′ = −m2e−2Aχ, (37)

which is the same equation as (26), the only difference is that
now G ≡ G(T ). Therefore, the same process performed in
the previous section is repeated here, where when q = 2 we
have the equation for the gauge field, and if q = 0 we have
the equation for the KR field.
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Fig. 12 Effective potential behavior for G2(T ) with n = 2 and p = λ = 1. a Gauge field. b KR field

Fig. 13 Behavior of massless modes for G1(T ) with n = 2 and p = λ = 1. a Gauge field. b KR field

Fig. 14 Behavior of massless modes for G2(T ) with n = 2 and p = λ = 1. a Gauge field. b KR field

To choose the form of G(T ), we follow the following
rules: G(T ) should satisfy the positivity condition G(T ) > 0
and the finity condition at the same time

∫ ∞

−∞
G(T )dy < ∞, (38)

123
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Fig. 15 The behavior of the relative probability P(m) for G1(T ) with n = 2, k = −0.06 and p = λ = 1. a Gauge field. b KR field

Fig. 16 The behavior of massive modes for G1(T ), with n = 2 and p = λ = 1. To the Gauge field, a ψeven with m = 0.651. b ψodd with
m = 0.661. KR field, c ψeven with m = 0.476. d ψodd with m = 0.481

to preserve the canonical form of 4D action [37]. We propose
two values for G(T ), which are

G1(T ) = (12 + T ) + k(12 + T )n, (39)

and

G2(T ) = 1 − exp[k(12 + T )n]. (40)

We make these choices based on the results found in Ref.
[37].
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Fig. 17 The behavior of the relative probability P(m) for G2(T ) with n = 2, k = − 0.05 and p = λ = 1. a Gauge field. b KR field

Fig. 18 The behavior of massive modes for G2(T ), with n = 2 and p = λ = 1. To the Gauge field, a ψeven with m = 0.652. b ψodd with
m = 0.593. KR field, c ψeven with m = 0.556. d ψodd with m = 0.476

Figure 11 shows the behavior of the potential for G1(T )

with n = 2. In the case of the gauge field, the potential
presents the shape of a well, and when we vary the parameter
k a new well is formed (Fig. 11a). When k takes on a very

negative value, the potential becomes a potential barrier. As
for the KR field, when the parameter k is varied, the potential
goes from a well to a barrier (Fig. 11b).
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For G2(T ) the behavior of the potential for n is shown in
the Fig. 12. In the case of the gauge field, when decreasing
the value of the parameter k, new wells appear (Fig. 12a). As
for the KR field, when the parameter k is varied, the potential
well is divided into two wells (Fig. 12b).

Massless modes are influenced by the variation of torsion
parameters. For G1(T ) with n = 2 and k = − 0.005 the
massless mode presents a single peak and when we vary the
value of k it is possible to notice the emergence of a new peak
(Fig. 13). This behavior happens for both a gauge field and a
KR field. As for G2(T ) with n = 2 in the case of the gauge
field, when the value of the parameter k is varied, we observe
the formation of a deformed structure in the massless modes
(Fig. 14a). In the case of the KR field, the massless modes
are divided by varying the parameter k (Fig. 14b).

4.2 Massive modes

As the effective potentials are even functions, we can find the
massive modes numerically, keeping in mind that the wave
functions will be even (ψeven) or odd (ψodd ). Therefore, we
will use the boundary conditions shown in Eq. (35).

The relative probability P(m), for G1(T ), with n = 2
is shown in Fig. 15. The even and odd solutions for both
the gauge field (Fig. 15a) and the KR field (Fig. 15b) do
not clearly show resonance peaks. However, we can clearly
observe the influence of the k parameter in massive modes
through Fig. 16. In the case of the gauge field, when we
decrease the value of k, we decrease the amplitudes and
increase the oscillations that tend to move closer to the origin
(Fig. 16a, b). As for the KR field, when we decrease the value
of k, we decrease the amplitudes and oscillations, which tend
to move away from the origin (Fig. 16c, d). Something inter-
esting happens in k = − 0.06, where we notice the formation
of a new structure that tends to split the peak that is located
at the origin of the brane (Fig. 16c).

In Fig. 17, we show the behavior of the relative probability
P(m), for G2(T ), with n = 2. The solutions for the gauge
field show sharp peaks at odd solutions for m2 = 0.39 and
at even solutions for m2 = 0.91. The same happens with the
case of the KR field, the odd solutions show a peak at m2 =
0.18 and the even solutions show a peak at m2 = 1.02. These
sharp peaks in P(m) reveal the massive resonant modes.

For G2(T ) with n = 2, in the case of a gauge field, when
we decrease the value of the parameter k, we decrease the
amplitudes and increase the oscillations, which present a
small deformation at the origin of the brane (Fig. 18a, b).
The same happens for the case of the KR field (Fig. 18c,
d), and when we decrease the value of k, the formation of
a structure that divides the peak at the origin of the brane is
very evident (Fig. 18c).

It is interesting to note that the massive modes propa-
gate to the bulk similar to free wave solutions. This behav-

ior may contribute in some way to gravitational waves. The
massless modes are confined to the brane. Therefore, they do
not contribute to gravitational waves. See for example Refs
[47,48], where the authors studied the behavior of gravita-
tional waves in the context of f (T ) and f (T, B) modified
teleparallel gravity coupled to a scalar field. The authors also
show that the scalar field does not propagate at the first order
of perturbation.

5 Conclusion

In this work, we have investigated the mechanism of local-
ization of gauge field and Kalb Ramond field in a thick brane
generated by a single scalar field in the context of modified
teleparallel gravity. We consider two types of gauge-invariant
couplings. The first one is a non-minimal coupling between
the gauge and KR field and scalar field responsible for genera-
tion of thick brane. The second one is a non-minimal coupling
with torsion. For both proposed couplings, we observed sig-
nificant results that make them possible mechanisms to locate
vector fields in a braneworld scenario, and also in other sce-
narios such as black holes and wormholes.

Both coupling allow us to investigate the massive spec-
trum of fields. For such a purpose, we write the equations
of motion in a Schroedinger-like equation in the structure of
supersymmetric quantum mechanics. The effective poten-
tials are modified through parameters that control the influ-
ence of torsion (k and n). Massless modes are localized and
sense the change caused by torsion parameters. The same
goes for massive modes.

Something interesting happens for the geometric cou-
pling. The effective potentials present new wells and peaks
when we vary the torsion parameters, also modifying the
localized massless modes, which tend to splitting. Another
interesting result is that in the case of the KR field, the mas-
sive even solutions present the appearance of a small struc-
ture (two peaks) near the brane when we vary the torsion
parameters. Furthermore, it was possible to observe resonat-
ing modes of the massive spectrum in both couplings, being
more evident for the geometric coupling.

A future perspective would investigate the effects of mas-
sive modes on gravitational waves. The massless modes does
not contribute to gravitational waves since they are trapped
on the brane. However, the massive modes could be relevant
in such a context. Therefore, a complete analysis should be
considered.
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