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Abstract We continue investigating the superintegrability
property of matrix models, i.e. factorization of the matrix
model averages of characters. This paper focuses on the
Gaussian Hermitian example, where the role of characters
is played by the Schur functions. We find a new intriguing
corollary of superintegrability: factorization of an infinite set
of correlators bilinear in the Schur functions. More exactly,
these are correlators of products of the Schur functions and
polynomials K� that form a complete basis in the space of
invariant matrix polynomials. Factorization of these corre-
lators with a small subset of these K� follow from the fact
that the Schur functions are eigenfunctions of the general-
ized cut-an-join operators, but the full set of K� is generated
by another infinite commutative set of operators, which we
manifestly describe.

1 Introduction

In celestial mechanics, superintegrability (SI) implies exis-
tence of an additional operator (Laplace-Runge-Lenz vector)
which commutes with the Hamiltonian and is somehow dif-
ferent (superficial) as compared to the “obvious” commuting
set of operators (rotations), which are responsible for the
ordinary integrability.

In the case of matrix models, even this language is still
to be developed: our original definition of superintegrability
in [1,2] (based on the phenomenon earlier observed in [3–
12], see also some preliminary results in [27–32] and later
progress in [13–26], [24,33]) implies the mapping between
a big space X (functions of matrix eigenvalues or time-
variables pk) to a small one, Z (functions of the matrix size
N ) with the Schur functions SR being a kind of eigenfunc-
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tions of this contraction map. Despite the setting looks very
poor, the phenomenon clearly exists: a minor deformation of
the Gaussian measure (which preserves integrability) is not
compensated by a small deformation of the Schur functions

so that the superintegrability property
〈
SR{p}

〉
∼ SR{N }

is preserved. Obviously, the setting should be lifted to the
case when the both spaces, X and Z are “equal”. This could
mean, for instance, that one can consider the Schur functions
not just as a subjects of averaging over matrices, but rather
as common eigenfunctions of a commuting set of operators.
In fact, integrability and superintegrability are both related
to existence of different mutually commuting operators. But
how to distinguish between different operators, and separate
them into sets which are responsible respectively for integra-
bility and for the superintegrability?

A related question can be what is the reason for an addi-
tional enhancement in the case of Dotsenko-Fateev (dou-
ble logarithmic) measure, where one gets a whole set of
factorized Kadell integrals with not only averages of Schur
functions, but also of their peculiar multilinear combinations
being described by nice factorization formulas (giving rise
to Nekrasov functions) [24,33,34]?

In this letter, we argue that these two questions are related
to each other, and demonstrate that, in the Gaussian Hermi-
tian model case, factorization of bilinear averages of Schur
functions, which encodes the superintegrability is also due to
existence of an infinite set of commuting operators. Note that
the very idea is close to what was discussed in [35,36], where
the author used an infinite set of commuting operators in order
to study correlators in Gaussian matrix models with differ-
ent gauge groups (exploiting a specific different structure:
the embedding structure of gauge groups depending on N ).

More exactly, we demonstrate that there is a complete set
of symmetric polynomials K� such that the averages

〈
K�SR

〉
are proportional to the averages

〈
SR

〉
:
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〈
K�SR

〉
= μ�,R

〈
SR

〉
(1)

where the eigenvalues μ�,R do not depend on N . This set of
polynomials K� is generated by an infinite set of commuting
operators W−

� .
The letter is organized as follows. In Sects. 2 and 3, we

discuss the generic property of superintegrability. In Sect. 4,
we consider the set of cut-and-join operators W� [37,38] as a
natural candidate for the infinite set of commuting operators
generating K�, and realize that it gives rise to only part of
K�. Hence, in Sect. 5, we construct the set W−

� that generates
all K�. In Sect. 6, we discuss examples of eigenvalues μ�,R ,
and, in Sect. 7, we find an explicit formula for μ�,R . Section
8 contains concluding remarks, and, in the Appendix, we
explicitly list polynomials K� for all � up to level 6.

Notation The Schur functions are symmetric polynomials
of variables xi , i = 1, . . . , N . In particular, xi can be eigen-
values of a matrix H . We denote through SR{pk} the Schur
functions as functions of power sums pk = ∑

i x
k
i . When

we emphasize that xi are the eigenvalues of H , we use the
notation Pk := tr Hk .

The Schur function depends on the partition (Young dia-
gram) R, which is a set of lines with lengths R1 ≥ R2 ≥
· · · ≥ RlR . We also denote through SR/T the skew Schur
functions, and sometimes use the notation

dR := SR{δk,1}. (2)

2 SI in matrix models

According to [2], see also [24] and references therein, SI
means that there exits a linear basis in the space of observ-
ables such that all the elements of the basis have “very sim-
ple” averages. In practice, this “very simple” means fully fac-
torized. Moreover, this distinguished basis is usually formed
by characters of an underlying symmetry algebra (to which
the matrices belong), and the average of each character is
again just the same character, only at a different (diminished)
space of variables. The typical example is the Gaussian Her-
mitian model, where averages over Hermitian matrices are
defined

〈F(H)〉 :=
∫

F(H)e− 1
2 tr H2

dH (3)

dH being the Haar measure on Hermitian matrices normal-

ized in such a way that
〈
1
〉
.

If the function F is invariant, i.e. depends on the eigen-
values hi of H , one can integrate over angular variables, and

〈F(H)〉 =
∫ ∞

−∞

N∏
i< j

F(hi )(hi − h j )
2

N∏
i=1

e− 1
2 h

2
i dhi (4)

SI in this case states that averages of the Schur functions
SR{Pk = tr Hk} are

〈
SR

〉
= SR{N } · SR{δk,2}

SR{δk,1} (5)

At the r.h.s. are the same Schur functions but at very special
points: the main one is SR{N } := SR{pk = N }.

There are very similar statements < character > ∼
character for a variety of other eigenvalue models, see [24]
for an extensive list.

3 Does SI really exist in matrix models?

A natural question is if there is any true sense in the above
observation? Perhaps, one can always find such a distin-
guished basis? It is therefore instructive to look at what hap-
pens in the same Hermitian model when one changes the
background potential from the Gaussian one to anything else.

The Gaussian partition function

Z{p} =
〈
e
∑

k
pk Pk
k

〉
=

∑
R

SR{p}
〈
SR{P}

〉
(6)

allows one to define an average in arbitrary non-Gaussian
potential

∑
k Tk X

k :

Z (T ){p} =
〈
e
∑

k
(pk+Tk )Pk

k

〉
=

∑
Q

SQ{p + T }
〈
SQ{P}

〉

=
∑
R

SR{p}
∑
Q

SQ/R{T }
〈
SQ{P}

〉
(7)

On the other hand, one can rewrite it as a sum over averages
in the T -background,
〈
e
∑

k
(pk+Tk )Pk

k

〉
=

∑
R

SR{p}
〈
SR{P}

〉(T )

(8)

i.e. the T -deformed averages (note that the normalization is
still Gaussian, i.e. the definition of average is not changed)
are

〈
SR{P}

〉(T ) =
∑
Q

SQ/R{T }
〈
SQ{P}

〉
(9)

These averages are non-factorized infinite series that, actu-
ally, can not to be simplified even for finitely many non-
vanishing Tk . They much more complicated as compared

to
〈
SR{P}

〉
= SR [N ]·SR{δk,2}

SR{δk,1} , and there is no any (obvious)

way to modify the Schur functions in order to produce fac-
torized averages, not to say that the preferred basis, even if
existed, would not be formed by the characters of slN . The
only exceptions are the deformation by T1 and T2 only, which
preserve Gaussianity.
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In this sense, what we call superintegrability is an obvi-
ously non-trivial feature, which, in this concrete example,
distinguishes the Gaussian potential among the arbitrary
ones. Note that it is clearly a further restriction as compared
to the ordinary integrability, the latter one is preserved by
arbitrary T -deformations and does not require Gaussianity:
all Z (T ){p} are KP τ -functions, just they are associated with
T -dependent points of the universal Grassmannian. Thus,
superintegrability exists and is a strong refinement of ordi-
nary integrability.

4 Constructing K�: W -operators

In the next sections, we assume that Schur functions are
restricted to the Miwa locus SR{pk = tr Hk} with N × N
matrix H . It is a little less general than arbitrary time vari-
ables, but still far away from restricting the Schur functions to

their Gaussian averages
〈
SR

〉
. We will assume that N ≥ |R|

though this restriction is not necessary, and formulas are basi-
cally correct at any N : one just has to be careful with normal-
izations. For instance, μ�,R is a ratio of two zeroes unless
N ≥ |R|. In a proper normalization, both sides of formulas
typically vanish unless N ≥ |R|.

Since the Schur functions are common eigenfunctions [37,
38] of the operators

Ŵ� := :
l�∏
a=1

tr

(
H

∂

∂Htr

)�a

: (10)

Ŵ�SR = λ�,RSR (11)

where the eigenvalues are appropriately normalized symmetric-
group characters, λ�,R = ϕR(�) [37,38], and the normal
ordering : . . . : implies all the derivatives put to the right.
One can use integration by parts to get
〈
SR ·

(
e

1
2 tr H2

Ŵ †
� e− 1

2 tr H2
)〉

= λ�,R ·
〈
SR

〉
(12)

Since the expression in brackets at the l.h.s. is a polynomial
in H , it can be expanded into a linear combination of the
Schur functions,

〈
⎛
⎝ ∑

|Q|≤2|�|
C�Q(N ) SQ

⎞
⎠ · SR

〉
= λ�,R ·

〈
SR

〉
(13)

with
∑
Q

C�Q(N ) · SQ{pk = tr Hk}

= e
1
2 tr H2

Ŵ †
� e− 1

2 tr H2

= e
1
2 tr H2

‡
l�∏
a=1

tr

(
− ∂

∂Htr
H

)�a

‡e− 1
2 tr H2

(14)

where the normal ordering ‡ · · · ‡ this time implies that all
the derivatives are put to the left.

In particular, for Ŵ[1], which is just a dilatation operator
with λ[1],R = |R|, this means:
〈
(P2 − N 2) · SR{P}

〉
= |R| ·

〈
SR{P}

〉
(15)

which is indeed true (for example, one can use that p2S[2r ] =
S[2r+2] + S[2r,2] − S[2r,1,1] and similar relations for non-
symmetric representations R). For example,

Ŵ[2] :
〈
(P4 − 4N P2 − P2

1 + 2N 3) · SR
〉
= λ[2],R ·

〈
SR

〉

Ŵ[1,1] :
〈 (

P2
2 − (2N 2 + 3)P2 + N 2(N 2 + 1)

)
· SR

〉

= λ[1,1],R ·
〈
SR

〉

Ŵ[3] :
〈 (

−P6 + 6N P4 + 3P3P1 + 3P2
2

−(15N 2 + 6)P2 − 6N P2
1 + 5N 4 + N 2

)
· SR

〉

= λ[3],R ·
〈
SR

〉

. . . (16)

Equation (13) are rather poor – they are not sufficient to
express all Gaussian pair correlators, they are just sum rules,
which impose certain constraints on them. This is because
the number of Young diagrams #2n > #n , the former number
is what we need for complete set of pair correlators, the latter
number is what we can actually deduce from (11).

5 Constructing K�: W−-operators

In this section, we discuss that, in order to construct the full set
of operators, one has to consider another set of commuting
operators, which are a kind of “lowering” operators in the
space of Schur functions.

Let us note that, in addition to relations (16), there more
bilinear Schur averages of the (1) type: for instance, there is
the relation〈
(P2

1 − N ) · SR
〉
=

〈
(S[2] + S[1,1] − N ) · SR

〉

= μ[1,1],R ·
〈
SR

〉
(17)

The l.h.s. of this formula would appear if we act on e− 1
2 tr H2

with the operator (tr ∂
∂H )2. This operator with tr ∂

∂H =
N ∂

∂p1
+∑∞

k=2 pk−1
∂

∂pk
does not have SR as an eigenfunction,

(
tr

∂

∂H

)2

SR �= μ[1,1],R · SR (18)

What happens is that its action is conspired with the SI for-
mula: despite (18) forbids SR to be an eigenfunction, i.e.
equation does not hold at the “operator level”, it does hold
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for the Gaussian averages:

〈 (
tr

∂

∂H

)2

SR
〉

= μ[1,1],R ·
〈
SR

〉
(19)

Only for restricted set (16) they are promoted to the operator
level (11).

Now our main claim is that one can construct in a similar
way the full set of polynomials K� for (1). That is, define

Ŵ−
k := tr

(
∂

∂H

)k

Ŵ−
� :=

l�∏
a

W−
�a

(20)

Then,
〈
Ŵ−

� SR
〉
=

〈
K� · SR

〉
= μ�,R ·

〈
SR

〉
(21)

where

K� = e
1
2 tr H2

Ŵ−
� e− 1

2 tr H2
(22)

Note that

K� = P� + lower degrees (23)

so that they form a complete set polynomials at any given
level.

These formulas can be considered as one more reformula-
tion (avatar) of superintegrability. As we already discussed in
the Introduction, it is related to an infinite set of commuting
operators W−

� , which are manifestly given by (20).
In Sect. 7, we prove these relations, and find explicit

expressions for μ�,R . Examples at level 2 are given by (15)
and (17), examples at level 4 are (examples up to level 6 can
be found in the Appendix)

〈
K[3,1] · SR

〉
=

〈(
P3P1 − 3P2−3N P2

1 + 3N 2
)

· SR
〉

= μ[3,1],R ·
〈
SR

〉

〈
K[2,1,1] · SR

〉
=

〈(
P2P

2
1 − N P2 − (N 2 + 4)P2

1 + N 3 + 2N
)

· SR
〉

= μ[2,1,1],R ·
〈
SR

〉

〈
K[1,1,1,1] · SR

〉
=

〈(
P4

1 − 6N P2
1 + 3N 2

)
· SR

〉

= μ[1,1,1,1],R ·
〈
SR

〉

〈
K[4] · SR

〉
=

〈
(P4 − 4N P2 − 2P2

1 + 2N 3 + N ) · SR
〉

= μ[4],R ·
〈
SR

〉

〈
K[2,2] · SR

〉
=

〈 (
P2

2 − 2(N 2 + 2)P2 + N 2(N 2 + 2)
)

· SR
〉

= μ[2,2],R ·
〈
SR

〉
(24)

The underlined term could be eliminated with the help of
(17), but this causes an N -dependent shift of the eigenvalue

μ[3,1] −→ μ[3,1] − 3Nμ[1,1]. In (24) per se all μR are inde-
pendent of N . However, one can use (15) instead in order to
remove the second and forth terms in this formula: this would
give rise to the N -independent shift μ[3,1] −→ μ[3,1]+3μ[2].

Note that two equations of (16) can be compared with the
corresponding equations from this list, they differ by adding
lower N -independent averages so that λ[2] = μ[4] + μ[1,1]
and λ[1,1] = μ[2,2]+μ[2]. Generally, the identification for the
part of relations that can be generated by the W -operators is
λ�,R = μ2�,R + lower terms, where 2� denotes a Young
diagram with all line lengths doubled, 2� := {2�1 ≥ 2�2 ≥
. . . . . . 2�l�}.

6 Values of μ�,R

Finding the “eigenvalues” μ�,R is a separate challenge. As
we explain in the next section, there is a general formula
for them. However, the formula is not that simple, and it is
instructive to look at examples. The list of the first few is in
the Table.

Clearly, transposition of R preserves the absolute value of
μ:

μ�,R∨ = (−1)l�+|�|/2μ�,R (25)

We will prove it in the next section.
In fact, the quantities in the Table are given by product

formulas, in particular:

μ[2m],[2r ] =
〈
K[2m] S[2r ]

〉
〈
S[2r ]

〉 = S[2r−2m]
S[2r ]

{δk,2}

= (2r)!!
(2r − 2m)!!

μ[2m],[2r−1,1] =
〈
K[2m] S[2r−1,1]

〉
〈
S[2r−1,1]

〉 = S[2r−2m−1,1]
S[2r−1,1]

{δk,2}

= (2r)!!
(2r − 2m)!! for r > 2

μ[2m],[2r−2,2] =
〈
K[2m] S[2r−2,2]

〉
〈
S[2r−2,2]

〉 = S[2r−2m−2,2]
S[2r−2,2]

{δk,2}

= (2r − 2)!!
(2r − 2m − 2)!! for m ≥ 2

. . . (26)

These μ�,R are shown boldfaced in the table. Expression
through the values of Schur functions at pk = δk,2 are
explained in (39) below.

All averages
〈
KQ · S[3,2,1]

〉 = 0, because
〈
S[3,2,1]

〉 = 0,
this is, in turn, because the factor S[3,2,1]{δk,2} = 0 in (5).
Therefore, the corresponding μQ,[3,2,1] are not defined. The
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R
∖ �

[2
]

[12
]

[4
]

[3
,1

]
[22

]
[2,

12
]

[14
]

[6
]

[5
,1

]
[4

,2
]

[4,
12

]
[32

]
[3

,2
,1

]
[23

]
[3,

13
]

[22
,
12

]
[2,

14
]

[16
]

[2]
2

2
[12

]
2

−2
[4]

4
4

8
8

8
8

8
[3,

1]
4

−4
8

0
8

−8
−2

4
[22

]
4

0
0

−4
8

0
8

[2,
12

]
4

4
−8

0
8

8
−2

4
[14

]
4

−4
−8

8
8

−8
8

[6]
6

6
24

24
24

24
24

48
48

48
48

48
48

48
48

48
48

48
[5,

1]
6

−6
24

0
24

−2
4

−7
2

48
0

48
−4

8
48

0
48

−9
6

−4
8

−1
44

−2
40

[4,
2]

6
2

8
0

24
8

24
0

−1
6

16
−1

6
0

0
48

0
16

48
14

4
[4,

12
]

6
6

0
12

24
24

−2
4

−2
4

0
0

0
−2

4
24

48
−2

4
48

−4
8

−2
40

[32
]

6
−2

8
−8

24
−8

−8
0

0
16

16
−3

2
−1

6
48

16
−1

6
−1

6
−8

0
[3,

2,
1]

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

[23
]

6
2

−8
−8

24
8

−8
0

0
−1

6
16

32
−1

6
48

−1
6

16
−1

6
80

[3,
13

]
6

−6
0

12
24

−2
4

−2
4

−2
4

0
0

0
24

24
48

24
−4

8
−4

8
24

0
[22

,
12

]
6

−2
−8

0
24

−8
24

0
16

−1
6

−1
6

0
0

48
0

−1
6

48
−1

44
[2,

14
]

6
6

−2
4

0
24

24
−7

2
48

0
−4

8
−4

8
−4

8
0

48
96

48
−1

44
24

0
[16

]
6

−
6

−2
4

24
24

−2
4

24
48

−4
8

−4
8

48
−4

8
48

48
−4

8
−4

8
48

−4
8 same is true for all S[...4321], which are independent of even

time-variables. In fact, it is sufficient for vanishing of the
average that the Schur polynomials does not contain the item
p|R|/2

2 , this happens for S[5,2,1], S[1,1,1,2,3] and a number of
other examples of bigger sizes.

The table has clearly a triangle structure, since, if |�| >

|R|, the corresponding W−
� contains more derivatives than

the degree of H in SR .
The first example is provided by μ[1,1],R at level 2. While

μ[2],R = λ[1],R = |R|
is very simple, expression for μ[1,1],R is quite involved: it
depends on the number lR of columns in the diagram R =[
r1 ≥ r2 ≥ r3 ≥ · · · ≥ rlR > 0

]
:

μ[1,1],[r1] = r1 · Pe,
μ[1,1],[r1,r2] = (r1 − r2) · Pee

+(−r1 + r2 − 2) · Poo
μ[1,1],[r1,r2,r3] = (r1 − r2 + r3) · Peee

+(−r1 + r2 + r3 − 2) · Pooe
+(r1 + r2 − r3 + 2) · Peoo

μ[1,1],[r1,r2,r3,r4] = (r1 − r2 + r3 − r4) · Peeee
+(−r1 + r + 2 + r + 3 − r4 − 2) · Pooee
+(r1 + r2 − r3 − r4 + 2) · Peooe
+(r1 − r2 − r3 + r4 − 2) · Peeoo
+(−r1 − r2 + r3 + r4 − 6) · Poeeo
+(−r1 + r2 − r3 + r4 − 4) · Poooo (27)

Projector Peoo here, for instance, means that r1 is even, r2

and r3 are odd so that all the values of |R| are even. Averages
of the type oeo, eoeo and oeoe are all vanishing.

Different lines in these formulas are connected smoothly,
one should just pick up the terms with E at the very right
position and put the highest rlR = 0.

7 Derivation of (21) and explicit formula for μ�,R

Alternative representation of μ[1,1],R can be deduced from
(19), which we are going to derive now. The first examples
of this relation are

(
tr

∂

∂H

)2

S[2] =
(

tr
∂

∂H

)2 (
tr H2 + (tr H)2

2

)
= N (N + 1)

(
tr

∂

∂H

)2

S[1,1] =
(

tr
∂

∂H

)2 (−tr H2 + (tr H)2

2

)
=N (N−1)

(
tr

∂

∂H

)2

S[k] = (N + k − 2)(N + k − 1)S[k−2]
(

tr
∂

∂H

)2

S[k1,k2] = (N + k1 − 1)(N + k1 − 2)S[k1−2,k2]

+2(N + k1 − 1)(N + k2 − 2)S[k1−1,k2−1]
+(N + k2 − 1)(N + k2 − 2)S[k1,k2−2]
. . . (28)
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Clearly, these formulas are obtained by successive applica-
tion of the operator
(

tr
∂

∂H

)
SR =

∑
�

(N + j − i)SR−�i, j (29)

where the box �i, j with coordinates (i, j) is removed from
the Young diagram R so that R−�i, j is still a Young diagram.
This formula is a kind of inverse of the Pieri rule.

Despite this time the operator changes SR , which is no
longer its eigenfunction, like it was in (11), it does not change
the average! This is because of the very special coefficient at
the r.h.s. of (29). Indeed, note that

SR{N }
dR

=
∏

�i, j∈R

(N + j − i) (30)

and hence

(N + j − i) = SR{N }
SR−�i, j {N } · dR−�i, j

dR
(31)

This means that

〈
(P2

1 − N ) · SR
〉

(24)=
〈(

tr
∂

∂H

)2

SR

〉
=

(29)=
∑

�1,�2∈R

SR(N )

SR−�1−�2(N )
· dR−�1−�2

dR
·
〈
SR−�1−�2

〉

(5)= μ[1,1],R ·
〈
SR

〉
(32)

with

μ[1,1],R = 1

SR{δk,2}
∑

�1,�2∈R

SR−�1−�2{δk,2} (33)

The sum over the boxes of the Young diagram is such that the
diagram obtained after removing any of these two boxes and
both of them still remains a Young diagram. When there are
two different ways to achieve the final state, a combinatorial
coefficient 2 appears. For example,

μ[1,1],[7,1] = S[5,1] + 2S[6]
S[7,1]

{δk,2}

μ[1,1],[8,4] = S[6,4] + 2S[7,3] + S[8,2]
S[8,4]

{δk,2}
. . . (34)

When SR{δk,2} = 0, the corresponding Gaussian average
vanishes and μ[1,1],R is not defined. One can check that in
these cases the numerator vanishes as well.

One can similarly consider the action higher (even)

degrees of operator
(
tr ∂

∂H

)2n
, in this case with the same

line of reasoning, one obtains

μ[12n ],R = 1

SR{δk,2}
∑

{�i }∈R

SR−∑2n
i �i

{δk,2} (35)

where one has to remove 2n boxes from the Young diagram
preserving the property of being the Young diagram.

Furthermore,

W−
2 SR = tr

(
∂2

∂H2

)
SR =

∑
c SR− −

∑
c SR−

(36)

where the two boxes are removed from rightmost part of the
R in such a way that obtained is still a Young diagram. The
general formula is

W−
k SR = tr

(
∂k

∂Hk

)
SR =

∑
hk

(−1)ht(hk)cR,hk
SR−hk (37)

where hk is a border strip of length k (i.e. containing k boxes)
[39], ht(hk) is its height (defined to be one less than the
number of rows it occupies), the sum runs over all such border
strips, and all the coefficients cR,hk

are products of N − i + j
over subtracted boxes. Note that the border strips are called
rim hooks in [12]. In order to get W−

� with a few rows, one
has to apply (37) sequentially.

Formula (37) is a kind of inverse to the Pieri rule

pk SR =
∑

Q: Q−R=hk

(−1)ht(hk )SQ (38)

Now one immediately obtains the explicit formula for
μ�,R :

μ�,R = 1

SR{δk,2}
∑

{h�a }∈R

(−1)ht(h�a )SR−∑
a h�a

{δk,2}

(39)

where h�a are the border strips removed from the Young
diagram R in accordance with (37), with the corresponding
sign taken into account.

Note that, since SR∨{pk} = (−1)|R|SR{−pk} and SR{pk =
δk,2} ∼ p|R|/2

2 , one immediately obtains from this formula
relation (25). Indeed, let us look, for instance, at the case of
K[2]. Then,

μ[2],R = 1

SR{δk,2}

⎛
⎝∑

∈R

SR− {δk,2} −
∑
∈R

SR− {δk,2}
⎞
⎠

(40)

and every term in the sum gets the sign (−1)|�|/2 under con-
jugation of the Young diagram. Besides, in the course of this
conjugation, one has to permute the two terms in (40). This
gives total sign (−1)|�|/2+1. This case is certainly very triv-
ial, because the difference of two sums (40) is equal to |R|.

For the generic K�, there is a sign factor (−1)|�| from
the ratios of SR−�/SR and an additional factor of (−1)l�

that follows from the fact that the conjugation of R changes
additionally the sign of μ�,R for every even part of partition
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� because of formula (37) (the height of the border strip
changes the parity under conjugation in this case). This gives
(−1)|�|+#e , where #e is the number of even parts of partition
�. However, as soon as the number of odd parts (which do
not give rise to this additional sign changing) is even, this
formula can be changed for (−1)|�|+l� .

8 Conclusion

To conclude, we have found a new indirect implication of
superintegrability: factorization of peculiar pair correlators,
where one component of the pair is just the character, while
the other one is its N -dependent deformation. This factor-
ization is due to existence of an infinite set of commuting
operators W−

� , (20) that provide a mapping from the space
X of invariant matrix polynomials to the space Z of poly-
nomials of matrix size, FW−

�
: X −→ Z . This mapping is

manifestly given by the matrix averaging

∀ f ∈ X : FW−
�
( f ) =

〈
W−

� · f
〉
∈ Z (41)

The space Z can be spanned (ambiguously) by matrix aver-

ages of the Schur functions
〈
SR

〉
. As we demonstrated in this

paper, the Schur functions turn out to be eigenvectors of the
mapping:

FW−
�
(SR) =

〈
W−

� · SR
〉
= μ�,R

〈
SR

〉
(42)

while, on the space X , i.e. before the averaging, this is not
the case, since the action of W−

� on SR decrease its grading
to |R| − |�|.

It is an open question, if this construction persists in other
superintegrable models, which could help to understand if
it is in fact a direct corollary of SI or not. Note also that, in
other models, the spaceZ may need an extension to the space
of rational functions of the matrix size, see, for instance, the
case of two-logarithm (Selberg) models, [24].

Also an important issue is what are interrelations between
the set of operators W−

� and a commutative set of generalized
cut-and-join operatorsW�. Indeed, the Schur function are the
eigenvectors of the latter already on the space X . However,
as a price of it, if one rewrites (42) as a statement about the
pair correlator (21),
〈
K� · SR

〉
= μ�,R ·

〈
SR

〉
(43)

the set of W� generates too little set of polynomials K�,
while the set of W−

� gives rise to the complete basis of K�.
The operators W−

� are of a kind of lowering operators in an
algebra, and W� are Cartan-like operators in it. Indeed, as
one can notice, the operators W−

k looks as positive harmonics
in the w∞-algebra, while Wk , as zeroth harmonics in it: as
Ŵ (k+1)

k and Ŵ (k+1)
0 correspondingly in terms of [10, secs.8-

9]. Note that these zeroth harmonic operators can generate
the Virasoro and W -algebra constraints [40].
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Appendix

We list here the first few operators K�. They celebrate the
property that their bilinear averages with all SR , are propor-

tional to the averages of SR :
〈
K�SR

〉
= μ�,R

〈
SR

〉
. How-

ever, this condition does not fix K� unambiguously, there-
fore we use a precise definition: K� are obtained by the

action of operators Ŵ−� on the Gaussian weight e− 1
2 tr H2

,
see Eq. (22). Then,

K[2] = P2 − N 2

K[1,1] = P2
1 − N (44)

K[4] = P4 − 4N P2 − 2P2
1 + N (2N 2 + 1)

K[3,1] = P3P1 − 3P2 − 3N P2
1 + 3N 2

K[2,2] = P2
2 − 2(N 2 + 2)P2 + N 2(N 2 + 2)

K[2,1,1] = P2P
2
1 − N P2 − (N 2 + 4)P2

1 + N (N 2 + 2)

K[1,1,1,1] = P4
1 − 6N P2

1 + 3N 2 (45)
K[6] = P6 − 6N P4 − 6P1P3 − 3P2

2 + 15(N 2 + 1)P2

+15N P2
1 − 5N 2(N 2 + 2)

K[5,1] = P5P1 − 5P4 − 5N P1P3 − 3P2
2 − 5P2

1 P2 + 20N P2

+5(2N 2 + 3)P2
1 − 5N (2N 2 + 1)

K[4,2] = P4P2 − (N 2 + 8)P4 − 4N P2
2 − 2P2

1 P2

+(6N 3 + 25N )P2

+2(N 2 + 6)P2
1 − N (2N 2 + 1)(N 2 + 4)

K[4,1,1] = P4P
2
1 − N P4 − 8P1P3 − 4N P2

1 P2

−2P4
1 + 4(N 2 + 3)P2

+(2N 3 + 27N )P2
1 − N 2(2N 2 + 13)

K[3,3] = P2
3 − 9P4 − 6N P1P3 + 27N P2

+9(N 2 + 1)P2
1 − 3N (4N 2 + 1)
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K[3,2,1] = P3P2P1 − (N 2 + 8)P1P3 − 3P2
2 − 3N P2

1 P2

+6(N 2 + 3)P2 + 3N (N 2 + 6)P2
1 − 3N 2(N 2 + 4)

K[2,2,2] = P3
2 − 3(N 2 + 4)P2

2

+3(N 2 + 2)(N 2 + 4)P2 − N 2(N 2 + 2)(N 2 + 4)

K[3,1,1,1] = P3P
3
1 − 3N P3P1 − 9P2P

2
1 − 3N P4

1 + 9N P2

+18(N 2 + 1)P2
1 − 3N (3N 2 + 2)

K[2,2,1,1] = P2
2 P2

1 − N P2
2 − 2(N 2 + 6)P2P

2
1 + 2N (N 2 + 4)P2

+(N 2 + 4)(N 2 + 6)P2
1 − N (N 2 + 2)(N 2 + 4)

K[2,1,1,1,1] = P2P
4
1 − 6N P2P

2
1 − (N 2 + 8)P4

1 + 3N 2P2

+6N (N 2 + 6)P2
1 − 3N 2(N 2 + 4)

K[1,1,1,1,1,1] = P6
1 − 15N P4

1 + 45N 2P2
1 − 15N 3 (46)
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