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Abstract In this work, we investigate the numerical evolu-
tion of massive Kaluza–Klein (KK) modes of a scalar field
in a thick brane. We derive the Klein–Gordon equation in
five-dimensional spacetime, and obtain the evolution equa-
tion and the Schrödinger-like equation. With the resonances
of the scalar KK modes as the initial data, the scalar field is
evolved with the maximally dissipative boundary condition.
The results show that there are scalar KK resonant particles
with long life on the brane, which indicates that these reso-
nances might be regarded as a candidate for dark matter.

1 Introduction

The nature of dark matter (DM) constitutes one of the most
long-standing and puzzling questions in cosmology. There is
abundant evidence that nonluminous matter makes up a large
fraction of all matter in our universe. Results from cosmo-
logical measurements have now determined with exquisite
precision the abundance of DM [1]. But the identity of DM
remains a mystery. Recently, Barranco et al. proposed that
the scalar dynamical resonances could form long-lived con-
figurations around black holes [2–4]. This ultralight scalar
resonance might be regarded as a candidate for DM. Such
long-lived distribution was then generalized to the Dirac field
by Zhou et al. [5]. Since then, these massive dynamical res-
onances around black holes have garnered much attention
[6–15]. The study of resonances of various fields around
black holes has stimulated our interest in the evolution of
resonances in theories of extra dimensions and braneworld.

The history of extra dimensions and braneworld dates back
to the last century. In the 1920s, Kaluza and Klein (KK)
proposed a five-dimensional spacetime theory to unify elec-
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tromagnetic and gravitational interactions [16,17]. Subse-
quently, extra-dimensional theories remained silent for more
than 70 years, until the 1990s when, to solve the huge hierar-
chy between the Planck and weak scales, some braneworld
models were proposed. Two of them have attracted the atten-
tion of many researchers. One is the large extra-dimensional
model proposed by Arkani-Hamed et al. [18], and the other
is the warped extra-dimensional model proposed by Randall
and Sundrum [19]. The size of the extra dimensions is finite
in these braneworld models. Subsequently, Antoniadis et al.
embedded the braneworld model with large extra dimensions
into string theory [20]. A notable development was attained
in Ref. [21], which showed that even the extra dimension is
infinite, and four-dimensional gravity can also be recovered
on the brane. Since then, extra-dimensional theories have
attracted considerable attention [22–44].

In this paper, we focus on the evolution of the scalar KK
resonances on the thick brane, which is generated dynami-
cally by a background scalar field. In a braneworld model, to
recover the physics in our four-dimensional spacetime, the
zero modes of various fields should be localized on the brane.
But in addition to zero modes, there are massive KK modes
which might propagate into extra dimensions. KK resonances
are a specific class of massive KK modes in braneworld mod-
els. Usually, for a volcano-like potential, although massive
KK modes cannot be localized on the brane, KK resonances
can be quasi-localized [45]. Previous studies have investi-
gated resonances of various fields on thick branes [45–55].
To the best of our knowledge, no studies to date have explored
the evolution of KK resonances of various fields in thick
brane. The dynamics and the final state of such long-lived
modes are still unclear. In the thin brane, scattering of KK
gravitons in the Randall–Sundrum II model has been consid-
ered [56,57]. It was proved that the brane possesses a set of
discrete quasi-normal modes that appear as scattering reso-
nance, and the graviton KK modes have a very short lifetime
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on the brane. Can KK modes exist in a thick brane for a long
period like the long-lived resonance modes around a black
hole? To answer this question, we take the scalar field as a
simple example to study the evolution of scalar KK modes
numerically. We will show the evolution behaviors of the
scalar KK modes and obtain their half-life time on a brane.
We will further analyze the feasibility of the KK resonances
as a dark matter candidate. Although our research is still
crude, it provides a stepping stone to further investigation of
KK resonances of various fields on a thick brane.

The layout of the remaining part of this paper is as fol-
lows. In Sect. 2, we construct a thick brane solution in five-
dimensional spacetime as the background of a test scalar field
evolution. In Sect. 3, the scalar field is evolved with the max-
imally dissipative boundary condition. Both resonances and
nonresonances are used as initial data, and their evolution
behaviors are compared. Finally, the conclusions and discus-
sion are presented in Sect. 4.

2 Braneworld model in general relativity

Firstly, we consider the thick brane in five-dimensional
spacetime. For the simplest case of general relativity with
a canonical scalar field, the action is given by [23,24,36]

S =
∫

d5x
√−g

(
1

2κ2
5

R − 1

2
gMN ∂Mφ∂Nφ − V (φ)

)
, (1)

where κ5 is the five-dimensional gravitational constant.
We set κ5 = 1 in this paper for convenience. The five-
dimensional metric for our thick brane model is given by

ds2 = e2A(y)γμνdxμdxν + dy2, (2)

where e2A(y) is the warp factor and γμν is the induced metric
on the brane with four-dimensional Poincareé invariance:

γμνdxμdxν =
⎧⎨
⎩

ημνdxμdxν,

−dt2 + e2kt (dx2
1 + dx2

2 + dx2
3 ),

e2kx3(−dt2 + dx2
1 + dx2

2 ) + dx2
3 .

(3)

The above three cases correspond to the flat brane, de Sitter
brane, and anti-de Sitter brane, respectively. Here, ημν =
diag(−1, 1, 1, 1) is the four-dimensional Minkowski metric,
capital Latin letters M, N , . . . = 0, 1, 2, 3, 4 denote the five-
dimensional indices, and Greek letters μ, ν, . . . = 0, 1, 2, 3
denote the four-dimensional indices. In this paper, we only
consider the flat brane, i.e.,

ds2 = e2A(y)ημνdxμdxν + dy2. (4)

The dynamical field equations are

RMN − 1

2
RgMN = TMN , (5)

gMN∇M∇Nφ = ∂V (φ)

∂φ
. (6)

By substituting the metric (4) into Eqs. (5) and (6), we can
obtain the explicit equations of motion

6A′2 + 3A′′ = −V − 1

2
φ′2, (7)

6A′2 = 1

2
φ′2 − V, (8)

φ′′ + 4A′φ′ = ∂V

∂φ
, (9)

where prime denotes the derivative with respect to the extra-
dimensional coordinate y. Note that only two of the above
equations are independent, but we must solve three functions:
A(y), φ(y), and V (φ). So we need to provide one of the
three functions to solve these equations. Here, we provide
the following warp factor:

A(y) = ln
[

tanh
(
k(y + b)

) − tanh
(
k(y − b)

)]
, (10)

where the parameter b has length dimension one and the
parameter k has mass dimension one. This warp factor has
been thoroughly investigated in previous literature [51,52,
54]. It can be seen that the parameter b determines the thick-
ness of the thick brane. In the next section, we will see that
larger parameter b may result in more resonant KK modes.
From Eqs. (7), (8), (9), and (10) we get the solution

φ(y) = −i
√

6sech(bk)
[

cosh(2bk)F
(
iky; tanh2(bk) + 1

)

− 2 sinh2(bk)�
(
sech2(bk); iky; tanh2(bk) + 1

)]
,

(11)

V (y) = 3

2
k2

[
− 4

(
tanh(k(y − b)) + tanh(k(b + y))

)2

+ sech2(k(y − b)) + sech2(k(b + y))
]
, (12)

where F(y, q) is the elliptic integral of the first kind and
Π(y, q, p) is the elliptic integral of the third kind. This solu-
tion was investigated in Ref. [54] in f (T ) gravity theory. The
energy density for the above brane solution is

ρ = 24k2 − 6k2( tanh(k(y − b)) + tanh(k(b + y))
)2

. (13)

Plots of the above warp factor, scalar field, and energy density
are shown in Fig. 1. Based on this braneworld background, we
consider a test scalar field and study its evolution. We inves-
tigate its dynamic behavior numerically, and clarify whether
their KK modes can exist on the brane for a long period.
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Fig. 1 The shapes of the warp factor (10), scalar field (11), and energy density (29)

3 Scalar field resonances and its evolution in
braneworld

In this section we will consider the evolution of a scalar
field in the thick brane given above. Here we consider a free
massless test scalar field ψ(xM ). Notice that the scalar field
ψ(xM ) here is not the background scalar field φ(y) that gen-
erates the thick brane. The equation of motion for the test
field is the Klein–Gordon equation

�(5)ψ = 1√−g
∂M (

√−ggMN ∂Nψ) = 0. (14)

With the coordinate transformation dz = e−Ady, the met-
ric (4) becomes a conformal flat one:

ds2 = e2A(z)(ημνdxμdxν + dz2), (15)

which is very useful in the derivation of the evolution equa-
tion and the Schrödinger-like equation of the test scalar field.
In black hole physics, there is a similar coordinate, known as
the tortoise coordinate. Then Eq. (14) can be written as

[
∂2
z + 3(∂z A)∂z + ημν∂μ∂ν

]
ψ = 0. (16)

We then introduce the following decomposition:

ψ(xM ) = e− 3
2 A(z)Φ(t, z)Ξ(xi ). (17)

Substituting the above decomposition (17) into Eq. (16), we
get the following equation:

− ∂2
t Φ + ∂2

z Φ −U (z)Φ − a2Φ = 0, (18)

where a is a constant from the separation of variables. The
effective potential U (z) has the following form:

U (z) = 3

2
∂2
z A + 9

4
(∂z A)2, (19)

or in the y coordinate equivalently

U (z(y)) = 3

2
∂2
y A(y)e2A(y) + 15

4

(
∂y A(y)eA(y)

)2
. (20)

The function Φ(t, z) can be further decomposed into oscil-
lating modes as

Φ(t, z) = eiωt u(z). (21)

Substituting the above decomposition in Eq. (18) yields

− ∂2
z u(z) +U (z)u(z) = m2u(z), (22)
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where m2 = ω2 − a2 is the mass of the KK modes. We shall
see below that the effective potential U (z) is a volcano-like
potential with a double-well. When z → ±∞, U (±∞) →
0+. Thus, all KK modes with m2 > 0 are free states. Only
the modes with m2 ≤ 0 could be bound states. One can
show that there is no mode with m2 < 0. The Schrödinger-
like equation (22) can be factorized as the supersymmetric
quantum mechanics form
(

∂z + 3

2
∂z A(z)

) (
−∂z + 3

2
∂z A(z)

)
u(z) = m2u(z). (23)

Using this supersymmetric quantum mechanics form with the
conditions that A(z) is a real function and the extra dimension
z is noncompact, it can be shown that there is no tachyon
mode with m2 < 0 [58,59]. On the other hand, the solution
of the zero mode with m2 = 0 is

u0(z) ∝ e
3
2 A(z). (24)

Obviously, for the warp factor (10), the zero mode u0(z)
is bound on the brane and it has no node along the extra
dimension. According to the node theorem, the zero mode
must be the ground state, which ensures that m2 ≥ 0. Solv-
ing Eq. (22), we get a series resonant modes, which can be
treated as the initial data for the scalar field. The evolution is
dominated by Eq. (18).

3.1 Scalar field resonances

In this part, we give a brief review on how to solve the
KK scalar resonances. Substituting the warp factor (10) into
Eq. (20), the effective potential in the coordinate y is [54]

U (z(y)) = −3

8
k2sech2(k(b − y)

)
sech2(k(b + y)

)

×
(

tanh
(
k(b − y)

) + tanh
(
k(b + y)

))2

×
(

− 5 cosh(4ky) + 2 cosh
(
2k(b − y)

)

+ 2 cosh
(
2k(b + y)

) + 9
)
. (25)

Plots of the above effective potential are shown in Fig. 2a. For
convenience, we define the dimensionless parameters b̄ = kb
and m̄ = m/k. We can see that the width of the effective
potential increases with b̄. The resonant modes can be studied
by the relative probability method which was proposed in
Ref. [45]. The relative probability is defined as

P(m2) =
∫ zb
−zb

|u(z)|2dz∫ zmax
−zmax

|u(z)|2dz
, (26)

where u(z) is solved from Eq. (22), zb is approximately the
width of the brane, and zmax is a much larger width than
zb, and usually set to 10zb. If the relative probability has
a peak with full width at half maximum around m = mn ,

then there is a resonance with mass mn . In this way, the
modes whose amplitudes in the quasi-well are much larger
than those outside the quasi-well can be found. These modes
will remain on the brane for a longer time. Note that the
wave functions can be even or odd because the potential is
symmetric. Hence, the following boundary conditions can be
used to solve Eq. (22) numerically:

ueven(0) = 1, ∂zueven(0) = 0; (27a)

uodd(0) = 0, ∂zuodd(0) = 1, (27b)

where ueven denotes the even modes of u(z) and uodd denotes
odd modes of u(z). Substituting the effective potential (25)
into the Schrödinger-like equation (22), we can obtain the
solution of u(z) numerically for a given massm. Then the rel-
ative probability P(m2) can be obtained. The relative proba-
bility P(m2)of scalar resonances for b̄ = 5, 10, 15 are shown
in Fig. 2a–c, respectively. The specific parameters of these
resonances are listed in Table 1. It can be seen that the num-
ber of scalar resonances and their peak values increase with
b̄. Usually, the larger peak value means smaller full width at
half maximum, and longer lifetime. We will see that in the
next subsection.

3.2 Evolution of the scalar field resonances

Treating the scalar resonances as the initial data, we can
evolve the scalar field under the evolution equation (18).
Through the numerical evolution of the scalar field, we can
obtain its lifetime on the brane. In this paper, we only con-
sider the case ofa2 = 0, which means that scalar KK particles
travel along the extra dimension at the speed of light at infin-
ity. We also impose the maximally dissipative boundary con-
dition, ∂nΦ = ∂tΦ [60], where n is the outward unit normal
vector to the boundary. Equation (18) is solved numerically
using fourth-order finite differences in space, and evolving in
time using a method of lines with a third-order Runge–Kutta
integrator.

In order to more intuitively display the evolution of the
scalar field, we define the conserved energy of the scalar
field [61]

E =
∫ ∞

−∞
ρEdz, (28)

where

ρE = 1

2

(
(∂tΦ)2 +

(
−3

2
∂z A(z)Φ + ∂zΦ

)2
)

. (29)

Firstly, we consider the evolution of resonances whose
parameters are given in Table 1. We integrate the energy
density ρE over [−zmax, zmax], and the resulting energy will
decay due to energy losses through both left and right bound-
aries. We plot the evolution of the integrated scalar field
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Fig. 2 The shapes of the effective potential (25) for different parameters b̄. The influence of the parameter b̄ on the relative probability P for the
odd-parity (red lines) and even-parity (blue dashed lines) massive KK modes. These figures are from Ref. [54]

energy E(t) in Fig. 3. Note that it is plotted on a logarith-
mic scale. From Fig. 2b–d we can see that there are usually
several resonances. Among these resonances, the first one
will evolve the longest time. In addition, the evolution time
increases with the parameter b̄. This is because the larger
b̄, the more energy of the scalar field is concentrated in the
potential well. In addition, we plot half-life time of the first
resonance with different values of the parameter b̄, which
can be seen from Fig. 3d. Note that here we have defined the
dimensionless time t̄ = kt . It can be clearly seen that the
half-life time of the resonances increases with the parameter
b̄.

The energy decay can be fitted as an exponential function:

E(t) = E0exp(−st̄), (30)

where s is the fitting parameter and E0 denotes the initial
energy of the KK mode. Some results of the fit are listed in
Table 2. It can be seen that both the scaled mass m̄1 and the
fitting parameter s of the first resonance decrease with b̄.

To better show the evolution of the scalar field over time,
we analyze the result of the numerical evolution by extract-
ing a time series for the resonance amplitude at a fixed point

Table 1 Resonant mass spectrum m̄2
n , m̄n , and relative probability P

for different values of the parameter b̄

b̄ Parity m̄2
n m̄n P

5 Odd 0.4649 0.6818 0.9064

Even 1.6609 1.2888 0.5253

10 Odd 0.1088 0.3298 0.9794

Even 0.4284 0.6545 0.9408

Odd 0.9406 0.9698 0.8058

Even 1.6216 1.2734 0.5648

Odd 2.4585 1.5680 0.3508

15 Odd 0.0469 0.2165 0.9892

Even 0.1866 0.4320 0.9803

Odd 0.4169 0.6457 0.9516

Even 0.7337 0.8566 0.8819

Odd 1.1323 1.0641 0.7523

Even 1.6078 1.2680 0.5796

Odd 2.1585 1.4692 0.4193

Even 2.7892 1.6701 0.2992
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Fig. 3 a–c The energy of the scalar field vs. time for the evolution of the resonant modes for different values of the parameter b̄. Here, o1 represents
the first odd-parity resonance, e1 represents the first even-parity resonance, and so on. d The relation between the half-life of the first scalar resonance
and the parameter b̄

Table 2 The first resonant mass spectrum m̄2
1, m̄1, fitting parameter s,

and half-life t1/2 for different values of the parameter b̄

b̄ m̄2
1 m̄1 s t1/2 (if k = 10−10 eV)

5 0.4649 0.6818 3.7527 ×10−3 1.1969 ×10−3 s

6 0.3177 0.5636 1.4624 ×10−3 3.0714 ×10−3 s

7 0.2298 0.4794 6.9109 ×10−4 6.4993 ×10−3 s

8 0.1736 0.4166 3.6373 ×10−4 1.2349 ×10−2 s

9 0.1356 0.3682 2.0910 ×10−4 2.1481 ×10−2 s

10 0.1088 0.3298 1.2867 ×10−4 3.4908 ×10−2 s

11 0.0892 0.2986 8.3435 ×10−5 5.3833 ×10−2 s

12 0.0744 0.2728 5.6502 ×10−5 7.9494 ×10−2 s

13 0.0630 0.2510 3.9624 ×10−5 1.1334 ×10−1 s

14 0.0540 0.2324 2.8609 ×10−5 1.5700 ×10−1 s

15 0.0469 0.2165 2.1170 ×10−5 2.1217 ×10−1 s

16 0.0410 0.2026 1.6000 ×10−5 2.8072 ×10−2 s

17 0.0362 0.1903 1.2316 ×10−5 3.6470 ×10−1 s

18 0.0322 0.1794 9.6335 ×10−6 4.6625 ×10−1 s

zext. The results are shown in Fig. 4. It can be seen that the
resonance amplitude decreases with evolutionary time, and
the amplitude attenuation of the second resonance is signifi-
cantly faster than that of the first resonance. This also shows
that the first resonance will evolve the longest. By comparing
the amplitude attenuation at different positions of the same
resonance, it can be seen that the attenuation rate and the
overall shape are basically the same. In other words, at least
for the first two resonances, there is no beating effect found
in Ref. [62] for a black hole system.

As a comparison, we also consider the evolution of the
nonresonances. These results are shown in Fig. 5. We find that
the energy and amplitude of nonresonance decay very fast at
the early stage, but later they decay like those of resonances.
In order to gain a better understanding of the above results, we
perform a spectral analysis. We calculate the discrete Fourier
transform in time of the scalar field at a fixed point z = z j .
The explicit expression of the discrete Fourier transform is

F[Φ(t)]( f ) :=
∣∣∣∣∣A

∑
p

Φ(tp, z j )exp(−2π i f tp)

∣∣∣∣∣ , (31)
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Fig. 4 Upper panel: Time evolution of the first odd resonance (left) and the first even resonance (right) at z̄ext = 3 for b̄ = 15. Lower
panel: Time evolution of the first odd resonance (left) and the first even resonance (right) at z̄ext = 30 for b̄ = 15. Here z̄ext = kzext

Fig. 5 Left panel: The energy of the scalar field vs. time for the evolution of nonresonance for b̄ = 15. Right panel: Time evolution of the
nonresonance with z̄ext = 30 for b̄ = 15

where A is normalization constant and tp are the discrete
time values. Plots of the Fourier transform for the first reso-
nance and the nonresonance with m̄2 = 0.36 for b̄ = 15 are
shown in Fig. 6. We find that for the Fourier transform of the
resonance, there is only one peak corresponding to the reso-
nance frequency. However, for the Fourier transform of the
nonresonance, there are several peaks. Thus, nonresonances
can evolve into combinations of resonances, and from this
point of view, resonances seem to play a similar role in the
braneworld as the quasi-normal modes in black holes physics,
which deserves further investigation.

Finally, we consider the half-life time of the scalar reso-
nances. If the exponential decay (30) is sustained throughout
all evolution, then it is easy to determine that t̄1/2 = ln(2)

s .
For k = 10−10eV and s = 10−10, the half-life time t1/2

of the first scalar resonance will reach 104 seconds. Admit-
tedly, it is still short compared with the age of our universe.
But note that the lifetime of resonances increases with the
parameter b̄. Thus, for a very large b̄, the lifetime of reso-
nance might reach the cosmological time scale. Here, we can
simply estimate the feasibility of resonance as a candidate for
dark matter. For the braneworld model in this part, the effec-
tive four-dimensional Planck scale MPl and the fundamental
five-dimensional scale M5 have the relation

M2
Pl = 8b̄ coth(2b̄) − 4

k
M3

5 . (32)

According to the current experiment of the Large Hadron
Collider, the collision energy is 13 TeV, but no signal of extra
dimensions is seen [63], so the fundamental five-dimensional
scale M5 should be greater than 13 TeV. Thus, combining
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Fig. 6 Left panel: Discrete Fourier transform in time vs. frequency for the evolution of the nonresonance with m̄2 = 0.36 for b̄ = 15. Right panel:
Discrete Fourier transform in time vs. frequency for the evolution of the first resonance with m̄2

1 = 0.04687 for b̄ = 15. The blue dotted lines
correspond to the frequencies of the first three odd parity resonances

Eq. (32) and the condition M5 � 13 TeV, the constraint on
the parameter k is given by

k � (12b̄ coth(2b̄) − 6) × 10−17 eV. (33)

From Table 2, we can see that the fitting parameter s rapidly
decreases with b̄. In fact, when b̄ doubles, the fitting param-
eter s decreases by an order of magnitude. If we choose
b̄ = 108, then k ≥ 10−8 eV and s might be 10−25, and
the half-life time t1/2 of the first scalar resonance will reach
1017 s, which is the same order of magnitude as the age of
our universe (4.35 × 1017 s). On the other hand, the large b̄
means that the first resonance is very light, but they are still
hard to spot in the collider. This is because the cross section
of any process involving the interaction of the zero mode
with the light continuum modes is imperceptibly low. From
this perspective, these long-lived resonances with very light
mass could be considered as a candidate for dark matter.

4 Conclusion and discussion

In this paper, we numerically investigated the evolution of
a free massless scalar field in the thick brane. We find that
the resonances decay very slowly compared to the nonreso-
nances and can exist on the brane for a very long period. If
the lifetime of these resonances can be as long as the cosmo-
logical time scale, they might be a candidate for dark matter.
This provides a new idea for dark matter research.

Firstly, we constructed a five-dimensional thick brane gen-
erated by a scalar field. Then, we considered the evolution
of a test scalar field in this thick brane background. Through
the coordinate transformation and the variable separation, we
obtained the evolution equation (18) and the Schrödinger-
like equation (22) for the extra-dimensional profile of the
scalar field. The latter gives us the initial data of the mas-

sive KK modes, and the former evolves those initial data.
Next we solved the Schrödinger-like equation (22) numer-
ically to obtain the initial data of massive KK modes, in
particular the initial data of the resonances. The results were
shown in Fig. 2 and Table 1. We found that the relative prob-
ability of the first scalar resonance increases with b̄, while
the mass m1 of the first scalar resonance decreases with b̄.
Using these KK modes as initial data, we investigated their
evolution. Considering their energy decay and extracting a
time series for the resonance amplitude, the evolution of the
scalar field was analyzed. The results were shown in Figs. 3
and 4, and Table 2. The energy decay can be described by a
decay parameter s which can be obtained by an exponential
fit of E/E0 as the function of t̄ . On the other hand, we also
considered the evolution of the nonresonances. The energies
and amplitudes of nonresonances decay rapidly at the early
stage, but later they decay like those of the resonances. The
behavior of the nonresonance evolution could be treated as a
combination of resonances. Finally, we considered the half-
life time of the resonance. For a very large b̄, the lifetime of
ultralight resonances can reach the cosmological time scale.
These indicate that the scalar resonant mode could be a can-
didate for dark matter.

There is much to be improved in this paper. Firstly, the
mass and interaction of the test scalar field is not taken into
account, which might result in more interesting results. Sec-
ondly, other test fields such as Dirac spinor fields and gauge
fields and their evolution are also worth investigating. These
possibilities deserve further study.
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