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Abstract We study the dynamics of the early universe in
massive conformal gravity. In particular, we show that the
theory is consistent with the observed values of the primordial
abundances of light elements if we consider the existence of
right-handed sterile neutrinos.

1 Introduction

It is well known that the standard ΛCDM cosmological
model is consistent with most observations of the universe
at both early and late times [1–4]. However, for this con-
sistency to occur, a very small value for the cosmological
constant (Λ) is required, which by far does not match with
the huge value predicted by quantum field theory (see [5] for
a nice review). This discrepancy between the cosmological
and quantum values of Λ is known as the cosmological con-
stant problem [6]. Another important problem of ΛCDM is
that the primordial lithium abundance from the early universe
nucleosynthesis predicted by it differs by about a factor of
three from the observed abundance [7], which is known as
the lithium problem. Despite several attempts over the years,
no alternative cosmological model has succeeded in solving
these two problems and being consistent with other cosmo-
logical observations at the same time.

One of such models comes from massive conformal grav-
ity (MCG), which is a conformally invariant theory of grav-
ity in which the gravitational action is the sum of the Weyl
action with the Einstein-Hilbert action conformally coupled
to a scalar field [8]. Among so many cosmological models,
we chose the MCG model because it fits well with the Type
Ia supernovae (SNIa) data without the cosmological constant
problem [9]. In addition, the theory is free of the van Dam–
Veltman–Zakharov (vDVZ) discontinuity [10], can repro-
duce the orbit of binaries by the emission of gravitational
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waves [11] and is consistent with solar system observations
[12]. Furthermore, MCG is a power-counting renormalizable
[13,14] and unitary [15] quantum theory of gravity.

In this paper, we want to see if the MCG cosmology is con-
sistent with the observed primordial abundances of light ele-
ments without the lithium problem. In Sect. 2, we describe the
MCG cosmological equations. In Sect. 3, we derive the mat-
ter energy-momentum tensor used in the theory. In Sect. 4,
we study the dynamics of the early MCG universe. In Sect. 5,
we compare the early universe nucleosynthesis of MCG with
cosmological observations. In Sect. 6, we analyze the evolu-
tion of the baryon density of the MCG universe. Finally, in
Sect. 7, we present our conclusions.

2 Massive conformal gravity

The total MCG action is given by1 [10]

S =
∫

d4x
√−g

[
ϕ2R + 6∂μϕ∂μϕ

− 1

2α2C
αβμνCαβμν

]
+ 1

c

∫
d4xLm, (1)

where ϕ is a scalar field called dilaton, α is a coupling con-
stant,

CαβμνCαβμν = RαβμνRαβμν − 4RμνRμν + R2

+2

(
RμνRμν − 1

3
R2

)
(2)

is the Weyl tensor squared, Rα
μβν = ∂βΓ α

μν + · · · is the
Riemann tensor, Rμν = Rα

μαν is the Ricci tensor, R =
gμνRμν is the scalar curvature, and Lm = Lm(gμν, Ψ ) is
the Lagrangian density of the matter field Ψ . It is worth not-
ing that besides being invariant under coordinate transfor-

1 This action is obtained from the action of Ref. [10] by rescaling ϕ →(√
32πG/3

)
ϕ and considering m = √

3/64πGα.
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mations, the action (1) is also invariant under the conformal
transformations

Φ̃ = Ω(x)−ΔΦ Φ, (3)

where Ω(x) is an arbitrary function of the spacetime coordi-
nates, and ΔΦ is the scaling dimension of the field Φ, whose
values are −2 for the metric field, 0 for gauge bosons, 1 for
scalar fields, and 3/2 for fermions.

The variation of (1) with respect to gμν and ϕ gives the
MCG field equations

ϕ2Gμν + 6∂μϕ∂νϕ − 3gμν∂
ρϕ∂ρϕ

+gμν∇ρ∇ρϕ2 − ∇μ∇νϕ
2 − α−2Wμν = 1

2c
Tμν, (4)

(
∇μ∇μ − 1

6
R

)
ϕ = 0, (5)

where

Wμν = ∇ρ∇ρRμν − 1

3
∇μ∇νR

−1

6
gμν∇ρ∇ρR + 2Rρσ Rμρνσ

−1

2
gμνR

ρσ Rρσ

−2

3
RRμν + 1

6
gμνR

2 (6)

is the Bach tensor,

Gμν = Rμν − 1

2
gμνR (7)

is the Einstein tensor,

∇ρ∇ρϕ = 1√−g
∂ρ

(√−g∂ρϕ
)

(8)

is the generally covariant d’Alembertian for a scalar field,
and

Tμν = − 2√−g

δLm

δgμν
(9)

is the matter energy-momentum tensor.
Before we proceed, it is important to note that both the

symmetries of the theory allow us to introduce in (1) a quar-
tic self-interacting term of the dilaton λ

∫ √−gϕ4 as well as
interaction terms of the dilaton with the matter fields. In the
case of the dilaton self-interaction term, we do not include
it in the MCG action because this inclusion makes the flat
metric no longer a solution of the field equations, which inval-
idates the S-matrix formulation. Although such a term is rein-
troduced in the effective action by quantum corrections, we
can consider the renormalized value of the coupling constant
λ equal zero so that the self-interacting term is present in
the renormalized action only to cancel out the corresponding
divergent term. In addition, we neglect the couplings between
the dilaton and the matter fields because they make the field

equation (5) no longer valid. This equation is fundamental
to cancel non-renormalizable divergent terms that appear in
the effective action [16].

At scales below the Planck scale, the dilaton field acquires
a spontaneously broken constant vacuum expectation value
ϕ0 [17]. In this case, the field equations (4) and (5) become

ϕ2
0Gμν − α−2Wμν = 1

2c
Tμν, (10)

R = 0. (11)

In addition, for ϕ = ϕ0, the MCG line element ds2 =
(ϕ/ϕ0)

2 gμνdxμdxν reduces to

ds2 = gμνdx
μdxν . (12)

The full dynamics of the MCG universe can be described by
(10)–(12) without loss of generality.

3 Dynamical perfect fluid

In order to find the MCG matter energy-momentum ten-
sor, we consider the conformally invariant matter Lagrangian
density [18]

Lm = −√−gc

[
S2R + 6∂μS∂μS + λS4

+ i

2
h̄

(
ψγ μDμψ − Dμψγ μψ

) − h̄μSψψ

]
, (13)

where S is a scalar Higgs field,2 λ and μ are coupling
constants, ψ = ψ†γ 0 is the adjoint fermion field, Dμ =
∂μ+[γ ν, ∂μγν]/8−[γ ν, γλ]Γ λ

μν/8 (Γ λ
μν is the Levi-Civita

connection), and γ μ are the general relativistic Dirac matri-
ces, which satisfy the anti-commutation relation {γ μ, γ ν} =
2gμν .

By varying (13) with respect to S, ψ and ψ , we obtain the
field equations

12∇μ∇μS − 2RS − 4λS3 + h̄μψψ = 0, (14)

iγ μDμψ − μSψ = 0, (15)

i Dμψγ μ + μSψ = 0. (16)

Additionally, the substitution of (13) into (9) gives

2 Although the Higgs field is actually a doublet, and it is more likely
that we must have two more scalar fields to get the correct quantum
phenomenology at low energies [19], considering only a scalar Higgs
field will not change the classical results of the theory.
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Tμν

c
= 12∂μS∂ν S − 6gμν∂ρ S∂ρ S

+2gμν∇ρ∇ρ S
2 − 2∇μ∇ν S

2 + 2S2Gμν − gμν

×
[
λS4 + i

2
h̄

(
ψγ ρDρψ − Dρψγ ρψ

) − h̄μSψψ

]

+ i

4
h̄
(
ψγμDνψ − Dνψγμψ

+ψγνDμψ − Dμψγνψ
)
. (17)

Then, using (14)–(16) and∇μ∇νS2 = 2(S∇μ∇νS+∂μS∂νS)

in (17), we find the energy-momentum tensor

Tμν = c
(
8∂μS∂νS − 2gμν∂

ρS∂ρS

−4S∇μ∇νS + gμνS∇ρ∇ρS
)

+ 2cS2
(
Rμν − 1

4
gμνR

)
+ T f

μν, (18)

where

T f
μν = i

4
ch̄

(
ψγμDνψ − Dνψγμψ + ψγνDμψ

−Dμψγνψ
) − 1

4
gμνch̄μSψψ (19)

is the fermion energy-momentum tensor.
Considering that, at scales below the electroweak scale,

the Higgs field acquires a spontaneously broken constant vac-
uum expectation value S0, and making some algebra, we find
that (15) and (18) become
[
DμDμ −

(
mc

h̄

)2
]

ψ = 0, (20)

Tμν(S0, gμν) = 2cS2
0

(
Rμν − 1

4
gμνR

)

+T f
μν(S0, gμν), (21)

where

T f
μν(S0, gμν) = i

4
ch̄

(
ψγμDνψ − Dνψγμψ + ψγνDμψ

−Dμψγνψ
) − 1

4
gμνmc2ψψ, (22)

with m = μS0h̄/c being the fermion mass. In flat spacetime,
is not difficult to see that (20) and (22) reduce to
[
∂μ∂μ −

(
mc

h̄

)2
]

ψ = 0, (23)

T f
μν(S0, ημν) = i

4
ch̄

(
ψγμ∂νψ − ∂νψγμψ

+ψγν∂μψ − ∂μψγνψ
) − 1

4
ημνmc2ψψ, (24)

where now the Dirac matrices satisfy the anti-commutation
relation {γ μ, γ ν} = 2ημν .

The normalized plane wave solution to (23) is given by

ψ = 1√
V Ek

uk e
ikμxμ

, (25)

where V is the volume, Ek = √
k2c2 + m2c4 is the energy,

uk is a spinor which satisfies
[
γ μkμ + mc/h̄

]
uk = 0, and

kμ = (Ek/ch̄, �k/h̄) is the wave vector, with �k being the
momentum and k = |�k|. By substituting (25) and its adjoint
into (24), and using ukuk = −mc2, we obtain

T f
μν(S0, ημν) =

(
c2h̄2

V Ek

)
kμkν +

(
m2c4

4V Ek

)
ημν. (26)

Incoherently adding to (26) the individual contributions of
a set of six plane waves moving in the ± x , ± y and ± z
directions, all with the same Ek and k, we can write the
energy-momentum tensor (26) in the perfect fluid form

T f
μν(S0, ημν) =

(
ρ + p

c2

)
uμuν + ημν p + ημνc

2ρΛ, (27)

where

c2ρ = 6Ek

V
(28)

is the energy density of the fluid,

p = 2k2c2

V Ek
(29)

is the pressure of the fluid,

c2ρΛ = 3m2c4

2V Ek
(30)

is the vacuum energy (dark energy) density, and uμ is the
four-velocity of the fluid, which is normalized to uμuμ =
−c2. It follows from (28)–(30) that

p = 0, ρΛ = 1

4
ρ, (31)

for a non-relativistic perfect fluid (k2c2 � m2c4), and

p = 1

3
c2ρ, ρΛ = 0, (32)

for a relativistic perfect fluid (k2c2 � m2c4).
In curved spacetime, the perfect fluid energy-momentum

tensor (27) is generalized to

T f
μν(S0, gμν) =

(
ρ + p

c2

)
uμuν + gμν p + gμνc

2ρΛ. (33)

Finally, the insertion of (33) into (21) gives the energy-
momentum tensor of a dynamical perfect fluid

Tμν(S0, gμν) = 2cS2
0

(
Rμν − 1

4
gμνR

)

+
(
ρ+ p

c2

)
uμuν +gμν p+gμνc

2ρΛ. (34)

Taking the trace of (34), and substituting into the trace of (10),
whose left hand side is zero due to the field equation (11) and
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the tracelessness of the Bach tensor (W = gμνWμν = 0),
we arrive at

T = gμνTμν = 3p − c2ρ + 4c2ρΛ = 0. (35)

We can see from (31) and (32) that both non-relativistic and
relativistic perfect fluids satisfies the tracelessness relation
(35). For simplicity, we could isolate ρΛ in (35) and replace
it in (34) as done in Ref. [9]. In this case, it is made clear that
the vacuum energy density does not contribute directly to the
dynamic evolution of the MCG universe, which solves the
cosmological constant problem found in the ΛCDM model.
However, here we will keep ρΛ so we don’t miss any physical
details during the calculations.

By substituting (34) into (10), and considering (11), we
find(

ϕ2
0 − S2

0

)
Rμν − α−2Wμν

= 1

2c

[(
ρ + p

c2

)
uμuν + gμν p + gμνc

2ρΛ

]
, (36)

which is the field equation that we will use in the study of the
dynamics of the early MCG universe in the next section. But
before that, it is important to compare MCG with another con-
formally invariant theory of gravity called conformal gravity
(CG),3 whose action is given by [20]

S = − 1

2α2

∫
d4x

√−g
(
CαβμνCαβμν

)+ 1

c

∫
d4xLm . (37)

By varying (37) with respect to gμν , we obtain the field equa-
tion

− α−2Wμν = 1

2c
Tμν, (38)

where Tμν is given by (18). We can easily see the difference
between the two theories by comparing (38) with (10) and
(11). Just to stay within the scope of this paper, it is worth not-
ing that CG does not pass the early universe nucleosynthesis
test [21].

4 Early universe

As usual, we consider that the geometry of the universe
is described by the Friedmann–Lemaître–Robertson–Walker
(FLRW) line element

ds2 = −c2dt2 + a(t)2

×
(

dr2

1 − Kr2 + r2dθ2 + r2 sin2 θdφ2
)

,

(39)

3 Although the difference between the two theories is quite obvious, as
we will readily show next, MCG is often confused with CG. Perhaps
this is because CG is much older and known than MCG.

where a = a(t) is the scale factor and K = -1, 0 or 1 is
the spatial curvature. By substituting (39) and the fluid four-
velocity uμ = (c, 0, 0, 0) into (36), we obtain4

ä

a
= − c

6
(
ϕ2

0 − S2
0

) (
c2ρ − c2ρΛ

)
, (40)

ä

a
+ 2

(
ȧ

a

)2

+ 2
Kc2

a2 = c

2
(
ϕ2

0 − S2
0

) (
p + c2ρΛ

)
, (41)

where the dot denotes d/dt .
Subtracting (40) from (41), and considering that5

ϕ2
0 = 3c3

32πG
� S2

0 , (42)

we obtain(
ȧ

a

)2

= 8πG

9c2

(
c2ρ + 3p + 2c2ρΛ

)
− Kc2

a2 . (43)

The combination of (43) with (40) then gives the energy
continuity equation

c2ρ̇ + 3
ȧ

a

(
c2ρ + p

)
− c2ρ̇Λ = 0, (44)

which can also be obtained by the conservation law ∇μT f
μν =

0, with T f
μν being the perfect fluid energy-momentum tensor

(33).
Using either (31) or (32) in (44), we get

ρ̇ + 4
ȧ

a
ρ = 0, (45)

which, consequently, is valid for both non-relativistic and
relativistic dynamical perfect fluids. As usual, we can write
the solution to (45) in the form

ρ = ρ0

(a0

a

)4
, (46)

where, from now on, the subscript 0 denotes values at the
present time t0.

In the case of the early universe, which is composed by
a very hot plasma dominated by relativistic particles (radia-
tion), we find that (43) becomes

ȧ2 = 16πGa4
0

9a2 ρr0 − Kc2. (47)

where we used (32) and (46), with ρr being the mass density
of the radiation. Since a is small in the early universe, we
can neglect the curvature term on the right hand side of (47)
and write it in the approximate form

ȧ2 = 16πGa4
0

9a2 ρr0, (48)

4 It is worth noting that Wμν = 0 for the FLRW spacetime.
5 This value of ϕ0 is necessary for the theory to be consistent with solar
system observations [12].
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whose solution is given by

a(t) =
(

64πGa4
0ρr0

9

)1/4

t1/2. (49)

Finally, inserting (49) into the Hubble constant

H = ȧ

a
, (50)

we obtain

H = 1

2t
, (51)

which is the same relation between the Hubble constant and
time that occurs in the early ΛCDM universe. However, since
the MCG scale factor (49) is equal 0.9 times the value of the
ΛCDM scale factor, the expansion of the early MCG universe
is slower than the expansion of the early ΛCDM universe,
which will give a difference in the values of the two Hubble
constants, as we will show in the next section.

5 Nucleosynthesis

The abundances of light chemical elements in the early uni-
verse are mainly determined by one cosmological parame-
ter, namely, the baryon-to-photon ratio η = nb/nγ , where
nb and nγ are the number densities of baryons and pho-
tons in the universe. As usual, to find η we must first write
the Hubble constant in function of temperature T using the
Stefan-Boltzmann law

ρr =
(g∗aB

2c2

)
T 4, (52)

where aB is the radiation energy constant and g∗ counts the
number of relativistic particle species determining the energy
density in radiation. Substituting (52) and (49) into (46), we
obtain

t =
(

9c2

32πGg∗aB

)1/2
1

T 2 . (53)

It then follows from (51) and (53) that

H =
(

8πGg∗aB
9c2

)1/2

T 2, (54)

which is equal 0.82 times the value of the ΛCDM Hubble
constant.

In order to describe the thermal history of the early MCG
universe, we must compare the Hubble constant in the form
(54) with the collision rate of particle interactions

Γ = nσv, (55)

where n is the number density of particles, σ is their interac-
tion cross section and v is the average velocity of the particles.
A specific temperature that is of particular importance for the

outcome of the early universe nucleosynthesis (EUN) is the
one at which the thermal equilibrium between neutrons and
protons begins to break down, which happens when H ∼ Γν ,
where

Γν ≈ G2
F

c6h̄7 (kBT )5 (56)

is the collision rate of a neutrino with electrons or positrons,
with GF being the Fermi constant and kB the Boltzmann
constant.

By equating (54) with (56), and assuming that at the onset
of the electron-positron annihilation the remaining relativis-
tic particles are photons, electrons, positrons and left-handed
neutrinos, for which g∗ = 10.75, we obtain

kBTeq = 0.75 MeV. (57)

We can see from (57) that the thermal equilibrium between
neutrons and protons is maintained at temperatures above
Teq = 8.7 × 109 K in the early MCG universe. At that time,
the neutron-to-proton ratio was(
nn
n p

)
eq

= e−Q/kBTeq = 0.178, (58)

where we used (57) and the neutron-proton energy difference
Q = 1.239 MeV. Using (58), we can make a rough estimate
that the final freeze-out neutron abundance is given by

X∞
n ∼ X eq

n = e−Q/kBTeq

1 + e−Q/kBTeq
= 0.15. (59)

Including the neutron decay in our calculation, we find

Xn(t) = X∞
n e−t/τn = 0.15 e−t/τn , (60)

where τn = 879.4 s is the neutron mean lifetime [22].
The first light element formed in the early universe was

deuterium (D), whose ratio to proton is approximately given
by

nD

np
≈ 6.9η

(
kBT
mnc2

)3/2

exp

(
BD

kBT

)
, (61)

where we used (58) and BD = 2.2 MeV is the binding energy
of deuterium. Noting that the EUN starts when nD ∼ n p, it
follows from (61) that

6.9ηEUN

(
kBTEUN

mnc2

)3/2

exp

(
BD

kBTEUN

)
≈ 1, (62)

where ηEUN and TEUN are the baryon-to-photon ratio and
temperature of the EUN. We can see from (62) that we need
the value of TEUN to find ηEUN. Fortunately, we can find such
value from the primordial helium (4He) abundance

YP ≡ 4n4He

nH
= 2Xn(tEUN)

1 − Xn(tEUN)
, (63)

where tEUN is the time of the EUN.

123



81 Page 6 of 8 Eur. Phys. J. C (2023) 83 :81

The substitution of (60) and the observed value of the
helium abundance YP = 0.245 [23] into (63) gives

tEUN ≈ 279.7 s. (64)

Then, by inserting (64) into (53), and considering that the
electrons and protons are no longer relativistic after their
annihilation, which gives g∗ = 3.36, we obtain

TEUN ≈ 8.8 × 108 K. (65)

Finally, using (65) in (62), we arrive at

ηEUN ≈ 5.12 × 10−8, (66)

which produces abundances of other light elements besides
helium orders of magnitude below the primordial abundances
inferred from current observations [24]. However, this result
does not automatically rule out MCG. If we consider that
the theory has low energy (� eV) right-handed sterile neu-
trinos,6 then we must replace g∗ = 10.75 by g∗ = 16.125
prior to the electron-positron annihilation and g∗ = 3.36 by
g∗ = 5.04 after the electron-positron annihilation due to the
contribution of the sterile neutrinos to the relativistic energy
content of the universe. These replacements lead to the stan-
dard value

ηEUN ≈ 6 × 10−10, (67)

which is consistent with the observed abundances of all light
elements with the exception of lithium.7

6 Baryon density

Another important cosmological parameter that is deter-
mined by η is the baryon mass density ρb of the universe.
In order to find the relation between these two parameters in
the MCG universe, we start from the definitions of the baryon
and photon number densities

nb = ρb

mN
, (68)

nγ = 2ζ(3)
8π

c3

(
kBT
h

)3

≈ 2 × 107T 3, (69)

where mN is the nucleons mass. The combination of (68),
(69) and (52), with g∗ = 2, then gives the relation

η = aB
2 × 107mNc2

ρb

ργ

T, (70)

6 The existence of such neutrinos is allowed by the symmetries of the
theory and may be responsible for the small masses of the left-handed
neutrinos found in nature [25].
7 It is possible that the decay of the sterile neutrinos solves the incon-
sistency between the predicted and observed values of the lithium abun-
dance [26].

which is valid for any cosmological model. Noting that both
ρb and ργ obey (46) in MCG, we can write (70) in the form

η = aB
2 × 107mNc2

ρb0

ργ 0
T, (71)

which means that the baryon-to-photon ratio evolves over
time in the MCG universe,8 different to what happens in the
ΛCDM universe where η is constant after the EUN.

Using the current temperature of the universe T0 = 2.73
K in (52), with g∗ = 2, we find

ργ 0 = 4.65 × 10−31 kg/m3. (72)

In addition, the use of (67) in (62), with 6.9 replaced by 6.5
due to the different value of (58) which leads to (67), gives

TEUN ≈ 7.56 × 108 K. (73)

Finally, substituting (67), (72) and (73) into (71), we obtain
the current baryon mass density

ρb0 = 1.46 × 10−36 kg/m3. (74)

Since ρr and ρb evolve at the same rate in MCG, it follows
from (72) and (74) that radiation always dominates the MCG
universe.

In fact, the scale factor is big at late times such that we
can neglect the density term on the right hand side of (47),
which makes the late MCG universe curvature dominated.
In this case, we must impose K = −1, which gives the
approximated solution

a(t) = ct (75)

in the late MCG universe. It is not difficult to show that for
an open universe with the scale factor (75) such as the late
MCG universe, we have the luminosity distance

dL(z) = c

H0

[
(1 + z)2 − 1

2

]
, (76)

which fits well to SNIa data9 [8]. We intend to check if (75)
provides good fits to other low redshift data in future works.

Just to finish, it is important to note that the evolution of
the baryon-to-photon ratio (71) causes the number of baryons
Nb to decrease over time in the MCG universe. We can see
this explicitly by substituting (46) and V ∼ a3 in

Nb = nbV = ρbV

mN
, (77)

8 It would be important to check if (71) at the time of recombination
is consistent with the value of η measured by cosmic microwave back-
ground (CMB) anisotropies. However, a theory for the growth of inho-
mogeneities in MCG has not yet been developed due to the complexity
generated by the contribution of the Bach tensor in (10). Therefore, we
will leave this analysis for future works.
9 It is worth noting that the density term has not been neglected in Ref.
[8], which in practice does not change the SNIa data fitting.
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which gives

Nb ∼ ρb0a4
0

mNa
. (78)

Using (75), we find that the number of baryons evolves over
time according to

Nb ∼
(

ρb0c3t4
0

mN

)
t−1 (79)

in the late MCG universe.
It follows from the energy continuity equation (44) that

ρ̇b + 3Hρb = ρ̇Λ. (80)

By comparing (80) with the standard adiabatic conservation
equation, and noting that ρ̇Λ < 0, we conclude that the
decrease in the number of baryons (79) is due to the decay of
the baryons into dynamic vacuum,10 which clearly leads to a
violation of the conservation of the quantum numbers. How-
ever, we can see from (79) that the variation of the number
of baryons should only be significant on cosmological time
scales, which makes the decay of baryons into vacuum not
observable in the laboratory.

On the other hand, the non-conservation of baryons can
have an important impact on the evolution of inhomogeneous
structures of the universe from the end of recombination until
today. Due to the decrease in the amount of baryons in the
MCG universe, it is expected that the formation of struc-
tures happen much later than is observed or not happen at
all. However, the evolution of cosmological structures does
not depend only on baryons but also on dark matter, whose
existence is necessary in MCG to explain the galaxy rotation
curves and the deflection of light by galaxies [12]. Therefore,
although the theory possibly has an extra scalar field that is
a good candidate for dark matter [16], much still has to be
studied to find out if the evolution of cosmological structures
predicted by MCG is consistent with observations or not.

7 Final remarks

Here we have shown that the abundances of light elements,
including lithium, predicted by the early MCG cosmology
are consistent with the observed values provided the theory
has right-handed sterile neutrinos, which is allowed by the
symmetries of the theory. Even though we still need to check
the existence of such neutrinos in experiments like the Mini
Booster Neutrino Experiment (MiniBooNE) [27], this result
is quite encouraging for us to continue with the study of the
theory.

10 This decaying process can be accounted by the Yukawa interaction
μSψψ in (19).

In addition, it was shown in this paper that the baryon-
to-photon ratio of the MCG universe evolves over time.
Although further studies are needed to verify whether this
evolution is consistent with the value of the baryon-to-photon
ratio determined by the CMB anisotropies, who knows it
solves other early universe problems found in the ΛCDM
model such as the baryon asymmetry problem. We intend to
study this and other MCG cosmological predictions in future
works.
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