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Abstract In this paper, we extend the work on the AdS/QCD
model to quadratic gravity to gain insight into the influence
of gravity. We obtain an anisotropic black brane solution to
a 5D Einstein–Gauss–Bonnet-two Maxwell-dilaton system.
The background is specified by an arbitrary exponent, a dila-
ton field, a time component of the first Maxwell field, and a
magnetic component of the second Maxwell field. The sys-
tem in three cases has been investigated and in each case the
effect of the parameter of theory, the anisotropic parameter
has been considered. The blackening function supports the
thermodynamical phase transition between small/large and
AdS/large black brane for a suitable chemical potential and
other parameters.

1 Introduction

Quantum chromodynamics (QCD) is a non-abelian gauge
theory that describes the strong interaction between quarks
and gluons. QCD at low temperatures exhibits confinement
whereas at high temperature undergoes a phase transition to
a chiral symmetry. The investigation and understanding of
the phase diagram of QCD and the search for new phases
of matter are of attracting attention in the theoretical and
experimental communities. The gauge/gravity duality pro-
vided another way to further understand the dynamics of the
strong-couple system, where standard methods do not work
[1,2]. The quark-gluon plasma (QGP) is one such system cre-
ated in a short time in heavy ion collisions, it is believed to be
anisotropic during this time [3,4]. Therefore, various prop-
erties of QCD have been investigated in an anisotropic back-
ground [5]. In [6,7] the confinement-deconfinement phase
transition in the framework of the Einstein-dilaton-Maxwell
theory for the isotropic case has been studied. In [8], the
confinement-deconfinement phase transition in the frame-
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work of 5D Einstein-dilaton two-Maxwell theory with an
anisotropic background has been studied. In [9], the authors
extended the work of [8], by introducing a background mag-
netic field to gain insight into the influence of such field on
QCD observables.

Higher-order gravitational models have recently received
attention [10–14], in part because string theory predicts that
at low energies Einstein’s equations are subject to first-order
corrections [15]. In AdS/CFT context, higher-order gravities
have been used as tools to characterize numerous proper-
ties of strongly coupled conformal field theories [16–18].
From quantum gravity viewpoint, in order to unify quan-
tum mechanics and gravitational interactions, going beyond
the Einstein gravity is necessary [19]. The first correction
of Lovelock gravity to the Einstein-Hilbert action appears in
five and higher dimensions and is given by a precise combi-
nation of quadratic curvature terms yields the second-order
field equations known as the Gauss-Bonnet density [20–22].
Cosmological models, including in the inflation, and in the
framework of Brane cosmology have been well studied in
this theory [23]. Black hole solutions of the theory have been
studied in [24–27]. The thermodynamics of black holes has
also been studied in the framework of this theory [28]. The
Gauss-Bonnet term in 4D gives a non-zero contribution to the
field equations in the presence of the dilatonic scalar field φ

[29–31]. In this paper, we extend the work of [8] to the Ein-
stein Quadratic Gravity, which is general relativity extended
by quadratic curvature invariants in the action to find the
effect of higher derivative terms on QCD.

The paper is organized as follows. In Sect. 2 we con-
struct the anisotropic 5-dimensional solution with an arbi-
trary dynamical exponent, an exponential quadratic warp
function, a non-zero time component of the first Maxwell
field and a non-zero magnetic component of the second
Maxwell field in the framework of EGB gravity. In Sect. 2.1
first we consider zero warp function and obtain the exact
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solution for blackening function and other unknown quan-
tities. We have shown the behavior of the quantities with
plots and we discuss the thermodynamics of the constructed
background. In Sect. 2.2, we consider exponential quadratic
warp function and zero chemical potential and solved the dif-
ferential equations approximatly and show that for negative
exponential warp function the dilaton field is real. Then, we
discuss the thermodynamics of the constructed background
and find out the small/large phase transition. In Sect. 2.3 we
consider the non-zero warp function and non-zero chemi-
cal potential and obtained the approximatly solution for the
unknown functions. In this case we study the thermody-
namics of the black brane and find out the small/large and
AdS/large phase transitions. We finish the paper with some
concluding remarks in Sect. 3.

2 Basic formalism

We consider a 5-dimensional Einstein-quadratic-dilaton-
two-Maxwell system. The action of the system in the Einstein
frame is specified as [8]

S = 1

16πG5

∫
d5x

√−gL , (1)

where the Lagrangian is

L = R + γ Rabcd R
abcd + βRabR

ab + αR2 − 1

4
f1(φ)F2

(1)

−1

4
f2(φ)F2

(2) − 1

2
∂μφ∂μφ − V (φ), (2)

and F2
(i) = FμνFμν , φ is the dilaton field, f1(φ) and f2(φ)

are the gauge functions representing the coupling between
the two U (1) gauge fields on one hand and the dilaton on
the other hand. V (φ) is the potential of the dilaton field, and
G5 is the Newton constant in five dimensions. (α, β, γ ) are
coupling constants of theory. We use the metric ansatz gμν ,
dilaton field φ and field strength tensor Fμν

(i) in the following
form:

ds2 = l2b(z)

z2

(
−g(z)dt2 + dz2

g(z)
+ dx2 + P(z)(dy2

1 + dy2
2 )

)
,

(3)

with

A(1)
μ = At (z)δ

0
μ, F(2) = qdy1 ∧ dy2, φ = φ(z), (4)

where b(z) is the warp function, g(z) is the metric function
and l is the AdS length scale. z = 0 corresponds to the
boundary of the 5d spacetime. The first gauge field (F (1))
is the electric part of the Maxwell tensor which causes the

black hole to become electrically charged. In relation (11), we
relate the charge of the black hole to the chemical potential
of the dual quantum field system. The second gauge field
(F (2)) is the magnetic part of the Maxwell tensor on a plane
y1y2 and causes the anisotropy of the metric spatial part. The
variation of the action (1) over metric gμν , the scalar field φ

and At gives the field equations as follows

Eμν = Gμν + α

[
2R(Rμν − 1

4
gμν R) + 2(gμν� − ∇μ∇ν)R

]

+β

[
(gμν� − ∇μ∇ν)R + �Gμν + 2Rλρ(Rμλνρ

−1

4
gμν Rλρ)

]
+ γ

[
− 1

2
gμν Rαβγ ηR

αβγ η + 2Rμλρσ Rν
λρσ

+4Rμλνρ R
λρ − 4Rμσ R

σ
ν + 4�Rμν − 2∇μ∇ν R

]

= 1

2
f(i)

(
F (i)

μρ F
(i)ρ
ν − 1

4
gμνF

2(i)
)

+1

2

(
∂μφ∂νφ − 1

2
gμν(∂φ)2 − gμνV

)
,

∇2φ = ∂V

∂φ
+ 1

4

∂ f(i)
∂φ

(F2(i)),

∇μ

(
f(i)F

μν(i)
)

= 0, (i = 1, 2) (5)

where Gμν is the Einstien tensor. Using the ansatz of the
metric, the Maxwell fields and the dilaton field (5), it is easy to
obtain the equations of motion for the background fields. The
explicit components of the field equation are large and bulky
and we have not included them here. The field equations for
φ and At are given by:

− P2z4 f ′
1h

′2 + q2z4 d f2
dφ

+ 2b2l4P2 dV

dφ

− 3l2P2gz2φ′b′ − 2l2bP2z2gφ′′ + 6l2zbP2gφ′

− 2l2z2bP2φ′g′ = 0, (6)

f1A
′
t b

′zP − 2 f1A
′
t bP + 2 f1bP A′′

t z + 2bPz f ′
1A

′
t = 0,

(7)

where prime is differential with respect to z. One can check
that the equation of motion for the second Maxwell field will
not give any additional equation. To find the solution for the
field equations, we assume [8]

b(z) = e− cz2
2 , f1 = z−2+ 2

ν , P(z) = z2− 2
ν , (8)

where ν is a parameter that specified the anisotropic back-
grounds. To solve the background, we also impose the bound-
ary conditions in the form

b(0) = 1, g(0) = 1, g(zh) = 0, At (0) = μ,

At (zh) = 0 (9)
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where zh is the horizon and μ is the chemical potential of the
boundary theory. The boundary conditions are used to fix the
integration constants. Now, we are going to solve the field
equations. First, by solving the differential Eq. (7), one can
get

At (z) = c1 + c2e
cz2

4 , (10)

where

c1 = μe
cz2h

4

−1 + e
cz2h

4

, c2 = μ

−1 + e
cz2h

4

. (11)

By inserting solution (10) into the equation Ett , one can
obtain V (φ). Then, by inserting V (φ) into the field equa-
tion Exx , one can obtain f2(φ). By inserting f2(φ) and V (φ)

into Ezz one can obtain φ′. Finally, from equation Ey1y1 , the
differential equation for g(z) obtains as follows

4ν4z4l(4α + β)e− cz2
4 g(z)g′′′′ − 4ν3lz3e− cz2

4

× [(4α + β)(νcz2 − 2ν + 4)g − 2zν(α − γ )g′]g′′′

− 6νzle− cz2
4 [−4l2zν3e− cz2

2 − 4ν2z2g′(20γ − 4α + 4β

+ (10α + 6β + 14γ )ν + cνz2(5β + 3α + 17γ ))

+ νg(c2ν2z4(5β + 24γ ) + 4cνz2(16γ + 2β − 4α + ν(4α + β))

+ ν2(20β + 32α + 48γ ) + 16ν(β + 4γ )

+ 48γ − 32α)]g′′ − νzle− cz2
4 [l2ν2e− cz2

2 (4ν + 6νcz2 + 8)

− g((3β + 12γ + 2α)c3ν3z6 + c2ν2z4(80γ + 16α + 20β

− (19β + 16α + 72γ ) + 4cνz2(3(β + 2α + 2γ )ν2

− ν(12α + 4β + 8γ ) + 12α + 10β + 38γ )

+ 4(ν + 2)(ν2(5β + 8α + 12γ ) + ν(16γ − 8α + 2β)

+ 4β + 12γ + 8α)))]g′ − 4z4ν3l(2γ + β + 2α)e− cz2
4 g′′2 − ν

× z2le− cz2
4 g′2(112α + 32β + 32γ + (128α + 32β + 8cz2(18α

+ 5β + 4γ ))ν + (48α + 20β + 32γ − 16cz2(3α + β + γ )

+ c2z4(40α + 8γ + 11β))ν2) − c2c2
2ν

3le
cz2

4 z
4ν+2

ν = 0. (12)

For generic coupling constant α, β and γ this fourth order
differential equation analytically cannot be solved, therefore
we consider the case where γ = α, β = −4α. In this case,
the theory reduced to Einstien-Gauss-Bonnet gravity (EGB),
and the field Eq. (12), reduced to second order differential
equation for metric function g(z) as follows

−4zl((2 + νcz2)2zνg(z)αe− cz2
4 − zν3l2e− 3cz2

4 )g′′

−4νz2lα(2 + νcz2)2e− cz2
4 g′2

−2zl((2 + νcz2)(z4c2ν2 − 6cz2ν2 + 6νcz2 + 4ν + 8)

×g(z)αe− cz2
4 + 2l2ν2(4 + 2ν + 3νcz2)e− 3cz2

4 )g′

−c2ν3lc2
2z

4ν+2
ν e

cz2
4 = 0. (13)

In the following, we solve the above differential equations in
special cases:

2.1 The case c = 0

In this case the warp function b(z) = 1 and the field equation
for g(z) becomes:

zν(l2ν2−4αg(z))g′′−g′(4ναzg′+(2+ν)(l2ν2−4αg)) = 0,

(14)

one can exactly solve it and obtain analytic solution for g(z)
as

g(z) = 1

4α(1 + ν)
[l2ν2 + l2ν3 −

√
l4ν4 + 2l4ν5 + l4ν6 − 4ν2αc1z

2(1+ν)
ν − 16ναc2 − 8ν2αc2 − 4αc1νz

2(ν+1)
ν − 8αc2],

(15)

and by taking into account the boundary conditions (9), we
get

c1 = −2(ν3l2 + ν2l2 − 2αν − 2α)

νz
2(ν+1)

ν

h

, c2 = ν2l2 − 2α.

(16)

For α � 1, the metric function is given as

g(z) ≈ 1 −
(

z

zh

) 2(ν+1)
ν − 2α

ν2l2

(
z

zh

) 2(ν+1)
ν

×
⎛
⎝1 −

(
z

zh

) 2(ν+1)
ν

⎞
⎠ + O(α2). (17)

The second term is the correction from the Gauss-Bonnet
gravity and in the case of α → 0 the metric function goes to
[8] for Einstein gravity.

The behavior of the metric function is depicted in Fig. 1.
The main feature is that the metric function values decrease
faster for larger α (Fig. 1a). In the isotropic case (ν = 1)
the metric function values are larger than in the anisotropic
ones (ν 	= 1) (Fig. 1b). In this panel by increasing ν the
metric function values decrease faster. Changing the values
of α and ν does not influence the horizon position. In the
following we look at the behavior of Ricci and Kretschmann
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Fig. 1 Plot of g(z) in terms of z for α = 0, 0.5, 1, 1.5, 2 (left), ν = 1, 2, 3, 4, 5, 6 (middle) and zh = 1, 2, 3, 4, 5, 6 (right)

scalar K = Rabcd Rabcd of the black brane. The Ricci scalar
is given as follows

R = 1

2αν2l2
(

(ν2l2 − 4α)2z
2ν+2

ν

h + 8α(ν2l2 − 2α)z
2ν+2

ν

) 3
2

×
[

− l2ν2(4ν + 3(ν2 + 1))

×
(

(ν2l2 − 4α)2z
2ν+2

ν

h + 8α(ν2l2 − 2α)z
2ν+2

ν

) 3
2

× (3(ν2 + 1) + 4ν)(ν2l2 − 4α)4z
3ν+3

ν

h

+ 4(ν2l2 − 2α)((ν2l2 − 4α)2(9ν2 + 11ν + 10)(zhz
2)

ν+1
ν

+ 8α(ν2l2 − 2α)(2ν2

+ ν + 3)z
−ν−1

ν

h z
4ν+4

ν )

]
. (18)

The scalars are smooth inside the black hole and start to
diverge for z > zh . In larger α it happens earlier for R, while
for K it happens earlier for smaller α.

By inserting (15) in Ett , one can obtain φ as follows:

φ(z) =
−2

√−2K(ν − 1)

(√
H√D arctan

(√
G
F

)
− L√F arctan

(√
G
D

)
− 2

√
DFG(l4ν4 − 8αc2)

)

(ν + 1)l
√GFEν

√
l4ν4 − 8αc2

√
l2ν3 + l2ν2 − √E

+ c3, (19)

by imposing the condition φ(zh) = 0, one can obtain c3 = 0.
The constants K,H, ... are provided in (59). In the case of
α � 1, one can get

φ(z) = 2
√

ν − 1

ν
ln

(
z

zh

)
− 4α

√
ν − 1

l2ν2(ν + 1)

×
[
(ν + 1) ln

(
z

zh

)
+ ν

2

(
1 −

(
z

zh

) 2ν+2
ν

)]
+ O(α2).

(20)

The first term is the contribution of the Einstien term and
the second term is from the Gauss-Bonnet term. In Fig. 3,
the real and imaginary parts of the scalar field in terms of z
for different values of parameters have been shown. As can
be seen the imaginary part of scalar field inside and outside
the black brane has a non-zero value and is unstable. By
increasing ν in 0 < z < zh , the real part and imaginary part
of the scalar field increase and decrease respectively and for
z > zh vice versa (Fig. 3a). In panel b, by increasing the
coupling of theory in 0 < z < zh the real and imaginary
parts decrease and increase respectively, and for z > zh vice
versa.

By inserting (20) into Exx , one can obtain f2 as follows:

f2 = − 2

ν3q2α(ν + 1)Ā 5
2 (ν2l2(ν + 1) −

√
Ā)

× [−6ν(ν − 1)(ν + 1)5αc1C̄(ν4l4 − 8αc2)(νl
2
(

ν − 1

2

)

×
√
Ā − K̄)z

2ν−2
ν − 8α3c3

1C̄ν2(2ν2 − 5ν − 2 + ν3)

× (ν + 1)3z
2+6ν

ν + 2z4ν(ν + 1)4α2c2
1C̄(ν2l2

√
Ā

× (2ν2 + 5 − 5ν) − F̄) + z−
4
ν

[
1

2
(ν2l2(ν + 1)2ĒĀ 3

2 )

+ 1

2
(ν2l2(ν2 − 1)B̄Ā 5

2 ) + νl2(ν − 1)(ν + 1)6

×
(

ν − 1

2

)
C̄
√
Ā(ν4l4 − 8αc2)

2 − ν15l8C̄Ḡ − 5ν14l8C̄Ḡ

− 9ν13l8C̄Ḡ − 5ν12l8C̄Ḡ + 5ν11l4C̄Ḡ(
l4 + 16

5
αc2

)
+ 9ν10l4C̄Ḡ

(
l4 + 80

9
αc2

)
+ 5ν9l4C̄Ḡ

123
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Fig. 2 Plot of Ricci scalar and Kretschmann scalar in terms of z for α = 0.1, 0.2, 0.3, 0.4, 0.5

Fig. 3 Plots of imagenary (solid lines) and real part (dashed lines) of φ in terms of z for ν = 2, 3, 4, 5, 6 (left), for α = 0.1, 0.2, 0.3, 0.4, 0.5
(middle), for zh = 2, 3, 4, 5, 6 (right)

(
l4 + 144

5
αc2

)
+ l4ν8C̄Ḡ(l4 + 80αc2) − 80αν7c2C̄Ḡ

×
(
l4 + 4

5
αc2

)
− 144αc2ν

6C̄Ḡ
(
l4 + 20

9
αc2

)

− 80αν5c2C̄Ḡ
(
l4 + 36

5
αc2

)
− 16αν4c2C̄Ḡ(l4 + 20αc2)

+ 320α2ν3c2
2C̄Ḡ + ν2L̄ + νJ̄ + 1

2
B̄Ā3 + 64α2c2

2C̄Ḡ
]
, (21)

where the constants Ā, B̄... are provided in (60). In the case
of α � 1, one can get

f2 = 4l2(ν2 − 1)z− 4
ν

ν2q2 − 8(ν2 − 1)z4α

q2ν4

(
z

2ν+2
ν − z

2ν+2
ν

h

)2

×
[
−4ν

(
zh
z

) 2ν+2
ν + 3

(
z

zh

) 4ν+4
ν − 6

(
z

zh

) 2ν+2
ν

+ν

(
zh
z

) 4ν+4
ν + (2ν + 3)

]
+ O(α2). (22)

The first terms is the contribution of Einstien gravity and the
second term is related to the Gauss-Bonnet gravity. In Fig. 4,
the behavior of f2 in terms of z are shown. As can be seen,
by increasing α and q, f2 decreases and by increasing ν, f2
increases.

Finally from Ett , one can get V (z) (We did not bring it
here due to its bulk). In the case of α � 1, one can get

V (z) = −2(ν + 1)(2ν + 1)

ν2l2
+ α(

z
2ν+2

ν − z
2ν+2

ν

h

)3

ν4l4
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Fig. 4 Plots of f2 in terms of z for α = 0.1, 0.2, 0.3, 0.4, 0.5 (left), q = 0.1, 0.2, 0.3, 0.4, 0.5 (middle), ν = 1, 2, 3, 4, 5 (right)

×
[

− 4z
4ν+4

ν z
2ν+2

ν

h (−1 − 7ν + 6ν3 + 20ν2)

+8ν(3ν2 + 7ν − 1)z
2ν+2

ν z
4ν+4

ν

h

+(8ν3 + 64ν2 − 36ν − 12)z
6ν+6

ν

+4(ν − 1)(2ν + 1)z
10ν+10

ν z
−4ν−4

ν

h

−4(ν − 1)(8ν + 3)z
8ν+8

ν z
−2ν−2

ν

h − 8ν2(ν + 2)z
6ν+6

ν

h

]

+O(α2). (23)

In Fig. 5, the behavior of scalar potential in terms of z for
anisotropic case has been shown. In the left panel, between
0 < z < zh by increasing α, the potential decreases. In the
right panel, between 0 < z < zh by increasing ν the scalar
potential increases.

2.1.1 Thermodynamics of the background

In this subsection, we explore the thermodynamics of the
black brane solution (15). In order to investigate the ther-
modynamic properties of the black brane we need to obtain
some relevant thermodynamic quantities. The temperature of
the black brane is obtained as follows:

T =
∣∣∣∣ g

′

4π

∣∣∣∣ = ν + 1

2π zhν

(
1 − 2α

ν2l2

)
. (24)

It is noticed that, the temperature monotonically decreases
with the increase of the horizon. By increasing α, the tem-
perature is decreased, and for α = 0, one can get the result
of [8]. The entropy is given as follows [32,33]

S = −1

8

∫
�

dn−2x
√

η
δL

δRμαβν

εμαεβν, (25)

where

δL

δRμαβν

=
(

1

2
+ αR

) (
gμβgαν − gμνgαβ

)

+ 1

2
β

(
Rμβgαν − Rαβgμν − Rμνgαβ + Rανgμβ

)

+ 2γ Rμαβν, (26)

and εμν = −2
√−hδt[μδzν]. For c = 0 we have

s = S

V = l3P(zh)b(zh)
3
2

4z3
h

= l3

4z
ν+2
ν

h

, (27)

which is independent of parameter of the EGB gravity. In
terms of the temperature, the entropy is given as

s = l3

4

(
2πT ν3l2

(ν + 1)(ν2l2 − 2α)

) ν+2
ν

. (28)

For isotropic case s ≈ T 3 and for anisotropic case s ≈ T
ν+1
ν .

The free energy density F(T ) can be calculated from the
entropy density s(T ) by integrating as follows

F =
∫

sdT = ν

2(ν + 1)
T s, (29)

which is related to temperature as F ≈ T
2ν+1

ν . The sound
velocity c2

s which can directly measure the conformality
of the system, can be obtained from the temperature and
entropy:

c2
s = d log T

d log s
= ν

ν + 2
. (30)

For isotropic case (ν = 1), c2
s = 1/3, the system is con-

formal, for anisotropic (ν 	= 1), c2
s 	= 1/3 the system is

non-conformal. The heat capacity is given as

CV = T
ds

dT
= (ν + 2)

ν
s = s

c2
s
. (31)
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Fig. 5 Plots of V in terms of z
for α = 0.1, 0.2, 0.3, 0.4, 0.5
(left), ν = 1, 2, 3, 4, 5 (right)

Fig. 6 Plots of s, F and CV in terms of T for α = 0.1, 0.2, 0.3, 0.4, 0.5 and ν = 4.5 (solid line) and ν = 1 (dashed lines)

In terms of temperature,

CV

T 3 = l3(ν + 2)

4ν

(
2πν3l2

(ν + 1)(ν2l2 − 2α)

) ν+2
ν

T
2−2ν

ν . (32)

For isotropic case, the right hand side of (32) has a constant
value and for ν > 1 depends to the temperature and at high
temperature goes to zero. Since entropy is positive therefore
CV is positive and the black hole is stable. In Fig. 6, the behav-
ior of s, F and CV in terms of T for isotropic (dashed lines)
and anisotropic (solid lines) and different values of α have
been shown. As can be seen, by increasing α, the thermody-
namical quantities s, F , andCV increase. For T < T i

cross , the
entropy, free energy, and heat capacity of anisotropic case is
larger than isotropic, and for T > T i

cross vice versa. Where
i = s, F,CV and T i

cross are given as follows

T s
cross =

[
l4((l2 − 2α)3ν

3(ν+2)
ν π

2(1−ν)
ν 2

ν+2
ν )ν

l4ν((ν + 1)(l2ν2 − 2α))2(ν + 1)(l2ν2 − 2α)ν

] 1
2ν−2

,

(33)

T F
cross =

(
(l2 − 2α)24

ν+1
ν π

2−2ν
ν

ν
−3ν−6

ν + ν
−4ν−6

ν

) ν
2(ν−1)

[(ν + 1)(l2ν2 − 2α)ν+2l4(ν−1)] 1
2ν−2

, (34)

TCV
cross =

[
l4(ν+1)((l2ν2 − 2α)3(ν + 2)ν

2(ν+1)
ν π

2(1−ν)
ν 2

ν+2
ν )ν

3ν(ν + 1)(l2ν2 − 2α)ν+2

] 1
2ν−2

.

(35)

2.2 The case c 	= 0, μ = 0

In this case At = 0 and the differential equation (12),
becomes

4νlz2e− cz2
4 (l2ν2e− cz2

2 − α(2 + νcz2)2g(z))g′′

− 2zle− cz2
4 (ν2l2(4 + (2 + 3z2)ν)

− α(2 + νcz2)(8 + 4ν + 6νcz2 − 6cν2z2 + c2ν2z4)g)g′

− 4ανz2le− cz2
4 (2 + νcz2)2g′2 = 0. (36)
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In order to solve Eq. (36), we assume g(z) as follows

g(z) = 1 + εg1(z) + O(ε2), (37)

by inserting it into the (36), one can achieve a homogeneous
differential equation for g1(z) as

g′′
1 + [−l2ν3(2 + 3cz2) − 4ν2(l2 + 4αcz2) + 4αν(2 + cz2) + 16α]g′

1

νz(l2ν2 − 4α)
= 0.

(38)

Solving (38) give g1(z) as

g1(z) = c1 + c2erf

⎛
⎝1

2

√
c(−6l2ν2 − 32να + 8α)

(l2ν2 − 4α)
z

⎞
⎠ ,

(39)

where c1 and c2 are constants of integration. Using (39), the
metric (37) becomes

g(z) = 1 + c1 + c2erf

⎛
⎝1

2

√
c(−6l2ν2 − 32να + 8α)

(l2ν2 − 4α)
z

⎞
⎠ .

(40)

The conditions (9) give us c1 and c2 as

c1 = 0, c2 = − 1

erf

⎛
⎝1

2

√
c(−6l2ν2 − 32να + 8α)

(l2ν2 − 4α)
zh

⎞
⎠

.

(41)

Finally, using (41) the metric function becomes

g(z) = 1 −
erf

⎛
⎝1

2

√
c(−6l2ν2 − 32να + 8α)

(l2ν2 − 4α)
z

⎞
⎠

erf

⎛
⎝1

2

√
c(−6l2ν2 − 32να + 8α)

(l2ν2 − 4α)
zh

⎞
⎠

. (42)

In the case of α � 1 and c < 0, the blakening function
become

g(z) ≈ 1 −
erf

(√−6cz

2

)

erf

(√−6czh
2

) −
4(2ν + 1)

√−6cα

(
ze

3cz2
2 erf

(√−6czh
2

)
− zherf

(√−6cz

2

)
e

3cz2h
2

)

3
√

πl2ν2erf

(√−6czh
2

)2 + O
(
α2

)
, (43)

and for α � 1 and c > 0, we have

g(z) ≈ 1 − z

zh
e

3c(z2−z2h )

2 − 2αc(2ν + 1)

ν2l2
z(z2 − z2

h)

zh
e

3c(z2−z2h )

2

+O(α2). (44)

Fig. 7 Plots of g(z) in terms of
z for c = 0.5, 0.4, 0.3, 0.2, 0.1
(dashed lines) and
−0.5,−0.4,−0.3,−0.2,−0.1
(solid lines) (left),
ν = 1, 2, 3, 4, 5, 6, c = 0.5 and
c = −0.5 (right)

(a) ν = 4.5, α = 0.1, l = 1, zh = 2 (b) α = 0.1, l = 1, zh = 2
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In Fig. 7, the behavior of g(z) for positive and negative values
of warp function is depicted. As c increases, the metric slope
becomes more decreasing. Also, changing the value of c has
no effect on the value of the horizon. By substituting the
obtained metric (42), we arrive at the differential equation
for the scalar field as:

φ′2 = e
cz2

2

z2l2ν32π(l2ν2 − 4α)erf
(√−2cAzh

2

) [
erf

(√−2cAzh
2

)
− erf

(√−2cAz
2

)]
[

2α
√−2cπAz(2 + νcz2)

×
[
−erf

(√−2cAzh
2

)
+ erf

(√−2cAz

2

)]
e
Acz2

2 (ν2c2z4(5l2ν2 + 32αν − 4α) − 4(ν + 2)(l2ν2 − 4α)

+ 2νcz2(3ν3l2 + 20αν + 3l2ν2 + 4α)) − 8cανz2(2 + νcz2)2(3l2ν2 + 16αν − 4α)eAcz
2

+ 2l2ν2z
√−2cπAerf

(√−2cAzh
2

)
e
cz2ν(νl2+8α)

ν2l2−4α (νcz2(3l2ν2 + 32αν + 4α) − 2(ν + 2)(l2ν2 − 4α))

− π(l2ν2 − 4α)

(
erf

(√−2cAz

2

)
− erf

(√−2cAzh
2

))
(l2νe− cz2

2 erf(

√−2cAzh
2

)(−8 + 8ν + 3ν2c2z4

+ 18ν2cz2) + α(2 + νcz2)

(
erf

(√−2cAz

2

)
− erf

(√−2cAzh
2

))
(−16 + 16ν + 3ν2z6c3 + 2νc2z4

× (1 + 11ν) + 4cz2(6ν2 − 2 + 5ν)))

]
(45)

where

A = 3l2ν2 + 16να − 4α

l2ν2 − 4α
. (46)

In Fig. 8, the behavior of imaginary and real part of φ(z) in
terms of z for different values of parameters has been shown.
As can be seen, the imaginary part of scalar field inside the
black hole is zero and outside the black hole the scalar field
is unstable, and by increasing α instability increase.

In Eq. (47) the exact coupling function f2 and approxi-
matly to first order in α in Eq. (48) has been obtained. In
Fig. 9, f2 for positive/negative c and for different values of
parameters has been plotted. The important feature of the fig-
ures is that for the negative c, f2 goes to the negative values

by increasing z, while it does not become negative anywhere
for the positive c.

f2 = (1 − ν)z− 4
ν

π
3
2 ν3q2(l2ν2 − 4α)erf

(√−2cAzh
2

)2

×
[
π zα

√
Ae

cAz2
2

[
erf

(√−2cAz

2

)
− erf

(√−2cAzh
2

)]

(cz2l2ν4(cz2 − 6) + ν3(32c2z4α

− 2l2(cz2 + 10)) + ν2(−8l2 + α(12c2z4 + 88cz2))

Fig. 8 Plots of real (dashed
lines) and imagenary (solid
lines) part of φ in terms of z for
c = −0.1,−0.2,−0.3,−0.4,
−0.5 (left), α = 0.1, 0.2, 0.3,
0.4, 0.5 (right)
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+ 40αν(cz2 + 2) + 32α) − 4
√

παcz2ν(2 + νcz2)

(3l2ν2 + 16αν − 4α)ecAz
2 + (l2ν2 − 4α)

×
(

− 2l2ν2π z
√−2cAe

cz2ν(l2ν+8α)

l2ν2−4α erf

(√−2cAzh
2

)
+ π

3
2

×
[

erf

(√−2cAz

2

)
− erf

(√−2cAzh
2

)]

× (l2νerf

(√−2cAzh
2

)
e− cz2

2 (3νcz2 + 4ν + 4)

+
[

erf

(√−2cAz

2

)

− erf

(√−2cAzh
2

)]
α(16 + 8cz2 + ν2(z6c3 − 2c2z4)

+ ν(16 + 6c2z4 + 12cz2))

]
, (47)

In the case of α � 1 and c < 0 one can get

f2 ≈
l2(ν − 1)e− cz2

2

[
2
√−6czνe

3cz2
2 − π

1
2
(
4 + 4ν + 3νcz2

) (
erf

(√−6cz
2

)
− erf

(√−6czh
2

))]

ν2q2z
4
ν q2π

1
2 erf

(√−6czh
2

)

− (ν − 1)α

ν4q2π3z
4
ν erf

(√−6czh
2

)2

[
− 12z2π2cν2(2 + νcz2)e3cz2 − 4(2ν + 1)zecz

2
(

4π2cνzhe
3czh

2 + π
5
2

× √−6cerf

(√−6czh
2

) (
νcz2 − 2

3
ν − 4

3

)
+ π

5
2
√−6cνz

)
e

3cz2
2

× (c2z4ν2 − 6cν2z2 − 2νcz2 − 20ν − 8) ×
(

erf

(√−6cz

2

)
− erf

(√−6czh
2

))

− 4(2ν + 1)
√−6cπ

5
2 zh

(
4

3
+ 4

3
ν + νcz2

)
× erf

(√−6cz

2

)
e− cz2

2 e
3cz2

2 + νπ3

(
erf

(√−6cz

2

)
− erf

(√−6czh
2

))2

× (16 + 8cz2 + ν(16 + 16c2z4 + 12cz2) + ν2(z6c3 − 2c2z4))

]
+ O(α2). (48)

From equation Ett we get the expression for the scalar poten-
tial V as a function of z as follows:

V = ecz
2

4ν3l4π
3
2 (l2ν2 − 4α)erf

(√−2cAzh
2

)2

×
[

− 2απ ze
cAz2

2
√−2cA

×
[

erf

(√−2cAz

2

)
− erf

(√−2cAzh
2

)]

×
[
l2z2cν5(5cz2 + 3c2z4 + 6)

+ ν4(−32c2z4α + l2(20cz2 + 20 + c2z4))

+ ν3(4l2 + 10l2cz2 − α(88cz2

+ 4c2z4 + 12c3z6)) − ν2(8l2 + α(80 + 36c2z4 + 48cz2))

− να(8cz2 + 48) + 32α] + ν

[
8cαz2√π(1

− ν)(2 + νcz2)(3l2ν2 + 16αν − 4α)ecAz
2

+ (l2ν2 − 4α)

[
− 2πνzl2

√−2cA(3νcz2 + 4ν + 2)erf

×
(√−2cAzh

2

)
× e

cνz2(l2ν+8α)

l2ν2−4α

+
[

erf

(√−2cAz

2

)
− erf

(√−2cAzh
2

)]

×
[
l2erf

(√−2cAzh
2

)
e− cz2

2 (8 + ν2(9c2z4 + 12cz2 + 16)

+ ν(6cz2 + 8)) + (2 + cz2)α

×
[

erf

(√−2cAz

2

)
− erf

(√−2cAzh
2

)]

× (ν2(3z6c3 − 2c2z4) + ν(20cz2 + 16

+ 14c2z4 + 32 + 16cz2))

]]]]
. (49)

Regardless of the sign of c, V (z) is negative under the hori-
zon. In panel a, with the increase of |c|, |V | decreases. In
panel b, as α increases, |V | increases.
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Fig. 9 Plots of f2(z) in terms of z for c = 0.1, 0.2, 0.3, 0.4, 0.5 (solid lines) and c = −0.1,−0.2,−0.3,−0.4,−0.5 (dashed lines) (left),
ν = 2, 3, 4, 5, c = 0.5 (solid lines) and c = −0.5 (dahsed lines) (middle), α = 0.1, 0.2, 0.3, 0.4, 0.5, c = 0.5 (solid lines) and c = −0.5 (dashed
lines) (right)

Fig. 10 Plots of V (z) in terms
of z for
c = 0.1, 0.2, 0.3, 0.4, 0.5
(dashed lines) and c =
−0.1,−0.2,−0.3,−0.4,−0.5
(solid lines) (left),
α = 0.1, 0.2, 0.3, 0.4, 0.5,
c = 0.5 (dashed lines) and
c = −0.5 (solid lines) (right)

2.2.1 Thermodynamics of background

The Hawking temperature can be obtained by using the sur-
face gravity interpretation

T = κ

2π
=

∣∣∣∣ g
′

4π

∣∣∣∣ = e
cAz2h

2
√−2cA

4π
3
2 erf

( zh
2

√−2cA
) , (50)

where A provided in (46). In the case of small α and c < 0,
one can get

T ≈
√−6ce

3cz2h
2

4π
3
2 erf

(√−6czh
2

) +
(2ν + 1)e

3cz2h
2 α

[
π

√−6c(cz2
h + 1

3 )erf
(√−6czh

2

)
− 2

√
πczhe

3cz2h
2

]

π
5
2 l2ν2erf

(√−6czh
2

)2 + O
(
α2

)
. (51)

The behavior of temperature is shown in Fig. 11. In Fig. 11a,
the variation of temperature with respect to the horizon radius
zh for different values of the coupling of theoryα is shown. As
can be seen there exists a minimum temperature Tmin below
which no black hole solution exist (thermal gas). However,
for T > Tmin , there are two black hole solutions, a large
and a small one (deconfined quark gluon plasma phase). The
small black hole phase for which T increases with zh whereas
the large black hole phase for which T decreases with zh .
In Fig. 11b, to study the stability of the solutions, we have
shown the behavior of heat capacity CV and temperature. As
can be seen the large black hole has positive heat capacity
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Fig. 11 Plots of T in terms of
zh for α = 0.1, 0.2, 0.3, 0.4, 0.5
and ν = 4.5 (left). Plots of CV
and T in terms of zh for
α = 0.1, 0.2, 0.3, 0.4, 0.5
(right)

Fig. 12 Plots of scaled entropy density s/T 3 (left), c2
s (middle)

and CV /T 3 (right) in terms of scaled temperature T/Tmin for
ν = 1, Tmin = 0.19457 (dashed lines), ν = 4.5, Tmin =

0.1357 (solid lines). In each panel red lines correspond to the large
stable solution and blue lines correspond to unstable small solution

and therefore is stable and small black hole is unstable and
thus not physical.

Following the standard Bekenstein-Hawking formula
(27), one can easily read the black hole entropy density s,
which is defined as

s = l3e− 3cz2h
4

4z
ν+1
ν

h

. (52)

The scaled entropy density s/T 3 as a function of scaled tem-
perature T/Tmin is shown in Fig. 12a. The red lines corre-
spond to the large stable solution and blue lines are for the
small unstable solution. The numerical result of the square
of the sound velocity is shown in 12b. At Tmin , the sound
velocity square is around 0 which is in agreement with lat-
tice data 0.05. At high temperature, the sound velocity square
goes to 0.45 for ν = 1, which means that the system is
approximatly asymptotically conformal, while for ν = 4.5,

the sound velocity square goes to 0.8. The numerical result
of the specific heat is shown in Fig. 12c. It can be clearly seen
that the specific heat CV diverges at Tmin . At T → ∞, the
scaled specific heat CV /T 3 approaches to the zero for this
approximate solution [34].

In Fig. 13, the behavior of c2
s and CV have been shown.

As can be seen from the figure and obtained the result in the
previous section, it can be concluded that the heat capacity
has an inverse relationship with the speed of sound.

2.3 The case c 	= 0, μ 	= 0

In this case the differential equation (12), becomes

4νlz2e− cz2
4 (l2ν2e− cz2

2 − α(2 + νcz2)2g(z))g′′

− 2zle− cz2
4 (ν2l2(4 + (2 + 3z2)ν)−

α(2 + νcz2)(8 + 4ν + 6νcz2 − 6cν2z2 + c2ν2z4)g)g′
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Fig. 13 Plots of c2
s (red lines) and CV (blue lines) in terms of zh for

ν = 1 (dashed lines), 4.5 (solid lines)

− 4ανz2le− cz2
4 (2 + νcz2)2g′2

− c2ν3lc2
2z

4ν+2
ν e

cz2
4 = 0 (53)

in order to solve the above differential equation, we assume

g(z) = 1 + εg1(z) + O(ε2), (54)

by inserting it, one can achieve a non-homogeneous differ-
ential equation as

g′′
1 + [−l2ν3(2 + 3cz2) − 4ν2(l2 + 4αcz2) + 4αν(2 + cz2) + 16α]g′

1

νz(l2ν2 − 4α)
+ cνc2

2z
2
ν e

cz2
2

4α(4 + cνz2)
= 0. (55)

In order to solve the non-homogeneous differential equation
(55) in the case of c < 0, c2 	= 0, we consider the following
particular solution:

g2(z) = e
cz2

2 z−
2(ν−1)

ν

∑
i

hi z
i , (56)

where hi are coefficients of expansions. By inserting the
above solution into the differential equation (55), and solving
order by order for coefficients, one can get

h0 = h1 = h3 = h5 = 0,

h2 = c2
2ν2

8α(ν − 2)
,

h4 = − cν3c2
2(−20αν + l2ν3 + l2ν2 − 12α)

16α(ν − 2)(ν4l2 + 3l2ν3 − 4αν2 + 2l2ν2 − 12αν − 8α)
,

h6 = ν4c2c2
2

32α(2 + 3ν)(l2ν2 − 4α)2(1 + 2ν)(1 + ν)(ν2 − 4)

(3l4ν6 + 6l5ν5 − 40ν4l2α + 3ν4l4 + 256α2ν3

− 56ν3l2α + 624ν2α2 − 24ν2l2α + 448α2ν + 112α2),

(57)

where c2 used from (11). Therefore, the metric function by
considering a particular solution becomes

g(z) = 1 −
erf

⎛
⎝1

2

√
c(−6l2ν2 − 32να + 8α)

(l2ν2 − 4α)
z

⎞
⎠

erf

⎛
⎝1

2

√
c(−6l2ν2 − 32να + 8α)

(l2ν2 − 4α)
zh

⎞
⎠

+e
cz2

2 z−
2(ν−1)

ν

∑
i

hi z
i , (58)

with hi are provided in (57). In Fig. 14, the effect of μ on the
behavior of f2 and V have been shown. As can be seen in
left panel by increasing chemical potential, f2 decreases and
in right panel V increases.

In Fig. 15a, the behavior of entropy is shown in terms
of temperature. The figure shows the minimum and maxi-
mum temperature. As μ increases, the minimum tempera-
ture decreases. This plot also shows that for 0 < μ < μc,
there are minimal Tmin and maximal Tmax temperatures,
between which the entropy is a function of T with three
branches. When we decrease the temperature, the entropy
decreases along the first branch (Tmin < T < ∞). Then the
entropy decreases along the second branch with an increase
of temperature from Tmin to Tmax , i.e. here the black holes

are unstable. Finally the entropy increases along the third
branch with an increase of temperature for 0 < T < Tmax .
Such a behavior in terms of event horizon, one can see in
the Fig. 15b and c. In each panel, the critical point has been
shown in red color curve. Upon varying the Hawking tem-
perature, a phase transition from the large black hole phase
to the thermal AdS phase takes place at a critical temper-
ature Tc = 0.1242. This is the famous black hole-thermal
AdS Hawking-Page phase transition which occurs in the
presence of chemical potential μc = 0.22728. In Fig. 16
by using the approximate analysis, the phase diagram of the
holographic QCD model for anisotropic background and for
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Fig. 14 Plots of f2 and V in
terms of z for
μ = 0, 0.05, 0.1, 0.15, 0.2, 0.25

Fig. 15 Plots of s, T and CV in terms of zh for μ = 0.1, 0.15, 0.2, 0.22728, 0.3 (left) and μ = 0.2, 0.22728, 0.3 (middle and right)

Einstien gravity (long dashed line), Einstien-Gauss-Bonnet
gravity (solid line) has been shown. As one can see at μ = 0
the system undergoes a black hole to thermal gas first order
phase transition so that T (EGB)(μ = 0) > T (E)(μ = 0).
For 0 < μ < μc (in the transition lines), the system under-
goes a large black hole to a small black hole first-order phase
transition. For 0 < μ < μI , the temperature of the black
hole to black hole transition of Einstien gravity (T (E)(μ))
is less than Einstien-Gauss-Bonnet gravity (T (EGB)(μ)) and
for μI < μ < μc vice versa. The first order phase tran-
sition stops at the critical point (μc, Tc), where the phase
transition becomes second order, herewith T (EGB)

c < T (E)
c ,

μ
(EGB)
c < μ

(E)
c . For μ > μc, the system has a sharp but

smooth crossover. These thermal AdS and black hole phases
in the usual language of gauge-gravity duality are dual to the
confinement and deconfinement phases in the dual boundary
theory.

3 Conclusion

In this work, we extended the AdS/QCD model to quadratic
gravity to gain insight into the influence of gravity on QCD.
To do so, we considered an anisotropic black hole metric as a
solution to a system of 5D Einstein-quadratic-two Maxwell-
dilaton fields. The anisotropic background is specified by an
arbitrary exponent, a non-zero dilaton field, a non-zero time
component of the first Maxwell field, and a non-zero lon-
gitudinal magnetic component of the second Maxwell field.
The field equations for the considered theory are coupled
and bulky differential equations for six unknown functions.
Therefore, obtaining the solution to such field equations is
too hard, this is why we considered the special case of field
equation, i.e. γ = α, β = −4α (Einstien-Gauss-Bonnet
gravity). The differential equation for the metric function
in EGB gravity is a nonlinear second-order equation that has
been solved in special cases. At the first, we obtained the
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Fig. 16 The phase diagram in T and μ plane for anisotropic back-
ground. At small μ, the system undergoes a first order phase transition
at finite T . The first order phase transition stops at the critical point
(μc, Tc) ∼ (0.22728, 0.1242), where the phase transition becomes sec-
ond order. The solid line is for α = 0.1 and long dashed line is for α = 0

exact solutions for the differential equations with zero warp
functions. In this case, it doesn’t occur any thermodynamical
phase transitions to the black brane. The second case that we
have considered is the case with zero chemical potential. The
blackening function in this case supports the Van der Waals-
like phase transition between small and large black holes for
suitable values of parameters. The third case that has been
considered is nonzero warp function and chemical potential.
In this case, in addition to the small/large phase transition,
the blackening function supported the phase transition from
the large black hole phase to the thermal AdS phase at a criti-
cal temperature. Holographically, this phase transition corre-
sponds to the confinement-deconfinement phase transition in
QCD. In each case, we investigated the anisotropy influence
and the effect of parameters of theory on the thermodynamic
properties of our background, in particular, on the small/large
black holes phase transition diagram. In Fig. 16, the effect
of the Gauss-Bonnet term on the phase transition has been
shown. This figure shows that before/after the intersection
point for constant chemical potential, the temperature of a
black hole in EGB gravity is more/less than that of Einstien
gravity. Clearly, before the intersection point, α has a dom-
inant impact on the temperature (compared to the effect of
μ on the temperature). In the isotropic case corresponding
to ν = 1 (zero magnetic fields) and , α → 0 reproduces
previously known results [8].

For future work, one can consider the Weyl-squared term
by using the combination γ = 6α and β = −4/3γ for the
parameters of the theory. But since in this case, the field equa-
tion for the metric has a 4th-order derivative, the differential
equations should be solved numerically. Also, following the
paper [9], one can study the effect of the magnetic field on
the system in the framework of EGB.
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Constants

The constants related to Eq. (19):

E = (ν + 1)((ν + 1)(ν4l4 − 8αc2) − 4ανc1z
2ν+2

ν ),

D = νl2 − ν2l2 −
√

ν4l4 − 8αc2,

F = νl2 − ν2l2 +
√

ν4l4 − 8αc2,

G = ν3l2 − νl2 − √E
ν + 1

,

H = −l2ν(ν − 1)
√

ν4l4 − 8αc2 + ν4l4 − 8αc2,

K = −l2ν

(
ν − 1

2

) √
E − 2αc1νz

2ν+2
ν + (ν + 1)

×
(

ν4l4 − 4αc2 − l4ν3

2

)
,

L = l2ν(ν − 1)
√

ν4l4 − 8αc2 + ν4l4 − 8αc2. (59)

The constants related to equation(21):

Ā = (ν + 1)(−4αc1νz
2ν+2

ν + (ν + 1)(ν4l4 − 8αc2)),

B̄ = −4αν2c1z
2ν+2

ν + (ν + 1)

(
ν + 3

2

)
(ν4l4 − 8αc2),
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C̄ = −4ανc1z
2ν+2

ν + (ν + 1)(ν4l4 − 8αc2),

Ē = −4c2
1α

2ν2(3ν3 − 4ν2 + 3ν + 2)z
2(2ν+2)

ν

+ 2c1να(ν2 − 1)(ν4l4 + 2l4ν3 − 16ανc2 − 8αc2)z
2ν+2

ν

+ (ν − 1)(ν + 1)2(ν4l4 − 8αc2)(
4αc2 + ν5l5 − l4ν3 − ν4l4

2

)
,

F̄ = ν7l4 − 7

2
ν6l4 + 2ν5l4 + 5

2
ν4l4 + 4ν3αc2

+ 24αν2c2 − 36ανc2 − 8αc2,

H̄ = 4c2
1α

2(5ν + 2 − 2ν2 + ν3)z
2(2ν+2)

ν

− 4c1α(ν2 − 1)(l4ν3 − 8ανc2 + 4αc2)z
2ν+2

ν

− (ν + 1)2(ν − 1)ν2l4
(

ν2 − 1

2
ν − 1

)
(ν4l4 − 8αc2),

Ḡ = ν5l4 + 2αc2 + 1

2
ν4l4 − 1

2
ν3l4,

K̄ = ν5l4 + 1

3
ν4l4 − 1

2
l4ν3 + 4αc2,

L̄ = 576α2c2
2ḠC̄ + 1

2
Ā2H̄,

J̄ = 320α2c2
2ḠC̄ − 1

2
(Ā2(ĀB̄ − H̄)). (60)
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