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Abstract We consider the propagation of a charged mas-
sive scalar field in the background of a four-dimensional
Ernst black hole and study its stability analyzing the quasi-
normal modes (QNMs), which are calculated using the semi-
analytical Wentzel–Kramers–Brillouin method and numeri-
cally using the continued fraction method. We mainly find
that for a scalar field mass less than a critical mass, the decay
rate of the QNMs decreases when the harmonic angular num-
ber � increases; and for a scalar field mass greater than the
critical mass, the behavior is inverted, i.e., the longest-lived
modes are always the ones with the lowest angular num-
ber recovering the standard behavior. Also, we find a critical
value of the external magnetic field, as well as a critical value
of the scalar field charge that exhibits the same behavior with
respect to the angular harmonic numbers. In addition, we
show that the spacetime allows stable quasibound states, and
we observe a splitting of the spectrum due to the Zeeman
effect. Finally, we show that the unstable null geodesic in
the equatorial plane is connected with the QNMs when the
azimuthal quantum number satisfies m = ±� in the eikonal
limit.
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1 Introduction

Black holes created in astrophysical processes are expected
to be well described by asymptotically flat solutions of Ein-
stein equations. However, there is also great interest in black
holes with other kinds of asymptotic infinities. In particular,
it is of interest to determine the effects that occur when black
holes are placed in an external background field, extending
to infinity. Moreover, observational evidence indicates that
in the center of each galaxy there are black holes [1] along
with magnetic fields whose origin may be external or gen-
erated by currents in the accretion disk. In this context, a
non-asymptotically flat exact solution of Einstein–Maxwell
equations describing a black hole in a background magnetic
universe was constructed about 30 years ago by Ernst [2],
which is also known as a Schwarzschild–Melvin black hole.
In this model the external field is able to distort the spher-
ical symmetry of the geometry. The magnetic field has the
effect of elongating the event horizon into a cigarette-shaped
object, with the long axis parallel to the magnetic field lines.
However, for astrophysical reasons, the magnetic field is sup-
posed to be weak enough that the metric in this regime is well
approximated by the Schwarzschild one; that is, the mag-
netic field does not distort the geometry of the spacetime,
but only interacts with other electromagnetic charges in the
system. Also, it was shown that the Ernst metric permits
solutions of the Dirac monopole types to be obtained for the
Maxwell equations, and the nontrivial topological properties
of the spacetimes may play an important role in the quantum
geometry of the fields [3].
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Here, we study the propagation of charged massive scalar
fields in Ernst black hole backgrounds. In this context, quasi-
normal modes (QNMs) and quasinormal frequencies (QNFs)
[4–12] have recently attracted great interest due to the detec-
tion of gravitational waves [13]. Although the detected signal
is consistent with Einstein gravity [14], there are possibilities
for alternative theories of gravity due to the large uncertain-
ties in mass and angular momenta of the ringing black hole
[15]. Different investigations have emerged about QNMs of
Ernst black holes; for example, in [16], the authors stud-
ied massless scalar field perturbations and found that in the
presence of a magnetic field, the QNMs are longer-lived and
have larger oscillation frequencies, and in [17,18], unstable
modes in magnetized black holes were found. On the other
hand, super-radiant instability and the behavior of the QNMs
of a massive scalar field were investigated in [19,20]. Their
numerical results show that increasing the field effective mass
and the magnetic field strength B gives rise to a decrease in
the imaginary part of the QNMs until reaching a vanishing
damping rate. Also, it should be pointed out that other impor-
tant studies about Ernst spacetime have been reported in other
contexts. For example, frequency shifts of light emitted by
particles describing stable circular geodesics were analyzed
[21], and it was shown how magnetic fields can influence the
dynamics of particles [22] and epicyclic motions around a
black hole [3]. For other non-asymptotically flat spacetimes,
see [23–29].

One aim of this work is to study the effect of an external
magnetic field on the anomalous decay rate of QNMs using
the sixth-order Wentzel–Kramers–Brillouin (WKB) method.
It has been shown that in the imaginary part of the photon
sphere, QNFs have an anomalous behavior for a scalar field
mass less than a critical mass, i.e., the decay rate of the QNMs
decreases when the harmonic angular number � increases.
And for a scalar field mass greater than the critical mass,
the behavior is inverted: the longest-lived modes are always
those with the lowest angular number recovering the standard
behavior. The critical mass corresponds to the value of the
scalar field mass where the behavior of the decay rate of the
QNMs is inverted and can be obtained from the condition
Im(ω)� = Im(ω)�+1 in the eikonal limit, that is, when � →
∞, and this behavior has been studied in different black hole
geometries including Schwarzschild, Schwarzschild–(A)dS,
Reissner–Nordström, black hole in f (R) gravity, for scalar
and Dirac fields [30–35], and Bronnikov–Ellis and Morris–
Thorne wormhole geometries [36]. Also, the existence of a
critical scalar field charge for a Reissner–Nordström dS black
hole was shown [35]. Here, we show that there is a critical
scalar field mass. Furthermore, there is a critical external
magnetic field that exhibits the same behavior with respect
to the angular harmonic numbers, as well as a critical scalar
field charge, for charged massive scalar fields in Ernst black
hole backgrounds.

Then, we study the spectrum of quasibound states (QBS)
in this background by using the continued fraction method
(CFM). QBS are localized in the black hole potential well
and tend to zero at spatial infinity, and they have been studied
over the years [37–42]. Here, we show that the spectrum splits
into 2�+1 branches, and the separation between the branches
increases with the magnetic field, analogous to the splitting
of the energy levels of an atom in an external magnetic field,
which is the well-known Zeeman effect.

Finally, we study the connection between the unstable
null geodesics and the QNMs. It was shown that it occurs
in Schwarzschild black holes [43]. However, such a link is
violated in an asymptotically flat black hole in the Einstein–
Lovelock theory [44] and Schwarzschild AdS black holes
[43], see also [45] for further clarification. We will show that
unstable null geodesics in the equatorial plane are connected
with the QNMs via the WKB method for the case m = ±�

in the eikonal limit � → ∞, for the four-dimensional Ernst
black hole. In order to see this phenomena for other space-
times, see [46–48], and references therein.

This work is organized as follows. In Sect. 2, we give
a brief review of Ernst black holes. Then, in Sect. 3, we
study the charged scalar field perturbations, and in Sect. 4
we calculate the QNFs by using the WKB method in order
to study the anomalous decay rate for high values of �, and
the CFM for small values of �. We then study the QBS in
Sect. 5 and the unstable null geodesic in Sect. 6 to determine
whether there is a link between the unstable null geodesics
and the QNMs. Finally, we conclude in Sect. 7.

2 Ernst black holes

The Ernst metric is an exact solution of the Einstein–Maxwell
action. The Ernst solution can be interpreted as providing
a model for the exterior spacetime due to a massive body
which is placed in an external magnetic field, and has the
feature of not being asymptotically flat. Its line element in a
Schwarzschild-like coordinate system is given by [2]

ds2 = �2

((
1− 2M

r

)
dt2−

(
1 − 2M

r

)−1

dr2 − r2dθ2

)

− r2 sin2 θ

�2 dφ2, (1)

where

� = 1 + B2r2 sin2 θ, (2)

and B is the strength of the external magnetic field. It should
be noted that the external magnetic field BErnst in the orig-
inal Ernst black holes [2] is twice what we have used here,
BErnst = 2B. The vector potential for the magnetic field is
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given by

Aμdxμ = − Br2 sin2 θ

�
dφ. (3)

As pointed out, in this model, the external field is capable
of distorting the spherical symmetry of the geometry. The
magnetic field has the effect of elongating the event horizon
into a cigarette-shaped object, with the long axis parallel
to the magnetic field lines. The magnetic field lines remain
perpendicular to all points on the event horizon, analogous
to electric lines of force about a conductor. However, it was
shown that the external magnetic field can be considered as a
test field when the strength of the magnetic field satisfies the
condition B << BM = c4

G3/2 M�(
M�
M ) ∼ 1019(

M�
M )G [49].

On the other hand, from an astrophysical point of view, the
magnetic field near the event horizon of stellar black holes
(10M�) and supermassive black holes (109�) is very small
compared with BM , and thus it is reasonable to neglect the
distortions of curvature due to the external magnetic field
around black holes. Note that the Schwarzschild black holes
and the Melvin metric can be obtained when B = 0 and
M = 0, respectively.

3 Charged scalar field perturbations

A massive charged scalar field satisfies the Klein–Gordon
equation,

(∇α + iq Aα)
(∇α + iq Aα

)
� + μ2� = 0, (4)

where μ is the mass of the scalar field, and q its charge.
The problem can be reasonably simplified by making the
following assumption: for small B, terms higher than B2 can
be safely neglected, which allows us to separate the radial
and angular variables. In this manner, by taking into account
the spacetime symmetry, we can write � as

�(t, r, θ, φ) = 1

r
R(r)S(θ)e−iωteimφ (5)

where m is the azimuthal quantum number and ω is the QNF
of the mode. Thus, the Klein–Gordon equation reads

1

r

d

dr

(
r2 f (r)

d

dr

(
R(r)

r

))

+
(

ω2

f
− 4B2m2 + 2mqB − μ2 − �(� + 1)

r2

)
= 0, (6)

where � is the harmonic angular number, and f (r) = 1 −
2M/r . Now, by using the tortoise coordinate r∗ given by
dr∗ = dr

f (r) , the Klein–Gordon equation can be written as a
one-dimensional Schrödinger-like equation,

Fig. 1 Effective potential for the multipole number � = 2 with B =
0.05, q = 1, M = 1 and μ = 0.1

d2R(r∗)
dr∗2 + (ω2 − Veff(r))R(r∗) = 0, (7)

with an effective potential Veff(r) given by

Veff (r) = f (r)

(
f ′(r)
r

+ �(� + 1)

r2 + 4B2m2 − 2mqB + μ2
)

,

(8)

whose asymptotic behaviors near the event horizon and at
spatial infinity are

Veff(r → rh) = 0,

Veff(r → ∞) = μ2
eff = μ2 − 2mqB + 4m2B2.

Clearly, the potential coincides with the Schwarzschild
potential of a massive scalar field when its mass is replaced
by the effective mass

μ2
eff = 4m2B2 − 2mqB + μ2. (9)

Note that the value of the squared effective mass can be
negative, depending on the values of mass and charge of
the scalar field, azimuthal number, and strength of the mag-
netic field, which is associated with the existence of unstable
modes [17,18]. In Fig. 1, the radial dependence of the effec-
tive potential is illustrated, where it is possible to observe a
potential barrier. In Sect. 5 we will show that the potential
can also have the shape of a potential well for some values of
the parameters. Also, as was pointed out, if the value of the
squared effective mass is positive, there is some threshold
value of the effective mass after which the effective potential
loses its barrier-like form and the QNMs disappear; beyond
this value, there are arbitrarily long-lived QNMs, so-called
quasi-resonance modes [50–52].

4 Quasinormal modes

In this section we calculate the QNFs of the scalar field using
the semi-analytical WKB method and numerically using the
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CFM. We study the anomalous decay rate of the QNMs and
also the splitting of the spectrum due to the external magnetic
field.

4.1 QNMs using WKB method

In order to gain analytical insight about the behavior of the
QNFs, we use the WKB method [53–58], which can be used
for effective potentials that have the form of a potential bar-
rier, approaching a constant value at the event horizon and
cosmological horizon or spatial infinity [10]. Here, we con-
sider the eikonal limit � → ∞ to estimate the critical scalar
field mass, by considering ω�

I = ω�+1
I as a proxy for where

the transition or critical behavior occurs [30]. The QNMs that
belong to the photon sphere family are determined by the
behavior of the effective potential near its maximum value,
located at the position r∗

max. The Taylor series expansion of
the potential around its maximum is given by

V (r∗) = V (r∗
max) +

∞∑
i=2

V (i)

i ! (r∗ − r∗
max)

i , (10)

where

V (i) = di

dr∗i V (r∗)
∣∣∣
r∗=r∗

max

(11)

corresponds to the i-th derivative of the potential with respect
to the tortoise coordinate r∗ evaluated at the position of the
maximum r∗

max. Using the WKB approach carried to the third
order beyond the eikonal approximation, it was found that the
QNFs are given by (see, e.g., [59])

ω2 = V (r∗
max) − 2iU, (12)

where

U = N
√

−V (2)/2

+ i

64

(
−1

9

V (3)2

V (2)2
(7 + 60N 2) + V (4)

V (2)
(1 + 4N 2)

)

+ N

23/2288

(
5

24

V (3)4

(−V (2))9/2
(77 + 188N 2)

+3

4

V (3)2V (4)

(−V (2))7/2
(51 + 100N 2)

+1

8

V (4)2

(−V (2))5/2
(67 + 68N 2)

+ V (3)V (5)

(−V (2))5/2
(19+28N 2)+ V (6)

(−V (2))3/2
(5 + 4N 2)

)
,

(13)

and N = n+1/2, withn = 0, 1, 2, . . . , the overtone number.
Defining L2 = �(� + 1), we find that for large values of

L , the maximum of the potential is located approximately at

rmax ≈ r0 + 1

L2 r1 + O(L−4), (14)

where

r0 = 3M,

r1 = (−1 + 108m2B2M2 − 54mBM2q + 27μ2M2)
M

3
,

(15)

and

V (r∗
max) ≈ 1

27M2 L
2

+2 + 108m2B2M2 − 54mqBM2 + 27μ2M2

81M2 + O(L−2).

(16)

The second derivative of the potential evaluated at r∗
max is

given by

V (2)(r∗
max) ≈ − 2

729M4 L
2

+4(−4 + 108m2B2M2 − 54mqBM2 + 27μ2M2)

6561M4 + O(L−2),

(17)

and the higher derivatives of the potential evaluated at r∗
max

yield the following expressions:

V (3)(r∗
max) ≈ 4

6561M5
L2 + O(L0),

V (4)(r∗
max) ≈ 16

19683M6 L
2 + O(L0),

V (5)(r∗
max) ≈ − 40

59049M7 L
2 + O(L0),

V (6)(r∗
max) ≈ − 64

177147M8 L
2 + O(L0).

Using these results together with Eq. (12), we obtain

ω ≈ 1

3
√

3M
L − 1 + 2n

6
√

3M
i + 17 − 15n(n + 1) + 1944m2B2M2 − 972mqBM2

324
√

3M
L−1

− (1 + 2n)(137 + 235n(n + 1) − 116640m2B2M2 + 58320mqBM2 − 29160M2μ2)

23328
√

3M
iL−2 + O(L−3). (18)
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Fig. 2 The behavior of −Im(ω) as a function of μ, with n = 0, M = 1,
B = 0.01, q = 0.1, and m = 1, using the sixth-order WKB method.
Here, the WKB method via Eq. (19) gives μc ∼ 0.0794, the vertical
dotted line. Black line for � = 30, red line for � = 40, and blue line for
� = 50

The term of order L−2 vanishes at the value of the critical
mass μc, which is given by

μcM = 1

54

√
137

10
+ 47

2
n(n + 1) − 11664m2B2M2 + 5832mqBM2.

(19)

For B = 0, the critical mass of the scalar field in a
Schwarzschild background is recovered [30]. Also, it is pos-
sible to obtain a critical value of the magnetic field, even for
zero scalar field mass μ, which is given by

MBc = 270mqM + √
10m2(137 + 235n(n + 1) + 7290M2(q2 − 4μ2))

1080m2 .

(20)

For μ = 0, q = 0, and m �= 0, this yields MBc =
1

108m

√
137
10 + 47

2 n(n + 1). Also, there is a critical charge for
the scalar field given by

Mqc = −137 − 235n(n + 1) + 29160M2(μ2 + 4m2B2)

58320mMB
.

(21)

In Fig. 2 we show the behavior of −Im(ω) as a function
of the scalar field mass μ. We can observe a critical scalar
field mass, where for small values of the scalar field mass,
the longest-lived mode is the mode with the highest angular
number �, while for values of the scalar field mass greater
than the critical one, the longest-lived mode is the mode with
the smallest angular number. Also, in Fig. 3 we can observe
a similar behavior for an external magnetic field and for the
charge of the scalar field in Fig. 4.

Fig. 3 The behavior of −Im(ω) as a function of B, with n = 0, M = 1,
q = 0.1, m = 1, and μ = 0, using the sixth-order WKB method. Here,
the WKB method via Eq. (20) gives Bc ∼ 0.0674, vertical dotted line.
Black line for � = 30, red line for � = 40, and blue line for � = 50

Fig. 4 The behavior of −Im(ω) as a function of q, with n = 0, M = 1,
B = 0.01, m = −1, and μ = 0, using the sixth-order WKB method.
Here, the WKB method via Eq. (21) gives qc ∼ 0.215, vertical dotted
line. Black line for � = 30, red line for � = 40, and blue line for � = 50

4.2 QNMs using the CFM

In this section, we investigate the behavior of the QNMs of
charged massive scalar fields around the Ernst black hole
using the CFM, devised by Leaver to compute the QNMs of
Schwarzschild and Kerr black holes [60,61], and improved
later by Nollert [62]. It has been used to compute the QNMs in
several situations and in particular for charged fields around
charged black holes in [63–65].

The boundary conditions are given by ingoing waves at the
event horizon and outgoing waves at spatial infinity. Thus,

R(r) ≈
{

(r − rh)−iωrh as r → rh
ei	r r irh(	

2+ω2)/2	 as r → ∞ , (22)

where 	 = √
ω2 − μ2 + 2mqB − 4m2B2. Now, consider-

ing the following ansatz for the solution to the radial equation
(6) which incorporates the desired boundary conditions

R(r) = (r − rh)
−iωrhei	r r irh(	

2+ω2)/2	+iωrh
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×
∞∑
n=0

an

(
r − rh

r

)n

, (23)

and substituting it in Eq. (6), a three-term recurrence relation
is obtained for the coefficients

α0a1 + β0a0 = 0,

αnan+1 + βnan + γnan−1 = 0,

where

αn = −4	2(1 + n)(1 + n − 2rhiω),

βn = −2	

(
− 2	(1 + �(� + 1) + 2n(n + 1))

+ (1 + 2n)irh(ω + 	)(ω + 3	) + 2r2
h (ω + 	)3

)
,

γn = −(2n	 − irh(ω + 	)2)2. (24)

The recursion coefficients must satisfy the following contin-
ued fraction relation for the convergence of the series:

β0 − α0γ1

β1−
α1γ2

β2− · · · αnγn+1

βn+1− · · · = 0. (25)

And the continued fraction must be truncated at some large
index N . The QNFs are obtained solving this equation numer-
ically.

In Table 1 we show the QNFs for μ = 0.1, rh = 1, and
q = 0.1. The results show the splitting of the spectrum of
the QNFs due to the Zeeman effect which increases with the
magnetic field, and in Fig. 5 we plot the different branches.
Note that form = −1 (red line), the real oscillation frequency
increases, and the damping rate decreases when the magnetic
field increases, whereas for m = 1 (green line), the real
oscillation frequency decreases very slightly and then begins
to grow, and the damping rate increases and then decreases
when the magnetic field increases. On the other hand, for
m = 0, we recover the QNFs of Schwarzschild [66], because
the effective mass reduces to the mass of the scalar field.

5 Quasibound states

In this section we investigate the behavior of the QBS of
massive scalar fields around the Ernst black hole using the
CFM. The computations of QBS and QNMs are very similar;
however, the boundary conditions are different. For the QBS,
we must consider ingoing waves at the event horizon and
evanescent waves at spatial infinity. In Fig. 6, we show the
effective potential for rh = 2, μ = 0.4, B = 0.1, q = 0.1,
and different values of � and m. Note that for some values of
the parameters, the effective potential allows potential wells,
and therefore QBS eventually can appear. Ta

bl
e
1

Fu
nd

am
en

ta
lQ

N
Fs

fo
r
μ

=
0.

1,
r h

=
1,
q

=
0.

1,
an

d
di

ff
er

en
tv

al
ue

s
of

th
e

an
gu

la
r

nu
m

be
r

an
d
B

�
m

B
=

0
B

=
0.

02
B

=
0.

05
B

=
0.

1
B

=
0.

15

0
0

0.
22

19
89

57
−

0.
20

56
91

64
i

0.
22

19
89

57
−

0.
20

56
91

64
i

0.
22

19
89

57
−

0.
20

56
91

64
i

0.
22

19
89

57
−

0.
20

56
91

64
i

0.
22

19
89

57
−

0.
20

56
91

64
i

1
−1

0.
58

81
08

63
−

0.
19

39
75

96
i

0.
58

93
61

99
−

0.
19

32
21

16
i

0.
59

25
88

18
−

0.
19

12
73

11
i

0.
60

15
73

96
−

0.
18

58
06

27
i

0.
61

51
16

16
−

0.
17

74
44

51
i

0
0.

58
81

08
63

−
0.

19
39

75
96

i
0.

58
81

08
63

−
0.

19
39

75
96

i
0.

58
81

08
63

−
0.

19
39

75
96

i
0.

58
81

08
63

−
0.

19
39

75
96

i
0.

58
81

08
63

−
0.

19
39

75
96

i

1
0.

58
81

08
63

−
0.

19
39

75
96

i
0.

58
75

71
70

−
0.

19
42

98
97

i
0.

58
81

08
63

−
0.

19
39

75
96

i
0.

59
25

88
18

−
0.

19
12

73
11

i
0.

60
15

73
96

−
0.

18
58

06
27

i

2
−2

0.
96

88
66

35
−

0.
19

29
76

45
i

0.
97

11
41

10
−

0.
19

21
96

10
i

0.
97

83
56

71
−

0.
18

97
15

83
i

1.
00

06
27

86
−

0.
18

20
10

05
i

1.
03

59
96

88
−

0.
16

95
97

07
i

−1
0.

96
88

66
35

−
0.

19
29

76
45

i
0.

96
97

50
76

−
0.

19
26

73
14

i
0.

97
20

26
23

−
0.

19
18

92
26

i
0.

97
83

56
71

−
0.

18
97

15
83

i
0.

98
78

79
50

−
0.

18
64

30
54

i

0
0.

96
88

66
35

−
0.

19
29

76
45

i
0.

96
88

66
35

−
0.

19
29

76
45

i
0.

96
88

66
35

−
0.

19
29

76
45

i
0.

96
88

66
35

−
0.

19
29

76
45

i
0.

96
88

66
35

−
0.

19
29

76
45

i

1
0.

96
88

66
35

−
0.

19
29

76
45

i
0.

96
84

87
40

−
0.

19
31

06
37

i
0.

96
88

66
35

−
0.

19
29

76
45

i
0.

97
20

26
23

−
0.

19
18

92
26

i
0.

97
83

56
71

−
0.

18
97

15
83

i

2
0.

96
88

66
35

−
0.

19
29

76
45

i
0.

96
86

13
71

−
0.

19
30

63
07

i
0.

97
20

26
23

−
0.

19
18

92
26

i
0.

98
78

79
50

−
0.

18
64

30
54

i
1.

01
66

47
35

−
0.

17
64

16
42

i

123



Eur. Phys. J. C (2023) 83 :75 Page 7 of 12 75

Fig. 5 Real and imaginary parts of fundamental QNFs as a function of B for μ = 0.1, rh = 1, and q = 0.1 using the CFM. Black line for
� = m = 0, red line for � = 1 and m = −1, blue line for � = 1 and m = 0, and green line for � = 1 and m = 1

Fig. 6 Effective potential as a function of r for rh = 2, μ = 0.4,
B = 0.1, q = 0.1, and different values of � and m

Now, the boundary conditions are given by

R(r) ≈
{

(r − rh)−iωrh as r → rh
e−	r r−rh(	2−ω2)/2	 as r → ∞ , (26)

where 	 = √
μ2 − ω2 − 2mqB + 4m2B2. So, considering

the following ansatz for the radial function R(r) which incor-
porates the desired boundary conditions,

R(r) = (r − rh)
−iωrh e−	r r−rh (	2−ω2)/2	+iωrh

∞∑
n=0

an

(
r − rh

r

)n

,

(27)

and substituting it in Eq. (6), we obtain a three-term recur-
rence relation for the coefficients

α0a1 + β0a0 = 0,

αnan+1 + βnan + γnan−1 = 0,

where

αn = 4	2(1 + n)(1 + n − 2rhiω),

βn = 2	

(
− 2	(1 + �(� + 1) + 2n(n + 1))

+(1 + 2n)rh(ω + i	)(ω + 3i	) + 2r2
h (iω − 	)3

)
,

γn = (2n	 + rh(	 − iω)2)2. (28)

The recursion coefficients must satisfy the following con-
tinued fraction relation for the convergence of the series

β0 − α0γ1

β1−
α1γ2

β2− · · · αnγn+1

βn+1− · · · = 0, (29)

and the continued fraction must be truncated at some large
index N . The frequencies are obtained solving this equation
numerically.

In Table 2 we show the fundamental frequencies of the
QBS for μ = 0.4, rh = 2, and q = 0.1, and different
values of �, m, and B. The results show the splitting of
the spectrum of the QBS due to the Zeeman effect, which
increases with the magnetic field. In Fig. 7 we plot the dif-
ferent branches. Also, we observe that the effective mass of
the scalar field is slightly larger than the real part of the fre-
quency, and the real part is much larger than the imaginary
part, which are typical characteristics of QBS. The imag-
inary part is negative, and therefore the modes are stable.
Also, note that for m = −1 (red line), the real oscillation fre-
quency increases and the damping rate increases as the mag-
netic field increases, whereas for m = 1 (green line), the real
oscillation frequency decreases very slightly and then begins
to grow, and the damping rate increases and then decreases
when the magnetic field increases. Thus, the real oscillation
frequency behavior is similar between the QNMs and QBS,
whereas for the damping rate, the behavior is the opposite
when the magnetic field is increasing. On the other hand, for
m = 0, we recover the QBS of Schwarzschild [39], because
the effective mass reduces to the mass of the scalar field.
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6 Unstable null geodesics

In this section we investigate whether it is possible to estab-
lish a connection between null geodesics and QNFs in the
eikonal approximation by computing the Lyapunov expo-
nent. Firstly, in order to study the unstable null geodesics
in the equatorial plane (θ = π/2), we use the stan-
dard Lagrangian formalism [67], so that the corresponding
Lagrangian associated with the line element (1) reads

L = 1

2

(
�2

(
f (r)ṫ2 − ṙ2

f (r)

)
− r2

�2 φ̇2
)

. (30)

Therefore, from this Lagrangian the generalized momenta
are

pt = �(r)2 f (r)ṫ = E, (31)

pφ = r2

�(r)2 φ̇ = L , (32)

pr = �(r)2

f (r)
ṙ . (33)

Note that the Lagrangian is independent of both t and φ, so
pt and pφ are two integrals of motion. Also, the Hamiltonian
is given by

2H = 2(pt ṫ − (pr ṙ + pφφ̇) − L

= E2

�2 f (r)
− L2�2

r2 − �2ṙ2

f (r)
= 0. (34)

Thus, from the above equation we have

Vr (r) = E2

�4 − f (r)L2

r2 , (35)

where we have used Vr = ṙ2. Now, in order to obtain the
circular geodesics, two conditions must be satisfied, namely
Vr (rc) = V ′

r (rc) = 0, which yields

E2

L2 = f (rc)�(rc)4

r2
c

, (36)

L2 = 4r3
c E

2�′(rc)
�5(rc)(2 f (rc) − rc f ′(rc))

. (37)

As was pointed out in [68,69], the condition for the existence
of two possible radii in the region outside the event horizon
r = 2M is that MB < 0.09468. The inner radius is unstable
and the outer one is stable. In order to obtain the unstable
radius that satisfies

3r3
c B

2 − 5Mr2
c B

2 − rc + 3M = 0, (38)

we consider for convenience the dimensionless units xc =
rc
M and β = BM . Also, we expand the radius of circular
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Fig. 7 Real and imaginary parts of fundamental frequencies of the QBS as a function of B for μ = 0.4, rh = 2, and q = 0.1 using the CFM.
Black line for � = m = 0, red line for � = 1 and m = −1, blue line for � = 1 and m = 0, and green line for � = 1 and m = 1

geodesics in terms of small magnetic field B in the following
form:

rc = r0 + r1β + r2β
2. (39)

Now, by replacing Eq. (39) into (38), we obtain

xc = 3 + 36B2M2. (40)

Note a small correction to the Schwarzschild radius of cir-
cular geodesics due to the magnetic field. The unstable
circular geodesics possess a larger radius than that of the
Schwarzschild xc = 3.

On the other hand, it is known that the relation between
QNMs and unstable circular null geodesics in the eikonal
limit can be established for some spacetimes. For that we will
use the WKB method because it gives the correct approxi-
mation of QNMs in the eikonal limit. Here, the central wave
equation is given by (7), and the effective potential in the
eikonal limit � → ∞ takes the form

V (r) ≈ f (r)

(
�2

2r2 + 4m2B2
)

, (41)

where the magnetic terms will be always small in comparison
with the centrifuge terms. Then the obtained effect is a small
correction to the Schwarzschild metric. The maximum value
of the potential is found at r0 = 3M+ 36B2m2M3

�2 . The QNMs
lead to the following form:

Q0(r0)√
2Q′′

0(r0)

= i

(
n + 1

2

)
, (42)

where Q0 = ω2 − V (r), Q′′
0 ≡ d2Q0

dr2∗
. Following Ref. [43],

where the authors showed that angular velocity 	c at the

unstable null geodesic and the Lyapunov exponent λ, deter-
mining the instability timescale of the orbit, agree with ana-
lytic WKB approximations for QNMs,

ωQNM = �	c − i

(
n + 1

2

)
|λ|, (43)

where 	c = �2(rc)
√

f (rc)
r2
c

, λ = �(rc)√
2

√
f (rc)r2

c V
′′
r (rc)

L2 , and

V ′′
r (rc) = L2

r2
c

(
−6

f (rc)

r2
c

+ 4
f ′(rc)
rc

− f ′′(rc) − 4 f (rc)
�′′(rc)
�(rc)

)
. (44)

Thus, by using Eq. (43), we obtain

ωQNM = �(1 + B2r2
c )2

√
rc − 2M

r3
c

− i

(
n + 1

2

)
1 + B2r2

c

r2
c

× (
(rc − 2M)(3(rc − 4M) − 4r2

c B
2(rc − 2M))

) 1
2 .

(45)

Clearly, the QNMs in the eikonal limit are modified by the
presence of the magnetic field B. Note that the above equation
for m = ±�, rc = 3M + 36B2M3, can be written as

ωQNM = �

(
1

3
√

3M
+ 6MB2

√
3

)

− i

(
n + 1

2

) (
1

3
√

3M
− 5√

3
MB2

)
, (46)

which matches with Eq. (18) for the same parameters. In this
way, at the equatorial plane, and withm = ±�, there is a con-
nection between the null geodesics and QNMs in the eikonal
limit. The reason for this is that the position of the maximum
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of the potential given by (14) converges to the radius of circu-
lar geodesics whenm = ±� in the eikonal limit. It is possible
to think about the coincidence from another point of view; it
is well known that in classical mechanics, a particle orbiting
on the equatorial plane and immersed in a uniform magnetic
field perpendicular to that plane will have an orbital angular
momentum L = Lz . Now, if we want to recover the classi-
cal situation from quantum mechanics, we should first recall
that the orbital angular momentum vector is quantized, its
magnitude is given by L2 = �(� + 1)h̄2, and the projection
along the z-axis is Lz = mh̄; therefore, in the particular case
when m = � or m = −�, and taking the limit � → ∞, it is
possible to recover the classical setting. It is worth noting that
for B = 0, the Schwarzschild QNMs in the optic geometric
limit are recovered [43].

7 Final remarks

In this work, we studied the propagation of charged massive
scalar fields in the background of four-dimensional Ernst
black holes. Then, by using the WKB method, we showed
that there is a critical scalar field mass, i.e., for a scalar field
mass less than a critical mass, the decay rate of the QNMs
decreases when the harmonic angular number � increases,
and for a scalar field mass greater than the critical mass, the
behavior is inverted, i.e., the longest-lived modes are always
the ones with lowest angular number recovering the stan-
dard behavior. Additionally, we showed that there is a crit-
ical external magnetic field that exhibits the same behavior
with respect to the angular harmonic numbers, as well as a
critical scalar field charge. On the other hand, concerning
the QNFs, for small values of �, we showed that for nega-
tive values of m, the real oscillation frequency increases and
the damping rate decreases as the magnetic field increases,
whereas for positive values of m, the real oscillation fre-
quency decreases very slightly and then begins to grow, and
the damping rate increases and then decreases when the mag-
netic field increases.

On the other hand, we have shown that the spacetime
allows stable quasibound states, which the spectrum splits
into 2�+1 branches, and the separation between the branches
increases with the magnetic field, which is the analogous
to the splitting of the energy levels of an atom in an exter-
nal magnetic field, the well-known Zeeman effect. For the
QBS, and negative values ofm, the real oscillation frequency
increases and the damping rate increases as the magnetic
field increases, whereas for positive values of m, the real
oscillation frequency decreases very slightly and then begins
to grow, and the damping rate increases and then decreases
when the magnetic field increases. Thus, the real oscillation
frequency behavior is similar between the QNMs and QBS,
whereas for the damping rate, the behavior is opposite when

the magnetic field is increasing. Finally, we have shown that
the unstable null geodesic in the equatorial plane is connected
with the QNMs for m = ±� when � → ∞.
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