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Abstract We study the vacuum structures of four-dimen-
sional N = 1 old minimal supergravity with higher deriva-
tive corrections. We find that N = 1 supergravity with Rie-
mann curvature square corrections and higher derivative mat-
ter chiral multiplets induces a non-trivial de Sitter vacuum,
even in the absence of superpotentials. This vacuum generi-
cally breaks supersymmetry. We show that the auxiliary fields
in the gravity and the chiral multiples play important roles
to generate a potential in supersymmetric higher derivative
theories.

1 Introduction

Vacuum structures in supergravity theories have been inten-
sively studied due to their phenomenological importance.
They are highly constrained because of the restricted scalar
potential properties. For example, four-dimensional N = 1
supergravities exhibit scalar potentials of the generic form
V = eK (gi j

∗
DiWDj∗W̄ − 3|W |2) possibly with D-term

contributions. Here K , gi j are the Kähler potential and the
Kähler metric, Di is the covariant derivative in the Kähler
geometry andW is a superpotential. A widely known fact that
any de Sitter vacua in N = 1 supergravity break supersym-
metry is based on this potential structure. In order to admit
(meta)stable de Sitter vacua, which are supposed to describe
our universe, appropriate Kähler and superpotentials have
to be prepared. However, this is not always possible when
supergravities are viewed as low-energy effective theories of
UV theories, like string theories [1–5].

On the other hand, low-energy effective theories generi-
cally receive derivative corrections. For example, the fourth
order derivative corrections to the gravity sector are given
by the curvature square terms. It is known that the bosonic
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R + R2 gravity contains a real propagating degree of free-
dom known as the scalaron [6]. Here R is the Ricci scalar.
Due to the new scalar degree of freedom appearing in the
derivative corrections, there are room for the modifications
of the scalar potentials. Indeed, the bosonic R + R2 grav-
ity is equivalently dual to the Einstein gravity with a real
scalar field accompanied by a non-trivial potential. This was
used to realize an inflation model [7]. In the supersymmetric
counterpart, this was first discussed in [8] and supersymmet-
ric completions of the R + R2 gravity in the old minimal
[9] and the new minimal frameworks [10] have been studied.
For the former, the scalar and the vector auxiliary fields M ,
∇mbm become propagating. In the dual picture they together
with the scalaron form two chiral multiplets S and T while
the dual for the latter contains a vector multiplet. The dif-
ference of the auxiliary fields in N = 1 supergravity traces
back to the gauge fixing in the superconformal tensor calcu-
lus [11]. They are a class of f (R, R̄) supergravities, where
f is an arbitrary function of the curvature superfields R, R̄.
Vacuum structures of f (R, R̄) pure supergravity [12] and
with the chiral matter multiplets [13] have been studied.

Things get more involved when higher derivative correc-
tions in chiral matter sectors are introduced. It is known
that supersymmetric completions of higher derivative matter
terms, even in the absence of the gravity sector, are generi-
cally cumbersome issue. This is mainly due to the auxiliary
field problem [14–18] and the presence of the Ostrograd-
ski’s ghosts [19]. The former stems from the fact that the
equation of motion for the auxiliary field F in the chiral
multiplet ceases to be algebraic. The latter is a fate of higher
spacetime derivatives of fields of the form ∂nϕ (n ≥ 2). The
higher derivative chiral model [20–22] is a supersymmet-
ric completion of higher derivative scalar models that does
not suffer from these problems. This is given by the form
U (�, �̄)Dα�Dα�D̄α̇�† D̄α̇�† in the D-term. Here D, D̄
are the N = 1 supercovariant derivatives and � is a chiral
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superfield, U (�, �̄) is an arbitrary function of �, �̄ and the
spacetime derivatives of them. This has been utilized to write
down a supersymmetric Dirac–Born–Infeld model [23,24],
Skyrme models [25–28] and to study nonlinear realizations
[29], BPS states [30–32] and so on.

It is remarkable that the higher derivative chiral model
admits non-trivial scalar potentials even in the absence of
superpotentials. A rich structure of scalar potentials arises
from the non-trivial solutions to the equation of motion for
the auxiliary field. As we will show in below, this mechanism
is in contrast to the situation in the gravity sector in which
explicit scalar potentials appear in the dual frame. The higher
derivative chiral model coupled with the Einstein supergrav-
ity has been studied [33,34]. It is shown that the scalar poten-
tial induced by the higher derivative chiral model is negative
semi-definite which results in anti-de Sitter or Minkowski
vacua. They are uplifted by the D-term contributions from
the gauge sector.

In this letter, we study vacuum structures of a four-
dimensional N = 1 model including the fourth order deriva-
tive corrections both in the gravity and the chiral matter sec-
tors. We show that supergravity with curvature square terms
coupled with the higher derivative chiral model induces non-
trivial scalar potential and exhibits a de Sitter vacuum even
in the absence of superpotentials and gauge sectors. This is
in contrast to the models in [33,34] and shows that derivative
corrections to the gravity sector can uplift the anti-de Sitter
vacua in a natural way.

2 Forth order derivatives inN = 1 supergravity with
chiral matter

We consider the fourth order derivative corrections to four-
dimensional N = 1 supergravity coupled with the chiral
matter multiplets. In the following, we follow the Wess-
Bagger convention [35]. The off-shell gravity and the chi-
ral multiplets contain bosonic fields (eam, M, bm) and (A, F)

respectively. Here eam, A, are the vierbein and the complex
scalar field, M, bm, F are the auxiliary fields. In the fourth
derivative order, the Lagrangian of the gravity sector is given
in the form of curvature square terms. Supersymmetric com-
pletions of the curvature square terms have been studied [36].
For example, we have the R2 term as

L =
∫
d2� 2E(D̄2 − 8R)RR̄

= − 1

18
e
[
R2 − 4(∂mM)(∂m M̄) + 4(∇mb

m)2

− 4

3
ibm(M̄∂mM − M∂m M̄) + 4

9
(MM̄)2

+ 4

9
(bmb

m)2 + 4

9
MM̄bmb

m − 4

3
Rbmb

m − 2

3
RMM̄

]
,

(1)

where 2E is a chiral density superfield involving the deter-
minant of the vierbein e = det ema , D, D̄ are supercovariant
derivatives in the curved space and R is the curvature super-
field. We have shown only the bosonic component fields and
employ the convention for the gravitational constant κ = 1 in
the following. As is well-known, the auxiliary fields M, bm
get the kinetic term and they become propagating. Therefore
they are not integrated out but should be treated indepen-
dent dynamical fields. Indeed, the curvature square theory is
equivalent to the Einstein gravity coupled with scalar fields.
Although it is possible to rewrite the Lagrangian via a duality
[9,10], we never switch to the dual form since we keep the
derivative corrections be manifest.

For the matter sector, we consider the higher derivative
chiral model. For simplicity, we focus on a model with a sin-
gle chiral superfield. The general curvature square invariants
involve the Ricci and Riemann tensors. Then the superfield
matter Lagrangian coupled with the gravity sector is defined
as

L = 3

8

∫
d2� 2E (D̄D̄ − 8R

)[
e− K

3 + α

(
RR̄ − 1

4
Gαα̇G

αα̇

)

− 1

3
U (�, �̄)Dα�Dα�D̄α̇�†D̄α̇�†

]

+
∫
d2� 2E(−γWαβγ W

αβγ ) + h.c., (2)

where the curvature superfields Gαα̇Gαα̇ and Wαβγ Wαβγ

contain the Ricci and the Weyl tensor squares, respectively
[36], and α, γ are free parameters. We again stress that the
Lagrangian (2) does not contain superpotentials. After the
Weyl rescaling, we have the component Lagrangian for the
bosonic fields;

e−1L = − 1

2
R − 3

4
e

2K
3 ∂m

(
e− K

3

)
∂m

(
e− K

3

)

−
(
gAĀ − 1

3
KAK Ā

)
gmn∂m A∂n Ā + gAĀe

K
3 F F̄

− 1

3
e

K
3

(
MM̄ + MFKA + M̄ F̄K Ā + F F̄KAK Ā

)

− α

16

(
R2 − 3RmnRmn

)
− γ

8
CmnklCmnkl

+ 16U (A, Ā)
[
(∂m A∂m A)(∂n Ā∂n Ā)

− 2e
K
3 F F̄(∂m A∂m Ā) + e

2K
3 F2 F̄2

]
+ · · · , (3)

where gAĀ = ∂2K
∂A∂ Ā

, KA = ∂K
∂A , KĀ = ∂K

∂ Ā
, and Rmn, Cmnkl

are the Ricci and the Weyl tensors. The Weyl tensor con-
tains R, Rmn and the Riemann tensor Rmnkl . The last dots
are the derivative terms of M, bm and a total derivative term,
which are irrelevant in our discussions. Note that the relative
coefficient between RR̄ and Gαα̇Gαα̇ in (2) has been cho-
sen so that the terms like MM̄R are absent in the Lagrangian
and the Einstein frame is retained. Although higher curvature
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corrections other than the f (R)-type may involve the Ostro-
gradski’s ghosts accompanying the negative kinetic terms of
the graviton [37], we never care about these in the follow-
ing. This is because the negative kinetic energy of graviton
is highly suppressed by the Planck mass Mp and the ghost
plays no role in determining the low-energy geometry in the
vacuum.

Particular emphasis is placed on the auxiliary field F in
the higher derivative chiral model. The equation of motion
for F̄ is given by

gAĀe
K
3 F − 1

3
e

K
3 KĀ(M̄ + FKA) + 32Ue

2K
3 FF F̄ = 0.

(4)

Obviously, this is no longer the linear equation but the cubic
order in F . Despite this fact, this is an algebraic equation and
solutions are obtained by the Cardano’s formula [24]. Since
we are interested in the vacuum structures of the model, we
assume that ∂m A = bm = ∂mM = 0 and the vanishing
fermions in the following. Then the solutions to the equation
(4) are given by

F F̄ = ωa 3

√
−q

2
+

√(q
2

)2 +
( p

3

)3

+ ω3−a 3

√
−q

2
−

√(q
2

)2 +
( p

3

)3 + 2

3

e− K
3

32U
GAĀ,

(5)

where ω3 = 1, a = 0, 1, 2 and we have defined

GAĀ = gAĀ − 1

3
KAK Ā,

p = − 1

3

(
e− K

3

32U

)2

G2
AĀ

,

q = − 1

9

(
e− K

3

32U

)2

KAK ĀMM̄ − 2

27

(
e− K

3

32U

)3

G3
AĀ

.

(6)

We note that the formal expression (5) is justified only
when F F̄ ≥ 0, otherwise there are no solutions. The fact
that there are generically three independent solutions (5)
for a = 0, 1, 2 causes several consequences in the on-shell
Lagrangian. First, there are three distinct on-shell branches
associated with the three solutions a = 0, 1, 2 [30–32]. Sec-
ond, the fourth order term of F in the Lagrangian induces
non-trivial scalar potential even in the absence of superpo-
tentials W . Indeed, we find that the scalar potential is given
by

V (x, y) = 1

3
e

K
3 x + e

K
3

(
gAĀ − 1

3
KAK Ā

)
F F̄(x, y)

+ 48Ue
2K
3 (F F̄(x, y))2. (7)

Here x = MM̄, y = AĀ and F F̄(x, y) is a solution in (5).
Although the scalar potential (7) is independent of α and γ ,
it vanishes when the fourth derivative interactions are absent.
Namely, when α = γ = U = 0, we have F = M = 0 and
V becomes trivial. For α = γ = 0 but U �= 0 case, we have
a non-trivial F but the scalar field M remains to be auxiliary
and it is integrated out. The resulting scalar potential is a
negative semi-definite and allows only for anti-de Sitter (or
Minkowski) vacua [34].

3 Vacuum structures

3.1 Potential minima

We now examine a minimum of the scalar potential (7). In the
following, we consider the canonical Kähler potential of the
simplest form K = AĀ and U = const. = β. Even in such a
case, the scalar potential still possesses non-trivial structure.
Since M is not an auxiliary field anymore, vacua are defined
by minima both in the x = MM̄ and y = AĀ directions.
We also note that the solutions (5) are allowed when F F̄ is
positive semi-definite. This means that the range of VEVs of
the scalar fields (x, y) is restricted. Since the functional form
F F̄(x, y) is different for a = 0, 1, 2 branches, we study each
branch separately.

3.1.1 a = 0 branch

First we focus on the a = 0 branch. This is always a real
solution. For a fixed x and large values of y, the dominant
contribution comes from the first term in (7) and the potential
grows to infinity:

V (x, y) ∼
(

1

β2

) 1
3

e
y
9 (yx)

1
3 → ∞, (x �= 0, y → ∞).

(8)

The same behaviour holds even for a fixed y and large values
of x . For a fixed x and y ∼ 0, we find

V (x, y) ∼ 1

24β
(3 + 8βx) + 1

12β
(1 − 8βx)y, (y → 0).

(9)

Thus for β > 0, 5 − 40x < 0 or for β < 0, 5 − 40x > 0, the
potential decreases along the y-direction and then it increases
again as we go to y → ∞. Then we expect that there are
minima in the a = 0 branch. A numerical analysis helps us
to find a minimum of the potential.
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Fig. 1 The scalar potential in the a = 0 branch. β = 1. The red point
indicates a minimum

For β > 0 case, the result is given in Fig. 1. We find
a minimum where the vacuum energy is negative, � =
−1.1153 × 10−4. The eigenvalues of the mass matrix

M2 = 1

2

⎛
⎝ ∂2V

∂ϕi ∂ϕ̄ j

∂2V
∂ϕi ∂ϕ j

∂2V
∂ϕ̄i ∂ϕ̄ j

∂2V
∂ϕ̄i ∂ϕ j

⎞
⎠ , ϕi = (A, M), (10)

at the vacuum are given by m2 = (5.2979, 4.3826 ×
10−3, 0, 0) which guarantees that there are no tachyonic
modes. The two zero-eigenvalues correspond to the Nambu-
Goldstone modes associated with the phase directions of
M and A. Since the supersymmetry transformation of the
chiral fermion is proportional to the auxiliary field F and
F F̄ | = 4.8905 × 10−4 �= 0, we find that the vacuum breaks
supersymmetry. We also note that the minimum is in the
region where the solution F F̄ ≥ 0 is justified. See Fig. 2 for
the allowed region of VEVs (x, y).

For β < 0, however, we find that the scalar potential is
unbounded from below. It becomes infinitely small along the
x-axis (Fig. 3). Therefore there are no vacua in the β < 0
case.

3.1.2 a = 1, 2 branches

For the a = 1, 2 branches, the condition D = ( q
2

)2 +( p
3

)3
<

0 is necessary for F F̄ to be real numbers. We find that for
β > 0, this is not the case. In the case of β < 0, we find
D < 0 and F F̄ ≥ 0 provided y ≥ 3. When this condition is
satisfied, the solutions are given by

F F̄ = 2

√
− p

3
cos

(
θ

3
+ 2aπ

3

)
+ 2

3

e− K
3

32U
, (a = 1, 2)

(11)

0.000 0.001 0.002 0.003 0.004

4

6

8

10

12

14

x

y

Fig. 2 The allowed region of the VEV (x, y) for F F̄(x, y) ≥ 0. The
red point represents the minimum of the potential (see Fig. 1)

Fig. 3 The scalar potential in the allowed region of F F̄ ≥ 0. The
a = 0 branch for β = −1

where

tan θ = −2
√−D

q
. (12)

The plots of the scalar potentials are found in (Fig. 4). We
find that there are infinitely negative directions along x = 0
both in the a = 1, 2 branches. Therefore they are unbounded
from below and there are no minima in these branches.
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Fig. 4 The scalar potentials in the a = 1 (left) and the a = 2 (right)
branches. The parameter is fixed to β = −1

3.2 Einstein equation

Given the vacuum energy, we solve the Einstein equation and
determine the spacetime structures. The equation of motion
for the metric is found to be

(
Rmn − 1

2
gmnR

)

+ 3α + 2γ

24

(
2RRmn − 1

2
gmnR2 − 2(∇m∇n − gmn∇2)R

)

+ 3α + 4γ

8

(1

2
gmnRpqRpq − 2gpqRmpRnq + ∇n∇pRmkg

kp

− ∇m∇pRkng
kp + ∇k∇lRmng

kl + ∇q∇pRkl g
kpglq gmn

)

+ γ

4

(
− 1

2
gmnRklpqRklpq + 2RmklpRn

klp + 2RklmpRkl
n
p

+ 4∇k∇lRmlnk

)
− �gmn = 0, (13)

where � is the vacuum energy. Assuming the de Sitter space
ansatz;

Rmnpq = 1

λ2 (gmpgnq − gmqgnp), (14)

where λ is the de Sitter radius, we have the equation �λ4 −
3λ2 + 3γ = 0 from (13). The solutions are found to be

λ2 = 3 ± √
9 − 12�γ

2�
. (15)

From this expression, we find that there is a solution λ2 > 0
when γ > 0 and � < 0, namely, a de Sitter space is allowed
even for the negative vacuum energy � < 0 (the minus sign
in (15)). Indeed, for γ > 0 (cf. Eq. (3)), a de Sitter space
λ2 > 0 is allowed in the β > 0, a = 0 branch with the
vacuum energy � = −1.1533×10−4. Note that the solution
(15) is independent of the coefficient α.

4 Conclusion

In this letter, we studied the four-dimensional N = 1
old minimal supergravity coupled with the curvature square

terms and the higher derivative chiral model. This is a natural
model that contains fourth order spacetime derivatives both
in the gravity and the chiral multiplets.

The auxiliary fields play an important role both in the grav-
ity and the chiral multiplets. A well-known fact that the aux-
iliary field M in the gravity multiplet becomes propagating in
the presence of the curvature square terms, and the non-trivial
solutions for F in the higher derivative chiral matter sector,
allows us to generate a non-vanishing scalar potential. We
explicitly showed that the extra scalar field M together with
the higher derivative chiral model generates a scalar potential
even in the absence of superpotentials. The non-trivial scalar
potentials are generated through each solution to the equation
of motion of F . Although they are complicated, the explicit
forms of the potentials enable us to find a minimum and the
vacuum energy in the a = 0 branch. We found that the vac-
uum generically breaks supersymmetry since the auxiliary
field F F̄ at the vacuum is non-zero in general. Given the
vacuum energy, we solved the Einstein equation including
the curvature squares and found that a (meta) stable de Sitter
space is allowed even for the negative vacuum energy. This
is in contrast to the previous works [33,34] where no curva-
ture square terms are present. Our analysis showed that the
de Sitter radius depends on the coefficient γ of the Riemann
curvature squares. This would be relevant in the heterotic
supergravities [38,39] where the RmnklRmnkl term plays an
important role to cancel the anomaly.

In this letter, we focused on the simplest case, namely, the
flat Kähler potential K = AĀ and the constantU . Even such
a case, we found rich structures of scalar potentials. This
indicates that our findings will be useful for model building
without superpotentials. Since low-energy effective theories
generically have non-trivial Kähler potentials and the func-
tion U , it would be interesting to study vacuum structures
in specific setups like the Skyrme matters [25–28], the D-
brane worldvolume theory [23,24], string compactifications
[2] and so on. In [34], anti-de Sitter vacua are uplifted to de
Sitter ones by the D-term contributions of gauge sectors. It is
natural to incorporate the derivative corrections to gauge sec-
tors and study their roles in vacuum structures. It has been
shown that the higher derivative chiral model admits non-
standard supersymmetry breaking vacua such as modulated
ground states [40–43]. It would also be interesting to study
the corresponding spacetime structures in these vacua.

An inflation model based on the higher derivative chiral
model has been studied in [44]. Their analysis shows that
there is an intrinsic singularity of the speed of sound in the
a = 2 on-shell branch in the Einstein supergravity. It would
be interesting to study the inflationary dynamics including
the curvature squared corrections. We also expect that our
analysis may shed light on the complete understanding of
the string landscape and the swampland program [45,46].
We will come back to these issues in future works.
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