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Abstract In this work we investigate the possibility of
the formation of states from the dynamics involved in the
D∗D∗D∗ system by considering that two D∗’s generate a
J P = 1+ bound state, with isospin 0, which has been pre-
dicted in an earlier theoretical work. We solve the Faddeev
equations for this system within the fixed center approxima-
tion and find the existence of J P = 0−, 1− and 2− states
with charm 3, isospin 1/2, masses ∼ 6000 MeV, which are
manifestly exotic hadrons, i.e., with a multiquark inner struc-
ture.

1 Introduction

The discovery of Tcc by the LHCb collaboration [1,2] in the
DDπ invariant mass distribution is a turning point in the field
of hadron spectroscopy, showing the existence of a state with
doubly open charm flavor content, thus, clearly exotic in the
sense that it does not qualify as a conventional qq̄ meson.
While other exotic states, the X0(2866) and X1(2900), con-
taining c and s open flavors, have been found before [3,4],
this is the first time that the discovery of a doubly charm
meson is being reported experimentally. The nature of Tcc as
a D∗D bound state, decaying to DDπ , has found a general-
ized support [5–17]. Correspondingly, the D∗D∗ system has
also been studied from this point of view in Refs. [17–21]. It
should be pointed out that predictions for both the D∗ K̄ ∗ and
D∗D∗ exotic molecular states had already been made earlier
in Ref. [22].
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The existence of exotic states with charm 2 raises the ques-
tion on whether exotic states with higher open charm con-
tent, like charm 3, can be formed in Nature, for example, by
adding a D∗ to the D∗D∗ system. The topic of three body
systems made with mesons has captured attention recently.
A review of different states studied can be found in Table 1
of Ref. [23]. A status report and prospects of multi-meson
molecules is presented also in Ref. [24]. In this latter work, an
observation is made worth stressing here: what differentiates
ordinary nuclei from multi-meson aggregates is essentially
the baryon conservation number that prevents the decay of
nuclei into other nuclei with smaller baryon number. There
is no meson number conservation and multi-meson states
can decay to other states with fewer mesons, to the point
that the large width would make the states unrecognizable as
the meson number increases. Yet, it is surprising that in the
study of multi-rho states done in Ref. [25], up to six ρ mesons
could be put together and the resulting states could be associ-
ated with the existing states f2(1270), ρ3(1690), f4(2050),
ρ5(2350) and f6(2510), the latter one already with a very
large width. However, although there is no meson number
conservation, the flavor of quarks is conserved in strong inter-
actions, which, in the context of the present work, means that
a system with cccq̄q̄q̄ quarks (q = u, d) formed from three
mesons cannot decay to a system with fewer mesons. Thus,
if a state is found in this three meson system its width could
be small. It is then conceivable that multi-meson states with
multiple open flavor quantum numbers (omitting the qq̄ pairs
of the same flavor that can annihilate) could be relatively sta-
ble. We present here the case of the D∗D∗D∗ system that we
find indeed bound, with a small width.

Systems of three mesons with triple charm have been
studied in Ref. [26] assuming a D∗Tcc configuration. More
concretely, the D∗D∗D system is studied in Ref. [8] and
the D∗D∗D∗ system in Ref. [26], using the one boson
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exchange model for the interaction and solving the three-
body Schrödinger equation with the Gaussian expansion
method. We use instead the fixed center approximation
(FCA) to the Faddeev equations that has been used to study
many systems [23]. We take advantage of the work of Ref.
[21] where bound states of D∗D∗ are studied using an exten-
sion of the local hidden gauge approach of Refs. [27–30] to
the heavy quark sector, exchanging vector mesons, and the
system is found more bound than the Tcc as a D∗D state.
In the FCA one must choose a cluster of two particles and
in this case we naturally take the bound D∗D∗ system, and
a third particle, the other D∗, collides repeatedly with the
components of the cluster. This is done in analogy to what
was done in Ref. [25] to study multi-rho states. The accuracy
of the method to study three body systems of the type studied
here has been shown in the recent work of Ref. [31] study-
ing the DD̄K system, where similar results are obtained as
in Ref. [32] using the Gaussian expansion method. We also
obtain results in qualitative agreement with Ref. [26], with
some differences which are attributable to differences in the
input used for the D∗D∗ interaction, as we discuss in Sect. 3.
In particular, we find bound states with isospin I = 1/2, spin-
parity J P = 0−, 1−, 2−, out of which the 0− state is more
bound than the other two and has a larger strength in the
three-body scattering matrix.

2 Formalism

In our approach, we determine the three-body T -matrix for
the D∗D∗D∗ system and study the formation of states from
its energy dependence on the real axis. To do this, we solve
the Faddeev equations [33] within the FCA [23,34,35]. Such
an approximation is feasible in this case since, as found in
Refs. [21,22], the D∗D∗ interaction is attractive in nature
and forms a bound state in I = 0 with J P = 1+, width of �
29 MeV and a binding energy1 of around 6.4 MeV. Thus, the
interaction between the three particles of the system can be
effectively considered as that of a D∗ with a cluster of isospin
0 and J P = 1+ of the other two D∗’s, as shown in Fig. 1.
Since the D∗ interacting with the cluster can rescatter with
any of the other two D∗’s of the cluster, we have the following
set of coupled equations to determine the scattering matrix
T of the system [23]:

T1 = t1 + t1G0T2,

T2 = t2 + t2G0T1, (1)

where Ti , i = 1, 2, represents the contributions to the scatter-
ing matrix in which a particle A (in this case, D∗) rescatters

1 See the erratum for Ref. [21].

Fig. 1 Diagrams contributing to T1 and T2

first with the particle bi (a D∗ too) of the cluster B. In this
way, the scattering matrix T of the system is given by

T = T1 + T2. (2)

In the case of the system under investigation, i.e., D∗D∗D∗,
it is clear that T1 = T2.

In Eq. (1), G0 represents the propagator of the particle A
in the cluster B, and it is given by [23]

G0 = 1

2MB

∫
d3q

(2π)3

F(q)

(q0)2 − ω2
A(q) + iε

, (3)

with q0 being the on-shell energy of particle A in the B rest
frame, i.e.,

q0 = s − m2
A − M2

B

2MB
, (4)

where
√
s is the center-of-mass energy of the three-body sys-

tem, MB is the mass of the cluster, and ωA(q) =
√
q 2 + m2

A
is the energy related to the particle A propagating in the clus-
ter. In Eq. (3), F(q) is a form factor associated with the wave
function of the particles forming the cluster [23],

F(q) = 1

N

∫

|p|, |p−q|<qmax

d3 p f (p) f (p − q); (5)

N =
∫

|p|<qmax

d3 p f 2(p);

f (p) = 1

ωb1(p)ωb2(p)
1

MB − ωb1(p) − ωb2(p) + iε
, (6)

with ωb1(b2) being the energy of the particle b1 (b2) and N is
a normalization factor such that F(q = 0) = 1. As shown in
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Ref. [36], the expression for such a form factor has its origin
in using a separable potential in momentum space of the type

〈k′|V |k〉 = v Θ(qmax − |k|)Θ(qmax − |k′|), (7)

where k (k′) is the initial (final) momentum of the system
in the center of mass frame, Θ is the Heaviside-Theta func-
tion and qmax, in the present case, corresponds to the cut-off
considered when regularizing the loops present in the Bethe–
Salpeter equation in the study of the D∗D∗ system [21]. It
should be noticed that solving the Schrödinger equation con-
sidering Eq. (7) is equivalent to using v of Eq. (7) as kernel
for the Bethe–Salpeter equation t = v+vgt , with g being the
corresponding two-body loop function, which gets regular-
ized by the cut-off qmax. In Ref. [21], three different cut-offs
where considered, qmax = 450, 550 and 650 MeV, and we
will study the uncertainty that this range of qmax produces
in the three-body T -matrix. The factor 1/(2MB) in Eq. (3)
is a normalization factor whose origin lies in the normal-
ization of the fields when comparing the scattering matrix
S of a three-body system in which particle A rescatters off
particles b1 and b2 of the cluster with that where particle A
interacts with particle B [23]. As a consequence of the nor-
malization of these S-matrices, a normalization factor needs
to be included in the kernels ti , i = 1, 2, as well as in G0. In
particular,

ti → MB

Mbi
ti . (8)

The kernels ti , i = 1, 2, in Eq. (1) [which include the
normalization factor given in Eq. (8)] are combinations of
two-body Abi → Abi t-matrices and describe the interaction
of particle A with particle bi for a given isospin and spin of
the three-body system. To obtain ti we proceed as follows: in
the isospin basis, we have the particles b1 and b2, of isospin
1/2 each, forming a cluster with isospin IB = 0, i.e.,

|IB = 0, IBz = 0〉 = 1√
2

[∣∣∣Ib1 = 1

2
, Ib1z = 1

2

〉

⊗
∣∣∣Ib2 = 1

2
, Ib2z = −1

2

〉

−
∣∣∣Ib1 = 1

2
, Ib1z = −1

2

〉
⊗

∣∣∣Ib2 = 1

2
, Ib2z = 1

2

〉]
.

(9)

Next, we have the particle A, of isospin IA = 1/2, together
with a cluster of isospin IB = 0, thus, the AB system has
isospin IAB = 1

2 . In this way,

∣∣∣IAB = 1

2
, IABz = 1

2

〉
=

∣∣∣IA = 1

2
, IAz = 1

2

〉

⊗ |IB = 0, IBz = 0〉. (10)

It should be noted that calculating the right-hand side of
Eq. (10) is not as straight forward as it may seem at a first
glance. This is because the combination must be written in
terms of the isospin of the A − b1 system or in terms of the
isospin of the A − b2 system, depending on whether we cal-
culate the kernel t1 or t2, respectively. In this way, to get, for
example, t1, we write the ket |IAB, IABz〉 as

∣∣∣IAB = 1

2
, IABz = 1

2

〉
Ab1

= 1√
2

[(∣∣∣IA = 1

2
, IAz = 1

2

〉

⊗
∣∣∣Ib1 = 1

2
, Ib1z = 1

2

〉)
⊗

∣∣∣Ib2 = 1

2
, Ib2z = −1

2

〉

−
(∣∣∣IA = 1

2
, IAz = 1

2

〉
⊗

∣∣∣Ib1 = 1

2
, Ib1z = −1

2

〉)

⊗
∣∣∣Ib2 = 1

2
, Ib2z = 1

2

〉]
, (11)

where the subscript on |IAB, IABz〉 indicates that we express
the ket in terms of the isospin of the A−b1 system. Since the
results obtained for the three-body T -matrix of the system
do not depend on the total isospin projection, we consider
IABz = 1/2. In this way,

∣∣∣IAB = 1

2
, IABz = 1

2

〉
Ab1

= 1√
2

[
|IAb1 = 1, IAb1z = 1〉

⊗
∣∣∣Ib2 = 1

2
, Ib2z = −1

2

〉
− 1√

2

(
|IAb1 = 1, IAb1z = 0〉

+ |IAb1 = 0, IAb1z = 0〉
)

⊗
∣∣∣Ib2 = 1

2
, Ib2z = 1

2

〉]
. (12)

Once we have determined the isospin state related to the
AB system, we focus on the angular momentum part. In
the angular momentum basis, we have a particle A of spin
sA = 1 interacting with a cluster B of spin sB = 1. The
cluster B is formed from the s-wave interaction of two par-
ticles, b1 and b2, of spins sb1 = sb2 = 1, thus we have
orbital angular momentum 0 for the cluster. We consider the
interaction between particles A and bi in s-wave, as done
in Refs. [21,22]. This means that the angular momentum of
the AB system, jAB , as well as that of the A − bi systems,
jAbi , coincide with the corresponding spins, i.e., sAB , sAbi ,
respectively.

Let us consider, for example, the case jAB = sAB = 1 to
illustrate the evaluation of the kernel t1. Taking into account
the spin related to each of the particles and using Clebsch–
Gordan coefficients, we can write

|sAB = 1, sABz = 1〉 = 1√
2

(
|sA = 1, sAz = 1〉

⊗ |sB = 1, sBz = 0〉 − |sA = 1, sAz = 0〉
⊗ |sB = 1, sBz = 1〉

)
, (13)
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where we have chosen the spin state with projection sABz = 1
since the results do not depend on this choice. Once again,
we need to determine the interaction of the AB system in
terms of that between A and the constituents of the cluster
B. Thus, it is required to decompose the state in Eq. (13) in
terms of the spin of particle A combined with each of the
constituents of B. Considering

|sB = 1, sBz = 0〉 = 1√
2

[
|sb1 = 1, sb1z = 1〉

⊗ |sb2 = 1, sb2z = −1〉 − |sb1 = 1, sb1z = −1〉
⊗ |sb2 = 1, sb2z = 1〉

]
,

|sB = 1, sBz = 1〉 = 1√
2

[
|sb1 = 1, sb1z = 1〉

⊗ |sb2 = 1, sb2z = 0〉 − |sb1 = 1, sb1z = 0〉
⊗ |sb2 = 1, sb2z = 1〉

]
, (14)

we can write now the ket |sAB = 1, sABz = 1〉 in terms of the
spin of the A − b1 or A − b2 systems depending on whether
we are interested in finding the kernel t1 or t2, respectively.
In the former case, we have

|sAB = 1, sABz = 1〉Ab1 = 1

2

[(
|sA = 1, sAz = 1〉

⊗ |sb1 = 1, sb1z = 1〉
)

⊗ |sb2 = 1, sb2z = −1〉
−

(
|sA = 1, sAz = 1〉 ⊗ |sb1 = 1, sb1z = −1〉

− |sA = 1, sAz = 0〉 ⊗ |sb1 = 1, sb1z = 0〉
)

⊗ |sb2 = 1, sb2z = 1〉 −
(
|sA = 1, sAz = 0〉

⊗ |sb1 = 1, sb1z = 1〉
)

⊗ |sb2 = 1, sb2z = 0〉
]
, (15)

finding then

|sAB = 1, sABz = 1〉Ab1 = 1

2

[
|sAb1 = 2, sAb1z = 2〉

⊗ |sb2 = 1, sb2z = −1〉 +
(

1√
6
|sAb1 = 2, sAb1z = 0〉

− 1√
2
|sAb1 = 1, sAb1z = 0〉 − 2√

3
|sAb1 = 0, sAb1z = 0〉

)

⊗ |sb2 = 1, sb2z = 1〉 − 1√
2

(
|sAb1 = 2, sAb1z = 1〉

− |sAb1 = 1, sAb1z = 1〉
)

⊗ |sb2 = 1, sb2z = 0〉
]
. (16)

Once we have obtained the isospin and angular momentum
parts of the state related to the AB system, the ket characteriz-
ing it (written in terms of the isospin and angular momentum

of the Abi system) is given by

∣∣∣IAB = 1

2
, IABz = 1

2
; sAB, sABz

〉
Abi

=
∣∣∣IAB = 1

2
, IABz = 1

2

〉
Abi

⊗ |sAB, sABz〉Abi . (17)

The kernel ti can be obtained for a given angular momentum
of the AB system (which, as mentioned earlier, coincides
with sAB , with sAB = 0, 1, 2) and isospin of the AB system,
which in this case is IAB = 1/2, as

t (IAB ,sAB )
i = Abi

〈
IAB = 1

2
, IABz = 1

2
; sAB, sABz

∣∣∣tAbi
×

∣∣∣IAB = 1

2
, IABz = 1

2
; sAB, sABz

〉
Abi

. (18)

For example, using Eqs. (12) and (16), we have from Eq. (18),

t (1/2,1)
1 = 1

16

[
5t (1,2)

Ab1
+ 3t (1,1)

Ab1
+ 4t (1,0)

Ab1

+ 5

3
t (0,2)
Ab1

+ t (0,1)
Ab1

+ 4

3
t (0,0)
Ab1

]
, (19)

where t
(IAb1 ,sAb1 )

Ab1
represents the two-body t-matrix describ-

ing the s-wave transition Ab1 → Ab1 with isospin IAb1 and
spin sAb1 . In particular, since A and b1 are D∗’s, we have

t (1/2,1)
1 = 1

16

[
5t (1,2)

D∗D∗ + 3t (1,1)
D∗D∗ + 4t (1,0)

D∗D∗

+ 5

3
t (0,2)
D∗D∗ + t (0,1)

D∗D∗ + 4

3
t (0,0)
D∗D∗

]
. (20)

We can repeat this procedure for sAB = 0, 2, finding

t (1/2,0)
1 = 1

4

[
3t (1,1)

D∗D∗ + t (0,1)
D∗D∗

]
,

t (1/2,2)
1 = 1

16

[
9t (1,2)

D∗D∗ + 3t (1,1)
D∗D∗ + 3t (0,2)

D∗D∗ + t (0,1)
D∗D∗

]
. (21)

For the D∗D∗D∗ system, the particle b2 is also a D∗, and
the expression obtained for t (IAB ,sAB )

2 coincides with that of

t (IAB ,sAB )
1 . These latter t-matrices depend on the invariant

mass of the Abi cluster, which can be determined in the B
rest frame as

sAbi =
(
pA + 1

2
pB

)2 = m2
A + 1

4
M2

B + q0MB

= 1

2
(s − m2

A − M2
B) + 1

4
M2

B + m2
A, (22)

where we have made use of Eq. (4).
As can be seen in Eqs. (20) and (21), we need the two-

body t-matrices describing the D∗D∗ interaction for differ-
ent isospin and spin configurations. This input is obtained
following Ref. [21], where the Bethe–Salpeter equation is
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solved using as kernel an amplitude obtained from effec-
tive field theories describing the interaction between two-
vectors. This latter amplitude is constituted by several con-
tributions, including that coming from a D∗D∗ → D∗D∗
contact term, from vector exchange in the t-channel as well
as from box diagrams in which D∗D∗ → D∗D → D∗D∗ by
exchanging pions (in this latter case, a Gaussian form factor
e[(q0)2−q 2]/Λ2

, with Λ = 1200 MeV and qμ = (q0, q) being
the four-momentum of the exchanged pion in the first D∗Dπ

vertex, is introduced in each D∗Dπ vertex when integrating
on d3q). It is worth mentioning here that the mechanism con-
sidered to couple D∗D to D∗D∗ is through a box diagram.
In principle it is possible to put D∗D∗ and D∗D together as
coupled channels. In theories using heavy quark spin sym-
metry it is customary to consider the transition between these
channels in terms of a contact amplitude [37]. In the present
case it requires pion exchange with one anomalous coupling.
In related works of hadron interaction the pion exchange
is worked out using the one boson exchange model which
requires normally the use of a static one pion exchange poten-
tial [38–40]. The consideration of the full dynamical one pion
exchange propagator is also done in connection with coupled
channels in some works [41,42] using a method particularly
suited for the case in which the pion exchanged can be on-
shell. Yet, the method of using the box diagram and adding it
to the transition potential is well suited for the study of these
problems. Indeed, in Ref. [43] it was found that the transi-
tion amplitudes involving pseudoscalar exchange are small as
compared to those where vector mesons are exchanged, and
this has as a consequence that the introduction of the chan-
nels involving pseudoscalar exchange do not modify the real
part of the pole position of the t-matrix and only provide a
source for the width of the states. In this sense, the consider-
ation of the box diagram that provides this latter information
is sufficient for an accurate evaluation of the amplitudes.

The above mentioned amplitudes are projected on s-wave,
as well as on spin, and then summed, producing an amplitude
which is used to solve the Bethe–Salpeter equation. As can
be seen in Ref. [21], the D∗D∗ interaction with isospin 0
and j P = 1+ ( j ≡ sD∗D∗) forms a bound state close to the
D∗D∗ threshold. In particular, varying the cut-off qmax from
450 to 650 MeV, the mass (width) of the bound state changes
from 4014 to 3957 MeV (2–12 MeV). As a consequence of
the two D∗’s being identical particles, in case of isospin 0 but
j = 0, 2, no states are found, while for isospin 1 there is no
state with j = 1 and the interaction for j = 0, 2 is repulsive.
Thus, Eqs. (20) and (21) simplify to

t (1/2,0)
1 = 1

4
t (0,1)
D∗D∗ ,

t (1/2,1)
1 = 1

16

[
5t (1,2)

D∗D∗ + 4t (1,0)
D∗D∗ + t (0,1)

D∗D∗
]
,

t (1/2,2)
1 = 1

16

[
9t (1,2)

D∗D∗ + t (0,1)
D∗D∗

]
. (23)

Note that while the input for angular momentum J ≡ JAB =
sAB = 0 is attractive, since it involves the D∗D∗ two-body
t−matrix with isospin 0 and spin 1, there is some repulsion in
the input for J = 1, 2 from the D∗D∗ two-body t-matrices
in isospin 1 and spins 0,2. However, if the attraction in the
D∗D∗ system overcomes such repulsion, we might find states
for J = 1, 2 as well.

A final comment, before presenting the results, is in order.
In Ref. [21], when dealing with identical particles, the so-
called unitary normalization was used. Within this normal-
ization a factor 1/

√
2 is introduced in the |D∗D∗〉 ket to avoid

double counting of contributions in the intermediate states
when iterating the kernel of the Bethe–Salpeter equation.
This, however, implies that when calculating the three-body
T matrix as T = T1 +T2, a factor two must be included in T1

and T2. Thus, since we follow Ref. [21] to get the D∗D∗ two-
body t-matrices, the three-body T -matrix must be obtained
as T = 2(T1 + T2) = 4T1.

3 Results

In Fig. 2 we show the results obtained for the modulus
squared of the three-body T -matrix of the system in isospin
1/2 and for J P = 0−, 1− and 2− with a cut-off qmax =
450 MeV. As can be seen, for J = 0, we find a state with a
mass of 6006.5 MeV, i.e, � 19 MeV below the three-body
threshold, and a width of 46.6 MeV. Note that the width found
is a consequence of the imaginary part present in the two-
body D∗D∗ t-matrices used to solve Eq. (1). This imaginary
part has its origin in the D∗D∗ → D∗D → D∗D∗ transition
considered in Ref. [21]. We also find states for J = 1, 2 but
since the corresponding signals are much weaker (by a factor
of � 6) than the one for J = 0 and the former states appear
smeared by the background, it would be difficult to identify
them in experimental data. Thus, it is not very meaningful to
determine their properties. Still, we provide the mass values
(see Table 1).

Next, we study the uncertainty in the results produced by
changing the cut-off qmax used in the model of Ref. [21] when
calculating the two-body t-matrix for the D∗D∗ system. In
Fig. 3 we show the variation produced in the mass and width
of the three-body state with J = 0 for three values of qmax =
450, 550 and 650 MeV. As can be seen, increasing the cut-
off shifts the peak from 6006.5 to 5914.5 MeV and the width
increases up to 136 MeV. In Table 1 we summarize the masses
and widths found for the states with J = 0, 1, 2 when varying
qmax.

We should however recall that consistency with the Tcc
data demanded values of the cut-off of the order of 420–
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Fig. 2 Modulus squared of the three-body T -matrix as a function
of

√
s for J P = 0−, 1−, 2−. The results correspond to a value of

qmax = 450 MeV. The vertical line indicates the three-body threshold,
i.e., 3MD∗

Table 1 Mass, M , and width, Γ , of the states found in the D∗D∗D∗
system with isospin 1/2 and spin-parity J P = 0− for different values
of qmax

M (Γ ) [MeV]

qmax [MeV] 450 550 650

J = 0 6006.5 (46.6) 5973.5 (90.9) 5914.5 (136.0)

J = 1 6014.1 5992.0 5954.5

J = 2 6015.4 5992.3 5954.7

450 MeV. Hence we should give credibility to the value for
qmax = 450 MeV in the Table 1. There is another feature
worth calling the attention. The width of the state increases
for more binding energy in spite of having less phase space
for the decay. This is similar to what was observed in Ref.
[21] for the D∗D∗ system and has its origin in the Weinberg
compositeness condition where the coupling square of the
state to the components goes as the square root of the binding
energy [44].

The previous results have being obtained by neglecting
the width, ΓB , related to the cluster since ΓB << MB . How-
ever, for a better estimation of the width of the three-body
states found, we can evaluate the effect that the width of the
cluster produces in our results. In our formalism such a width
enters in the form factor written in Eq. (6) and it can be incor-
porated by changing MB to MB − iΓB/2 in Eq. (6). Such
a change produces a small imaginary part (when compared
to the real part) for the form factor. In Fig. 4 we compare
the results obtained for the modulus squared of the three-
body T -matrix for isospin 1/2 and J = 0 when ΓB = 0
and considering the value of ΓB obtained in Ref. [21] for a

Fig. 3 Modulus squared of the three-body T -matrix as a function of√
s for J P = 0− and qmax = 450, 550 and 650 MeV

Fig. 4 Modulus squared of the three-body T -matrix as a function of√
s for J P = 0−, qmax = 450 MeV and considering the effect of the

width of the cluster

cut-off qmax = 450 MeV, which is ΓB = 29.54 MeV. As
can be seen, considering the latter value of ΓB increases
the width of the three-body state with J = 0 by about
23% for qmax = 450 MeV. In Table 2 we summarize the
results obtained when incorporating ΓB in the formalism.
We observe that the mass is barely changed but the width is
increased by about 20% for qmax = 450 MeV and less for
the other values of the cut-off.

It is interesting to compare our results with those of Ref.
[26]. In this latter work, states with a few MeV of bind-
ing energy were found for isospin I = 1/2, spin-parity
J P = 0−, 1−, 2−, 3−. The binding is found to change
with a cut off Λ in a form factor used to regularize loops.
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Table 2 Mass, M , and width, Γ , of the states found in the D∗D∗D∗
system with isospin 1/2 and spin-parity J P = 0−, 1− and 2− for
different values of qmax and taking into account the width of the cluster

M (Γ ) [MeV]

qmax [MeV] 450 550 650

MB [MeV] 4010.7 3997.0 3972.5

ΓB [MeV] 29.54 60.03 99.57

J = 0 6004.5 (57.3) 5970.9 (99.7) 5910.8 (143.3)

J = 1 6013.6 5990.2 5951.5

J = 2 6013.3 5989.4 5950.1

We also find that our results depend on the cut-off qmax that
we use, but we should rely more on those obtained with the
cut-off used to reproduce the properties of the Tcc state, i.e.,
qmax � 450 MeV. We have obtained states for I = 1/2,
J P = 0−, 1−, 2−, but not 3−. This is a consequence of our
approach since the D∗D∗ binds only in the I = 0, J P = 1+
configuration, hence a three-body state with J = 3 is not
possible in our model. It is interesting to see that in Ref. [26]
the authors mention that there is no bound state solution with
Λ � 1 GeV and J P = 3−, while bound states are formed for
the other J P configurations. It is also mentioned that if the
s-d mixing is used, then a loosely bound state for J P = 3−
is obtained. Our approach is based on s-wave scattering only,
hence we can say that we find the same result as in Ref. [26]
when only s-waves are used.

The formalism of Ref. [26] also leads to formation of
I = 3/2 states. We cannot get such states since our cluster
is isoscalar, hence we only get three body I = 1/2 states.
It is interesting what the authors of Ref. [26] mention with
respect to this issue. They state that to get bound states in this
case they need Λ � 1.8 GeV and then conclude that since the
needed cut-off Λ is much larger than their expectation, they
prefer not to view these states as good hadronic molecular
states. Hence, we see that there is an agreement in the findings
of both methods on the relevant cases of the bound D∗D∗D∗
system.

There are also some other differences in the results of the
two models: in Ref. [26] the I (J P ) = 1/2 (0−, 1−, 2−)

states have similar bindings. In our case the 0− state is more
bound. Further, widths are not evaluated in Ref. [26], while
in our approach the widths appear automatically as a conse-
quence of the considered D∗D∗ → D∗D decays [21]. The
other additional information of our approach is the strength
of |T |2, which is relevant to see which state has more chances
to be observed in an experiment. We find that |T |2 is about
6 times bigger in the case of 0− than in the cases of 1−, 2−.
This indicates that the 0− state is the one most likely to be
found in an experiment.

At this point, we find it relevant to discuss the differences
in the inputs for the D∗D∗ interaction. We rely upon vec-
tor exchange, following the extension of the model of Ref.
[27], where the vector mesons are identified as the dynamical
gauge bosons of hidden local symmetries. The exchange of
pseudoscalars is also considered to study the D∗D∗ interac-
tion in Ref. [21], which we follow here, but only to generate
the decay widths, once one realizes that its effect in the real
part of the amplitudes is basically negligible as discussed in
Ref. [43]. Vector meson exchange is also considered in Ref.
[26], however, it is much suppressed by the form factor used,
F2(q) = [(Λ2 −m2

E )/(Λ2 −q2)]2, where mE is the mass of
the particle exchanged. For values of Λ ∼ 0.9 GeV, the afore-
mentioned factor kills the vector exchange contribution in the
potential by roughly a factor of 10, with the numerator of the
form factor being responsible for this large reduction. We
should recall that chiral Lagrangians can be obtained using
vector exchange with the approach of Ref. [27]. In the case
of q2 = 0, and omitting m2

E in the numerator of the F2(q)

mentioned above, one exactly obtains the chiral Lagrangian
by exchanging the vector mesons, as shown explicitly in Ref.
[43]. We follow that procedure and our form factor is a sharp
cut-off, Θ(qmax−|q|), not changing the strength of the vector
exchange when q2 → 0.

4 Conclusions

We study the D∗D∗D∗ system considering that two of the
D∗’s form the state found in Ref. [21], the latter having
isospin 0 and spin-parity 1+. By calculating the three-body
scattering matrix, we find formation of bound states, with
isospin 1/2, masses ∼ 6000 MeV and spin-parity 0−, 1−
and 2−. By comparing the strength of the T -matrices for the
different spins, we find that the spin 0 state has a larger cou-
pling to the D∗D∗D∗ system, thus, the signal for the spin 0
state should be more pronounced in a process in which the
three states can be produced. The three states obtained have
charm 3, thus, they are manifestly exotic mesons, i.e., they
cannot be considered as conventional mesons formed by a
quark and an antiquark. The experimental finding of these
states would be a remarkable step towards the formation of a
new periodic table of multimeson states with several open fla-
vors which cannot decay into systems with a smaller number
of mesons and are relatively stable.
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