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Abstract The Rényi entropy comprises a group of data
estimates that sums up the well-known Shannon entropy,
acquiring a considerable lot of its properties. It appears as
unqualified and restrictive entropy, relative entropy, or com-
mon data, and has found numerous applications in infor-
mation theory. In the Rényi’s argument, the area law of the
black hole entropy plays a significant role. However, the total
entropy can be modified by some quantum effects, motivated
by the randomness of a system. In this note, by employ-
ing this modified entropy relation, we have derived correc-
tions to Friedmann equations. Taking this entropy associ-
ated with the apparent horizon of the Friedmann–Robertson–
Walker Universe and assuming the first law of thermodynam-
ics, dE = TAdSA + WdV , satisfies the apparent horizon,
we have reconsidered expanding Universe. Also, the second
thermodynamics law has been examined.

1 Introduction

According to Einstein’s viewpoint, gravity is just the space-
time curvature effects and is regarded as an emergent phe-
nomenon that depicts the dynamics of space-time. After him,
many attempts have been done to uncover the nature of the
gravity field. One of the greatest steps in this direction was
forwarded by Jacobson who by studying the thermodynamics
of space-time and combining Clausius relation δQ = T δS
with the entropy expression illustrated explicitly that Ein-
stein’s field equation in general relativity is just an equa-
tion of state for the space-time [1]. It demonstrates that the
Einstein field equations are the first law of thermodynam-
ics for space-time. Following his investigations, a ton of
studies have been done to reveal the profound association
between gravity field and thermodynamics [2–6]. The con-
siderations have been extended to the cosmological setups
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wherein it has been shown that the Friedmann equations in
Friedmann–Robertson–Walker Universe can be written in
the form of the first law of thermodynamics on the appar-
ent horizon [7–12]. As discussed, in order to study and
rewrite the Friedmann equations in any alternative or modi-
fied gravity theory through the first law of thermodynamics,
dE = TAdSA + WdV , on the apparent horizon, we need to
consider and apply the entropy expression of the black hole
by replacing the black hole horizon radius r+ by the apparent
horizon radius rA. In the past decades and with expanding
Quantum mechanics concepts, the entropy expression asso-
ciated with the black hole horizon are modified. These cor-
rections on entropy expression include power-law and loga-
rithmic corrections. In a general sense, the power-law correc-
tions show up in dealing with the entanglement of quantum
fields inside and outside the horizon [13–15]. A later form of
corrections, namely the logarithmic corrections, arises from
the loop quantum gravity due to thermal equilibrium fluctu-
ations, quantum fluctuation, and uncertainty principle [16–
21]. The Shannon entropy as an example of a logarithmic
entropy class satisfies many operational quantities in infor-
mation and communication theory in quantum mechanics
[22]. However, in a non-asymptotic setting where the law
of large numbers does not readily apply, it is broken and
other entropy models such as collision entropy typically take
over. Based on this, Rényi proposed new entropy expression
nicely unifies these different and isolated measures in which
entropy of a black hole area law can be modified as [23–25]

SR = 1

α
ln (1 + αS0) (1)

where S0 is the Bekenstein entropy, α is known as Rényi
parameter. Clearly, for α → 0, the Bekenstein entropy is
restored. The entropy of the surface changes by the spectrum
of the area of the surface via the relation (l2p = G�

/
c3 is the

Planck length),
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�S = ∂S

∂A
�A =

(
1

4l2p + αA

)

�A (2)

In the follows of this study, we use Eq. (2) to investigate
effects of Rényi parameter α on Friedmann equations and
evolution of late-time Universe. In Sect. 2, we derive Fried-
mann equations while first thermodynamics law is used. Sec-
tion 3 includes studying effects of Rényi parameter in radi-
ation and matter-dominated eras. We also have considered
late-time Universe in presence of Rényi parameter in this
section. The second law of thermodynamics is investigated
in Sect. 4 in presence of Rényi parameter. Conclusion given
in Sect. 5.

2 Modified Friedmann equations

In order to extend our discussion to the cosmological setup
we assume the background space-time is homogenous and
isotropic described by the Friedmann–Robertson–Walker
metric (we set c = 1)

ds2 = hμνdx
μdxν + r̃2

(
dθ2 + sin2θdφ2

)
, (3)

where r̃ = ra(t), x0 = t , x1 = r and hμν = diag
(−1, a2

/
(
1 − kr2

))
presents the two-dimensional metric. The a(t)

denotes the scale factor of the Universe and k = 0, 1, and
−1 correspond to the flat, closed and open Universe, respec-
tively. The corresponding apparent horizon radius with FRW
Universe, which is consistent with laws of thermodynamics,
reads

r̃A = 1
√
H2 + k

/
a2

(4)

where H = ȧ
/
a is the Hubble parameter of the Universe.

Associated temperature with the apparent horizon can be
defined as [26]

TA = κ

2π
= − 1

2π r̃A

(

1 −
˙̃rA

2Hr̃A

)

(5)

where κ represents the surface gravity. the temperature on
the apparent horizon becomes TA ≤ 0 for ˙̃rA ≤ 2Hr̃A.
Thus to avoid the negative temperature one may consider
TA = |κ|/2π . The condition ˙̃rA ≤ 2 Hr̃A physically means
that the apparent horizon is kept fixed and as result, there is no
volume change. However, in this study, we consider Eq. (5),
and not its absolute value and we will show that to keep the
second thermodynamic law, one needs to have ˙̃rA > 2Hr̃A.
It demonstrates the profound connection between the tem-
perature on the apparent horizon and the Hawking radiation
[27].

As the simplest assumption, we consider the matter and
energy content of the Universe as a form of a perfect fluid

with stress-energy tensor

Tμν = (ρ + p) uμuν + pgμν (6)

where ρ and p are the energy density and pressure, respec-
tively. Using Bianchi’s identity, ∇μTμν = 0, leads to the
continuity equation

ρ̇ + 3H (ρ + p) = 0 (7)

Following [28], the work density is work done due to the
change in the volume, given by

W = −1

2
Tμνhμν (8)

Using Eq. (6) in Eq. (8) gives

W = 1

2
(ρ − p) (9)

Thus, the first law of thermodynamics on the apparent hori-
zon recasts to

dE = TAdSA + WdV (10)

For a pure de Sitter space-time, ρ = −p, the work term
reduces to the pdV and one reproduces the standard first law
of thermodynamics dE = TAdSA − pdV .

If we suppose that the total energy content of the Uni-
verse inside a 3d sphere of radius r̃A, given by E = ρV , the
differential form of total energy inside the apparent horizon
becomes

dE = 4π r̃2
Aρdr̃A − 4πHr̃3

A (ρ + p) dt (11)

where Eq. (7) is used.
In order to study the effects of extended entropy forms,

one only needs to consider extended entropy as the entropy
associated with the apparent horizon. In this study, we con-
sider Rényi entropy (1) as entropy on the apparent horizon.

dSA = dSR = 2π r̃A
G + απ r̃2

A

dr̃A. (12)

As the final step in this setup, we substitute Eqs. (12), (5)
and (9) and in the first law of thermodynamics (10) and using
relation (11),

4πHr̃3
A (ρ + p) dt = dr̃A

G + απ r̃2
A

(13)

Integrating Eq. (13) gives:

4π

3
ρ = c0 + 1

2Gr̃2
A

− απ

2G2

(
ln

(
G + απ r̃2

A

)
− ln

(
r̃2
A

))

(14)

where c0 is integration constant. Substituting the definition
of the apparent horizon radius (4), we get a modified version
of the first Friedmann equation
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H2 + k

a2 − απ

G
ln

(
απ + G

(
H2 + k

/
a2

))

= 8πG

3
ρ − 2Gc0 (15)

In the limiting case where α = 0 and c0 = 0, we recover
the standard form of the first Friedmann equation. In follows,
it is worthwhile to cancel out c0 to check pure effects of α

on evolution of the Universe in late-time. So without losing
generality, we set c0 = 0.

As the first consideration, we would like to investigate
the cosmological consequences of the modified Friedmann
equation (15). Taking the time derivative of Eq. (15), yields

2H

(
Ḣ − k

a2

)
− 2απH

(
Ḣ − k

/
a2

απ + G
(
H2 + k

/
a2

)

)

= 8πG

3
ρ̇ (16)

or by using continuity equation (7), we get

Ḣ − k

a2 − απ

(
Ḣ − k

/
a2

απ + G
(
H2 + k

/
a2

)

)

= −4πG (ρ + p) (17)

After some calculations and using Ḣ = ä
/
a − H2, one can

rewrite the above equation as

2
ä

a
+ H2 + k

a2 − απ

(
3

G
ln

(
απ + G

(
H2 + k

/
a2

))

+2

(
Ḣ − k

/
a2

απ + G
(
H2 + k

/
a2

)

))

= −8πGp (18)

This is the second modified Friedmann equation. For α = 0,
Eq. (18) shrinks to the usual second Friedmann equation,

2
ä

a
+ H2 + k

a2 = −8πGp (19)

Also, the second modified Friedmann equation can illustrate
valuable ranges on Rényi parameter α. Rearranging Eq. (18)
with respect to ä

/
a, gives:

ä

a
= −4πρ

(
G

3
(1 + 3ω) + απ (1 + ω)

H2 + k
/
a2

)

+απ

G
ln

(
απ + G

(
H2 + k

/
a2

))
(20)

where ω = p
/
ρ is the equation of the state of a perfect

fluid. Since the current Universe is undergoing an acceler-
ation phase, ä > 0, from the above equation for |α| � 1,
we have three plausible sets of conditions: the prefect fluid
behaves like the cosmological constant, ω = −1. In this case,
Rényi parameter is positive and smaller than the energy den-
sity, ρ � α. This case represents the cosmological constant
model with a small deviation due to constant α. The other
valuable condition arises from phantom-like fluid, ω < −1,

and ρ > α > −G(1+3ω)
(
H2+k

/
a2

)

3π(1+ω)
. In this case, α take both

positive and negative values. As the last possible case to keep
an acceleration phase, we have quintessence-like matter in

which 0 < α < −G(1+3ω)
(
H2+k

/
a2

)

3π(1+ω)
and −1 < ω < −1

/
3.

It illustrates even by modifying Friedmann equations through
the first law of thermodynamics and applying Rényi entropy
as the effective entropy on the apparent horizon of the Uni-
verse, we have no restriction on the type of fluid and so one
can explain accelerated expansion in the late-time era with
different values on the equation of state ω.

3 Evolution of universe

To investigate Rényi parameter application in evolution of the
Universe, in first step of this section, we assume the Universe
filled only with radiation and matter components while for
simplicity, we set k = 0. However, one can extend the model
to different values of k. In the second part of this section, the
late-time Universe will be studied.

Radiation-dominated era:
Analyzing observations demonstrates the small random
velocities of particles seen in the current Universe should
have been a large part and governed the Universe in the
past and some moments after the Big Bang [29]. As a result,
the pressureless approximation for the early Universe breaks
down. Due to high temperature, the Universe is filled with
a highly relativistic gas, radiation, with the equation of state
p = ρ

/
3. Under this condition, the continuity equation (7)

becomes ρ̇r + 4Hρr = 0. Using Eq. (20) for this equation of
state, we get

H
dH

dx
= −16πG

3
ρr − 16πG

3
ρr

(
απ + GH2

)−1
(21)

where we use the e-folding parameter x = ln (a). This dif-
ferential equation is a non-linear one and there is no exact
solution. Hence, we approximate Eq. (21) due to the relation
between the two parts of the last term. If απ � GH2, Eq.
(21) becomes

H
dH

dx
≈ −16πG

3
ρr (1 + G) + 16G

3α
ρr H

2 (22)

Solving it, yields

H2 ≈ c1 + απ + απ

G
− 8Gρr0c1

3α
e−4x (23)

where c1 is the integration constant. Setting c1 = −απ , Eq.
(23) recasts to

H2 ≈ 8πGρr0

3
e−4x + απ

G
(24)

which is the standard Friedmann equation in the radiation-
dominated era with a deviation due to Rényi parameter. In
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another case, one can assume that απ � GH2 which gives,

H
dH

dx
≈ −16πG

3
ρr

(
G + απ

GH2

)
(25)

For this case, the solution of Eq. (25) converges to Eq. (24),
only for α < 0, and becomes

H2 ≈ 8Gρr0

3
e−4x − απ

G
(26)

In order to find the scale factor associated to expanding Uni-
verse, we solve Eqs. (24) or (26) using a perturbative method
up to the only first order and considering a solution as

a = A0 + δA1 + · · · (27)

where A0 is the solution of (24) or (26) in absence of the sec-
ond term on the right-hand side, α term, while the correction
δA1 satisfying the following equation,

H2 = ±απ

G
+

(
8Gρr0

3
e−4x

)

x=ln (A0)

(28)

The A0 as the standard solution becomes,

A0 = c̃1t
1
/

2
, (29)

where c̃1 = (
32πGρr0

/
3
)1

/
4. Substituting the above rela-

tion into Eq. (28), and using relation (27), we get

a ≈ c̃1t
1
/

2 + c2χ

(

1 − π c̃2
1t

2

G
√
c̃1

α

)

(30)

where χ1 =
(

4c̃1G2

et

) 1
c̃1

√
c̃1 and c2 is the integration constant.

The first term in Eq. (30) is the standard scale factor form
for the radiation-dominated era while the second term arises
from the correction of Bekenstein entropy, Eq. (1). While the
first term has a key role in the evolution of scale factor for
t > 1, the second term demonstrates radiation-dominated era
could not be the first era after Big Bang and plays the main
role for t < 1. As result, Rényi corrections on entropy lead
one to inflation era in very early Universe, before radiation-
dominated era.

Matter-dominated era:
It is notable that the pressure caused by randomness motions
of cosmic systems, galaxies, and clusters, is negligible and is
of the order of 108cm s−1 or less [29]. This implies that the
pressure of matter, baryonic and dark matter, is negligible
compared to relativistic fluid. Thus, if the Universe is filled
only by non-relativistic matter with negligible pressure, we
can assume pm = 0, and so the continuity equation recasts
to ρ̇m + 3Hρm = 0. For such fluid, pressureless matter, Eq.
(20) becomes

ä

a
= −4πGρm

(
1 + απ

απ + GH2

)
+ H2 (31)

Rewriting the above equation by using ä
a = Ḣ + H2 and

e-folding parameter x = ln (a), gives

H
dH

dx
= −4πGρm − 4αGπ2ρm

(
απ + GH2

)−1
(32)

By applying the same approach that was used for the
radiation-dominated era, one gets

H2 ≈ 8πGρm0

3
e−3x ± απ

G
(33)

where plus and minus signs are corresponding to positive and
negative α, respectively. if one suppose extra term as matter
component, by using the perturbative method (27) the scale
factor becomes

a ≈ c̃2t
2
/

3 − c3χ2

⎛

⎝1 − π c̃3
2t

8
/

3

14G
α

⎞

⎠ (34)

where c̃2 = (6πGρm0)
1
/

3, χ2 = 3

(
c̃

9
/

2
2 t

)−1
/

3

and c3

is an integration constant of the model. The coefficient χ2

vanished for large cosmic time and so the second term in Eq.
(34) makes no tangible effects at end of the matter-dominated
era. However, this term can play important role in the first
steps of the transition from radiation to a matter-dominated
era.

Computing Hubble parameter for |α| � 1, and rearrang-
ing it gives,

1

H
≈ 3t

2
− 9c3

2c̃
5
/

2
2

+ 3απc3χ2c̃2
2

28G
t3 (35)

The two last terms arise from entropy modification. To inves-
tigate the effects of these terms, we can estimate Rényi
parameter at current Universe, t = t0, as

1

H0
≈ 3t0

2
− 9c3

2c̃
5
/

2
2

+ 3απc3χ2c̃2
2

28G
t3
0 , (36)

where H0 = H (t0) is the Hubble constant. Ignoring extra
terms, two last terms give the t0 = 2

/
(3H0) which is the age

of the Universe in standard cosmology [30]. Using definition
of χ2, and ignoring the second term for simplicity, Eq. (36)
becomes

1

H0
≈ 3t0

2

(

1 + 3απc3
√
c̃2

14G
t
5
/

3
0

)

(37)

The Hubble constant is usually given as a function of uncer-
tainty h such as

H0 = 100h km s−1 Mpc ≈ 2.1332h × 10−42 GeV (38)

The observations evaluate h = 0.72 ± 0.08 [31] and thus
the age of the Universe becomes t0 ≈ 13.4 Gy. Substituting
these parameters into Eq. (43) shows α ∼ 10−29±1 when we
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set c3
√
c̃2

/
G = 1. As result, it shows Rényi parameter α has

no effective role in the age of the Universe. However, it plays
an outstanding role in the beginning steps of radiation and the
transition point between radiation and the matter-dominated
era.

In order to explore late-time evolution while effects of
radiation component negligible, we can use Eq. (32) for dust
matter field. As shown in this case, first Friedmann equation
modified and equals to Eq. (33). If second term considered
as non-matter term, it illustrates that using a perturbative
method up to the only first order gives cosmological like-
model in which cosmological constant given, namely

� = ±3απ

G
(39)

It shows without adding cosmological constant by hand to
Einstein–Hilbert action and beginning from Rényi entropy
(1) and deriving Friedmann equations one can derive cosmo-
logical constant as function of Rényi parameter α. As result,
Eq. (33) gives�CDM model when second term considered as
cosmological constant, simplest form of dark energy. How-
ever, as discussed in [29], the cosmological constant model
suffers from some fundamental problems. To omit these
problems one needs to keep upper orders of expansion of Eq.
(32). At the late-time Universe, present era, the typical esti-
mation of the Hubble parameter is of the order ∼ 10−40GeV
and thus GH2 � 1. Thus, we suppose απ � GH2. As
result, Eq. (32) given, approximately

H2 ≈ 8πGρm0

3
e−3x + απ

G
+ 2πGρm0e

−3x

(

1 + 9.68G4ρ2
m0

α2 e−6x

)

(40)

For such Friedmann equation energy density of dark
energy becomes

ρX = απ

G
+ 2πGρm0e

−3x

(

1 + 9.68G4ρ2
m0

α2 e−6x

)

(41)

First term can considered as cosmological constant while
second term depending on evolution of energy density of
matter. This behavior is usual treatment in holographic dark
energy models in which energy density includes one non-
matter term and matter depending term [32,33]. With aid of
continuity equation (7), the pressure of dark energy in our
model given by

Fig. 1 The evolution of equation of state of dark energy versus redshift
for different values of Rényi parameter α ∼ 102 − 102.25

pX = −ρX − 1

3

dρX

dx
= −απ

G
+ 38.72G5ρ3

m0

α2 e−9x (42)

The corresponding equation of state of dark energy ωX =
pX

/
ρX reads

ωX = −1

+ G�m0H2
0

(
8G2�2

m0H
4
0 e

−6x + 19.34α2
)
e−3x

G�m0H2
0

(
2.67G2�2

m0H
4
0 e

−6x + 19.34α2
)
e−3x + 81α3

(43)

where the fractional energy density �m0 = 8πGρm0
/ (

3H2
0

)

is used.
The deceleration parameter defined such as

q = 1

2

(
1 + 3pX

ρm + ρX

)
(44)

Substituting energy density and pressure of dark energy, Eqs.
(41) and (42) when matter behaves like dust field into Eq. (44)
yields deceleration parameter, namely

q = 1

2
+ 147G3�3

m0H
6
0 e

−9x − 2232.45α3

113.1�m0H2
0 (3.14G + 0.5) α2e−3x + 49G3�3

m0H
6
0 e

−9x + 1488.3α3
(45)

In Figs. 1, 2 and 3 the evolution of equation of state of
dark energy in our model, the deceleration parameter (45)
and evolution of fractional energy density of matter and dark
energy are plotted, respectively. As shown, dark energy treats
like cosmological constant in present Universe while in high
redshift it behaves such as matter. In comparison with �CDM
model our model presents dark energy as quintessence fluid
for α 
= 0. Also setting Rényi parameter α ∼ 102 − 102.25

when H0 = 67.4, �m0 = 0.31 and G = 6.67 × 10−11

[34] gives transition point zT = 0.52 − 0.85 which satisfies
observations [35]. In presence of α, transition point zT shifts
to present Universe which gives robust tool with respect to
�CDM theory to fix model with last and future observations.
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Fig. 2 The deceleration parameter as function of redshift for α =
102, 102.1, 102.15, 102.2 and 102.5

Fig. 3 The evolution of fractional energy density of dark energy and
dark matter versus redshift for α = 102.15. We have used modified
version of COLOSSUS code to illustrate this plot [36]

4 Second law of thermodynamics

Till now, with Rényi entropy (1) and the first law of thermody-
namics, we derive the first and second Friedmann equations.
Also, the evolution of the Universe is considered under some
specific values of the equation of state. In the last part of
this study, we examine the second law of thermodynamics.
Rewriting Eq. (13), we find

4πHr̃3
A (ρ + p) =

˙̃rA
G + απ r̃2

A

(46)

Solving the above equation for ˙̃rA, gets

˙̃rA = 4πHr̃3
A

(
G + απ r̃2

A

)
(ρ + p) (47)

The sign of ˙̃rA depends on the equation of state of the fluid,
only when α � G. When the energy condition holds, ρ +
p > 0, we have ˙̃rA > 0. To explore the second law of

thermodynamics, TA ṠA becomes,

TA ṠA = − 1

2απ r̃A

(

1 −
˙̃rA

2Hr̃A

)
d

dt
(ln (1 + αS0)) (48)

Taking time derivative and using Eq. (47) into Eq. (48), gives

TA ṠA = −4πHρr̃3
A

(

1 −
˙̃rA

2Hr̃A

)

(1 + ω) (49)

It implies the second law of thermodynamics is satisfied only
under two sets of conditions ω < −1 and ˙̃rA < 2Hr̃A or
when ω > −1 while ˙̃rA > 2Hr̃A. The first set of conditions
presents a phantom-like fluid and the second one denotes
fluid as a quintessence field. Under other sets of conditions
the second law of thermodynamics, ṠA ≥ 0, does not hold on
the apparent horizon of the system, the Universe. To better
insight, we need to examine the validity of the generalized
second law of thermodynamics, namely ṠA + Ṡm ≥ 0.

From the Gibbs equation, we have [37]

TmdSm = dE + pdV = Vdρ + (ρ + p) dV (50)

where Tm and Sm are temperature and entropy of the matter
fields inside the apparent horizon of the Universe, respec-
tively. To continue our discussion, we assume that the local
equilibrium hypothesis holds. As result, the temperature
inside of the apparent horizon of the Universe remains in
equilibrium and thus the temperature of the Universe must
be uniform and the same as the temperature of its boundary,
the apparent horizon, which implies Tm = TA [36]. Thus, the
Gibbs equation (50) becomes

TA Ṡm = 4π r̃2
A
˙̃rA (ρ + p) − 4π r̃3

AH (ρ + p) (51)

In order to examine the generalized second law of thermo-
dynamics, we must study the evolution of the total entropy
ṠA + Ṡm . Adding Eq. (49) to Eq. (51), yields

TA
(
ṠA + Ṡm

) = 2πρr̃2
A (1 + ω)

(
3 ˙̃rA − 4r̃AH

)
(52)

To fulfill the second law of thermodynamics, Eq. (52)
must be a non-decreasing function of time. Therefore, for
quintessence-like fluid, ω > −1, we should have ˙̃rA >

4r̃AH
/

3. Only under this condition, the temperature on
the boundary, apparent horizon, be positive while for the
phantom-like field, ω < −1, the second law of thermody-
namics holds for ˙̃rA < 4r̃AH

/
3. This case gives negative

temperature on boundaries and so is not a valuable one. It
demonstrates to keep the validity of the generalized second
law of thermodynamics when T ≥ 0, only quintessence-like
fields, ω ≥ −1, are expected.
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5 Remarks

In the conclusion, we have reconsidered the expanded Uni-
verse due to the correction of the expression of entropy.
Although the standard entropy is modified due to different
aspects of quantum properties, in this study Rényi entropy is
used which arises from quantum information theory. Inves-
tigating Friedmann equations shows they are modified due
to modified entropy expression. Examining the age of the
Universe suggests that Rényi parameter is in order of Planck
constant when we fix G = 1, and plays a key role in the
first steps of evolution of radiation-dominated era and tran-
sition point from radiation to matter-dominated era. How-
ever, in late-time Universe we able to explore evolution of
cosmos when extra terms suggested as dark energy fluid.
Keeping first expansion term gives �CDM theory depend-
ing on Rényi parameter α. This term may alleviate some
inconsistencies between theoretical and observational val-
ues of vacuum energy. Moreover, keeping more expansion
terms presents quintessence dark energy model in which
dark energy behaves as matter in past. Also, we have exam-
ined the total generalized second law of thermodynamics
which implies that this law holds only for quintessence flu-
ids, ω > −1.
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