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Abstract Neural networks are trained to judge whether or
not an exotic state is a hadronic molecule of a given channel
according its line-shapes. This method performs well in both
trainings and validation tests. As applications, it is applied
to study X (3872), X (4260) and Zc(3900). The results show
that Zc(3900) should be regarded as a D̄∗D molecular state
but X (3872) not. As for X (4260), it can not be a molecu-
lar state of χc0ω. Some discussions on X1(2900) are also
provided.

1 Introduction

Exotic hadron states, refer to those hadron states that do not
appear to fit with the expectations for an ordinary qq̄ or qqq
hadron in the quark model. A situation is that an exotic state
may have multiquark constituents, e.g., its valence quarks are
qq̄qq̄ or qqq̄q̄q̄ . One explanation is that these states are com-
pact or “elementary” states, where quarks and anti-quarks
are building blocks, they form a compact core and interact
with each other by exchanging gluons. However, since these
exotic states usually appear near the two-hadron thresholds,
a natural explanation is that they are hadronic molecules,
which means the building blocks of these exotic states are
usual hadrons and they interact with each other by exchang-
ing color neutral forces. So, a central question of researching
exotic states is to decide whether an exotic state is a molecular
state or an “elementary” state (for reviews, see for example,
Refs. [1,2]).

Neural network is a machine learning algorithm which
works for regression and classification problems. It has been
applied to many fields in physics, like nuclear physics [3],
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high energy physics experiments [4], as well as hydrody-
namics [5]. Recently, it also been applied to high energy
physics phenomenology to study [6,7], for example, inter-
mediate states in πN scattering [8], NN scattering [9] as
well as extracting scattering length and effective range of
exotic hadron states [10]. Inspired by these applications, an
idea is using neural networks to identify hadronic molecular
states.

In this work, the neural networks are trained by the invari-
ant mass spectra generated artificially with labels “0” for
molecular states and “1” for elementary states. During train-
ing, the validation tests will be done at every training epoch to
monitor the network performances and to avoid overfitting.
After training, the invariant mass spectrum from real exper-
imental data will be put into trained neural network and the
output which is a number from 0 to 1 will describe the pos-
sibility to be an elementary state. That means, if the output
is closer to 0, then the resonance is more like a molecular
state. On the contrary, if the output is closer to 1, then the
resonance is more like an elementary state.

In 2003, X (3872) was firstly detected by Belle [11]
in the J/ψπ+π− final state. Then, it was also observed
near the D̄∗D threshold [12]. Similar situation happened on
Zc(3900), which is both observed in the final state of J/ψπ

[13] and D̄∗D [14]. So, it is worthwhile to ask whether or
not these two exotic states are hadronic molecules of D̄∗D.
After X (3872) and Zc(3900) observed, many experiments
are done to study their properties [15–17]. Furthermore,
X (4260) has been detected in the J/ψππ [18] and χc0ω

[19] final state. Since it is near the threshold of ωχc0, a valu-
able question is that wither it is a molecule of ωχc0. All these
three states have data in at least two channels, especially in
the final state whose threshold is near the resonance. So, in
this work, the trained neural networks are applied on these
three hadronic states.

This paper is organized as follows, In Sect. 2, the method
of training data generation and labelling will be introduced.
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In Sect. 3, the structure of neural network classifier is dis-
cussed. The results of training, validation tests, as well as
applications are displayed in Sect. 4. Finally, some conclu-
sions and outlooks are given.

2 Training data generation

A neural network should be trained by many data with labels,
means that people should not only put lineshapes of reso-
nances into neural network, but also know every lineshape
in the training data standing for a molecular state or an ele-
mentary state. So, criteria for the nature of resonances are
needed. The pole counting rule (PCR) [20] is a convenient
choice. According to PCR, the nature of an S-wave reso-
nance is connected to the number of poles near threshold. If
there is only one pole near the threshold of the couple chan-
nel, the resonance is a molecular state and if there are two
poles near the threshold, the resonance is elementary. This
method has been used in many works to study the nature
of exotic hadron states [21–25]. Then, it demands one to
choose a parametrization for resonance amplitudes, in which
the parameters can be adjusted easily and then the values
of parameters will make difference in pole positions as well
as the lineshapes. The Flatté-like parametrization is chosen
in this work to generate training data. If two final states are
considered, the parametrizations of invariant mass spectra
are parametrized as,
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where i = 1, 2, M is the bare mass for the resonance, bg
is coherent background contributions which takes the for-
mula of first order polynomial of

√
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is the incoherent background. φ1,2 are coherent angles.
ρ1(s), ρ2(s) represent two-body phase space factor for final
state 1 (FS1) and final state 2 (FS2), respectively. The FS1
stands for lower couple channel whose threshold is much
lower than the resonance mass while FS2 stands for the cou-
ple channel whose threshold is near the resonance. It means
that if the resonance is a hadronic molecule, it should be the
composite of the two hadrons in FS2. As an example, for
Zc(3900), the FS1 stands for J/ψπ channel and FS2 stands
for D̄∗D channel. In Eq. (1), a Gaussian convolution is added
to smooth the line-shapes of the resonances, where � is fixed
at 3 MeV [16]. This is important for X (3872) and unimpor-
tant for Zc(3900) and X (4260), since the latter have much
larger widths.

Table 1 Definition of Riemann sheets

I II III IV

ρ1 + − − +
ρ2 + + − −

In practice, the coupling constant g1, g2 will be adjusted
and then lineshapes as well as the pole positions in the com-
plex s plane will change. Different sheets of complex s plane
are defined by changing signs of phase space factors, as
shown in Table 1. Generally speaking, an elementary state
means it hardly couples to FS1 nor FS2, so one should keep
g1, g2 small to ensure there are two poles near the threshold
of FS2. A molecular state indicates that it strongly couples to
the second channels, so one should make g2 � g1 to ensure
that only one pole is near the threshold of FS2. According
to PCR, if the distance between two poles is larger than ∼
200 MeV, one can say there is only one nearby pole [26]. The
pole positions of training data are shown in Fig. 1.

Since the parameter are determined, the training data can
be generated using Eq. (1). Firstly, one should choose a
proper energy range and it can cover the widths of most
exotic hadron states. In this paper, the data of FS1 are from
(Eth2 −100) MeV to (Eth2 +100) MeV and the data of FS2
are from Eth2 to (Eth2 + 100) MeV, where Ethi , i = 1, 2
are the threshold energies of FS1 or FS2, respectively. It is
stressed that the absolute value of Eth is unimportant since
only the lineshapes will be sent into neural network. The
energy resolution is fixed at 1 MeV so it can meet the demand
that all the inputs sent to a special neural network should
have the same size. Furthermore, one can change the energy
window sizes in FS1 and FS2, but it can be shown that in
most cases, the model can be well trained if the data con-
tain the complete characteristics (the peaks). The choice of
energy window sizes in this work comes from the considera-
tion that these energy regions can cover many hadronic reso-
nances since it will make the models more general rather
than only focus on a special resonance. However, in the
case of X (3872), it is found that the energy window size for
FS2 (D̄∗D channel) cannot be taken too small (e.g., 50 MeV),
otherwise the results become unstable because the noises
from the data become influential here.

In order to simulate experimental data, the effects of error
bars are taken into consideration. The values at every energy
point calculated from Eq. (1) will be taken as the average
value of Gaussian distribution, and 5, 10, 15% of their values
will be taken as the standard deviations.1 Then the Gaussian
sampling with these average values and standard deviations
gives the data in which the error bar effects are taken into

1 The values of standard deviation can also be changed as long as they
are not too big to affect the line-shapes seriously.

123



Eur. Phys. J. C (2023) 83 :52 Page 3 of 7 52

Fig. 1 Pole positions for “elementary” states and molecular states in different Riemann sheets. Here “molecule 1” means a molecular bound state
and “molecule 2” means a molecular virtual state

account. At last, the normalization:

{pi ∈ 
training} = {pi ∈ 
training}
max{pi ∈ 
training} , (2)

makes points in every sample ranging from 0 to 1, where

training is the set of points in one sample.

Using the methods introduced above, 4 × 104 groups of
labeled invariant mass spectra are generated in total, includ-
ing 2 × 104 elementary state with label “1” and 2 × 104

molecular states with label “0”. Each group consists of one
invariant mass spectrum in FS1 and one invariant mass spec-
trum in FS2. In practice, 2.4 × 104 groups of invariant mass
spectra are used to train the neural network and 1.6 × 104

groups are used to do validation test. In both training set and
testing set, the number of elementary states and molecular
states are the same.

3 Construction of neural network model

The goal of the neural network is to establish a map between
the input space of invariant mass spectra and the output
elementary-molecular classification space. A typical neural
network consists of an input layer, some hidden layers and
an output layer. In this work, the units in the input layer are
numerical values of invariant mass spectra in two final states.
Once the inputs are given, they will be linearly transformed
with some weights and biases. Then the transformed values
will be sent into the activation function, which takes the form
of ReLU (rectified linear unit),

ReLU(x) = max(0, x), (3)

for units in hidden layers, and for units in output layer, it
takes the form of sigmoid,

σ(x) = 1

1 + e−x
. (4)

The values passed through activation functions are fed to
the units in next layer until meet the output layer, i.e., every
unit value is obtained by combining all units in the previous

layer linearly and passing through the activation function.
The reason for choosing Eq. (4) as the activation function for
output layer is that it can map arbitary value into a number
ranging from 0 to 1, which represents the possibility of being
an elementary state.

Once the output is given, which means the network gives
the prediction of the nature of input sample, the discrepancy
between the label and the prediction will be calculated using
loss function. In this problem, the loss function takes the form
of,

loss = −1

n

n∑
i=1

[
qi log pi + (1 − qi ) log(1 − pi )

]
, (5)

where n is the batch size which means the number of samples
in each input and pi is the output for i th sample, qi is the
label of i th sample in the training batch.

During the training, the weights and biases used to do
the linear combination of unit values should be optimized
to have more accurate predictions or smaller loss. Usually,
the upgrading of weights and biases use gradient descent
algorithm which has been integrated into many packages.
The optimzer Adam2 is used in this work. The process from
the input to output called forward pass while the upgrading of
weights and biases called backpropagation. With circulation
of these two processes, the classifier will be trained accurate
enough. All these algorithm are performed with PyTorch3

and more details about neural network can be found in, e.g.,
Ref. [27] (Fig. 2).

Generally speaking, more hidden layers or hidden layers
with more units means there are more parameters including
weights and biases involved in the network, so that it can give
more accurate predictions with respect to the training data.
But on the other hand, if there are too many parameters, the
problem of overfitting will arise which means that the net-
work has poor predictive power when it is applied to new
data. So, there exist a balance between accuracy and extrap-

2 See: https://pytorch.org.
3 https://pytorch.org.
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Fig. 2 The process of a sample x crossing the neural network

olation. In this work, neural networks with different number
of hidden layers and different number of units in these layers
are constructed.

The process of a sample crossing the neural network is
displayed in Fig. (2). The sample is consisted of two invariant
mass spectrum and is represented by a vector. The weight
matrix and the bias vector are donated as W, b, respectively.
In Fig. (2), the subscription is the shape of this matrix where
ni is the number of units in the i-th hidden-layer (i = 1,2,...,m).
The superscription (i) represents that this matrix belongs to
the i-th hidden-layer and the superscription (o) means that
this matrix belongs to the output layer. The output o is a
number ranging from 0 to 1.

4 Training, validation tests and applications

4.1 Training and validation tests

A model with structure 400-[10-10]-1 is trained, which
means its input layer has 400 units, output layer has 1 unit
and the two hidden layers both have 10 units. As mentioned
in Sect. 2, the performances during training are monitored by
validation tests. The data in validation test are different from
those in training, but they are generated by the same method.
Figure 3 shows the loss of training data as well as test data
of the model. It is shown that after 500 training epochs, the
losses in both training data as well as test data become small.
The training loss usually becomes smaller with more training
epochs, but it does not mean that the network will perform
better and better with as many training epochs as one wants.
If the test loss arrives a small value but become larger with
more training epoch, then the neural network is thought to
be well trained and more training epochs will cause overfit-

Fig. 3 The loss of training and test data

Fig. 4 Output distributions of test data

ting, as shown in Fig. 3. It looks like converging to a local
minimum of parameter space in conventional fitting. So, the
network with the minimum test loss will be picked up. Fur-
ther more, the output distribution of samples in test data is
shown in Fig. 4. From the figure, it is shown that the elemen-
tary states labeled by 1 and the molecular states labeled by
0 are classified well since almost all outputs for elementary
states are near 1 and for molecular states are near 0.

4.2 Applications

After training and model selection, the trained models is
applied to experimental data of X (3872), X (4260) as well as
Zc(3900). For Zc(3900), the data observed in the J/ψπ and
D̄∗D final states from Ref. [13] and Ref. [14], respectively
are used. As for X (3872), the data observed in the J/ψππ

and D̄∗D final states from Ref. [16] and Ref. [12] are used.
For X (4260), the data observed in J/ψππ [18] and χc0ω

[19] final states are used.
Before sending the experimental data into the neural net-

work, it is noted that the energy resolution are different
among experiments. So, these data should be supplied in
order to have the same size as input of the neural network
in which the energy resolution is fixed at 1 MeV. To be spe-
cific, if the energy resolution of experimental data is larger
than 1 MeV (as shown in Fig. 5a, b, d), then the method of
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Fig. 5 Experimental data used in the application. a Zc(3900) data from Ref. [13], b Zc(3900) data from Ref. [14], c X (3872) data from Ref. [16],
d X (3872) data from Ref. [12], e X (4260) data from Ref. [28], f X (4260) data from Ref. [19]

linear interpolation will be employed to supply extra points.
For example, the energy resolution of Fig. 5a is 10 MeV, so
9 points will be inserted using linear interpolation between
two neighbouring experimental data. Of course, the effects
of error bar are also taken into consideration, the final appli-
cation data are obtained by Gaussian sampling in which the
central values of experimental data are regarded as average
values and the error bars are regarded as standard deviations.
At last, 100 invariant mass spectra are obtained for every
group of experimental data using Gaussian sampling and the
energy resolution is 1 MeV after linear interpolation. After
these procedures, the application data should be normalized
into 0 to 1 as done in Eq. (2).

Then, the application data are substituted into trained
model to obtain the predictions for the nature of Zc(3900),
X (4260) and X (3872). The predictions for these three states
are shown in Fig. 6.

For Zc(3900), about all 100 samples in the application
data have outputs near 0, means that it strongly couples to
D̄∗D channel and should be regarded as a hadronic molecule
of D̄∗D. This interpretation is consistent with Refs. [23,29–
31]. For X (3872), most outputs of 100 samples are near 1,
that means the coupling between X (3872) and D̄∗D chan-
nel is not strong enough to dominate its production. In other

words, X (3872) behaves more like an elementary state. The
neural network prediction for X (3872) is consistent with
e.g., Refs. [21,32–34]. The predictions for X (4260) are more
coincident. All outputs are near 1, which means that X (4260)

couples to ωχc0 not strong enough and can not be regarded
as a molecule of ωχc0. This prediction is consistent with e.g.,
Refs. [35,36]. Furthermore, the measurement of cross section
e+e− → μ+μ− performed by BESIII [37] gives the muonic
width of X (4260) to be from 1.09 to 1.53 KeV which strongly
indicates that X (4260) has a charmonium nature [36].

Furthermore, other model structures are also constructed.
For instance, models with structures 400-[10-5]-1, 400-
[15-5-5]-1, 400-[20-20]-1 are trained and the outputs for
X (3872), Zc(3900), X (4260) are unchanged.

Of course, some exotic hadron states have data only in
one final state (usually only in FS1). At this time, one still
can identify whether they are hadronic molecules by neural
network. As an example, a network is trained by FS1 data in
Eq. (1) alone. This network is used to identify the properties
of X1(2900), which is regarded as a D̄1K molecule [25].
When the experimental data are sent into network, about a
half samples are identified as elementary states and another
are molecular states, which means the network is not good
enough yet to determine its nature. But this may be caused
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Fig. 6 Output distribution for a X (3872), b X (4260) and c Zc(3900) using different models

Fig. 7 a Experimental data of X1(2900) [38]. b Outputs of X1(2900).
Where the σ stands for the experimental error bar

by the big error bars of the experimental data (see Fig. 7a).
When generating samples by Gaussian sampling, their line-
shapes can change a lot within error bars which are used as
standard deviations. So, one can reduce the standard devia-
tions in Gaussian sampling to avoid misleading. As shown
in Fig. 7b, with smaller standard deviations, the outputs are
converged to a molecular state, i.e., scores of the most sam-
ples are < 0.5. That means, neural network can also identify
hadronic molecules using only one invariant mass spectrum
if the experimental error bars are small enough.

5 Summary and outlook

In this work, machine learning models based on neural net-
work are developed and used to decide whether X (3872),
X (4260) as well as Zc(3900) can be regarded as hadronic
molecules of special channels. Resonance lineshape data
observed in two final states are taken as input, and the output
is a number which can be seen as the possibility of this reso-
nance to be an elementary state. In other words, the resonance
is more like a hadronic molecule of particles in FS2 whose
threshold is near the resonance if the output is closer to 0.
The well trained networks are picked up to do these tasks.
The results show that Zc(3900) can be regarded a molecule
of D̄∗D but X (3872) is not like a molecule of D̄∗D. Besides,
if data of X (4260) in J/ψππ and ωχc0 channels are taken
as input, the predictions of neural networks suggest that it
is not like a molecular state of ωχc0

4 These interpretations
from neural networks are consistent with many previous phe-
nomenological studies. So, the method employed in this work
is practicable.

The philosophy of a neural network to do such a binary
classification task is to represent the inputs as points in the
parameter space and build a hypersurface to separate these
points into two classes. The training process is nothing but to
adjust the hypersurface to do the separation better. In other
words, the output for a set of data reflects that how can the
parameters take values to describe such an input. That sounds
just like to do a conventional fit. In this work, the data in both
two final states perform better compared to data in only one
final state, it makes the classification like a joint fitting and
the prediction are more reliable.

The method in this work provides a new way to identify
the nature of hadron states. It is a data driven, model indepen-
dent and general method. That means a trained model can be
used to classify different resonances in different processes.
In the future, the machine learning method can be developed

4 It is suggested in Ref. [39] that X (4260) is a D̄D1(2420) molecule.
Since there is no data in this final state, we cannot study this scenario.
Furthermore, Ref. [36] suggested X (4260) can well be described as a
43S1 and 33D1 mixing state, the molecule picture is no longer appealing.
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better to understand the nature of exotic states. For instance,
Dalitz plots are more original data compared with invariant
mass spectra and convolution neural network is powerful in
image recognition. So, it can be used to classify elementary
states and hadronic molecules based on Dalitz plots. It is
believed that with the development of algorithms and com-
puter technology, machine learning will become more and
more popular in the field of particle physics.
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