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Abstract Starting from an effective Lagrangian with heavy
quark spin symmetry embedded, the coupled-channel dynam-
ics of the doubly charmed systems D(∗)�

(∗)
c is investigated.

The potential underlying our investigation includes t-channel
pseudoscalar and vector meson exchanges. A series of S-
wave bound states with isospin I = 1/2 is found by apply-
ing the first iterated solution of the N/D method: one state
with binding energy 23 MeV in the 5/2− D∗�∗

c channel,
three states with binding energy 26, 30 and 7 MeV (rela-
tive to the thresholds from low to high, respectively) in the
3/2− D�∗

c -D∗�c-D∗�∗
c system and three states with bind-

ing energy 32, 8 and 16 MeV in the 1/2− D�c-D∗�c-D∗�∗
c

system. Those PN
cc states serve as the open-charm partners

of the hidden charm pentaquarks PN
ψ observed by the LHCb

Collaboration.

1 Introduction

Searches of exotic hadrons, whose valence quark composi-
tion is beyond the conventional picture where mesons and
baryons are composed of a pair of quark-antiquark (qq̄) and
three quarks (qqq), respectively, have become an important
project for most of the collider facilities especially after the
experimental observations of tetraquark and pentaquark can-
didates [1–7]. In 2015, the LHCb Collaboration announced
the first evidence of two hidden-charm pentaquark-like states
PN

ψ (4380) and PN
ψ (4450) in the J/ψp invariant mass spec-

trum measured from the decay process �0
b → J/ψK− p

a e-mail: c.shen@fz-juelich.de
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[6]. In 2019, the mass spectrum of PN
ψ pentaquarks was

updated to three states, that is, PN
ψ (4312), PN

ψ (4440) and

PN
ψ (4457) by the LHCb Collaboration [8]. In 2020, a new

hidden-charm pentaquark state with strangeness, namely
P�

ψs(4459), was observed in the J/ψ� invariant mass dis-

tribution from the �−
b → J/ψ�K− decay [9]. And very

recently, another hidden-charm pentaquark with strangeness,
P�

ψs(4338), was announced by the LHCb Collaboration [10].
It is observed in the invariant mass spectrum of J/ψ� in the
decay B− → J/ψ� p̄. In the last decade, the LHCb Col-
laboration has found many surprises in exotic hadron spec-
troscopy. One can expect that the richness of the exotic spec-
trum will continue to increase in the foreseeable future.

The theoretical investigations on the exotic spectroscopy
date back to the birth of the quark model in 1964. The exis-
tence of pentaquark states was first pointed out by Gell-
Mann in his famous paper on the quark model [11]. From
the point of view of modern physics, neither the multi-
quark states that made up of more than three valence quarks
such as tentraquarks (qqq̄q̄) and pentaquarks (qqqqq̄), nor
the hybrid states that have both valence quarks and glu-
ons or the glueballs that are composed of pure valence glu-
ons are forbidden by Quantum Chromodynamics (QCD),
which is the fundamental theory of the strong interactions.
Before the first experimental evidence of PN

ψ , these pen-
taquark states have been predicted by the theoretical work
based on the phenomenological coupled-channel approach
in 2010 [12,13]. In that work, one D̄�c and one D̄∗�c bound
state were found around 4 GeV, which can be related to the
observed PN

ψ (4312) and PN
ψ (4440) (or PN

ψ (4457)) states,

respectively. In particular, the newly reported P�
ψs(4459)

and P�
ψs(4338) states are also compatible with the predicted

D̄∗�c and D̄�c bound states, respectively. Such impressive
consistence between the experimental observations and the
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theoretical predictions on the pentaquark spectrum around
4 GeV is a strong indication for the molecular nature of those
pentaquark-like states. The hadronic molecule picture has
become a much discussed approach to explain the nature of
the exotic candidates, as seen by the many theoretical studies
of exotic hadron spectroscopy during the last decades, see the
recent reviews in Refs. [14–18].

In Ref. [19], the authors claim that the near-threshold
structures exist generally in two heavy hadron systems as
long as the interaction between them is attractive. Hun-
dreds of hadronic molecules are proposed in the heavy-
heavy [20–23] and heavy-antiheavy sectors [24]. And very
recently, several five-flavored bound states are predicted in
the B(∗)�

(′)
c system [25]. Among these exotic baryons, the

doubly-charmed pentaquarks are straightforward extensions
of the PN

ψ states, whose quark content can be written as
ccqqq̄ (q = u, d). In this work, we explore the mass spec-
trum of the doubly-charmed pentaquark-like states around
4 GeV. Some earlier investigations on this system are given
in Refs. [20–23]. Reference [21] constructed the contact,
one-pion-exchange, and two-pion-exchange potentials for
the coupled-channel D(∗)�

(∗)
c system within the framework

of a chiral effective field theory and found the S-wave bound
states by solving the nonrelativistic Schrödinger equation.
Reference [23] updated the configuration in Ref. [21] by
introducing the S-D mixing effect within the one-boson-
exchange (OBE) model assisted with heavy quark spin sym-
metry (HQSS) and Refs. [20,22] only studied the single chan-
nel case where the S-D mixing effect was also considered in
Ref. [20]. All those three works give a similar mass spec-
trum for the doubly-charmed pentaquark candidates, that
is, one 1/2− D�c, one 3/2− D�∗

c , two D∗�c with spin-
parity 1/2− and 3/2−, and three D∗�∗

c bound states with
spin-parity 1/2−, 3/2− and 5/2−. All those doubly-charmed
bound states have isospin I = 1/2 and the binding energies
vary from several MeV to tens of MeV.

In the present work, both pseudoscalar (π , η) and vector
(ρ, ω) meson exchanges are considered by means of an effec-
tive Lagrangians that is constrained by the HQSS together
with the chiral symmetry for the pseudoscalar meson part
and the hidden local symmetry for the vector meson part.
The bound states and resonances are found as poles of the
coupled-channel scattering amplitudes given by a unitarized
Bethe-Salpeter equation (BSE) in the on-shell factorization
approach. Further, the first iterated solution of the N/D
method is employed to avoid the unphysical left-hand-cut
problem in the on-shell factorized BSE [26,27].

This work is organized as follows. In Sect. 2, we present
the theoretical framework of our calculation. The numerical
results for the D�c, D�∗

c , D∗�c and D∗�∗
c coupled-channel

dynamics and relevant discussions are presented in Sect. 3.
Finally, a brief summary is given in Sect. 4. Some technical-
ities are relegated to the Appendices.

Table 1 S-wave channels in the D�c-D�∗
c -D∗�c-D∗�∗

c coupled-
channel system. The quantum numbers are given in the spectroscopic
form 2S+1L J

Channel J P = 1/2− 3/2− 5/2−

D�c
2S1/2 – –

D�∗
c – 4S3/2 –

D∗�c
2S1/2

4S3/2 –

D∗�∗
c

2S1/2
4S3/2

6S5/2

2 Formalism

Before going to the details of our theoretical calculations, we
briefly count the number of channels in the coupled-channel
D(∗)�

(∗)
c system included in our work. It should be noticed

that we only consider S-wave scattering with isospin I = 1/2
throughout the present work. The quantum numbers of the
various D(∗)�

(∗)
c channels are listed in Table 1. It shows that

we have three channels (D�c, D∗�c and D∗�∗
c ) for spin-

parity J P = 1/2−, three channels (D�∗
c , D∗�c and D∗�∗

c )
for J P = 3/2−, and one channel (D∗�∗

c ) for J P = 5/2−.

2.1 Effective Lagrangians and the on-shell factorization
approach of the Bethe–Salpeter equation

Chiral perturbation theory (ChPT) developed in the 1980 s
[28–30] has achieved great success in describing low-energy
experiments of the strong interaction, especially the ππ and
πN scattering [31]. A variety of ChPT variants were pro-
posed to solve various specific strong-interaction systems.
Among them, the heavy baryon and heavy meson chiral per-
turbation theory are designed to describe the interactions
between two hadrons containing one or more heavy quarks
[32–35], see Ref. [18] for a recent review. Similar to the
ChPT language, the interactions between two heavy hadrons
are constructed from light pseudoscalar exchange, the Gold-
stone bosons from the spontaneous breaking of chiral sym-
metry. The interactions between heavy hadrons and light
vector mesons are built by using the hidden local symme-
try approach [36–38]. All the relevant effective Lagrangians
used here are given as [24,39]

L1 = ig〈H (Q)
b Aμ

baγμγ5 H̄
(Q)
a 〉,

L2 = −iβ〈H (Q)
b vμρμ,ba H̄

(Q)
a 〉

+ iλ〈H (Q)
b σμν(∂μρν − ∂νρμ)ba H̄

(Q)
a 〉,

LS = −3

2
g1vκεμνλκ S̄(Q)

μ,abAν,bcS
(Q)
λ,ca − iβS S̄

(Q)
μ,abv

αρα,bc

× S(Q)μ
ca + λS S̄

(Q)
μ,ab(∂

μρν − ∂νρμ)bcS
(Q)
ν,ca, (1)

where the Lorentz indices are given by the greek letters
μ, ν, . . ., the SU(3) flavor indices are denoted by latin sym-
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bols a, b, . . . and 〈· · · 〉 is the Dirac trace. The summation
over repeated indices is implicit. The explicit formulae for
all vertices in our t-channel potentials are then obtained
by expanding the above Lagrangians. Note that we neglect
the heavy quark spin symmetry breaking effects induced by
the finite charm quark mass, which is roughly estimated as
O(�QCD/mc) ≈ 15% variation in the contact constant inter-
action prescription, see e.g., Ref. [40]. The expansion of the
underlying Lagrangians and the definitions of the involved
field operators are displayed in Appendix A.

The scattering amplitude T is unitarized through the
Bethe-Salpeter equation, namely

T = V + VGT, (2)

where V is the scattering kernel that is expressed in terms
of the t-channel one-boson-exchange transitions between
two channels and G is the two-meson loop function. In the
coupled-channel case, T is a n×n matrix (n denotes the num-
ber of the coupled channels) and G becomes a n-dimension
diagonal matrix with all the elastic loop functions gi as its
elements (i is the channel index). Working with the on-shell
factorization approach, the integral equation (2) is reduced
to an algebraic equation and one can solve the amplitude T
with

T = (1 − VG)−1V . (3)

Unitarity and analyticity of T are guaranteed in the on-shell
factorization prescription in most cases [41–43]. And it has
been applied commonly into various hadron systems to study
the low-energy strong interaction dynamics in them, see e.g.,
[15,18,44–51] (and references therein). It should also be
mentioned that in some cases where the unphysical left-hand
cuts (usually come from the partial-wave projection of V )
are not far away from the energy regions of interest, the uni-
tarity and analyticity of T become problematic due to the
existence of such unphysical cuts, see e.g., Refs. [27,52] for
more details.

For the two-meson Green’s function gi , we adopt dimen-
sional regularization to arrive at

gi = i
∫

d4q

(2π)4

1

(p − q)2 − Mi2
B + iε

1

q2 − Mi2
P + iε

= 1

16π2

{
a(μ) + ln

Mi2
B

μ2 + Mi2
P − Mi2

B + s

2s
ln

Mi2
P

Mi2
B

+ q̄i√
s

[
ln(s − Mi2

B + Mi2
P + 2q̄i

√
s)

+ ln(s + Mi2
B − Mi2

P + 2q̄i
√
s)

− ln(−s − Mi2
B + Mi2

P + 2q̄i
√
s)

− ln(−s + Mi2
B − Mi2

P + 2q̄i
√
s)

]}
, (4)

where s = p2 and

q̄i =
√

(s − (Mi
B + Mi

P )2)(s − (Mi
B − Mi

P )2)

4s
.

Mi
B, Mi

P denote the baryon and meson masses in the channel
i , anda(μ) is the scale-dependent subtract constant. Note that
Im(q̄) ≥ 0 indicates that Eq. (4) gives the loop function in
the physical sheet, denoted as gIi . The loop function in the
unphysical sheet, denoted as gI Ii , is then expressed as

gI Ii (s) = gIi + 2iρi (s), (5)

with ρi (s) = q̄i/(8π
√
s). Another strategy commonly

adopted to calculate the loop function G is to introduce a
phenomenological form factor, such as the Gaussian regula-
tor, in the integral, that is,

gi =
∫

q2dq

4π2

ωi
B + ωi

P

ωi
Bωi

P

e−2q2/�2

s − (ωi
B + ωi

P )2 + iε
, (6)

where ωi
B and ωi

P are the on-shell energies for the baryon and
meson in i th channel, respectively. In this work, we take the
convention of Eq. (4), where a(μ) is estimated by matching
gi of Eq. (4) to the one of Eq. (6) at i th threshold with the
empirical values of cutoff �, i.e., around 1 GeV.

2.2 First iterated solution of the N/D method

As mentioned above, the existence of the left-hand cuts
(LHC) could invalidate the on-shell factorization formula of
Eq. (3) in some cases. Unfortunately, this indeed happens
in the D(∗)�

(∗)
c systems of interest. In this subsection, we

briefly introduce the N/D method that can be used to treat
those unphysical LHC properly [26,27,43,53,54].

In the N/D method, the unitarized scattering amplitude
T is constructed through the dispersion relations and it has
the general form

T (s) = D(s)−1N (s), (7)

where the numerator N (s) and denominator D(s) contain the
analytic information of the left- and right-hand cuts, respec-
tively. The general expressions of N (s) and D(s) for the
S-wave are given by

D(s) =
n−1∑
m=0

ams
m + (s − s0)

n

π

∫ ∞

sthr

ds′ ρ(s′)N (s′)
(s′ − s)(s′ − s0)n

,

N (s) =
n−1∑
m=0

bms
m + (s − s0)

n

π

∫ sleft

−∞
ds′ ImT (s′)D(s′)

(s′ − s)(s′ − s0)n
,

(8)

where the polynomials
∑

m amsm and
∑

m bmsm denote the
subtraction terms with am and bm the corresponding subtrac-
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tion constants. s0 is the subtraction point and n is the number
of subtractions that is required to ensure the convergence of
the dispersion integrals. Note that the so-called Castiliejo–
Dalitz–Dyson (CDD) poles [55] are dropped here. The dif-
ficulty caused by the unphysical LHC will be overcome if
one solves exactly the N/D integral equations Eq. (8). An
approximative strategy called the first-iterated solution of the
N/D method that was proposed in Refs. [26,27] is utilized in
our work. It states that we approximate the numerator N (s) as
the tree-level potential V (s) and then the denominator D(s)
can be expressed as

Di j (s) = γ0i j + γ1i j (s − s jthr) + 1

2
γ2i j (s − s jthr)

2

+ (s − s jthr)s
2

π

∫ ∞

s jthr

ds′ Vi j (s′)ρ j (s′)
(s′ − s jthr)(s

′ − s)s′2 , (9)

where i and j are the channel indices. The subtraction point
s0 is set to be s jthr, the j th threshold, and n = 3. Three subtrac-
tion constants γ0i j , γ1i j and γ2i j are determined by matching
Di j (s) of Eq. (9) and δi j − Vi j (s)G j around the threshold

s jthr for each i and j , specifically. We fit Di j (s) of Eq. (9) to
δi j −Vi j (s)G j in the small energy region from the threshold

s jthr to 100 MeV above it. It is worth mentioning that G j in
the matching procedure is the loop function in the physical
sheet. Consequently, the scattering amplitude T of the phys-
ical sheet is calculated with the D function constructed in
Eq. (9). Further, T in the unphysical sheets are defined as
[27],

T I I (s) = 1

[T I (s)]−1 − 2iρ
, (10)

where ρ denotes the diagonal matrix diag{Niρi (s)} with
Ni = 0 and 1 representing the physical and unphysical sheets
for the i th channel. The uncertainty stemming from the ambi-
guity of the choice of the matching energy region will be
discussed when we present our numerical results. For further
discussions on the validity of the first-iterated solution of the
N/D method, we refer to Refs. [26,27].

3 Results and discussions

First, we focus on the case of J P = 5/2− and explain the
necessity of treating the LHC in the partial-wave projected
potentials by using the N/D method. The S-wave potential
for the 5/2−-D∗�∗

c system is given in terms of the t-channel
ρ-, ω-, π - and η-exchange diagrams. The numerical potential
VD∗�∗

c→D∗�∗
c

is presented in Fig. 1. One can clearly see that
the S-wave projection for each boson exchange produces
one LHC located below the D∗�∗

c threshold. Among them,
the LHC corresponding to the π exchange is quite close to

Fig. 1 S-wave potential for D∗�∗
c → D∗�∗

c with (I, J ) = (1/2, 5/2)

(real part: solid curve, imaginary part: dashed curve). The corresponding
threshold is represented by the orange dash-dotted line. The left-hand
cuts from left to right are generated by the ω, ρ, η and π exchange,
respectively

the threshold and that from the vector meson exchange is
stronger.

The (1 − VG) term in Eq. (3) and D in Eq. (9) of the
physical Riemann sheet RS(+) with the cutoff � = 0.7 GeV
for the S-wave 5/2−-D∗�∗

c system are shown in the left and
right panel of Fig. 2, respectively. The pole position of scat-
tering amplitude T in the single channel case is represented
by the zeros of (1 − VG) in the on-shell factorization BSE
approach or equivalently the zeros of the D function in the
N/D method.

It can be seen from Fig. 2 that there no pole appears
in the function 1 − VG and one pole located below the
threshold at the real axis can be found in the D function
which is related to a D∗�∗

c bound state with binding energy
EB = 53 MeV. However, all the previous works imply the
existence of an S-wave D∗�∗

c bound state with J P = 5/2−
[20–22]. To be more specific, Ref. [21] claimed an S-wave
D∗�∗

c state with binding energy being around 20 MeV in the
non-relativistic one- and two-pion exchange potentials. Ref-
erence [22] found a bound state from the non-relativistic ρ-
and ω-exchange interactions with the binding energy vary-
ing from 2 to 40 MeV. And a 40-to-90 MeV binding energy
was produced by Ref. [20] with the OBE model. The S-wave
D∗�∗

c state with EB = 53 MeV obtained from the N/D
method is consistent with these previous non-relativistic
investigations.

Next, we turn to the D�∗
c -D∗�c-D∗�∗

c coupled-channel
system with (I, J ) = (1/2, 3/2). The V matrix is presented
in Fig. 3. Similar to the J P = 5/2− single channel case,
all the meson-exchange potentials contain the left-hand cuts
after implementing the partial-wave projection except the
one-pion-exchange parts in VD�∗

c→D∗�c and VD�∗
c→D∗�∗

c
.

In particular, the left-hand cuts from the η-exchange inter-
action in VD�∗

c→D∗�∗
c

and the π -exchanges in the elastic
potentials VD∗�c→D∗�c and VD∗�∗

c→D∗�∗
c

are quite close to
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Fig. 2 (1 − VG) (left panel) and D (right panel) in the physical sheet for the S-wave D∗�∗
c system with (I, J ) = (1/2, 5/2) (real part: solid

curve, imaginary part: dashed curve). The cutoff is � = 0.7 GeV. The corresponding threshold is represented by the orange dash-dotted line

Fig. 3 V matrix for the S-wave D�∗
c -D∗�c-D∗�∗

c coupled-channel system with (I, J ) = (1/2, 3/2) (real part: solid curve, imaginary part:
dashed curve). The corresponding threshold is represented by the orange dash-dotted line

and below the lower thresholds. For these cases, the disper-
sion relations used in N/D method are still valid since no
LHC goes above the RHC. However, the effects left in the
unitarized scattering amplitude T by those near-threshold
LHC are difficult to remove completely. To do so as much as
possible, we shift the energy region, where the subtraction
constants in the D functions of Eq. (9) are fitted to functions
(1−VG) in Eq. (3) a bit above the corresponding thresholds.
In practice, the Di j functions are fitted to δi j − Vi jG j in the
energy range starting from 10 MeV above the j th threshold
up to 100 MeV above it. Then the pole positions are found
to be zeros of determinants of D for the physical sheet and
([T I ]−1 −2iρ) for the unphysical sheets. The pole trajectory
in the unphysical sheet RS(−−+) for the 3/2− D�∗

c -D∗�c-
D∗�∗

c coupled-channel system is shown in Fig. 4. When �

is less than 0.5 GeV, no D∗�∗
c bound state with J P = 3/2−

is found. The cutoff range from 0.6 to 0.8 GeV is then cho-
sen to give the full mass spectrum in this work. Note that
the cutoff � constitutes a hard momentum scale which sup-

presses the contribution of the two-body constituents in the
given channels at short distances ∼ 1/�. There is no univer-
sal criterion for the determination of a such cut-off and for
the choice of the regulator functions, but as a general rule the
value of � should be much larger than the typical momen-
tum in the bound state, given by

√
2με (∼ 0.1 GeV for the

present case) [15]. Further, it should not be too large since
we have neglected all other degrees of freedom that would
play a role at short distances.

The calculations for the D�c-D∗�c-D∗�∗
c coupled chan-

nels with (I, J ) = (1/2, 1/2) can be done along similar lines.
The V matrix for (I, J ) = (1/2, 1/2) is given in Fig. 5.

Finally, all the obtained pole positions are collected in the
Table 2. Similar to other previous works [21–23], one D�c

bound state with J P = 1/2−, one D�∗
c bound state with

J P = 3/2− and one D∗�∗
c bound state with J P = 5/2−

are found. These three states are located at the physical real
axis and below the threshold of the lowest channel in the
corresponding systems, thus they are bound states. Two res-
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Fig. 4 The pole trajectory on the sheet RS(−−+) of the S-wave D�∗
c -

D∗�c-D∗�∗
c coupled-channel system with (I, J ) = (1/2, 3/2). The

cutoff � is varied from 0.4 to 1.0 GeV. The highest threshold is repre-
sented by the orange dash-dotted line. The pole positions are denoted as
the red crosses. The sheet RS(−−+) intersects with the physical region
at the thick orange line that connects the D∗�c and D∗�∗

c thresholds

onances located at the complex plane of the unphysical sheets
RS(−++) and RS(−−+) are found in both 1/2− and 3/2−
coupled channels, which are related to the D∗�c and D∗�∗
bound states with corresponding spin-parities obtained in the

single-channel investigations by Ref. [22]. The sensitivities
of various pole positions to the cutoff are different, the most
sensitive case is the 5/2− D∗�∗

c pole, whose binding energy
varies from 23 MeV to 110 MeV as the cutoff changed from
0.6 GeV to 0.8 GeV, and the least sensitive one is the 1/2−
D∗�c pole, whose binding energy varies from 8 MeV to
18 MeV. Noted that all the widths of resonances depend on
the � only mildly and thus the averaged values are listed.

We plot the full mass spectrum together with the uncer-
tainty caused by the cutoff � in Fig. 6. For completeness,
one should also consider the estimation of the uncertain-
ties caused by those effective coupling constants. As dis-
cussed in Appendix A, however, most couplings are esti-
mated model-dependently by means of the vector meson
dominance approach or using the quark model. Then it is dif-
ficult to implement a reliable estimation for the errors of these
coupling constants. Here, as an illustration, we only show the
effect of coupling g which is fixed as −0.59 ± 0.07 through
the decay of D∗ → Dπ [56]. It leads to the uncertainty of
53 ± 5 MeV for the binding energy of the (1/2, 5/2)-D∗�∗

c
state when � = 0.7 GeV, which is a marginal effect com-
pared to the cutoff variation. Moreover, the theoretical error
from the ambiguity of the matching energy region that needed

Fig. 5 V matrix for the S-wave D�c-D∗�c-D∗�∗
c coupled-channel system with (I, J ) = (1/2, 1/2). For notations, see Fig. 3

Table 2 Pole positions obtained from the 5/2− D∗�∗
c , 3/2− D�∗

c -
D∗�c-D∗�∗

c and 1/2− D�c-D∗�c-D∗�∗
c systems. The cutoff � is

varied in the range of (0.6, 0.8) GeV. All the pole positions are given in

units of MeV and the corresponding thresholds are listed in the brackets
in the first column

Channel 1/2− 3/2− 5/2−

D�c(4318) (4223, 4286) – –

D�∗
c (4382) – (4295, 4356) –

D∗�c(4460) (4442, 4452) + 20i (4367, 4440) + 1i –

D∗�∗
c (4524) (4490, 4508) + 10i (4496, 4518) + 20i (4415, 4501)
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Fig. 6 Mass spectrum of the S-wave D�∗
c -D∗�c-D∗�∗

c coupled-
channel dynamics with (I, J ) = (1/2, 3/2), S-wave D�c-D∗�c-
D∗�∗

c system with (I, J ) = (1/2, 1/2) and S-wave D∗�∗
c channel

with (I, J ) = (1/2, 5/2), respectively. The cutoff � is varied from
0.6 GeV to 0.8 GeV. For the resonances, only the real parts of their pole
positions are presented

for the determination of the subtraction constants in Eq. (9)
is also estimated. The variation of this matching range from
(10, 100)MeV above threshold to (30, 100)MeV induces an
additional uncertainty of 10–20% on the binding energies of
the various poles. It should be mentioned that the elimina-
tion of those near-threshold left-hand cuts in this work by
employing the first-iterated N/D method is rather qualitative
and not a rigorous treatment. To investigate the mass spec-
trum in the D(∗)�

(∗)
c coupled-channel systems more quanti-

tatively and precisely, a more rigorous and elegant treatment
to the unphysical left-hand cuts is required. Nevertheless,
there is no doubt that the open-charm partners of those LHCb
pentaquark states do exist and are located close to the cor-
responding D(∗)�

(∗)
c thresholds. One can expect those PN

cc
states around 4 GeV will be observed experimentally in the
near future.

4 Summary

Recently, several pentaquark-like states, PN
ψ close to D̄(∗)�

(∗)
c

thresholds and P�
ψs close to the D̄(∗)�

(∗)
c , were reported by

the LHCb Collaboration. All these pentaquark states are sug-
gested to be the hadronic molecule candidates composed of
the corresponding meson–baryon pairs close to the pertinent
thresholds, see e.g., Refs. [14–18] (and references therein).
The extensions of the mass spectrum of pentaquark states
assisted by the heavy quark spin symmetry and flavor symme-
try are expected straightforwardly. In this work, we explore
the possible open-charm partners of PN

ψ states by investigat-

ing the S-wave D(∗)�
(∗)
c coupled-channel dynamics. Uni-

tarized scattering amplitudes are constructed by means of
the first-iterated N/D method. The open-charm partners of

PN
ψ are predicted as follows: for I (J P ) = 1/2(1/2−), one

D�c bound state with EB = 32 MeV, one D∗�c state with
EB = 8 MeV and one D∗�∗

c state with EB = 16 MeV;
for I (J P ) = 1/2(3/2−), one D�∗

c bound state with EB =
26 MeV, one D∗�c state with EB = 20 MeV and one D∗�∗

c
state with EB = 7 MeV; for I (J P ) = 1/2(5/2−), one D∗�∗

c
state with EB = 23 MeV. Further investigations are required
to solidify these results.
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Appendix A: Effective Lagrangians and exchange poten-
tials

After expanding the effective Lagrangians in Eq. (1), one has

L1 = −√
2g

Fπ
[−iεταμνvαP∗(Q)μ

b ∂ν�ba P
∗(Q)τ†
a

+ P∗(Q)μ
b ∂μ�ba P

(Q)†
a + P(Q)

b ∂ν�ba P
∗(Q)†
aν ],

L2 = √
2βgV (P∗(Q)μ

b vνVν,ba P
∗(Q)†
μ,a

− P(Q)
b vνVν,ba P

(Q)†
a ) − i2

√
2λgV

[
P∗(Q)μ
b (∂μVν,ba

− ∂νVμ,ba)P
∗(Q)ν†
a

+ iετλναvαP(Q)
b ∂τ V λ

ba P
∗(Q)ν†
a
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− iεαμτλvαP∗(Q)μ
b ∂τ V λ

ba P
(Q)†
a

]
,

LS = −i3g1

2
√

2Fπ

vκεμνλκ

[
B̄∗(Q)

6μ,ab

+ 1√
3
B̄(Q)

6,abγ5γμ

]
∂ν�bc

[
B∗(Q)

6λ,ca − 1√
3
γλγ5B

(Q)
6,ca

]

+ βSgV√
2

[
B̄∗(Q)

6μ,ab

+ 1√
3
B̄(Q)

6,abγ5(γμ + vμ)

]
vαVα,bc

[
B∗(Q)μ

6,ca

− 1

3
(γ μ + vμ)γ5B

(Q)
6,ca

]
+ iγSgV√

2

[
B̄∗(Q)

6μ,ab

+ 1√
3
B̄(Q)

6,abγ5(γμ + vμ)

]
(∂μV ν − ∂νVμ)bc

[
B∗(Q)

6ν,ca − 1√
3
(γν + vν)γ5B

(Q)
6,ca

]
, (A1)

in terms of the various field operators

P(∗)(Q) = √
M(D(∗)0, D(∗)+, D(∗)+

s ),

� =

⎛
⎜⎜⎝

π0√
2

+ η√
6

π+ K+

π− − π0√
2

+ η√
6

K 0

K− K̄ 0 −
√

2
3η

⎞
⎟⎟⎠ ,

V =

⎛
⎜⎜⎝

ρ0√
2

+ ω√
2

ρ+ K ∗+

ρ− − ρ0√
2

+ ω√
2
K ∗0

K ∗− K̄ ∗0 φ

⎞
⎟⎟⎠ ,

B(Q)
6 =

⎛
⎜⎜⎝

�++
c

1√
2
�+

c
1√
2
�′+

c

1√
2
�+

c �0
c

1√
2
�′0

c

1√
2
�′+

c
1√
2
�′0

c �0
c

⎞
⎟⎟⎠ ,

B∗(Q)
6 =

⎛
⎜⎜⎝

�∗++
c

1√
2
�∗+

c
1√
2
�∗+

c

1√
2
�∗+

c �∗0
c

1√
2
�∗0

c

1√
2
�∗+

c
1√
2
�∗0

c �∗0
c

⎞
⎟⎟⎠ . (A2)

The values of the coupling constants adopted in the present
work are given in Table 3. The pion decay constant
Fπ = 92.3 MeV is used as in Reference [39] and gV =
Mρ/(

√
2Fπ ) = 5.8 is fixed with the help of the vector meson

dominance (VMD) approach [38]. g1 is related to the cou-
pling g4 by heavy quark symmetry, that is, g1 = 2

√
2/3g4

with the latter determined by the decay of �∗
c → �cπ

[33,39]. And the signs of g1 and g4 are fixed using the quark
model [33]. The parameter g is inferred from the decay of
D∗ → Dπ with its sign fixed by either QCD sum rules or
the quark model, see Ref. [35] for the details of sign deter-
mination. Note that we take the sign convention for g in Ref.
[57]. It is different from that in Ref. [56], which would cause

Table 3 The coupling constants adopted in the calculations

gV [38] g1 [39] g [56,57] λS [58] λ [35,56]

5.8 0.94 − 0.59 − 3.31/GeV 0.56/GeV

β [56] βS [58] Fπ [39]

0.9 − 1.74 0.092 GeV

Table 4 The combined coupling factors and isospin factors for all the
involved processes. It implies the first seven reactions contains the π , η,
ρ and ω exchange, while the last two only have the ρ and ω exchange

Process Exchanged particle CF IF

�cD → �cD∗ π 1
2 2

�cD → �∗
c D

∗

�∗
c D → �cD∗ η 1

6 1

�∗
c D → �∗

c D
∗

�cD∗ → �cD∗ ρ 1
2 2

�cD∗ → �∗
c D

∗

�∗
c D

∗ → �∗
c D

∗ ω 1
2 1

�cD → �cD ω 1
2 1

�∗
c D → �∗

c D ρ 1
2 2

a sign difference in g, while the latest absolute value we
adopted is from Ref. [56]. β = √

2Mρ/(gV fρ) is obtained
with the VMD method [56] with fρ = 210 MeV. As for λ,
it is estimated from the experimental data on the D → K ∗
form factor by using the effective Lagrangian method and its
sign is fixed by applying the VMD approach into the D∗Dγ

vertex [35]. Here we take the updated value of λ in Ref. [56].
Both magnitudes and signs of λS and βS are fixed within the
quark model [58]. It should be mentioned that there exist var-
ious sign conventions of these effective couplings in different
papers depending on the definitions of the field operators and
Lagrangians. What really matters is the sign of the potential
kernel in the dynamical equations, which shows whether the
considered interaction is attractive or repulsive.

For each process, besides the pseudo-potential V, which
can be derived from the effective Lagrangians above, there
also exists a combined coupling factor (CF) and an isospin
factor (IF). The combined coupling factor comes from the
combination of different charged particles for the same pro-
cess. We collect all the involved combined coupling factors
in Table 4. The isospin factors are calculated using [59]

I F(I ) =
∑

m1,m2,m3,m4

〈I1m1 I2m2|I Iz〉〈I3m3 I4m4|I Iz〉

× 〈I3m3 I4m4|Miso|I1m1 I2m2〉, (A3)

with the baryon-first convention is applied. 〈 j1m1 j2m2| j3m3〉
represents the Clebsch-Gordan coefficient (m1m2m3| j1 j2 j3)
related to the composition j1 + j2 = j3. All the isospin fac-
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tors for the considered processes are also given in Table 4.
Then the transition amplitude with specified quantum num-
bers is expressed by

V = −(CF) × (IF) × V. (A4)

Here the minus sign comes from the definition that ensures
a negative V corresponds to an attraction interaction.

Appendix B: Partial-wave analysis

Once the potential respecting heavy quark spin symmetry is
calculated, we can get the partial-wave potential in the J LS
basis using [26,60]

T J
LS;L ′S′(s) = Y 0

L ′(ẑ)

2J + 1

∑
s1z ,s2z ,s3z ,

s4z ,m

∫
dp̂′Ym

L (p̂′)∗

× (s1zs2z Sz |s1s2S)(mSzS
′
z |LSJ )

× (s3zs4z S
′
z |s3s4S

′)(0S′
z S

′
z |L ′S′ J )T (s)

m=0=
√

(2L ′ + 1)(2L + 1)

2J + 1

∑
s1z ,s2z ,
s3z ,s4z

1

2

∫ 1

−1
dcosθ

× PL(cos θ)(s1zs2z Sz |s1s2S)(0Sz S
′
z |LSJ )

× (s3zs4z S
′
z |s3s4S

′)(0S′
z S

′
z |L ′S′ J )T (s). (B1)

Regarding that only the S-wave term is considered in the
present work, e.g., L = L ′ = 0, we then have the following
expression

T J
0S;0S′(s) = 1

2J + 1

∑
s1z ,s2z ,
s3z ,s4z

1

2

∫ 1

−1
dcosθ(s1zs2z Sz |s1s2S)

× (s3zs4z Sz |s3s4S
′)T (s) . (B2)
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