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Abstract It has been suggested that the Einstein–Gauss–
Bonnet theory coupled with a scalar field (EGBS) may allow
us to obtain physically viable models of celestial phenom-
ena such that the scalar field effect is active in standard four
dimensions. We consider the spherically symmetric and static
configuration of the compact star and explain the conse-
quences of the EGBS theory in the frame of stellar modeling.
In our formulation, for any given static profile of energy den-
sity ρ with spherical symmetry and the arbitrary equation of
state (EoS) of matter, we can construct a model which repro-
duces the profile. Because the profile of the energy density
determines the mass M and the radius Rs of the compact star,
an arbitrary relation between the mass M and the radius Rs

of the compact star can be realized by adjusting the potential
and the coefficient function of the Gauss–Bonnet term in the
action of EGBS theory. This could be regarded as a degen-
eracy between the EoS and the functions characterizing the
model, which indicates that the mass–radius relation alone
is insufficient to constrain the model. Here, we investigate a
novel class of analytic spherically symmetric interior solu-
tions by the polytropic EoS. We discuss our model in detail
and show that it is in agreement with the necessary physical
conditions required for any realistic compact star, confirming
that EGBS theory is consistent with observations.

1 Introduction

Although Einstein’s theory of general relativity (GR) is suc-
cessful at present, and can forecast and elucidate increased
observational data, there are strong reasons to expect that it
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must be modified due to its shortfall in the quantization of
gravity and explaining the recent observational puzzles in
modern cosmology leading to the study of amended theories
of gravity.

The Lovelock gravitational theories [1] are of special
interest since they are Lagrangian-based theories that can
give conserved covariant field equations which do not include
derivatives higher than the second degree. In this regard,
Lovelock’s theories are the physical extensions of GR. The
Gauss–Bonnet (GB) theory is considered the first physical
nontrivial expansion of Einstein’s GR. This theory is mean-
ingful if its spacetime is greater than four-dimensional, in
which the GB invariant

G = R2 − 4Rαβ R
αβ + Rαβρσ R

αβρσ , (1)

can create a rich phenomenology. Through the use of Chern’s
theorem [2], it can be shown that in four dimensions, the GB
expression is a non-dynamical term because the GB invari-
ant becomes a total derivative. To make the GB expression a
dynamical one in four dimensions, we must invoke a novel
scalar field with a canonical kinetic term coupling to the
GB term [3–12] as stimulated, for example, by low-energy
effective actions stemming from string theory, such as the
Einstein–dilaton–GB models [5,13–15]. Actually, because
of Lovelock’s theorem, in principle, all amended gravita-
tional theories in four dimensions will have extra degrees of
freedom, which can be considered as new basic fields.

The exact solutions of the gravitational system supply sci-
entific society with a simple test of spacetime and evaluation
of observable forecasts. Nevertheless, amended gravitational
theories with new basic field(s) usually provide equations of
motion with high intractability so that the evaluations become
analytically out of the question. To address such an issue,
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one is forced either to apply perturbation theory, which is
not well qualified in the strong gravitational field, or to defy
numerical methods [16]. However, the field equations of GR
coupled with matter have conformal invariance since they
possess the constant Ricci scalar curvature on-shell, limit-
ing the spacetimes and permitting analytic solutions to be
easily derived. An example of such a theory that has con-
formal invariance and yields simple analytic solutions is the
electrovacuum, whose Reissner–Nordström (Kerr–Newman)
solution was the first-ever discovered static (spinning) black
hole (BH) with a matter source. Another model is the gravita-
tional theory coupled with a conformal scalar field, in which
the matter action obeys the conformal invariance and has the
form

Sξ =
∫

d4x
√−g

(
1

6
Rξ2 + (∇ξ)2

)
, (2)

where R is the Ricci scalar and ξ is the scalar field. The field
equations of the above action give a solution with the no-
hair theorem (see, e.g., Ref. [17] for a review) and the static
Bocharova–Bronnikov–Melnikov–Bekenstein BH [18–20],
which has been much debated. Gravitational theory with a
conformal scalar field and its solutions have been discussed
in recent years because of its compelling properties (see, e.g.,
Refs. [21–31] and references therein).

As we discussed above, in four dimensions, the GB term
is topological and does not yield any dynamical effect. Nev-
ertheless, when the GB term is non-minimally coupled with
any other field, such as a scalar field ξ , the output dynam-
ics are nontrivial. Many cosmological proposals have been
presented in the recent literature ([32–87] and references
therein). In the frame of astrophysics, however, to the best of
our knowledge, the GB theory with a non-minimal coupling
of a scalar field via potential and coefficient function has not
been tackled, although there are some pioneering works such
as [8]. It is the aim of the present study to derive exact spher-
ically symmetric interior solutions of this theory and discuss
the physical consequences. By using our formulation, we can
construct a model which reproduces any given profile of the
energy density ρ for an arbitrary equation of state (EoS) of
matter. The mass M and the radius Rs of the compact star are
determined by the profile of the energy density, and there-
fore we can obtain an arbitrary relation between the mass M
and the radius Rs of the compact star by adjusting the scalar
potential and the coefficient function of the GB term in the
action of the Einstein–Gauss–Bonnet gravity coupled with
a scalar field (EGBS), which could be a kind of degeneracy
between the EoS and the functions characterizing the model.
Therefore, we find that the mass–radius relation alone is not
sufficient to constrain the model.

The remainder of the paper is organized as follows: In
Sect. 2, we describe the fundamentals of the EGBS, and we

apply the field equation of the EGBS theory to a spherically
symmetric spacetime and derive the full system of the differ-
ential equation. Here we show that we can construct a model
which reproduces any given profile of the energy density ρ

for an arbitrary EoS of matter. Also in Sect. 3, we give the
form of a polytropic EoS as an example and the form of one
of the metric potentials as an input and then derive all the
unknown functions including the profile of the scalar field,
the coefficient function, the potential of the scalar field, and
the form of another metric potential. Section 4 discusses the
physical conditions that must be satisfied for any real stellar
configuration. In Sect. 5, we discuss the physical properties
analytically and graphically, showing that the solutions have
realistic physical properties. In Sect. 7, we discuss the issue
of stability by using the adiabatic index and show that our
model satisfies the adiabatic index; that is, the value of the
index is greater than 4/3, which is the condition of stability.
The final section is reserved for the conclusion and discussion
of the present study.

2 Gauss–Bonnet theory coupled with scalar through
f (ξ)

Now we consider the EGBS in N dimensions. This theory
takes the following amended action,

S =
∫

dN x
√−g

{
1

2κ2 R − 1

2
∂μξ∂μξ + V (ξ) + f (ξ)G

}
+ SM ,

(3)

where ξ is the scalar field and V is the potential which is a
function of ξ , f (ξ) is an arbitrary function of the scalar field,
and SM is the matter action, where we assume that matter is to
couple minimally to the metric, i.e., we are working in the so-
called Jordan frame. In four dimensions, i.e., when N = 4,
the aforementioned action is physically nontrivial because
the GB invariant term G is coupled with the real scalar field
ξ through the coupling f (ξ). Because of this coupling, the
Lagrangian is not a total derivative but contributes to the field
equations of the system.

The variation of the action (3) w.r.t. the scalar field ξ yields
the following equation

∇2ξ − V ′(ξ) + f ′(ξ)G = 0. (4)

The variation of the action (3) w.r.t. the metric gμν yields the
following field equations

Tμν = 1

2κ2

(
−Rμν + 1

2
gμνR

)
+ 1

2
∂μξ∂νξ − 1

4
gμν∂ρξ∂ρξ

+ 1

2
gμν[ f (ξ)G − V (ξ)] + 2 f (ξ)RRμν
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+ 2∇μ∇ν ( f (ξ)R) − 2gμν∇2 ( f (ξ)R)

+ 8 f (ξ)Rμ
ρR

νρ − 4∇ρ∇μ
(
f (ξ)Rνρ

)
− 4∇ρ∇ν

(
f (ξ)Rμρ

)
+ 4∇2 (

f (ξ)Rμν
) + 4gμν∇ρ∇σ

(
f (ξ)Rρσ

)
− 2 f (ξ)Rμρστ Rν

ρστ + 4∇ρ∇σ

(
f (ξ)Rμρσν

)
. (5)

Through the use of the Bianchi identities,

∇ρRρτμν = ∇μRντ − ∇νRμτ ,

∇ρRρμ = 1

2
∇μR ,

∇ρ∇σ R
μρνσ = ∇2Rμν − 1

2
∇μ∇νR

+ Rμρνσ Rρσ − Rμ
ρR

νρ ,

∇ρ∇μRρν + ∇ρ∇νRρμ = 1

2

(∇μ∇νR + ∇ν∇μR
)

− 2Rμρνσ Rρσ + 2Rμ
ρR

νρ ,

∇ρ∇σ R
ρσ = 1

2
�R , (6)

in Eq. (5), we obtain

Tμν = 1

2κ2

(
−Rμν + 1

2
gμνR

)

+
(

1

2
∂μξ∂νξ − 1

4
gμν∂ρξ∂ρξ

)

+ 1

2
gμν [ f (ξ)G − V (ξ)]

− 2 f (ξ)RRμν + 4 f (ξ)Rμ
ρR

νρ − 2 f (ξ)Rμρστ Rν
ρστ

− 4 f (ξ)RμρσνRρσ

+ 2
(∇μ∇ν f (ξ)

)
R − 2gμν

(
∇2 f (ξ)

)
R

− 4
(∇ρ∇μ f (ξ)

)
Rνρ − 4

(∇ρ∇ν f (ξ)
)
Rμρ

+ 4
(
∇2 f (ξ)

)
Rμν + 4gμν

(∇ρ∇σ f (ξ)
)
Rρσ

− 4
(∇ρ∇σ f (ξ)

)
Rμρνσ . (7)

The field equations (4) and (7) are the full system of equa-
tions describing the theory under consideration. In the four-
dimensional case, i.e., N = 4, Eq. (7) yields

Tμν = 1

2κ2

(
−Rμν + 1

2
gμνR

)

+
(

1

2
∂μξ∂νξ − 1

4
gμν∂ρξ∂ρξ

)
− 1

2
gμνV (ξ)

+ 2
(∇μ∇ν f (ξ)

)
R − 2gμν

(
∇2 f (ξ)

)
R

− 4
(∇ρ∇μ f (ξ)

)
Rνρ − 4

(∇ρ∇ν f (ξ)
)
Rμρ

+ 4
(
∇2 f (ξ)

)
Rμν

+ 4gμν
(∇ρ∇σ f (ξ)

)
Rρσ − 4

(∇ρ∇σ f (ξ)
)
Rμρνσ .

(8)

In the present study, we assume that the scalar field ξ is a
function of the radial coordinate r and therefore the function
f (ξ) depends only on r , i.e., f (r) ≡ f (ξ (r)), because we
deal with static and spherically symmetric spacetime,

ds2 = −a(r)dt2 + dr2

a1(r)
+ r2

(
dθ2 + sin2 (θ)

)
dφ2 . (9)

In the following section, we study the system of field equa-
tions (4) and (8) and try to find the analytic form of the
unknown functions when Tμν �= 0.

3 Four-dimensional spherically symmetric interior
solution in EGBS

For the metric in (9), the (t, t)-component of the field equa-
tion Eq. (8) has the following form

−ρ = 16a1 (1 − a1) f ′′ + {
8 (1 − 3a1) f ′ + 2r

}
a′

1 + 2a1 + 2Vr2 + r2ξ ′2a1 − 2

4r2 , (10)

where the (r, r)-component is given by

p = 2
(
4 (1 − 3a1) f ′ + r

)
a1a′ + a

[
2a1 − r2a1ξ

′2 − 2 + 2Vr2
]

4r2a
,

(11)

and the (θ, θ)- and (φ, φ)-components are

p = 2a1a
(
r − 8 f ′a1

)
a′′ − 16 f ′′a2

1aa
′ + a1

(
8 f ′a1 − r

)
a′2 + {(

r − 24 f ′a1
)
a′

1 + 2a1
}
aa′ + 2a2

(
a′

1 + r
[
ξ ′2a1 + 2V

])
8a2r

. (12)

The field equation of the scalar field (4) takes the following
form
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0 = 8a1a f ′ (a1 − 1) a′′ + 2ξ ′′a1ξ
′a2r2 + 4a′ f ′ [a1a′ (1 − a1) + a′

1a (3a1 − 1)
] + ra

([
a1a′r + a

{
4a1 + a′

1r
}]

ξ ′2 − 2arV ′)
2r2a2ξ ′ .

(13)

Here, ρ is the energy density and p is the pressure of
matter, which we assume to be a perfect fluid and which
satisfies an EoS, p = p (ρ). The energy density ρ and the
pressure p satisfy the following conservation law

0 = ∇μTμr = 1

2

a′

a
(ρ + p) + dp

dr
. (14)

The conservation law is also derived from Eqs. (10), (11),
(12), and (13). Here we have assumed that ρ and p depend
only on the radial coordinate r . Other components of the
conservation law are trivially satisfied. If the EoS ρ = ρ(p)

is given, Eq. (14) can be integrated as

1

2
ln a = −

∫ r

dr
dp
dr

ρ + p
= −

∫ p(r) dp

ρ(p) + p
. (15)

Because Eq. (14) and therefore (15) can be obtained from
Eqs. (10), (11), (12), and (13), as long as we use (15), we
forget one equation in Eqs. (10), (11), (12), and (13). In the
following, we do not use Eq. (13). Inside the compact star, we
can use Eq. (15), but outside the star, we cannot use Eq. (15).
Instead of using Eq. (15), we may assume the profile of a =
a(r) so that a(r) and a′(r) are continuous at the surface of
the compact star.

By Eq. (10) + Eq. (11), we obtain

V = −ρ + p

+ 8 a1a (a1 − 1) f ′′ − 4
{
(1 − 3a1) f ′ + r

}
(aa1)

′ + 2a − 2aa1

2ar2 .

(16)

On the other hand, Eq. (10) − Eq. (11) gives

ξ ′ = ±
{

2

a1
(ρ + p)

+ 8 aa1 (a1 − 1) f ′′ − [
4 (1 − 3 a1) f ′ + r

] (
aa′

1 − a1a′)
a1r2a

} 1
2

.

(17)

Furthermore, Eq. (10) − Eq. (12) gives

0 =16
[
a1a

′r − 2 a (a1 − 1)
]
aa1 f

′′

− 2raa1
(
r − 8 f ′a1

)
a′′ + ra1

(
r − 8 f ′a1

)
a′2

− [(
r − 24 f ′a1

)
a′

1 + 2 a1
]
ara′

+ 2
{[

8 (1 − 3 a1) f ′ + r
]
a′

1 − 2 + 2 a1
}
a2 + 8a2r2 (ρ + p) ,

(18)

which can be regarded with the differential equation for f ′
and therefore for f if a = a(r), a1 = a1(r), ρ = ρ(r), and
p = p(r) are given and the solution is given by

f (r) = −
∫ ⎛

⎝
∫ [

a1a
′2r2 − 2a1a

′′ar2 − ra
(
a′

1r + 2 a1
)
a′ + 2

{
a′

1r − 2 + 2a1 + 4 (ρ + p) r2
}
a2

]

2U (r)a1a
(
a1a′r − 2a (a1 − 1)

) dr − 16c1

⎞
⎠Udr + c2 ,

U (r) ≡ e
∫ ra1

2a′2−2raa1
2a′′+

(
2a2(3a1−1)−3a1a

′ar
)
a′

1
2a1a{a1a

′r−2a(a1−1)} dr
. (19)

Here, c1 and c2 are constants of the integration.
Let us assume the r -dependencies of ρ and a1, ρ = ρ(r)

and a1 = a1(r). Then by using the EoS p = p(ρ), we find
the r -dependence of p, p = p(r) = p (ρ (r)). Furthermore,
by using (15), we find the r -dependence of a, a = a(r). How-
ever, Eq. (15) is not valid outside the compact star because ρ

and p, of course, vanish there. Then outside the compact star
we may properly assume the profile of a(r) so that a(r) and
a′(r) are continuous at the surface, that is, the boundary of the
compact star, and coincide with a(r) and a′(r) obtained from
(15). Therefore, by using (19), we find the r -dependence of
f , f = f (r), and by using Eqs. (16) and (17), we find the r
dependencies of V and ξ , V = V (r) and ξ = ξ(r). By solv-
ing ξ = ξ(r) with respect to r , r = r(ξ), we find f and V as
functions of ξ , f (ξ) = f (r (ξ)), V (ξ) = V (r (ξ)), which
realize the model which has a solution given by ρ = ρ(r)
and a1 = a1(r).

We should note, however, that the expression of ξ in (17)
gives a constraint,

2

a1
(ρ + p)

+ 8 aa1 (a1 − 1) f ′′ − [
4 (1 − 3 a1) f ′ + r

] (
aa′

1 − a1a′)
a1r2a

≥ 0 ,

(20)

so that the ghost can be avoided. If Eq. (20) is not satisfied,
the scalar field ξ becomes purely imaginary. We may define a
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new real scalar field ζ by ξ = iζ
(
i2 = −1

)
, but because the

coefficient in front of the kinetic term of ζ becomes negative,
ζ is a ghost, that is, a non-canonical scalar field. The existence
of the ghost generates the negative norm states in the quantum
theory, and therefore the theory becomes inconsistent.

When we consider compact stars like neutron stars, we
often consider the following EoS

1. Energy-polytrope

p = Kρ1+ 1
n , (21)

with constants K and n. It is known that for the neutron
stars, n can take the value 0.5 ≤ n ≤ 1.

2. Mass-polytrope

ρ = ρm + Np , p = Kmρ
1+ 1

nm
m , (22)

where ρm is rest mass energy density and Km , N are
constants.

Now let us study the case of the energy-polytrope (21) in
detail, in which we can rewrite the EoS as follows

ρ = K̃ p(1+ 1
ñ ) , K̃ ≡ K

− 1
1+ 1

n , ñ ≡ 1
1

1+ 1
n

− 1
= −1 − n .

(23)

For the energy-polytrope, Eq. (15) takes the following form

1

2
ln a = −

∫ p(r) dp

K̃ p1+ 1
ñ + p

= c

2
+ ñ ln

(
1 + K̃−1 p− 1

ñ

)

= c

2
− (1 + n) ln

(
1 + Kρ

1
n

)
. (24)

Here, c is a constant of the integration. Similarly, in the case
of the mass-polytrope (22), we obtain

1

2
ln a = c̃

2
+ ln

(
1 − Kmρ

1
nm

)
. (25)

Here, c̃ is again a constant of the integration.
Under one of the above EoS, we may assume the following

profile of ρ = ρ(r) and a1 = a1(r), just for an example,

ρ =
{

ρc

(
1 − r2

Rs
2

)
when r < Rs

0 when r > Rs

, a1 = 1 − 2Mr2

r3 + r0
3 .

(26)

Here, r0 is a constant, ρc is a constant expressing the energy
density at the center of the compact star, Rs is also a constant
corresponding to the radius of the surface of the compact

star, and M is a constant corresponding to the mass of the
compact star,

M = 4πρc

∫ r

0
ψ2ρ(ψ)dψ = 4πρc

∫ r

0
dψψ2

(
1 − ψ2

Rs
2

)

= 4πρcr3

15

(
5 − 3r2

Rs
2

)
. (27)

When r → ∞, a1 behaves as a1(r) ∼ 1− 2M
r , and therefore

M can be regarded as the mass of the compact star. Equa-
tion (27) gives the M–r relation, that is, the relation between
the mass and the radius of the compact star when r = Rs .
We also note that we need to choose r0 large enough that a1

is positive. In order for a1 in (26) to be positive, we require

2
5
3 M

3r0
< 1 . (28)

We should also note that when r → 0, a1 behaves as a1(r) ∼
1 − 2Mr2

r3
0

.1 Therefore, a′
1(r) vanishes at the center r = 0,

a′
1(r = 0) = 0, and thus there is no conical singularity.

As an example, we use the energy-polytope as the EoS by
choosing n = 1 just for simplicity. Then Eq. (24) gives

a = ec(
1 + Kρc

(
1 − r2

Rs
2

))4 , (29)

which gives

a′ = 8ecKρcr

Rs
2
(

1 + Kρc

(
1 − r2

Rs
2

))5
. (30)

Outside the star, we assume that a(r) = a1(r) in (26), and
therefore

a′ = 2Mr
(
r3 − r0

3
)

(
r3 + r0

3
)2 . (31)

Because a(r) and a′(r) should be continuous at the surface
r = Rs , we obtain

ec = 1 − 2MRs
2

Rs
3 + r0

3
,

8ecKρc

Rs
= 2MRs

(
Rs

3 − r0
3
)

(
Rs

3 + r0
3
)2 .

(32)

1 It is well known that the junction conditions for the matching of two
spacetime manifolds have further restrictions in the EGBS gravity [88].
With regard to a static configuration, this is not a real problem, since
the interior will match to vacuum, and so the pressure will still vanish
at the surface r = Rs , as we will show below.
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By deleting ec in the two equations in (32), we obtain

0 =
(
r0

3
)2 +

(
2Rs

3 − 2MRs
2 + MRs

2

2Kρc

)
r0

3

+ Rs
6 − 2MRs

5 − MRs
5

4Kρc

=
(
r0

3
)2 +

(
2Rs

3 − 16πρc R5
s

15
+ 2πR5

s

15K

)
r0

3

+ Rs
6 − 16πρc R8

s

15
− 2πR8

s

15K
, (33)

where we have used Eq. (27) when r = Rs . Because r0

should be positive, we find

Rs
6 − 16πρc R8

s

15
− 4πR8

s

15K
< 0

or

2Rs
3 − 16πρc R5

s

15
+ 4πR5

s

15K
< 0 and

Rs
6 − 16πρc R8

s

15
− 4πR8

s

15K
> 0 . (34)

Then, by using (19), we find the r -dependence of f , f =
f (r), and by using Eqs. (16) and (17), the r dependencies of
V and ξ , V = V (r) and ξ = ξ(r), are determined. If we can
solve ξ = ξ(r) with respect to r , r = r(ξ), we find f and V
as functions of ξ , f (ξ) = f (r (ξ)), V (ξ) = V (r (ξ)).

Just for further simplicity, we may choose

2r0 = Rs = 4M = 32πρc R3
s

15
, Kρc = 7

258
, ec = 5

9
,

(35)

which satisfy Eqs. (28), (32), and (33). For numerical calcu-
lation, we may further choose Rs = 1.

Inside the compact star, by using Eqs. (26) and (29), we
find that the GB term G behaves as

G(r) = − KρcM

64
(
Rs

2 + Kρc Rs
2 − Kρcr2

)2 (
r3 + r0

3
)3

{
9r5r0

3Kρc + 3r0
6Kρcr

2 − 4r0
3Mr4Kρc + r5MKρc Rs

2

+ 3r3r0
3Kρc Rs

2 + 3r0
6Kρc Rs

2 − 8r0
3Mr2Kρc Rs

2

+ r5MRs
2 + 6r8Kρc − 13r7MKρc

+3r3r0
3Rs

2 + 3r0
6Rs

2 − 8r0
3Mr2Rs

2}

≈ − 64Rs
2r0

3MKρc

r0
6Rs

4 (Kρc + 1)

+ 64
(
8MRs

2 + 8MKρc Rs
2 − 9r0

3Kρc
)
MKρcr2

r0
6Rs

4 (Kρc + 1)2

+ 384MKρcr3

Rs
2r0

6 (1 + Kρc)
. (36)

Equation (36) shows that the GB term does not vanish, and it
depends on the mass of the star. Now we calculate the form
of f (r) using the data given in Eqs. (29), (32), and (26). The
explicit form of f (r) is displayed in Appendix A. The form
of ξ(r), by using the data given in Eqs. (26), (29), and (32),
is also displayed in Appendix A. Finally, we calculate the
explicit form of V (r) using the data given in Eqs. (29), (32),
and (26), and list the results in Appendix A.

To complete our study, we solve Eq. (A4) asymptotically
and obtain

ξ(r → 0) ≈C11 + C12
√
r ⇒ r ≈ C13 + C14ξ + C15ξ

2 .

(37)

The above equation is valid provided that the constant C12 <

0. Now, using Eq. (37) in (A2), we obtain f (ξ) as

f (ξ) ≈ C16 + C17ξ + C18ξ
2 . (38)

Also using Eq. (37) in (A6), we obtain V (ξ) as

V (ξ) ≈ C19 + C20ξ + C21ξ
2 . (39)

A final remark that we should stress is that using Eqs. (26),
(29), (A2), and the constraints (35) with Rs = 1, one can
easily show that the inequality (20) holds.

We have four differential equations for seven unknown
functions, as shown in Eqs. (10), (11), (12), and (13), that is,
ρ, p, V , ξ , f , a, and a1. As a result, we need to require three
additional conditions to close such a system. One of these
extra conditions is the continuity equation given by Eq. (14).
The second condition is the polytropic EoS given by Eq. (21).
The third is the profile of the energy density of matter given
by Eq. (26). When these additional conditions are combined
with Eqs. (10), (11), (12), and (13), the system is in a closed
form, allowing all seven unknown functions to be explicitly
fixed.

4 Ingredient requirements for a real physical stellar
configuration

For a physically reliable isotropic stellar model, the solution
has to satisfy the conditions inside the stellar configurations
as follows:

• The metric potentials a(r) and a1(r), and the energy–
momentum components ρ and p should be well defined
at the center of the star and should have a regular behavior
and have no singularity in the interior of the star.

• The density ρ must be positive in the stellar interior, i.e.,
ρ ≥ 0. Moreover, its value at the center of the star must
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be finite, positive, and decreasing to the boundary of the
star, i.e., dρ

dr ≤ 0.
• The pressure p should have a positive value inside the

fluid configuration, i.e., p ≥ 0. In addition, the derivative
of the pressure should yield a negative value inside the
star, i.e., dp

dr < 0. At the surface of the star, r = Rs , the
pressure p should vanish.

• For an isotropic fluid sphere, the inquiries of the energy
conditions are given by the following inequalities in every
point:

1. Null energy condition (NEC): ρ > 0.
2. Weak energy condition (WEC): p + ρ > 0.
3. Strong energy condition (SEC): ρ + 3p > 0.

• The causality condition which should be satisfied to
obtain a realistic model, i.e., the speed of sound should
be less than 1 (provided that the speed of light is c = 1)
in the interior of the star, i.e., 1 ≥ dp

dρ
≥ 0.

• To obtain a stable model, the adiabatic index must be
greater than 4

3 .

It is time to analyze the above conditions to see whether we
have a real isotropic star.

5 Physical behavior of our model

To test whether our model given by Eqs. (22) and (24) agrees
with a real stellar construction, we discuss the following
issues:

5.1 Non-singular model

1. The metric potentials of this model satisfy

a(r → 0) = ec

(1 + Kρc)
4 and a1(r → 0) = 1 , (40)

which yields that the metric potentials have finite values
at the center of the star configuration. Additionally, the
derivatives of these metric potentials vanish at the cen-
ter of the star, i.e., a′(r → 0) = a′

1(r → 0) = 0. If
the derivatives do not vanish even if they are finite, there
appear conical singularities at the center. The above con-
straints yield that the metric is regular at the center and
that the metric has good behavior in the interior of the star.

2. Density (26) and pressure (21), at the center, have the form

ρ(r → 0) = ρc , p(r → 0) = Kρc
2 . (41)

The above Eq. (41) clearly shows that the density and pres-
sure at the center of the star always have positive values
if ρc > 0 and K > 0; otherwise they become negative.

3. The gradients of density and pressure of our model are
given respectively as

ρ′ = −2ρcr

Rs
2 , p′ = −

4Kρcr
(

1 − r2

R2
2

)

R2
2 . (42)

Here, ρ′ = dρ
dr and p′ = dp

dr . Equation (42) shows that
the derivatives of density and pressure are negative. Fur-
thermore, because they vanish at the center of the star, the
conical singularities do not appear.

4. The velocity of sound using relativistic units, i.e., (c =
G = 1), are derived as [89]

vr
2 = dp

dρ
= 2ρc

(
Rs

2 − r2
)

Rs
2 . (43)

Now we are ready to plot all the above conditions to exam-
ine their behaviors using the numerical constraints listed in
Eq. (35).

In Fig. 1a and b, we present the behavior of metric poten-
tials. As Fig. 1 shows, the metric potentials assume the values
a1(r → 0) = 1 and a(r → 0) = 0.5 for r = 0, which ensure
that both of the metric potentials have finite and positive val-
ues at the center of the star.

Now we plot the energy density and pressure, listed by
Eqs. (21) and (26) in Fig. 2.

Figure 2 shows that the energy density and pressure are
positive, which is in agreement for a realistic stellar configu-
ration. Additionally, as Fig. 2a and b indicate, the density and
pressure have high values at the center and decrease toward
the boundary, which is relevant for a realistic star.

Figure 3 shows that the derivatives of density and pressure
have negative values, which ensure the decrease in density
and pressure throughout the stellar configuration.

In Fig. 4, we plot the speed of sound and the mass–radius
relation. As Fig. 4a shows, the speed of sound is less than
1, which confirms the non-violations of causality condition
in the interior of the stellar configuration. Moreover, Fig. 4c
shows that the compactness of our model is constrained by
0 < C < 0.55, where C = M

r in the stellar configuration.
As Fig. 4a shows, the causality condition is satisfied, which
is one of the advantages in this study due to the procedure
we follow, although in the frame of GR, it is shown that
this condition is not satisfied [90]. We may infer that the
procedure used in this study is responsible for the correction
in the behavior of the causality condition. Moreover, also as
in [90], it is shown that the maximum mass lies in the range
0.2 M�. In our model, however, due to the procedure we
follow in this study, the maximum mass is about 0.25 M�, as
shown in Fig. 4b, which could be used to be compared with
the recent data.
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Fig. 1 Schematic plot of the metric potentials (26) and (29) vs. the radial coordinate r using the constraints (35)

Fig. 2 Plot of the energy density and pressure of (21) and (26) vs. the radial coordinate r using the constraints (35)

Figure 5 shows the behavior of the energy conditions. In
particular, Fig. 5a–c indicate the positive values of the NEC,
WEC, and SEC energy conditions, which ensure that all the
conditions are verified through the stellar configuration as it
should be for a physical stellar model.

In Fig. 6, we plot the EoS. As Fig. 6a shows, the EoS
is not linear. It was shown in [91] that the EoS of neutral
compact stars is almost a linear one, in contrast to the EoS
presented in this study, which shows a nonlinear form due
to the form of the pressure given by Eq. (21).

6 Stability of the model

Now we are ready to test the stability issue on our model
using the adiabatic index. The stable equilibrium of a spher-
ically symmetric spacetime can be investigated through the
adiabatic index, which is an ingredient tool to test the sta-
bility criterion. The adiabatic perturbation, i.e., the adiabatic
index �, is defined as [92–94]

� =
(

ρ + p(r)

p(r)

) (
dp(r)

dρ(r)

)
. (44)
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Fig. 3 Plot of the gradients of density and pressure of (21) and (26) vs. the radial coordinate r using the constraints (35)

Fig. 4 Plot of the speed of sound (a), mass–radius relation (b), and compactness of the stellar (c) via the radial coordinate r using the constraints (35)

Fig. 5 Plot of the null, weak, and strong energy conditions of (21) and (26) vs. the radial coordinate r using the constraints (35)
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Fig. 6 Plot of the EoS vs. the radial coordinate r (a) and the red shift (b) using the constraints (35)

Fig. 7 Plot of the adiabatic index using the constraints (35)

A Newtonian isotropic sphere has a stable equilibrium if the
adiabatic index � > 4

3 [95]. If � = 4
3 , the isotropic sphere is

in neutral equilibrium.
Using Eq. (44), we obtain

� = 2
(
Rs

2 [1 + ρc] − ρcr2
)

Rs
2 . (45)

In Fig. 7, we depict the adiabatic index �. As is clear from
Fig. 7, the value of � is greater than 4

3 throughout the stellar
interior, and therefore the stability condition is satisfied.

7 Discussion and conclusions

In the present research, we considered the spherically sym-
metric and static configuration of the compact star by using
the EGBS. In our formulation, for any given spherically sym-
metric and static profile of the energy density ρ and for an
arbitrary EoS of matter, we can construct the model which
reproduces the profile. Because the profile of the energy den-
sity determines the mass M and the radius Rs of the compact
star, an arbitrary relation between the mass M and the radius
Rs of the compact star can be realized by adjusting the poten-
tial V (ξ) and the coefficient function f (ξ) of the GB term in
(3). This could be regarded as a degeneracy between the EoS
and the functions V (ξ) and f (ξ) characterizing the model,
which indicates that the mass–radius relation alone is insuf-
ficient to constrain the model.

As a concrete example, by using the polytrope EoS (21)
and assuming the profile of the energy density ρ(r) in (26),
we have constructed a model and discussed the properties.
The derived analytic solution is investigated analytically and
graphically using different tests to assess the physical rele-
vance of the derived solution.

In this regard, we discovered that the energy density and
pressure decrease as the radial coordinates approach the sur-
face of the star Fig. 1. This clearly indicates that the center of
the star is highly compact and the model under consideration
is valid for the region outside the center of the star. Addi-
tionally, we have explained analytically and graphically in
Fig. 5 that all the energy conditions are verified throughout
the interior of the stellar configuration. According to Herrera
[89], any stable solution must yield a square of sound speed,
v2, to lie in the interval v2 ∈ [0, 1]. In this model, we have
shown that the speed of sound lies in the required interval,
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confirming that the solution obtained in our model is stable.
Also, the calculation of the adiabatic index of our model is
in excellent agreement with the stability condition as shown
in Fig. 7 (right panel). We have depicted the mass–radius
relation as shown in Fig. 4 (middle panel). As this figure
shows, the mass M takes a positive value through the inte-
rior of the star. Additionally, it is easy to prove that as r → 0,
we obtain M → 0, which ensures that M is regular at the
core of the star. We also showed that the procedure used in
this study can significantly enhance the mass, corroborating
recent observations of some massive two-solar mass neutron
stars. Moreover, as Buchdahl [96] has shown, for static spher-
ically symmetric isotropic matter content, the ratio between
the mass and the radius should be M

R < 4
9 . In this study, the

ratio M
Rs

= 1
4 (see Fig. 4, middle panel) shows that the Buch-

dahl condition is satisfied. The compactification C = M
Rs

has been depicted in Fig. 4 (right panel), which shows that
the compactness should be 0 < C < 0.55. In Fig. 6 (right
panel), we have shown that the profile of the surface redshift
is less than 2 as required for an isotropic model without a cos-
mological constant. It has been shown that the upper limit of
surface redshift is 2, which is in agreement with our stellar
configuration [96–98].

In the present study, we have assumed that a physical
energy density is given by Eq. (26), as it has a finite value at
the center of the star ρc and it is finite at the surface of the
star, which is consistent with realistic compact stars. Also,
the metric potentials of this construction are physical because
they are singularity-free, as r → 0, and have finite values at
the surface of the star. Additionally, the mass of the star in
the model under consideration has a finite value at the center
as well as at the surface of the star. Moreover, the constructed
model yields a consistent form of the GB term, and the scalar
field ξ , the potential V (ξ), and the coefficient function f (ξ)

have finite value, as r → 0. Also, we have shown that the
model under consideration is stable and its adiabatic index is
greater than 4

3 , which is consistent with observations.
Remarkably, NICER (Neutron star Interior Composi-

tion Explorer) observations of PSR J0030+0451 and PSR
J0740+6020 offer indications against the more squeezable
models. The latter has significantly more mass than the for-
mer, although they are nearly the same size. So it is rea-
sonable to suppose some processes to rationalize the non-
squeezability of a neutron star as its mass increases. On
the other hand, the presence of high-mass pulsars∼ 2M�
such as PSR J0740+6020 is known to prefer violation of
the upper sound speed conformal limit v2 ≤ 1/3, posing
another challenge for theoretical models even in low-density
cases, as demonstrated by Bedaque and Steiner [99] (see also
[100,101]). In their study of the pulsar PSR J0740+6020,
Legred et al. [102] concluded that the conformal sound speed
is strongly violated at the neutron star core, where v2 = 0.75

with density 3.60ρnuc.. It is important to mention that such
an issue does not appear in our constructed model, as shown
in Fig. 4a.

To conclude, to the best of our knowledge, that this is the
first study to derive an analytic isotropic spherically symmet-
ric interior solution in the frame of EGBS theory. From the
above analysis, we ensure that the derived solution in this
study met all the physical requirements of any isotropic stel-
lar configuration in the frame of this theory. An isotropic
model in the frame of Rastall’s theory is derived using the
technique of conformal killing vectors [103]. In this model,
the authors showed that the maximum value of the com-
pactness in their model was 0.028742 and the redshift was
0.09444. If we compare our results with those presented in
[103], we see that the compactness and redshift of our model
are greater than the ones presented in [103]. This means
that the nonlinear form of the EoS has a greater effect on
the structure of the model than the conformal killing vector.
An isotropic model is also constructed in the framework of
F(R, T ), where R is the Ricci scalar and T is the trace of
the energy–momentum tensor. It was shown that the model
constructed in [104] suffers from a violation of the domi-
nant energy condition (DEC), whereas it is satisfied in the
model under consideration. Moreover, it was shown that in
the model constructed in [104], its energy density configu-
ration is nonuniform, which corresponds to a quasi-constant
density configuration, but our model did not possess a such
defect.
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Appendix A: Explicit form of f (r), ξ(r), and V (r)

In this Appendix, we give the explicit form and asymptotic
forms of f (r), ξ(r), and V (r). The explicit form of f (r) is
given by
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f (r) = 1

16Rs
4

∫ (∫ [
exp

{
−

∫ (
2r0

9K 2ρc
2Rs

2 + 2r0
9Rs

2Kρc

− MRs
4r6 + 3M2Rs

4r5 + 10ρc
2r11K 2

+ 2r0
6K 2ρc

2Rs
4M + 4r0

6Kρc Rs
4M + 2Kρc Rs

2r9

− 47ρc
2r10K 2M + 55ρc

2r9K 2M2 + 30ρc
2r8K 2r0

3

+ 30ρc
2r5K 2r0

6 + 10ρc
2r2K 2r0

9 + 2K 2ρc
2Rs

2r9

− 6M2Rs
4r2r0

3 + MRs
4r3r0

3 − 24Kρc Rs
2Mr5r0

3

+ 44Kρc Rs
2M2r4r0

3 + MRs
4K 2ρc

2r3r0
3

− 6M2Rs
4K 2ρc

2r2r0
3 + 2MRs

4Kρcr
3r0

3

− 12M2Rs
4Kρcr

2r0
3 − 24K 2ρc

2Rs
2Mr2r0

6

− 24K 2ρc
2Rs

2Mr5r0
3 + 44K 2ρc

2Rs
2M2r4r0

3

− 24Kρc Rs
2Mr2r0

6 − MRs
4K 2ρc

2r6

+ 3M2Rs
4K 2ρc

2r5 − 2MRs
4Kρcr

6

+ 6M2Rs
4Kρcr

5

+ 6K 2ρc
2Rs

2r3r0
6 + 6K 2ρc

2Rs
2r6r0

3

− 10K 2ρc
2Rs

2M2r7 + 6Kρc Rs
2r3r0

6

+ 6Kρc Rs
2r6r0

3

−10Kρc Rs
2M2r7 − 26ρc

2r4K 2Mr0
6

−73ρc
2r7K 2Mr0

3 + 10ρc
2r6K 2M2r0

3 + 2r0
6Rs

4M
)

× [(
MRs

2Kρc + MRs
2 + 2Kρcr

3

−5KρcMr2 + 2Kρcr0
3) (

2Mr2 − r3 − r0
3)

× (
r3 + r0

3) (
Rs

2 + Kρc Rs
2 − Kρcr

2) r]−1
dr

}
[
6Rs

8K 2ρc
3r0

6 − 8Rs
6ρc

2K 2r0
6 − 8Rs

6ρcKr0
6

+6Rs
8r0

6Kρc
2

+ 2Rs
8r0

6K 3ρc
4 + 12Rs

8r3Kr0
3ρc

2

+ 4Rs
8r3K 3r0

3ρc
4

− 2Rs
8r3MKρc − Rs

8r3MK 2ρc
2

+ 12Rs
8r3K 2r0

3ρc
3 − 16r9K 3ρc

4Rs
2r0

3

− 12r9K 2ρc
3Rs

2r0
3 + 36r7K 2ρc

3Rs
4r0

3

+ 35r7K 2ρc
2Rs

4M + 12r7Kρc
2Rs

4r0
3

+ 24r7K 3ρc
4Rs

4r0
3 − 6r6K 2ρc

3Rs
2r0

6

− 8r6K 3ρc
4Rs

2r0
6

− 36r5r0
3Rs

6ρc
3K 2 − 32r5K 2ρc

2Rs
4r0

3

+ 14r5Rs
6ρcMK + 14r5Rs

6ρc
2K 2M

− 16r5Rs
6ρc

4K 3r0
3

− 24r5r0
3Rs

6ρc
2K + 6r4Kρc

2Rs
4r0

6

+ 12r4K 3ρc
4Rs

4r0
6 + 18r4K 2ρc

3Rs
4r0

6

− 16r3Rs
6ρc

2K 2r0
3

− 16r3Rs
6ρcKr0

3 − 12r2Rs
6Kρc

2r0
6

− 18r2Rs
6K 2ρc

3r0
6 − 8r2Rs

6ρc
4K 3r0

6

− 16r2ρc
2Rs

4K 2r0
6

− 8Rs
8KρcMr0

3 − 4Rs
8K 2ρc

2Mr0
3

+ 6Rs
8r6ρc

3K 2

+ 6Rs
8r6ρc

2K + 2Rs
8r6ρc

4K 3 + 4Rs
8r3ρcr0

3

− 6r12K 2ρc
3Rs

2 − 8r12K 3ρc
4Rs

2 + 6r10Kρc
2Rs

4

+ 18r10K 2ρc
3Rs

4 + 12r10K 3ρc
4Rs

4 − 12r8Rs
6ρc

2K
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6ρc
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6ρc

4K 3 − 16r8K 2ρc
2Rs

4

− 8r6Rs
6ρc
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6ρcK + 4r11K 3ρc

4r0
3

+ 2r8K 3ρc
4r0
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6ρc r0
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6r0

6ρc

+ 32 r2Rs
6K 2ρc

2r0
3M + 20 r4K 2ρc

2Rs
4r0

3M

+32r2Rs
6Kρcr0

3M − 2r8Rs
6ρc + 2Rs

8r6ρc

−Rs
8r3M + 2r14K 3ρc

4 + 2Rs
8ρcr0

6 − 4Rs
8r0

3M
]

× {
Rs

2 + Kρc Rs
2 − Kρcr

2}−1

× (
2Mr2 − r3 − r0

3)−1 (
MRs

2Kρc + MRs
2

+2Kρcr
3 − 5KρcMr2

+2Kρcr0
3)−1

]
dr + 16C Rs

4
)

× exp

(∫ {
2r0

9K 2ρc
2Rs

2 + 2r0
9Rs

2Kρc

− MRs
4r6 + 3M2Rs

4r5

+ 10ρc
2r11K 2 + 2r0

6K 2ρc
2Rs
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4M

+ 2Kρc Rs
2r9 − 47ρc

2r10K 2M + 55ρc
2r9K 2M2

+ 30ρc
2r8K 2r0

3 + 30ρc
2r5K 2r0

6 + 10ρc
2r2K 2r0

9

+ 2K 2ρc
2Rs

2r9 − 6M2Rs
4r2r0

3 + MRs
4r3r0

3

− 24Kρc Rs
2Mr5r0

3 + 44Kρc Rs
2M2r4r0

3

+ MRs
4K 2ρc

2r3r0
3

− 6M2Rs
4K 2ρc

2r2r0
3 + 2MRs

4Kρcr
3r0

3
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4Kρcr

2r0
3 − 24K 2ρc

2Rs
2Mr2r0

6

− 24K 2ρc
2Rs

2Mr5r0
3 + 44K 2ρc
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2M2r4r0

3

− 24Kρc Rs
2Mr2r0

6 − MRs
4K 2ρc
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4K 2ρc

2r5

− 2MRs
4Kρcr
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4Kρcr

5

+ 6K 2ρc
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2r3r0
6 + 6K 2ρc

2Rs
2r6r0

3

− 10K 2ρc
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2M2r7

+ 6Kρc Rs
2r3r0

6 + 6Kρc Rs
2r6r0

3

−10Kρc Rs
2M2r7 − 26ρc

2r4K 2Mr0
6

−73ρc
2r7K 2Mr0

3 + 10ρc
2r6K 2M2r0

3 + 2r0
6Rs

4M
}

× [(
MRs

2Kρc + MRs
2 + 2Kρcr

3

−5KρcMr2 + 2Kρc r0
3) (

2Mr2 − r3 − r0
3)

× (
r3 + r0

3) (
Rs

2 + Kρc Rs
2 − Kρcr

2) r] dr
)

dr + C1 . (A1)

The asymptotic form of f (r) as r → 0 takes the form

f (r) ≈ C1 + C2r + C3r
2 + C4r

4 + C5r
5 , (A2)

where C2, . . ., C5 are constants structured by K , ρc, and r0.
The form of ξ(r), after using the data given in Eqs. (26),

(29), and (32), takes the form:
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ξ(r) = ±
√

2

Rs
2

∫ [({
64Rs

4C2Kρcr
10 − 48Rs

6M2r2C1r0
3

−128Rs
6M2r3C2r0

3 + 16Rs
6MC1r0

6

+ 8Rs
6Mr3C1r0

3 + 48Rs
6Mr4C2r0

3

+ 48Rs
6MrC2r0

6

− 128Rs
6M2r3C2r0

3Kρc − 48Rs
6M2r2C1r0

3Kρc

+ 16Rs
6MC1r0

6Kρc + Rs
4[240M2r4C1r0

3Kρc

− 176Mr2C1r0
6Kρc − 688Mr6C2r0

3Kρc

−368Mr3C2r0
6Kρc + 48Rs

2MrC2r0
6Kρc

]

+ Rs
4
[
48Rs

2Mr4C2r0
3Kρc + 512M2r5C2r0

3Kρc

+ 8Rs
2Mr3C1r0

3Kρc − 328Mr5C1r0
3Kρc

+32Kρcr
9C1

]
− K 2ρc

3r16 + Mr7Rs
6 + ρcr

10Rs
6

− 32ρc
3r12Rs

4 + K 2ρc
3r10Rs

6

+ 3K 2ρc
3r14Rs

2 − 3K 2ρc
3r13r0

3

− 3K 2ρc
3r10r0

6 − K 2ρc
3r7r0

9

+ K 2ρc
3rr0

9Rs
6 − 9K 2ρc

3r9Rs
4r0

3

− 9K 2ρc
3r6Rs

4r0
6

− 3K 2ρc
3r3Rs

4r0
9 + 3K 2ρc

3r7Rs
6r0

3

+ 3K 2ρc
3r4Rs

6r0
6 + 9K 2ρc

3r11Rs
2r0

3

+ 9K 2ρc
3r8Rs

2r0
6

+ 3K 2ρc
3r5Rs

2r0
9 + Mr7Rs

6ρcK

+ 7Mr9Rs
4Kρc + 6ρc

2r7Rs
6Kr0

3

+ 6ρc
2r4Rs

6Kr0
6

+ 2ρc
2r Rs

6Kr0
9 − 12ρc

2r9Rs
4Kr0

3

− 12ρc
2r6Rs

4Kr0
6 − 4ρc

2r3Rs
4Kr0

9

+ 6ρc
2r11Rs

2Kr0
3 + 6ρc

2r8Rs
2Kr0

6

+ 2ρc
2r5Rs

2Kr0
9

− 12Rs
4Kρcr

7r0
3 − 12Rs

4Kρcr
4r0

6

+ Rs
4 [

10Mr3r0
6Kρc − 4Kρcrr0

9 − Mr4ρc Kr0
3

+ 17 Mr6r0
3Kρc

−2MrRs
2ρcKr0

6 + 96Kρcr
6C1r0

3]
− 152Rs

4Mr8C1Kρc + 368Rs
4M2r8C2Kρc

+ 24Rs
6M2r5C1Kρc

− 320Rs
4Mr9C2Kρc + 16Rs

6M2r6C2Kρc

+ 168Rs
4M2r7C1Kρc − 8Rs

6Mr6C1Kρc

+ 192Rs
4C2Kρcr

7r0
3

+ 64Rs
4C2Kρcrr0

9 + 192Rs
4C2Kρcr

4r0
6

+ 32Rs
4KρcC1r0

9

+ 96Rs
4Kρcr

3C1r0
6 − Mr4Rs

6r0
3

− 2MrRs
6r0

6 + 3ρcr
7Rs

6r0
3 + 3ρcr

4Rs
6r0

6

+ ρcr Rs
6r0

9 + 2ρc
2r10Rs

6K − 4ρc
2r12Rs

4K

− 3ρcr
9Rs

4r0
3 − 3 ρcr

6Rs
4r0

6 − ρcr
3Rs

4r0
9

+ 2ρc
2r14Rs

2K − 4Rs
4Kρcr

10 − ρcr
12Rs

4

−8Rs
6Mr6C1 + 16Rs

6M2r6C2 + 24Rs
6M2r5C1

})

×
{√

r
√

−r3 + 2Mr2 − r0
3

×
√
Rs

2 + Kρc Rs
2 − Kρcr2

(
r2 − rr0 + r0

2) (r + r0)
}−1

]
dr + C6 , (A3)

The asymptotic form of ξ(r) as r → 0 takes the form

ξ(r) ≈ C6 + C7r
2 + C8r

3 , (A4)

3K where C6, C7, and C8 are structured by the constants K ,
Rs , ρc, and r0.

Finally, we calculate the explicit form of V (r) after using
the data given in Eqs. (29), (32), and (26), and obtain

V (r) = − {
8Rs

6Mr3C1r0
3 − 64Rs

4C2Kρcr
10

− 48Rs
6M2r2C1r0

3 − 128Rs
6M2r3C2r0

3

+ 16Rs
6MC1r0

6

+ 48Rs
6Mr4C2r0

3 + 48Rs
6MrC2r0

6

− 128Rs
6M2r3C2r0

3Kρc − 48Rs
6M2r2C1r0

3Kρc

+ 16Rs
6MC1r0

6Kρc

+ 144Rs
4Mr2C1r0

6Kρc

+ 592Rs
4Mr6C2r0

3Kρc + 272Rs
4Mr3C2r0

6Kρc

+ 48Rs
6MrC2r0

6Kρc

− 144Rs
4M2r4C1r0

3Kρc

+ 48Rs
6Mr4C2r0

3Kρc − 256Rs
4M2r5C2r0

3Kρc

+ 8Rs
6Mr3C1r0

3Kρc

+ 312Rs
4Mr5C1r0

3Kρc − 32Rs
4Kρcr

9C1

+ K 2ρc
3r16 − Mr7Rs

6 + ρcr
10Rs

6

+ 3K 2ρc
3r12Rs

4

− K 2ρc
3r10Rs

6 − 3K 2ρc
3r14Rs

2

+ 3K 2ρc
3r13r0

3 + 3K 2ρc
3r10r0

6

+ K 2ρc
3r7r0

9

− K 2ρc
3rr0

9Rs
6

+ 9K 2ρc
3r9Rs

4r0
3 + 9K 2ρc

3r6Rs
4r0

6

+ 3K 2ρc
3r3Rs

4r0
9 − 3K 2ρc

3r7Rs
6r0

3

− 3K 2ρc
3r4Rs

6r0
6 − 9K 2ρc

3r11Rs
2r0

3

− 9K 2ρc
3r8Rs

2r0
6 − 3K 2ρc

3r5Rs
2r0

9

− Mr7Rs
6ρcK − 7Mr9Rs

4Kρc

+ 12Rs
4Kρcr

7r0
3 + 12Rs

4Kρcr
4r0

6

+ 4Rs
4Kρcrr0

9 − 5Mr4Rs
6ρcKr0

3

− 11Mr6Rs
4r0

3Kρc

− 4MrRs
6ρcKr0

6 − 4Mr3Rs
4r0

6Kρc

− 96Rs
4Kρcr

6C1r0
3 + 168Rs

4Mr8C1Kρc
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− 400Rs
4M2r8C2Kρc + 24Rs

6M2r5C1Kρc

+ 320Rs
4Mr9C2Kρc + 16Rs

6M2r6C2Kρc

− 216Rs
4M2r7C1Kρc − 8Rs

6Mr6C1Kρc

− 192Rs
4C2Kρcr

7r0
3 − 64Rs

4C2Kρcrr0
9

− 192Rs
4C2Kρcr

4r0
6 − 32Rs

4KρcC1r0
9

− 96Rs
4Kρcr

3C1r0
6 − 5Mr4Rs

6r0
3 − 4MrRs

6r0
6

+ 3ρcr
7Rs

6r0
3 + 3ρcr

4Rs
6r0

6 + ρcr Rs
6r0

9

− 3ρcr
9Rs

4r0
3 − 3ρcr

6Rs
4r0

6 − ρcr
3Rs

4r0
9

+ 4Rs
4Kρcr

10 − ρcr
12Rs

4 − 8Rs
6Mr6C1

+16Rs
6M2r6C2 + 24Rs

6M2r5C1

}

×
{
Rs

4r
(
Rs

2 + Kρc Rs
2 − Kρcr

2) (
r3 + r0

3)3
}2

. (A5)

The asymptotic form of V (r) as r → 0 takes the form

V (r) ≈ C9 + C10r + C11r
2 , (A6)

where C9, C10, and C11 are structured by the constants K ,
Rs , ρc, and r0.
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