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Abstract We present the second order contributions to the
coefficient functions for the parity violating polarized struc-
ture functions gL and g4, thus completing the O(α2

S) knowl-
edge on DIS structure functions. We obtain the missing
O(α2

S) pieces from the known parity conserving unpolarized
coefficient functions. We also present a phenomenological
analysis for the phase space region the future Electron-Ion
Collider is set to explore.

1 Introduction

The deep inelastic scattering (DIS) process plays a funda-
mental role in the analysis of polarized QCD phenomena,
and ultimately in our understanding of the spin structure of
the proton in terms of polarized parton distributions func-
tions (pPDFs). In addition to the pure QED contributions due
to photon exchange, which have been thoroughly studied in
pPDFs global analyses [1–5], the DIS process also receives
contributions associated to the exchange of the weak Z and
W± bosons, which introduce parity violating terms to the
cross section. Both neutral and charged current (NC and CC,
respectively) DIS involve quark PDF combinations different
from those of the pure photon counterpart, making the polar-
ized DIS data an important source of complementary infor-
mation on the proton spin decomposition, since it allows to
disentangle the individual quark contributions from its cor-
responding antiquark ones [6,7]. Nonetheless, and contrary
to the unpolarized case, the rather low values of Q2 explored
by polarized DIS experiments so far, for which weak contri-
butions are highly suppressed, have made the study of Z and
W -mediated processes rather unnecessary.
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However, with the construction of the new Electron-Ion-
Collider (EIC) on the horizon, there is a prospect of reach-
ing an unprecedented level of precision in measurements
of polarized processes and to extend the kinematical cov-
erage in terms of the DIS variables x and Q2 [8]. Besides
the extension of the kinematical range, the EIC will give
access to the hadron helicity states independently, and thus
allow to measure the asymmetries with polarized protons and
unpolarized leptons for the first time [7]. These new preci-
sion measurement need to be matched by correspondingly
accurate theoretical predictions. As it is already the standard
for the unpolarized sector in Large-Hadron-Collider (LHC)
computations, next-to-next-to-leading order (NNLO) calcu-
lations are becoming a benchmark for polarized processes,
with results already available for inclusive process, such as
Drell-Yan [9] and pure QED DIS [10], the helicity splitting
functions [11–13], as well as the recent addition of exclusive
process like jet production in DIS [14,15], W boson pro-
duction in proton-proton collisions [16] and semi-inclusive
DIS (in an approximated form) [17,18]. In this paper, we
present the O(α2

S) parity violating (longitudinally) polarized
structure functions g4 and gL , in order to match the NNLO
precision for inclusive NC and CC DIS.

Our paper is organized as follows: in Sect. 2 we introduce
and provide the expressions of the polarized DIS structure
functions at O(α2

S). In Sect. 3 we analyze the impact of the
second order corrections to the polarized structure functions,
for both NC and CC processes and we discuss the combina-
tion of polarized structure functions related to the single-spin
cross section. Finally, in Sect. 4 we summarize our work and
present our conclusions.
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Fig. 1 Leading order diagram for the lepton-nucleon deep-inelastic
scattering. The exchanged particle can be either a photon γ or a weak
boson Z , W±, and carries momentum q

2 Polarized structure functions

In the following we consider the inclusive lepton-nucleon
DIS process, defined as

l(k) + N (p) → l ′(k′) + X,

where, for simplicity, we assume the incoming lepton is either
an electron or a positron and work within the lowest order
approximation in the EW theory, i.e. assuming single-boson
exchange. Here, k and p are the momenta of the incom-
ing lepton and nucleon, respectively, k′ is the momentum of
the outgoing scattered lepton (either an electron/positron in
the NC or a neutrino/antineutrino in the CC case, respec-
tively), and X represents the whole recoiling hadronic final
state. The particle exchanged in the process can be any of the
electroweak bosons γ , Z or W±, and carries a momentum
q = k − k′ determined by the lepton kinematics. The usual
variables utilized in the description of DIS are the boson
virtuality Q2, the Bjorken variable x and the inelasticity y,
which are defined by

Q2 = −q2, x = Q2

2p · q , y = q · p
k · p . (1)

While in the CC case the kinematics of the outgoing neutrino
may not be experimentally accessible, the values of x and
Q2 can be reconstructed from the hadronic final state using
the Jacquet-Blondel method [6]. The diagram for the lowest
order contribution is shown in Fig. 1.

Following the notation from [19], the DIS cross section
can be expressed in terms of the product of a hadronic (W )
and a leptonic (L) tensor

d2σ

dxdy
= 2πyα2

Q4

∑

i

ηi L
μν
i W i

μν, (2)

with the summation over i indicating the contributions asso-
ciated to the different gauge bosons. For NC processes, the
cross section receives contributions from the exchange of γ ,
Z as well as their interference, so i = γ, Z , γ /Z . For CC
processes, i = W . The factors ηi are the ratios of the corre-
sponding propagators and couplings to the ones of the photon
exchange

ηγ = 1, ηγ/Z =
(
GFM2

Z

2
√

2πα

) (
Q2

Q2 + M2
Z

)
,

ηZ = η2
γ /Z , ηW = 1

2

(
GFM2

W

4πα

Q2

Q2 + M2
W

)2

.

(3)

The first piece of the cross section in Eq. (2) is the lep-
tonic tensor Lμν

i . It corresponds to the square amplitude of
the QED/EW interaction vertex between the boson and the
leptons. In terms of the charge e and helicityλof the incoming
massless lepton (with λ2 = 1), it has the following expres-
sions for each boson contribution:

Lμν
γ = 2

(
−k · k′gμν + kμk′ν + k′μkν − iλεμναβkαk

′
β

)
,

Lμν
Z = (

geV + eλgeA
)2

Lμν
γ ,

Lμν
γ/Z = (

geV + eλgeA
)
Lμν

γ ,

Lμν
W = (1 + eλ)2 Lμν

γ ,

(4)

where geV = − 1
2 +2 sin2 θW and gA = − 1

2 , and e = ±1 is the
charge of the incoming lepton. In the case of pure QED, the
leptonic tensor has a symmetric and an antisymmetric part,
with the latter being proportional to the lepton helicity. The
case of the weak bosons is more involved, since the axial
coupling mixes the helicity dependence in both structures.
However, the key point to notice is that the parity conserving
terms proportional to the helicity have exactly the same tensor
structure as the parity violating terms independent of λ, and
vice-versa.

The other piece in Eq. (2) is the hadronic tensor Wi
μν ,

which includes the interaction of the EW current correspond-
ing to the boson of type i with the nucleon. In inclusive DIS,
and up to twist-two terms, it is described in terms of the
(polarized) unpolarized structure functions (g) F , defined as

Wi
μν =

(
−gμν + qμqν

q2

) [
Fi

1(x, Q2) − h

2
gi5(x, Q

2)

]

+
(
pμ − p·q

q2 qμ

) (
pν − p·q

q2 qν

)

p · q
×

[
Fi

2(x, Q2) − h

2
gi4(x, Q

2)

]

−iεμναβ

qα pβ

2p · q
[
Fi

3(x, Q2) + h gi1(x, Q
2)

]
, (5)

where h is the helicity of the incoming hadron. The g2 and g3

contributions are excluded since they are suppressed by pow-
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ers of M2/Q2, with M being the hadron mass, in processes
with longitudinal hadron polarization [20]. Other terms pro-
portional to M2/Q2 accompanying the g’s structure func-
tions were also neglected.

The total unpolarized and the double (longitudinally)
polarized DIS cross sections for j = NC, CC are defined
by the helicity combinations

d2σ j

dxdy
= 1

4

∑

λ,h=±1

d2σ j (λ, h)

dxdy
,

d2�σ j

dxdy
= 1

4

∑

λ,h=±1

λ h
d2σ j (λ, h)

dxdy
,

(6)

and they can be expressed in terms of the structure function
using Eqs. (2, 4, 5) as:

d2σ j

dxdy
= 4πα2

xyQ2 ξ j

×
{[

1 + (1 − y)2
]
F j

2 − y2F j
L ∓ x

[
1 − (1 − y)2

]
F j

3

}
,

d2�σ j

dxdy
= 4πα2

xyQ2 ξ j
{
−

[
1 + (1 − y)2

]
g j

4

+y2g j
L ∓ 2x

[
1 − (1 − y)2

]
g j

1

}
, (7)

with ∓ for positive or negatively charged leptons l±, and the
longitudinal structure functions defined as usual by

F j
L = F j

2 − 2xF j
1 ,

g j
L = g j

4 − 2xg j
5 .

(8)

The variable ξ takes the values ξNC = 1 and ξCC = 2,
while the NC and CC structure functions correspond to the
combinations

FCC
a = FW

a a = 1, 2, 3,

FNC
a = Fγ

a − geV ηγ/Z Fγ /Z
a + (geV

2 + geA
2
) ηZ F Z

a a = 2, L ,

FNC
3 = Fγ

3 − geA ηγ/Z Fγ /Z
3 + 2geV g

e
A ηZ F Z

3 ,

gCC
a = gW

a a = 1, 2, 3,

gNC
1 = gγ

1 − geV ηγ/Z gγ /Z
1 + (geV

2 + geA
2
) ηZ gZ1 ,

gNC
a = geA ηγ/Z gγ /Z

a − 2geV g
e
A ηZ gZa a = 4, L . (9)

Due to factorization, all the long-distances effects associ-
ated to the initial state nucleon can be separated from the hard
scattering, and the structure functions F j

a=2,3,L and g j
a=1,4,L

can be written in terms of convolutions between perturba-
tively calculable coefficient functions and parton distribution
functions f and � f (PDFs),

F j
a =

∑

f

C j, f
a ⊗ f, g j

a =
∑

f

�C j, f
a ⊗ � f, (10)

with ⊗ denoting the usual convolution, and each of the coef-
ficient functions is calculated as an expansion in αS

(�)C j, f
a = (�)C j, f (0)

a

+ αS

4π
(�)C j, f (1)

a +
( αS

4π

)2
(�)C j, f (2)

a + · · · (11)

At the LO in QCD, the coefficients are fairly simple
( (�)C j, f (0)

a (z) = δ(1−z) fora �= L and (�)C j, f (0)
L (z) = 0

) and the structure functions are given by different combina-
tions of quark PDFs, as in the naive parton model. Consid-
ering the process where the initial lepton is an electron, the
combinations for the NC case are

[
Fγ

2 , Fγ /Z
2 , FZ

2

]
= x

∑

q

[
e2
q , 2eqg

q
V , gqV

2 + gqA
2
]
(q + q̄),

[
Fγ

3 , Fγ /Z
3 , FZ

3

]
=

∑

q

[
0, 2eqg

q
A, 2gqV g

q
A

]
(q − q̄),

[
gγ

1 , gγ /Z
1 , gZ1

]
= 1

2

∑

q

[
e2
q , 2eqg

q
V , gqV

2 + gqA
2
]
(�q + �q̄),

[
gγ /Z

4 , gZ4

]
= x

∑

q

[
2eqg

q
A, 2gqV g

q
A

]
(�q − �q̄), (12)

where in this case the quark coupling factors are gqV =
± 1

2 −2eq sin2 θW and gqA = ± 1
2 , with± according to whether

q is an up-type or down-type quark, respectively. The longitu-
dinal structure functions are null at the lowest order, in accor-
dance with the Callan-Gross and Dicus relations [21,22].
While this makes the O(α2

S) formally NLO for the longitu-
dinal coefficients, in what follows we will refer to the O(α2

S)

corrections as NNLO, having in mind that the NNLO DIS
cross section receives contributions of that order. That is, the
perturbative orders of gL are counted as those of g1,4.

For the CC process, the structure functions at LO are given
by the combinations

FW−
2 = 2x

⎡

⎣
∑

f <

(d̄|V f d |2 + s̄|V f s |2 + · · · )

+
∑

f ′<
(u|Vu f ′ |2 + c|Vcf ′ |2 + · · · )

⎤

⎦ ,

FW−
3 = 2

⎡

⎣−
∑

f <

(d̄|V f d |2 + s̄|V f s |2 + · · · )

+
∑

f ′<
(u|Vu f ′ |2 + c|Vcf ′ |2 + · · · )

⎤

⎦ ,

gW
−

1 =
⎡

⎣
∑

f <

(�d̄|V f d |2 + �s̄|V f s |2 + · · · )

+
∑

f ′<
(�u|Vu f ′ |2 + �c|Vcf ′ |2 + · · · )

⎤

⎦ ,

gW
−

4 = 2x

⎡

⎣
∑

f <

(�d̄|V f d |2 s̄|V f s |2 + · · · )

+� −
∑

f ′<
(�u|Vu f ′ |2 + �c|Vcf ′ |2 + · · · )

⎤

⎦ , (13)
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where V f f ′ are the elements of the Cabibbo–Kobayashi–
Maskawa (CKM) matrix, and f < means that only active
flavors below a certain threshold are kept. For the process
with an initial positron, the structure functions are obtained
via the flavor exchanges d ←→ u, s ←→ c, etc.

At higher perturbative orders, it is customary to recast
Eq. (10) in terms of the usual singlet (S) and nonsinglet (NS)
quark PDF combinations, � and �, as well as their corre-
sponding coefficient functions. In the case of unpolarized
DIS, the structure functions Fa can then be expressed as

F j
a (x, Q2) = ωa

∫
dz

z

{(
1

N f

N f∑

f =−N f

κ
j
f,a

)

×
[
�

(
x

z
, μ2

F

)
C j,S
a (z, Q2/μ2

F )

+G

(
x

z
, μ2

F

)
C j,g
a (z, Q2/μ2

F )

]
+ �

(
x

z
, μ2

F

)

× C j,NS
a (z, Q2/μ2

F )

}
, a = 2, 3, L , (14)

where G denotes the gluon PDF, and the dependence on the
renormalization scale is implicit in all quantities. The fac-
tor ω accounts for the different definitions of each structure
function, with ωa = x for a = 2, L and ω3 = 1. The singlet
and nonsinglet combinations are, respectively

�(z, Q2) =
N f∑

f =−N f

q f (z, Q
2),

�(z, Q2) =
N f∑

f =−N f

κ
j
f,a q f (z, Q

2)

−
⎛

⎝ 1

N f

N f∑

k=−N f

κ
j
k,a

⎞

⎠ �(z, Q2). (15)

The factors κ
j
f,a in Eqs. (14) and (15) correspond to the prod-

ucts of couplings of the electron and the parton f to the cross
sections of the process j , and are given by

κNC
f,2 = κNC

f,L = e2
f − 2 e f g

f
V geV ηγ/Z

+(geV
2 + geA

2)(g f
V

2 + g f
A

2
) ηZ ,

κNC
f,3 = 4 g f

V g f
A geV geA ηγ/Z

−2 e f g
f
A geA ηZ ,

κCC
f,a = ∑

f ′< |V f f ′ |2, a = 2, 3, L . (16)

It should be noted that, in the case j = CC, the summations in
Eq. (14) and in the definition of � are done only over the fla-
vors that couple to the gauge boson. The usual decomposition
of Eq. (14) in terms of singlet and non-singlet combinations
of quarks is useful starting at NNLO, since it is from O(α2

S)

Fig. 2 Example of a Feynman diagram for the process l + q → l ′ +
q +q ′ + q̄ ′ associated to purely-singlet contributions. The leptonic part
of the diagram was omitted for simplicity

that one gets C j,S
a �= C j,NS

a due to contributions from the
partonic processes l + q → l ′ + q + q ′ + q̄ ′ opening at that
order. The difference between the S and NS coefficients can
be parameterized in terms of the purely-singlet (PS) contri-
bution, C j,PS

a = C j,S
a − C j,NS

a , associated to processes as
those depicted in Fig. 2, in which the gauge boson couples
to quarks of radiative origin. For the sake of the following
discussion, it is actually useful to recast Eq. (14) in terms of
the pure-singlet coefficient, as

F j
a (x, Q2) = ωa

∫
dz

z

{(
1

N f

N f∑

f=−N f

κ
j
f,a

)

×
[
�

(
x

z
, μ2

F

)
C j,PS
a (z, Q2/μ2

F )

+ G

(
x

z
, μ2

F

)
C j,g
a (z, Q2/μ2

F )

]

+
N f∑

j=−N f

κ
j
f,a q f

(
x

z
, μ2

F

)
C j,NS
a (z, Q2/μ2

F )

}
. (17)

While in Eqs. (14) and (17) we showed the unpolar-
ized structure functions, a completely analogous expression
stands for the polarized ga=1,4,L structure functions, in terms
of polarized PDFs combinations and polarized coefficient
functions. In that case, the constants �κ

j
f,a , which can be

obtained from those in Eq. (16), and the �ωa are given by

�κ
j
f,1 = κ

j
f,2, �ω1 = 1

2
,

�κ
j
f,4 = �κ

j
f,L = κ

j
f,3, �ω4 = �ωL = x .

(18)

For unpolarized DIS, all the necessary ingredients to
achieve O(α2

S) accuracy are known. Actually, the NNLO
coefficients have already been available for a long time for F2

[23–25], FL [23,26] and F3 [27], while NNLO extractions
of PDFs are now standard. The picture for polarized DIS,
on the other hand, is not as developed. Besides the lack of
NNLO polarized PDFs, only g1 was calculated up to NNLO
accuracy [10]. Thus, the missing NNLO coefficient functions
are those of the polarized parity violating structure functions
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Fig. 3 Example of an N3LO trace that contributes to the polarized
parity violating structure functions, that cannot be obtained from the
unpolarized F2 and FL

g4 and gL , which have never been studied beyond the NLO
level [20,28–30].

However, due to connections between parity violating
polarized contributions and the parity conserving unpolar-
ized ones, originated from the axial Ward identity, it is pos-
sible to obtain the missing coefficient functions from the
already known ones in the massless limit. This kind of argu-
ments were presented in our previous paper on dijet pro-
duction [31] as a useful tool to ease the implementation of
polarized NC and CC processes. It goes as follows: since the
gluon and pure singlet contributions (up to NNLO) vanish
after integration over the final-state particles (due to charge
conjugation arguments), and the triangle terms present in Z
boson exchange cancel when the complete weak isospin dou-
blets are considered (that is, an even number of flavors), the
remaining non-singlet coefficients of g4 and gL can then be
obtained from the non-singlet pieces of F2 and FL , respec-
tively. This is a direct consequence of the axial Ward identity
[32], and it can already be observed at the matrix element
level of the cross section, since both the parity violating polar-
ized and non parity violating unpolarized fermionic traces
have the same structure, and can only differ up to the presence
of an additional even number of γ5 matrices, which cancel
out when dealing properly with the HVBM scheme within
dimensional regularization. This involves, for instance, the
use of a symmetric definition of the axial vertex and an addi-
tional finite renormalization of the axial current, that are
needed to effectively restore the anticommutativity of γ 5,
and, therefore, the conservation of helicity in d−dimensions
[33]. Specifically, one then gets

�C j,g,(2)
4 = �C j,g,(2)

L = 0,

�C j,NS,(2)
4 = �C j,S,(2)

4 = C j,NS,(2)
2 ,

�C j,NS,(2)
L = �C j,S,(2)

L = C j,NS,(2)
L .

(19)

Similar arguments can be used to demonstrate the equiv-
alence between the NS coefficients of the unpolarized parity
violating structure function F3 and the polarized parity con-
serving g1, which was already noted in [10,34].

These relations between polarized and unpolarized struc-
ture functions are only valid up to O(α2

s ). This is due to the
new contributions showing up in the perturbative series at
higher orders, which involve additional fermion loops that
end up spoiling them [34]. In particular, traces like the one
presented in Fig. 3 are associated with pure singlet contribu-
tions that no longer vanish, and they need to be calculated
from scratch, since they have a different trace structure from
those in unpolarized processes. Note that at N3LO, those
contributions like the one of Fig. 3 are associated with a new
color factor, in this case (dabc)2, and they can in principle be
easily isolated.

Following these relations, we now complete the O(α2
s )

knowledge of the missing polarized parity violating structure
functions. The O(α2

s ) non-singlet coefficients of gL and g4

are simply obtained from those of the non-singlet ones of
FL and F2, respectively, which are given in Eqs. (B.1) and
(B.2) of ref. [23]. Regarding the singlet sector, the gluon
contribution cancels out, and the quark singlet contribution
is identical to the non-singlet one.

3 Numerical results of polarized NNLO proton
structure functions

In this section we compute the polarized structure functions
in order to evaluate the impact of the NNLO corrections.
Since the EIC is set to reach high precision measurement of
DIS observables, we focus on the case of polarized electron-
proton collisions. We work at a fixed Q2 = 100 GeV, and
the renormalization and factorization scales are set at cen-
tral values of μ2

F = μ2
R = Q2 ≡ μ2

0, with αs evaluated
at NLO accuracy with αs(MZ ) = 0.118 and using nF = 4
active flavors. For the weak gauge bosons we use the masses
MZ = 91.1876 GeV and MW = 80.379 GeV, with decay-
widths of �Z = 2.4952 GeV and �W = 2.085 GeV. The
electromagnetic coupling constant is set to α = 1/137 and
the Weinberg angle given by sin2 θW = 0.23122. The val-
ues used for the CKM matrix are |Vud | = 0.9737, |Vus | =
0.2245, |Vub| = 0.00382, |Vcd | = 0.2210, |Vcs | = 0.987
and |Vcb| = 0.041.

For the polarized densities, we use the set from the latest
DSSV global analysis [3,35]. We note that, since there are
no global analyses of polarized PDFs available at NNLO
(current extractions at that order are solely based on DIS
data [36]), we restrict ourselves to NLO PDFs.1

We begin by showing in Fig. 4 the already known parity
conserving g1 structure function as a function of x for both
NC and W exchange. The bands at each successive order

1 While this is not truly a fully consistent calculation at each perturba-
tive order, it is particularly convenient in order to analyze the size of the
NNLO corrections.
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Fig. 4 Non parity violating structure function 2 g1 for neutral (left)
and charged current (right) exchange at Q2 = 100 GeV2, for the Lead-
ing (green), Next-to-Leading (red) and Next-to-Next-to-Leading Order
(blue). The bands correspond to the theoretical uncertainty obtained

by the independent variation of the renormalization and factorization
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Fig. 7 Single-spin structure function −2 gNC
1 SS for NC exchange at

Q2 = 100 GeV2, for the Leading (green), Next-to-Leading (red) and
Next-to-Next-to-Leading Order (blue)

represent the theoretical uncertainty of the cross section,
obtained by the independent 7-point variation of the renor-
malization and factorization scales ( μ0/2 ≤ μF , μR ≤ 2μ0

with 1/2 ≤ μF/μR ≤ 2). The lower insets show the
K−factors, i.e, the ratio of each perturbative order to the
previous one. Higher order corrections are particularly large
around x ∼ 10−3 due to the existence of a sign change. The
overlap between the NNLO and NLO bands hints towards
a convergence of the perturbative series. However, the scale
bands can still be relatively big at lower values of x , particu-
larly in the NC case. It is also worth noticing that the LO band
at low x is artificially small. This is related to the fact that the
gluon channel, with a contribution that is typically relevant
in that region, only opens up at NLO. In DIS, as it happens in
the case of hadronic-collisions at the LHC, LO calculations
fail to produce sensible results not only for the central values
but also for the estimates of higher order uncertanties.

In Fig. 5 we present the first of the parity violating structure
functions, g4. In this case, even though there is a lack of
overlap at higher values of x , there is a noticeable reduction
in the NNLO and NLO bands, in both NC and W exchange.
The K -factors are greatly reduced at NNLO, stabilizing at
around 10% and 25%, respectively, but they are still sizable.
This highlights the importance of higher order corrections in
polarized processes, even at O(α2

S). It is worth noticing that,
in the NC case, there is no longer a pure photon contribution
to the parity violating functions nor initial gluon or pure-
singlet contribution, which accounts for the reduction in the
uncertainty bands.

Similar comments can be made regarding the parity vio-
lating structure function gL , which is presented in Fig. 6 in
the same fashion as g1 and g4. Although there is overlap for
most of the intermediate x range, corrections are still sizable
at high and low values of x , where they can reach as much

as 75%. As mentioned, since �Ci, f,(0)
L = 0, the first non-

vanishing contribution for the longitudinal structure function
starts at O(αS). While this makes the O(αS) formally LO,
we still refer to it as NLO in the sense of it being a NLO
contribution to the total DIS cross sections.

Finally, we would like to call the attention to another pos-
sibly interesting combination of polarized structure function
to be observed at the EIC. Due to the parity violating struc-
ture of the EW interaction, it is possible to define single-spin
structure functions that can still shed light on the polarized
structure of the nucleon. The corresponding cross section can
be obtained by considering the average over the spin of the
lepton and taking the difference only over the helicity of the
nucleon, as

d2δσ j

dxdy
= 1

4

∑

λ,h=±1

h
d2σ j (λ, h)

dxdy
. (20)

In that case, the single-spin polarized structure functions
are given by the same perturbative coefficients as for the
double polarized case, but replacing the combinations of EW
charges of Eq. (9). In the NC case, they are given by

gNC
1 SS = geA ηγ/Z gγ /Z

1 − 2geV g
e
A ηZ gZ1 ,

gNC
a SS = −geV ηγ/Z gγ /Z

a + (geV
2 + geA

2
) ηZ gZa a = 4, L .

(21)

The use of the asymmetries for unpolarized leptons scattered
off polarized nucleons is also discussed in [7]. In the CC
case, since the coupling is purely chiral, only one of the lep-
tonic polarization contributes to the process, and therefore
the single-spin structure functions are analogous to the dou-
ble polarized ones.

Notice that the pure photon contribution in the NC struc-
ture function gNC

1 SS cancels trivially since the QED com-
ponent of leptonic tensor is completely symmetric when
the average over polarization is taken, while the same con-
tribution of g1 to the hadronic tensor is completely anti-
symmetric. Therefore, single-spin observables provide an
easy way of suppressing the photon contribution to NC pro-
cess and a cleaner access to purely weak effects and provide
access as a probe for new physics. As an example, in Fig. 7 we
show the single-spin structure function g1 for NC exchange
at Q2 = 100 GeV2. As expected, since the perturbative coef-
ficients are the same as for the double spin counterparts, the
results show similar features regarding the stability of the
higher order corrections.

On the other hand, the charges in gNC
a SS imply a suppres-

sion of the single-spin g4 and gL structure functions com-
pared to the double spin ones. However, since geA is about
one order of magnitude larger that geV , the pure Z exchange
gets relatively enhanced compared to the γ /Z interference.
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4 Conclusions

In this work we present the O(α2
S) corrections for the coef-

ficient functions associated to the parity violating polarized
structure functions g4 and gL , thus completing the O(α2

S)

knowledge on DIS structure functions. We show that, since
both the purely singlet and gluon contributions up to this
order cancel, the missing coefficients can be obtained from
the already known parity conserving unpolarized structure
functions F2 and FL .

We also analyze the effects of the higher order corrections
in the relevant kinematics for the future Electron-Ion Col-
lider. In general, we observe a reduction of the K -factors and
the scale dependence bands, pointing towards the stabiliza-
tion of the perturbative series. This reduction is particularly
noticeable in the case of g4 and gL , for which the K -factors
are typically under 10% with estimated theoretical uncertain-
ties below 5%.

Finally, we discuss the possibility of using combina-
tions of single-spin structure functions, considering only the
hadron polarization. Since the single-spin structure functions
include different combinations of EW charges, they provide
an additional probe on the helicity structure of nucleons and
a source of EW precision tests to be performed in the future
EIC.
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