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Abstract In this work we analyze traversable wormhole
solutions in the linear form of f (R, T ) = R + λT grav-
ity satisfying the Null, Weak, Strong, and Dominant Energy
Conditions (NEC, WEC, SEC, and DEC respectively) for
the entire spacetime. These solutions are obtained via a fully
analytical parameter space analysis of the free parameters of
the wormhole model, namely the exponents controlling the
degree of the redshift and shape functions, the radius of the
wormhole throat r0, the value of the redshift function at the
throat ζ0, and the coupling parameter λ. Bounds on these
free parameters for which the energy conditions are satis-
fied for the entire spacetime are deduced and two explicit
solutions are provided. Even if some of these bounds are
violated, leading to the violation of the NEC at some critical
radius rc > r0, it is still possible to find physically relevant
wormhole solutions via a matching with an exterior vacuum
spacetime in the region where the energy conditions are still
satisfied. For this purpose, we deduce the set of junction con-
ditions for the form of f (R, T ) considered and provide an
explicit example. These results seem to indicate that a wide
variety of non-exotic wormhole solutions are attainable in
the f (R, T ) theory without the requirement of fine-tuning.

1 Introduction

A wormhole is a topological object connecting two space-
time manifolds. In the theory of General Relativity (GR), sev-
eral wormhole solutions connecting asymptotically flat [1–4]
and asymptotically (anti-)de-Sitter [5] spacetimes have been
obtained. However, these solutions feature a major drawback:
in GR, the geometrical condition necessary for a wormhole
spacetime to be traversable, known as the flaring-out condi-
tion, is incompatible with the Null Energy Condition (NEC),
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a condition that states that any null observer should mea-
sure a non-negative average energy density in the spacetime.
When the matter components violate the NEC, the matter is
denoted as exotic. In the pursuit of physically relevant worm-
hole solutions, one must thus recur to modified theories of
gravity.

The literature concerning wormhole solutions in modi-
fied theories of gravity is quite extensive [6–16] (we refer
the reader to Ref. [17] for a review). In this context, the
higher-order curvature terms are the ones responsible for
maintaining the geometry of the wormhole throat, while the
matter components are kept non-exotic. This result can be
achieved in multiple frameworks, for example f (R) grav-
ity [18], non-minimal couplings [19,20], additional funda-
mental fields [21], Einstein–Gauss–Bonnet gravity [22–24],
Brans–Dicke gravity [25], braneworld configurations [26],
and hybrid metric-Palatini gravity [27–30].

In this work, we are particularly interested in an exten-
sion of f (R) gravity known as f (R, T ) gravity, where R is
the Ricci scalar and T is the trace of the stress-energy tensor
[31]. This theory has been explored in a wide variety of topics
including dark matter models [32], compact objects includ-
ing white dwarfs and exotic solutions [33–40], cosmological
solutions including reconstruction methods [41–46], stabil-
ity analyses [47], the Palatini formulation [48] and junction
conditions [49,50]. Recently, this theory was also shown to
provide relevant solutions for wormhole spacetimes [51–56].
The f (R, T ) is currently one of the most actively studied
modified theories of gravity. Indeed, the recent derivation of
an alternative scalar-tensor representation of the theory [49]
has opened a new research branch with particular emphasis
on cosmology [57–59] and braneworld scenarios [60–63].

In the majority of the wormhole works mentioned before,
even though the higher-order curvature terms can provide
solutions satisfying the NEC at the throat, frequently this
condition is violated elsewhere, thus compromising the phys-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-11135-w&domain=pdf
mailto:joaoluis92@gmail.com
mailto:paulmartin831@hotmail.com


1154 Page 2 of 15 Eur. Phys. J. C (2022) 82 :1154

ical relevance of the solution. A possible resolution for this
problem is to perform a matching with an exterior vacuum
spacetime in the region where the NEC is satisfied, effec-
tively replacing the problematic domain of the solution with
an infinitely thin shell, a usually tedious method that fre-
quently involves fine-tuning. Furthermore, even in the few
papers where this procedure is not necessary, the wormhole
solutions satisfying the NEC for the whole spacetime are
frequently obtained through a trial-and-error method, and no
clear analytical study of the parameter space is provided. The
first goal of this work is to fulfill this gap by performing a fully
analytical study of the parameter space of wormhole space-
times in a linear model of f (R, T ) gravity. Furthermore, we
also aim to extend the physical relevance of the solutions
obtained by forcing not only the NEC to be satisfied, but also
the Weak, Strong, and Dominant Energy Conditions (WEC,
SEC, and DEC, respectively).

This paper is organized as follows. In Sect. 2 we intro-
duce the f (R, T ) gravity in its usual geometrical represen-
tation, and also outline general considerations about worm-
hole spacetimes; in Sect. 3 we perform an analytical study
of the parameter space of the model considered in order to
obtain the necessary parameter bounds for the energy con-
ditions to be satisfied, and provide a couple of examples of
solutions; in Sect. 4 we derive the junction conditions of the
model considered and outline how to obtain a physically rel-
evant wormhole solution when one of the parameter bounds
previously obtained is violated; and in Sect. 5 we trace our
conclusions. Part of this work, namely Sect. 4, is included in
P.M.K. BSc thesis [64].

2 Theory and framework

2.1 Action and equations of the f (R, T ) gravity

The f (R, T ) theory of gravity is described by an action
function S of the form

S = 1

2κ2

∫
�

√−g f (R, T ) d4x +
∫

�

√−gLmd
4x, (1)

where κ2 ≡ 8πG/c4, where G is the gravitational constant
and c is the speed of light, � is a 4-dimensional spacetime
manifold on which one defines a set of coordinates xμ, gμν

is the metric tensor with positive signature written in terms
of the coordinates xμ and with a determinant g, f (R, T )

is an arbitrary well-behaved function of the Ricci scalar
R = gμνRμν , where Rμν is the Ricci tensor, and the trace
of the stress-energy tensor T = gμνTμν . The stress-energy
tensor Tμν is defined in terms of the variation of the matter

Lagrangian Lm with respect to the metric as

Tμν = − 2√−g

δ
(√−gLm

)
δgμν

. (2)

To ease the notation, we shall adopt a system of geometrized
units for which G = c = 1, and hence κ2 = 8π .

A variation of Eq. (1) with respect to the metric gμν leads
to the modified field equations of the f (R, T ) gravity in the
form

fR Rμν − 1

2
gμν f (R, T ) + (

gμν� − ∇μ∇ν

)
fR

= 8πTμν − fT (Tμν + 	μν), (3)

where we have defined the partial derivatives of f as fR ≡
∂ f/∂R and fT ≡ ∂ f/∂T , ∇μ and � ≡ ∇σ ∇σ are the covari-
ant derivative and the D’Alembert operator defined in terms
of the metric gμν , and 	μν is an auxiliary tensor defined in
terms of the variation of Tμν as

	μν ≡ gρσ δTρσ

δgμν
. (4)

The explicit form of the tensor 	μν will be defined upon the
specification of a matter Lagrangian Lm or, equivalently, a
stress-energy tensor Tμν .

In this work, we work with a function f (R, T ) of the form
f (R, T ) = R+λT . This is one of the most commonly used
forms of the function f (R, T ) in the literature as it provides
a simple extension of GR where the action S depends linearly
on T . The equations of motion in Eq. (3) in this particular
case simplify to

Rμν − 1

2
gμν (R + λT ) = 8πTμν − λ

(
Tμν + 	μν

)
. (5)

In the following section, we will derive traversable wormhole
solutions of the field equations above.

2.2 Traversable wormhole spacetimes

In this work we focus on static and spherically symmetric
wormhole solutions. The metric that describes a general static
and spherically symmetric spacetime can be written in the
usual set of spherical coordinates (t, r, θ, φ) as

ds2 = −eζ (r)dt2 +
[

1 − b (r)

r

]−1

dr2 + r2d�2, (6)

where ζ (r) is the redshift function, b (r) is the shape func-
tion, and d�2 = dθ2 + sin2 θdφ2 is the surface-element on
the two-sphere. For the wormhole to be traversable, the func-
tions ζ (r) and b (r) must satisfy a few conditions. First, the
spacetime must not feature any event horizons, as to allow a
traveller to cross the throat of the wormhole at r = r0 and
still be able to escape the interior region. For this require-
ment to be fulfilled, the redshift function must remain finite
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throughout the entire spacetime, i.e., |ζ (r) | < ∞. The sec-
ond condition, also known as the flaring-out condition, is
a geometrical condition at the wormhole throat that can be
expressed in the form of two boundary conditions on the
shape function as

b (r0) = r0, b′ (r0) < 1. (7)

In the literature, a wide variety of forms for both the redshift
and the shape functions have been explored, see Refs. [51–
56]. In this work, we focus our analysis on the following two
families of functions that satisfy the requirements described
above:

ζ (r) = ζ0

(r0

r

)α

, (8)

b (r) = r0

(r0

r

)β

, (9)

where ζ0 is an arbitrary constant and the parameters α and β

are constant exponents. To guarantee the asymptotic flatness
of the solution, it is necessary thatα andβ are strictly positive.

In what concerns the matter sector, we shall assume that
matter is well described by an anisotropic perfect fluid, i.e.,
the stress-energy tensor can be written in the form

T b
a = diag (−ρ, pr , pt , pt ) , (10)

where ρ is the energy density, pr is the radial pressure, and pt
is the tangential pressure. To preserve the spherical symmetry
and time-independence of the solution, all matter quantities
are assumed to depend solely in the radial coordinate, i.e.,
ρ ≡ ρ (r), pr ≡ pr (r), and pt ≡ pt (r). The wormhole
solutions will be considered of physical relevance if the mat-
ter quantities satisfy the Null Energy Condition (NEC), i.e.,
Tabkakb ≥ 0, for some null vector ka . For a stress-energy
tensor T b

a of the form given in Eq. (10), the NEC can be
translated into the following two constraints on the matter
variables:

ρ + pr > 0, ρ + pt > 0. (11)

Within the context of general relativity, the flaring-out
condition (Eq. (7)) and the NEC (Eq. (11)) are incompati-
ble. For the flaring-out condition to be satisfied, one must
have Gμνkμkν < 0 where Gμν is Einstein’s tensor and kμ

is an arbitrary null vector. This implies, from the Einstein’s
field equations Gμν ∝ Tμν , that Tμνkμkν < 0, which upon
choosing a stress-energy tensor Tμν of the form given in
Eq. (10) yields precisely the violation of Eq. (11). However,
the scenario changes in modified theories of gravity, in which
Einstein’s tensor Gμν becomes proportional to an effective
stress-energy tensor T eff

μν which includes not only contribu-
tions from the matter sector but also contributions from the
extra gravitational degrees of freedom. Thus, even though the
effective stress-energy tensor must satisfy T eff

μν k
μkν < 0 to

fulfill the flaring-out condition, it is still possible for the mat-
ter stress-energy tensor to satisfy the NEC, i.e., Tμνkμkν > 0,
provided that the extra gravitational contributions compen-
sate the positive matter contributions.

In the following sections, we will obtain wormhole solu-
tions that not only satisfy the NEC but also the Weak, Strong,
and Dominant energy conditions (WEC, SEC, and DEC,
respectively). These three energy conditions are extensions
of the NEC which not only require Eq. (11) to hold, but
also some extra conditions: the WEC requires a positivity
of the energy density, i.e., ρ > 0, the SEC requires that
ρ + pr + 2pt > 0, and the DEC requires a dominance of the
energy density over the pressures, i.e., ρ > |pr | and ρ > |pt |.
One can thus verify that both the WEC and the SEC imply
the NEC, but they are independent of each other, and that the
DEC implies the WEC and, consequently, the NEC.

3 Smooth wormhole solutions

Let us now obtain explicit wormhole solutions from the field
equations. Taking a metric of the form given in Eq. (6) and
a stress-energy tensor of the form of Eq. (10) into the modi-
fied field equations in Eq. (5), one obtains three independent
field equations that can be solved with respect to the matter
variables ρ, pr and pt , which take the forms:

8πρ = λ

6
(pr + 2pt − 9ρ) + b′

r2 , (12)

8πpr = λ

6
(3ρ − 7pr − 2pt ) − b

r3 + ζ ′

r

(
1 − b

r

)
, (13)

8πpt = λ

6
(3ρ − pr − 8pt ) + 1

2r2

(
b

r
− b′

)

+ ζ ′

4r

(
2 − b

r
+ b′

)
+ ζ ′2

4

(
1 − b

r

)
+ ζ ′′

2

(
1 − b

2r

)
.

(14)

Taking into consideration the explicit forms of the redshift
function ζ (r) and the shape function b (r) given in Eqs.(8)
and (9), one verifies that at the throat r = r0 the following
boundary conditions apply

ρ (r0) + pr (r0) = − β + 1

r2
0 (λ + 8π)

, (15)

ρ (r0) + pt (r0) = −2 (β − 1) + ζ0α (1 + β)

4r2
0 (λ + 8π)

. (16)

Since β is restricted to positive values, one verifies from
Eq. (15) that in the GR case, i.e., λ = 0, the combination ρ +
pr is always negative at the throat, thus violating the NEC, see
Eq. (11). However, in the general case λ 	= 0, one verifies that
the first inequality in Eq. (11), along with Eq. (15), impose
a constraint on the parameter λ. Consequently, the second of
Eq. (11), along with Eq. (16) then impose a constraint on the
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parameter ζ0. These two constraints take the forms

λ < −8π, ζ0 >
2 (1 − β)

α (β + 1)
≡ ζc. (17)

If these two constraints are satisfied, then the wormhole solu-
tion considered satisfies the NEC at the throat, a feature
unattainable in the GR limit. A particularly interesting conse-
quence of the second constraint in Eq. (17) is that in the limit
α → 0, the bound ζc diverges to +∞ if β < 1, i.e., there is
no value of ζ0 for which the NEC is satisfied at the throat.
Furthermore, one can prove that in the limit (α, β) → (0, 1),
the value of ζc is undefined, i.e., it depends on the path cho-
sen to take the limit. Thus, if α = 0 one must restrict the
analysis to β > 1 . Depending on the combination of param-
eters considered, two different outcomes might arise: either
the wormhole solution satisfies the NEC for the whole space-
time, i.e., for the whole range of the radial coordinate r ; or
the wormhole solution satisfies the NEC in a finite range of
the radial coordinate around the throat, say r < rc, but vio-
lates it elsewhere, for r > rc. In the latter case, a spacetime
matching with an exterior vacuum spacetime is necessary to
guarantee the physical relevance of the solution for the whole
spacetime. This possibility is analyzed later in Sect. 4.

3.1 Solutions satisfying the NEC everywhere

Since satisfying the NEC at the throat is not enough to guar-
antee the physical relevance of the solutions obtained, let
us now look into the conditions necessary for the wormhole
solution to satisfy the NEC for the whole spacetime. We will
start by analyzing the combinations ρ + pr and ρ + pt inde-
pendently and impose constraints on the parameters α, β and
ζ0 that guarantee their positivity for the whole spacetime, and
then we combine the results into a unified set of constraints.
In the following, we will make use of a convenient redefini-
tion of the radial coordinate as

x = r0

r
, (18)

which is confined in the range x ∈]0, 1], where x = 1 cor-
responds to the throat r = r0, and x → 0 corresponds to the
spacial infinity r → ∞. The advantage of such a redefini-
tion stands not only in the simplicity of the notation but also
because it allows us to perform an analysis of the spacetime
up to spacial infinity while keeping the value of the radial
coordinate finite.

3.1.1 Constraints from ρ + pr > 0

Let us start by analyzing the combination ρ + pr . The condi-
tion ρ + pr > 0 subjected to the restriction λ < −8π , taking
into account the forms of the matter quantities that can be
extracted from Eqs. (12) to (14), and the redefinition of the

radial coordinate in Eq. (18), can be written in the form

αxαζ0 + xβ+1 [
1 + β − αxαζ0

]
> 0, (19)

This equation can be recast in the form of a constraint for the
parameter ζ0, given a combination of α, β and r0 in the form

ζ0 >
1 + β

α
max

(
xβ−α+1

xβ+1 − 1

)
≡ ζmin. (20)

If ζ0 > ζmin, the combination ρ + pr does not have any
zeroes, i.e., it does not change sign, for the whole range of
the radial coordinate r . Combined with the fact that if ζ0 > ζc
from Eq. (17), which states that the combination ρ + pr is
positive at the throat, if ζ0 > max (ζc, ζmin), then ρ + pr > 0
for the whole spacetime. For different combinations of α and
β, it can happen that either ζc or ζmin is the most restrictive
bound on ζ0 (e.g., for (α, β) = (8, 6) one has ζc > ζmin, but
for (α, β) = (6, 8) one has ζmin > ζc), and thus it is always
necessary to verify both values independently.

3.1.2 Constraints from ρ + pt > 0

Let us now look into the combination ρ + pt . The condition
ρ + pt > 0 subjected to the restriction λ < −8π , taking
into account the forms of the matter variables extracted from
Eqs. (12) to (14) and the redefinition of the radial coordinate
in Eq. (18), can be written as

xβ+1
[
2 (1 − β) − α (1 + 2α + β) xαζ0

−α2x2αζ 2
0

]
+ α2xαζ0

(
2 + xαζ0

)
> 0 (21)

Similarly to Eq. (19), this equation can be recast in the form
of a bound for ζ0. However, since in this case Eq. (21) is
quadratic in ζ0, this equation effectively imposes a double
constraint on the value of ζ0. The parameter ζ0 is then con-
strained to be in the range

ζ− < ζ0 < ζ+, (22)

where the parameters ζ± are defined as

ζ+ = min
[
g+ (x)

]
, ζ− = max

[
g− (x)

]
, (23)

where the functions g± (x) are given by

g± (x) = 1

αxα

B (x) ±
√
B (x)2 + A (x)C (x)

A (x)
, (24)

and the functions A, B and C for a given combination of α

and β can be written in the forms

A (x) = 2
(

1 − x1+β
)

, (25)

B (x) = (1 + 2α + β) x1+β − 2α,

(26)

C (x) = 4 (1 − β) x1+β. (27)
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Similarly to the previous analysis, if ζ0 is restricted to the
range ζ− < ζ0 < ζ+, then the combination ρ + pt does not
have any zeroes, i.e., it does not change sign. Furthermore, if
ζ0 > ζc, which guarantees that ρ + pt > 0 at the throat, then
the combination ρ + pt is positive for the whole spacetime.
Interestingly, the function g− (x) increases monotonically in
the interval x ∈]0, 1], which implies that max

[
g− (x)

] =
g− (1) = ζc, and thus one effectively has ζ− = ζc.

An interesting consequence of this analysis is that if B2 +
AC = 0 for some x , then there is a crossing ζ+ = ζ−,
Eq. (22) becomes impossible to satisfy, and there is no value
of ζ0 for which ρ+pt does not change sign. Since B2 ≥ 0 and
A ≥ 0 in the range of parameters of interest, i.e., x ∈]0, 1]
and α, β > 0, these crossings can only occur if C ≤ 0 or
B2 = AC = 0. Let us now analyze these possibilities.

(i) Assume that the crossing occurs at x = 1. In this case
one has A = 0 and the condition B2 = 0 imposes a constraint
on β of the form β = −1. Since β is constrained to be
positive to preserve the asymptotic flatness of the solutions
considered, this crossing is excluded from the analysis;

(ii) Assume that the crossing occurs in the limit x →
0. In this case one has C = 0 and the condition B2 = 0
imposes a constraint on α of the form α = 0. Since α is also
constrained to be positive to preserve the asymptotic flatness
of the solutions considered, this crossing is excluded from
the analysis;

(iii) Assume that the crossing occurs for some x ∈ ]0, 1[.
In this case one has B2 ≥ 0 and A > 0, and the crossing
can only occur if C ≤ 0, i.e., if β ≤ 1. Indeed, if β = 1 one
has C = 0 and the condition B2 = 0 shows that the crossing
occurs for x = √

α/ (α + 1). To perform a general analysis
of the crossing, let us consider a coordinate transformation
u = x1+β . Since β ≥ 1, the range of the coordinate u is
preserved to be u ∈]0, 1]. In terms of the coordinate u, the
equation B2 + AC = 0 can be written in the form

[2α − (1 + 2α + β) u]2 = 8 (u − 1) (β − 1) u. (28)

This is a quadratic equation foru which features two rootsu±.
In the range of parameters considered, i.e., 0 < β < 1 and
α > 0, one verifies that these roots are real and u± ∈]0, 1],
the two roots degenerating into a single root in the particu-
lar case β = 1 mentioned before. Consequently, one must
restrict their analysis to β > 1 to avoid these crossings and
guarantee that there exists a range of values for ζ0 for which
the combination ρ + pt does not change sign. Furthermore,
since ζ− = ζc, the condition that the combination ρ + pt
is positive at the throat is automatically satisfied, and thus
ρ + pt > 0 for the entire spacetime.

3.1.3 Full set of constraints and solutions

In the previous sections we have determined the necessary
conditions to preserve the positivity of the combinations

ρ + pr and ρ + pt for the whole spacetime. Let us now
combine the results into a simplified set of constraints on the
parameters α, β and ζ0 that allow one to find wormhole solu-
tions satisfying the NEC for the whole spacetime. Note that
throughout the analysis we have assumed that λ < −8π , a
condition previously proven necessary to guarantee the valid-
ity of the NEC at the throat.

In Sect. 3.1.1 we have verified that a necessary condition
for ρ + pr > 0 is ζ0 > max (ζc, ζmin), whereas in Sect. 3.1.2
we have obtained that a necessary condition for ρ + pt >

0 is ζc < ζ0 < ζ+. A necessary condition for these two
constraints to be solvable simultaneously is that ζ+ > ζmin.
From Eqs. (20) and (24), one verifies that ζmin = ζ+ = 0
in the parameter region α < β + 1. Since ζc < 0 in this
parameter region, the only possible value of ζ0 allowing for
solutions satisfying the NEC for the whole spacetime is ζ0 =
0, resulting in a trivial redshift function ζ (r) = 0. Although
these are mathematically acceptable solutions, their physical
relevance is limited, and thus we shall restrict our analysis to
solutions with non-trivial redshift functions, i.e., we focus on
the parameter region α ≥ β+1. In this parameter region, one
verifies that the condition ζc > ζmin is always verified. Under
these considerations, the set of constraints on the parameters
α, β and ζ0 that allows for wormhole solutions satisfying the
NEC for the whole spacetime becomes

ζc < ζ0 < ζ+, β > 1, α ≥ β + 1, λ < −8π. (29)

The analysis conducted above can also be extended to
include the verification of the WEC and SEC for the whole
spacetime. Since these conditions also imply the NEC, an
analysis of the full parameter space is not necessary and
we can restrict the analysis to the parameter region already
defined by Eq. (29). In the following sections, we perform
this analysis.

3.2 Solutions satisfying the WEC everywhere

Let us start by analyzing the WEC. For the WEC to be satis-
fied, the matter quantities must satisfy the conditions given
in Eq. (11) along with the extra restriction ρ > 0. At the
throat, the following boundary condition applies

ρ(r0) = −λαζ0 + λβ(16 + αζ0) + 96πβ

24r2
0 (λ + 4π)(λ + 8π)

. (30)

Under the constraints previously obtained for the NEC in
Eq. (29), one verifies that ρ is always positive at the throat
and no extra restriction is required for this purpose. One must
now verify that the function ρ also does not feature any zeroes
to guarantee that the positiveness of ρ remains for the entire
spacetime.

The condition ρ > 0, in combination with the previously
imposed parameter bounds in Eq. (29), and upon the redef-

123



1154 Page 6 of 15 Eur. Phys. J. C (2022) 82 :1154

inition of the radial coordinate in Eq. (18), may be written
explicitly as

x1+β
[
α (1 − 2α − β) xαλζ0 − 4β (24π + 4λ)

−α2x2αλζ 2
0

]
+ 2α (α − 1) xαλζ0 + α2x2αλζ 2

0 > 0.
(31)

Similarly to the analysis of the NEC, one verifies that this
equation is again quadratic in ζ0 and therefore imposes a
double constraint on ζ0 of the form

ζ̄− < ζ0 < ζ̄+, (32)

where the parameters ζ̄± are defined as

ζ̄+ = min
[
ḡ+ (x)

]
, ζ̄− = max

[
ḡ− (x)

]
, (33)

where the functions ḡ± (x) are given by

ḡ± (x) = 1

αxα

B̄ (x) ±
√
B̄ (x)2 + Ā (x) C̄ (x)

Ā (x)
, (34)

and the functions Ā, B̄ and C̄ for a given combination of α,
β and λ are given by

Ā (x) = −2αλ
(

1 − x1+β
)

, (35)

B̄ (x) = αλ
[
2 (α − 1) − (2α + β − 1) x1+β

]
, (36)

C̄ (x) = −32αβx1+β (6π + λ) . (37)

Similarly to the previous NEC case, if ζ0 is restricted to the
range ζ̄− < ζ0 < ζ̄+, then the function ρ does not have
any zeroes. Given that we have previously proven that ρ is
positive at the origin in the parameter region of Eq. (29),
then one concludes that ρ is positive for the whole spacetime,
and the WEC is satisfied. Furthermore, one verifies that the
function ḡ− (x) increases monotonically in the interval x ∈
]0, 1], and thus one has max

[
ḡ− (x)

] = ḡ− (1) ≡ ζ̄c, where
ζ̄c is given by

ζ̄c = −16β (6π + λ)

αλ (1 + β)
. (38)

Interestingly, one verifies that in the range of parameters of
interest, see Eq. (29), one has ζc > ζ̄c and ζ+ < ζ̄+, which
implies that the bounds on ζ0 arising from ρ > 0 are weaker
than the ones arising from the verification of the NEC. Thus,
one concludes that if the parameters of the solution are chosen
in a way as to satisfy the NEC for the whole spacetime, then
ρ will be positive everywhere and the WEC will also be
satisfied for the whole spacetime. Note however that this
is a one-directional implication and that the positivity of ρ

does not imply the verification of the NEC, e.g., one can
find solutions with ρ positive outside of the parameter region
constrained by Eq. (29). This compatibility between the NEC
and the condition ρ > 0 also guarantees that no crossings of
the form ζ̄+ = ζ̄− occur.

3.3 Solutions satisfying the SEC everywhere

Let us turn now to the SEC. For the SEC to be satisfied, the
matter quantities must satisfy the conditions given in Eq. (11),
with the extra restriction ρ + pr + 2pt > 0. This condition
computed at the throat gives rise to the following boundary
condition

ρ (r0) + pr (r0) + 2pt (r0)

= −8βλ + α (1 + β) ζ0 (24π + 5λ)

12r2
0 (λ + 8π) (λ + 4π)

.
(39)

Unlike for the WEC, the conditions previously obtained in
Eq. (29) are not sufficient to guarantee that Eq. (39) is positive
at the throat. Indeed, one verifies that if β > 5 then λ must
satisfy one extra constraint given by

λ > −24π
α (1 + β) ζ0

5αζ0 (1 + β) + 8β
≡ λmin, (40)

which depends on the value of ζ0. In particular, taking the
lowest bound ζ0 = ζc, this constraint takes the form

λ > 24π
1 − β

β − 5
≡ λ0, (41)

which guarantees that Eq. (39) is positive independently of
the value of ζ0. In combination with the first of Eq. (17),
this constraint can be rewritten as a bound on λ of the form
λ0 < λ < −8π , which is a more restrictive bound than
the previously found λ < −8π . Note also that λ0 increases
monotonically with β for β > 5, achieving a maximum value
of λ0 (β → ∞) = −24π , which implies that independently
of the value of β it is always possible to find a suitable value
of λ in the range λ0 < λ < −8π . On the other hand, if
β ≤ 5, no extra requirements are necessary. If these require-
ments are met, the function ρ + pr + 2pt is positive at the
throat. One must now verify which conditions are necessary
for this function to not have any zeroes, to extrapolate that
the condition holds for the entire spacetime.

The condition ρ+ pr +2pt > 0, along with the parameter
bounds obtained in Eq. (29) and upon a redefinition of the
radial coordinate as in Eq. (18), takes the form

−αxα
[
2 + (β − 1) x1+β

]
(24π + 5λ) ζ0 − 8αλx1+β

+α2xα
(

1 − x1+β
) (

2 + xαζ0
)
(24π + 5λ) ζ0 > 0. (42)

Analogously to the previous cases analyzed, this is a
quadratic equation and imposes a double constraint on ζ0

of the form,

ζ̂− < ζ0 < ζ̂+, (43)

where the parameters ˆζ± are defined as

ζ̂+ = min
[
ĝ+ (x)

]
, ζ̂− = max

[
ĝ− (x)

]
, (44)
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where the functions ĝ± (x) are given by

ĝ± (x) = 1

αxα

B̂ (x) ±
√
B̂ (x)2 + Â (x) Ĉ (x)

Â (x)
, (45)

and the functions Â, B̂ and Ĉ for a certain combination of α,
β and λ are now written as

Â (x) = −2α
(

1 − x1+β
)

(24π + 5λ) , (46)

B̂ (x) = α
[
2 (α − 1) − (2α + β − 1) x1+β

]
(24π + 5λ) , (47)

Ĉ (x) = −16αβλx1+β . (48)

Similarly to the previous analyses, if ζ0 is restricted to the
range ζ̂− < ζ0 < ζ̂+, then the function ρ+ pr +2pt does not
have any zeroes, which in combination with the restrictions
in Eq. (29) and, if β > 5, also Eq. (39), which guarantee the
positivity at the throat, imply that the SEC is satisfied for the
whole spacetime. Also, since the function ĝ− (x) increases
monotonically in the interval x ∈]0, 1], then again one ver-
ifies that max

[
ĝ− (x)

] = ĝ− (1) ≡ ζ̂c, where ζ̂c is defined
as

ζ̂c = − 8βλ

α (1 + β) (24π + 5λ)
. (49)

For β < 5, one verifies that in the range of parameters of
interest, see Eq. (29), one has ζc > ζ̂c, and thus the lower
bound on ζ0 arising from ρ+ pr +2pt > 0 is weaker than the
one arising from the NEC. If β = 5, one verifies that in the
limit λ → −∞ the bounds become equal, i.e., ζc = ζ̂c, and
if β > 5 there is a value λ−

c for which if λ < λ−
c , then one

has ζc < ζ̂c, thus implying that the lower bound on ζ0 arising
from ρ + pr + 2pt > 0 is stronger than the one arising from
the NEC. The value of λ−

c depends solely on β in the form

λ−
c = 24π

1 − β

β − 5
= λ0. (50)

Thus, for the cases where β > 5, one concludes that if λ

satisfies the condition λmin < λ < λ0, then the lower bound
on ζ0 arising from ρ + pr + 2pt > 0 is stronger than the one
arising from the NEC, whereas if λ satisfies the condition
λ0 < λ < −8π it is the bound arising from the NEC that
is stronger. Since from Eq. (41) we have already concluded
that the condition ρ + pr + 2pt > 0 is only satisfied at the
origin independently of the value of ζ0 if λ > λ0, then by
restricting the analysis to this range we guarantee that the
lower bound on ζ0 arising from the NEC is always stronger.

A similar situation arises for the upper bound ζ̂+. For the
same range of parameters of interest, if β ≤ 5 one verifies
that ζ+ < ζ̂+ and thus the upper bound on ζ0 arising from the
NEC is stronger than the one arising from ρ + pr +2pt > 0.
However, if β > 5, one finds that for a given combination
of α and β there is another critical value λ+

c for which if
λ < λ+

c one has ζ̂+ < ζ+, implying that the upper bound on

ζ0 arising from ρ + pr + 2pt > 0 is stronger than the one
arising from the NEC. The value of λ+

c is given by

λ+
c = 24π

(α − 1) (β − 1)

5 (β − 1) − α (β − 5)
. (51)

Note that not all combinations of parameters with β > 5 will
give rise to a λ+

c < −8π , i.e., the critical value λ+
c might fall

outside of the range of parameters of interest. Indeed, from
Eq. (51), one verifies that in order to obtain a λ+

c in the range
λ+
c < −8π for a fixed β > 5, one needs α > αc, where αc

is given in terms of β as

αc = 5
β − 1

β − 5
. (52)

Now, let us analyze the consequences of these results. For a
fixed β > 5 and α > αc, which guarantees that λ+

c < −8π ,
one verifies that λ+

c from Eq. (51) is a monotonically increas-
ing function of α, achieving a maximum λ+

c (α → ∞) = λ0.
Let us define an interval I as I = ]

λmin, λ
+
c

[
. Depending on

the values of α, β, and ζ0, the interval I might be either empty
or finite. If I is finite for a given combination of parameters
α, β, and ζ0, then for λ ∈ I the upper bound on ζ0 aris-
ing from ρ + pr + 2pt > 0 is stronger than the one aris-
ing from the NEC. If the interval I is empty, then for any
λ > λmin the upper bound on ζ0 arising from the NEC will
be stronger. Again, by restricting our analysis to the region
λ0 < λ < −8π , then one guarantees that independently of
the values of β > 5 and α > αc it is impossible to find a
value of λ that satisfies λ > λ0 and λ < λ+

c simultaneously.
Consequently, in this region there are no possible combina-
tions of parameters α and β within the range of parameters
of interest for which the upper bound on ζ0 arising from
ρ + pr + 2pt > 0 is stronger than the one arising from the
NEC. This conclusion, combined with the one obtained in
the previous paragraph for the lower bound on ζ0, implies
that if the parameters of the solution are chosen in a way as
to satisfy the NEC for the whole spacetime and λ is chosen
in the region λ0 < λ < 8π , then ρ + pr + 2pt will be
positive everywhere independently of the values of ζ0, α and
β, and the SEC will also be satisfied for the whole space-
time. Again, note that this is a one-directional implication,
and thus finding a solution for which ρ + pr + 2pt > 0 does
not guarantee that the NEC is satisfied. This compatibility
between the NEC and the condition ρ + pr + 2pt > 0 also
guarantees that no crossings ζ̂+ = ζ̂− occur.

3.4 Solutions satisfying the DEC everywhere

Let us finally consider the DEC. For the DEC to be satisfied,
the matter quantities must satisfy the condition in Eq. (11),
as well as the extra restrictions ρ > |pr | and ρ > |pt |.
Note that these two conditions also imply that ρ > 0, and
thus the DEC not only implies the NEC but also the WEC.
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Now, due to the complicated dependence of pr and pt on the
parameters of the model, the signs of pr and pt are difficult
to determine without explicitly inputting the values of the
parameters. Thus, solving ρ > |pr | and ρ > |pt in general
can prove to be a difficult task. However, note that if any of
the pressures pi is negative at a given point, then ρ + pi > 0
immediately implies that ρ > |pi | at that point. On the other
hand, if any of the pressures pi is positive at some point,
then proving that ρ − pi > 0 would be sufficient to state that
ρ > |pi | at that point. Indeed, the DEC states that there is a
dominance of the energy density ρ over the pressures pr and
pt and thus proving separately that ρ+ pi > 0 and ρ− pi > 0
for the whole spacetime automatically proves that ρ > |pi |
for the whole spacetime. In the previous sections, we have
already determined the necessary conditions for ρ + pr > 0
and ρ + pt > 0, and thus in this section we can restrict our
analysis to the study of the two conditions ρ − pr > 0 and
ρ − pt > 0.

Following the same method as before, let us first analyze
the positivity at the throat. At the throat, we thus obtain the
following boundary conditions

ρ (r0) − pr (r0)

= −48π (β − 1) + λ [αζ0 (1 + β) + 4β − 12]

12r2
0 (λ + 8π) (λ + 4π)

,
(53)

ρ (r0) − pt (r0)

= 6π [αζ0 (1 + β) − 6β − 2] + λ [αζ0 (1 + β) − 5β − 3]

6r2
0 (λ + 8π) (λ + 4π)

.

(54)

In the range of parameters of interest, see Eq. (29), one veri-
fies that the condition in Eq. (54) is always positive. Indeed,
one would need λ > −8π in order to obtain ρ − pt < 0
at the throat. Thus, this boundary condition does not impose
any extra restrictions on the parameter space. On the other
hand, the same is not true for Eq. (53). For this condition to
be positive, ζ0 is required to satisfy the constraint

ζ0 >
48π (1 − β) + 4λ (3 − β)

αλ (1 + β)
≡ ζ̃c, (55)

which depends explicitly on the value of λ. If this constraint
is satisfied, along with the constraints given in Eq. (29), one
guarantees that the DEC is satisfied at the throat. Similarly
to the previous cases, one must now verify what are the con-
straints on the parameters α, β, λ and ζ0 that guarantee that
the combinations ρ − pr and ρ − pt do not have any zeroes
and, consequently, remain positive for the whole spacetime.

3.4.1 Constraints from ρ > |pr |

Let us start by analyzing the condition ρ − pr > 0, which
associated with the previously studiedρ+pr > 0 implies that
ρ > |pr |. The condition ρ−pr > 0, along with the parameter

bounds obtained in Eq. (29) and upon a redefinition of the
radial coordinate as in Eq. (18), takes the form

αxαζ0

{[
48π + αλ

(
2 + xαζ0

)] (
1 − x1+β

)
+ λ [10

− (11 + β) x1+β
]}

− 4x1+β [(12π + λ) (β − 1) − 2λ] > 0.

(56)

Again, this equation is quadratic in ζ0 and thus imposes a
double constraint on ζ0 of the form

ζ̃− < ζ0 < ζ̃+, (57)

where the parameters ζ̃± are defined as

ζ̃+ = min
[
g̃+ (x)

]
, ζ̃− = max

[
g̃− (x)

]
, (58)

where the functions g̃± (x) are given by

g̃± (x) = 1

αxα

B̃ (x) ±
√
B̃ (x)2 + Ã (x) C̃ (x)

Ã (x)
, (59)

and the functions Ã, B̃ and C̃ for a certain combination of α,
β and λ are now written as

Ã (x) = −2λ
(

1 − x1+β
)

, (60)

B̃ (x) = 48π + 2λ (α + 5) − x1+β [48π + λ (11 + 2α + β)] ,

(61)

C̃ (x) = −8x1+β [(12π + λ) (β − 1) − 2λ] . (62)

Again, if ζ0 is restricted to the range ζ̃− < ζ0 < ζ̃+, then the
function ρ − pr does not have any zeroes, which in combina-
tion with the conditions in Eq. (29) and ζ > ζ̃c that guarantee
the positivity at the throat implies that ρ > |pr | for the whole
spacetime. The function g̃− also increases monotonically in
the interval x ∈]0, 1] in the range of parameters of interest,
and thus max

[
g̃− (x)

] = g̃− (1) = ζ̃c, where ζ̃c was previ-
ously defined in Eq. (55).

Similarly to what happened in Sect. 3.1.2, in this case it is
necessary to verify if at any point x one obtains (B̃)2+ ÃC̃ =
0, as these correspond to the crossings ζ̃+ = ζ̃− and prevent
one from finding a suitable value of ζ0. The dependence of
the functions Ã, B̃ and C̃ on λ imply that the signs of these
functions are not determined in the range of parameters of
interest, and thus it is necessary to perform this analysis in
general. Taking a coordinate transformation of the form u =
x1+β , the equation (B̃)2 + ÃC̃ = 0 can be rewritten in the
form

[48π (u − 1) − 2λ (5 + α) + uλ (11 + 2α + β)]2

= 16uλ (u − 1) [12π (β − 1) − λ (β − 3)] .
(63)

This is a quadratic equation for u that features two roots
ũ±. One verifies that for any β ≤ 3, the two roots ũ± are
real and ũ± ∈]0, 1], independently of the values of α and
λ, thus implying that there will be crossings ζ̃+ = ζ̃−, and
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consequently the function ρ − pr will change sign at some
finite radius r . To avoid these crossings, one must thus restrict
the analysis to the region β > 3. However, this restriction
is not enough. Even if one chooses some combination of α

and β such β > 3 and α ≥ β + 1, the crossings the roots ũ±
might still be real and in the interval ũ± ∈]0, 1]. One then
verifies that in order to avoid these roots, one must impose a
constraint on λ of the form

λ < 12π
1 − β

β − 3
≡ λ̃0. (64)

If this condition is satisfied, then one guarantees that no cross-
ings ζ̃+ = ζ̃− occur and it is always possible to choose an
appropriate value of ζ0 such that the condition ρ− pr does not
have any zeroes. Furthermore, since ζ̃− = ζ̃c, one guarantees
that ρ − pr > 0 at the throat, and thus ρ > |pr | for the whole
spacetime. Under these considerations, the set of constraints
on the parameters α, β, ζ0 and λ necessary for ρ > |pr | and
the NEC to be satisfied for the whole spacetime are

ζ̃c < ζ0 < ζ̃+, β > 3, α ≥ β + 1, λ < λ̃0. (65)

Note that by definition the DEC implies the WEC and the
NEC, but it does not imply the SEC, meaning that if one is
looking for a solution satisfying all four energy conditions,
it is necessary to combine these results with the ones from
Sect. 3.3.

3.4.2 Constraints from ρ > |pt |

Let us repeat the analysis for the condition ρ− pt > 0, which
in combination with the condition ρ+pt > 0 analyzed before
implies that ρ > |pt |. This condition, within the parameter
bounds obtained in Eq. (29) and upon a redefinition of the
radial coordinate as in Eq. (18), takes the form

αxαζ0

{
x1+β (6π + λ) (1 + β) − [

λ + α
(
2 + xαζ0

)
(6π + λ)

]

×
(

1 − x1+β
)}

− x1+β [(12π + λ) (1 + 3β) + 2λ (1 + β)] > 0.

(66)

Similarly to the previous sections, this equation is quadratic
in ζ0 and could be used to impose bounds on the value of this
parameter, following the same procedure as before. However,
such an analysis is not necessary, as one verifies that, in the
range of parameters of interest, i.e. ζ0 > ζ̃c,β > 3,α ≥ β+1,
and λ < λ̃0, Eq. (66) does not feature any zeroes in the
interval x ∈]0, 1]. Indeed, the second term in the equation is
always positive and relatively large due to its proportionality
to −λ and β, whereas the first term, even though it can be
either positive or negative, is bounded to smaller absolute
values due to the proportionality in αζ0. Consequently, if
the matter quantities satisfy the NEC and the condition ρ >

|pr | for the whole spacetime, then the condition ρ > |pt |
is automatically satisfied for the whole spacetime. One may

indeed analytically find conditions for the existence of zeroes
(or lack thereof) in Eq. (66). This produces a set of constraints
on the parameters ζ0, β (or α), and λ, which we do not show
explicitly due to their size.

3.5 Explicit examples of solutions

In the previous sections we have derived the necessary con-
ditions for a wormhole solution to satisfy the NEC, WEC,
SEC, and DEC for the whole spacetime. Surprisingly, we
have verified that by restricting our analysis to the range of
λ given by λ0 < λ < −8π , then the satisfaction of the NEC
for the whole spacetime automatically guarantees that both
the WEC and the SEC are also satisfied. Furthermore, one
verifies that ζ̂+ < ζ̄+ and that ζ̂− > ζ̄− in the range of param-
eters of interest, see Eq. (29), which implies that the bounds
on ζ0 arising from the SEC are stronger than the ones aris-
ing from the WEC. The same is not true for the DEC, as we
have verified that the latter requires a stronger bound on the
parameters β, ζ0, and λ. A general recipe to obtain solutions
satisfying the desired energy conditions is the following:

Solution satisfying NEC and WEC:

1. Choose β > 1 and λ < −8π ;
2. Choose α > β + 1;
3. Choose ζc < ζ0 < ζ+.

Solution satisfying NEC, WEC, and SEC:

1. Choose β > 1;
2. Choose α > β + 1;
3. If β ≤ 5, choose λ < −8π ;
4. If β > 5, choose λ0 < λ < −8π ;
5. Choose ζc < ζ0 < ζ+.

Solution satisfying NEC, WEC, SEC, and DEC:

1. Choose β > 3;
2. Choose α > β + 1;
3. If β ≤ 5, choose λ < −λ̃0;
4. If β > 5, choose λ0 < λ < λ̃0;
5. Choose ζ̃c < ζ0 < ζ̃+.

In the following, we will provide two examples of solutions:
one satisfying the NEC with β = 3, which consequently
satisfies the WEC and the SEC, but not the DEC; and another
solution also satisfying the DEC.

Solution 1: According to the restrictions obtained in
Eq. (29) for α, β, and λ, let us consider α = 3, β = 2, and
λ = −9π . Furthermore, let us take r0 = 2M , for some con-
stant M with units of mass. For this combination of parame-
ters, we obtain ζc ∼ −0.22 and ζ+ ∼ 0.11. Thus, the worm-
hole will satisfy the NEC if −0.22 < ζ0 < 0.11. Regarding
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Fig. 1 Matter components ρ, pr and pt (left panel) and combinations
ρ+ pr , ρ+ pt , and ρ+ pr +2pt (right panel) as functions of the normal-
ized radial coordinate r/M with α = 3, β = 2, λ = −9π , r0 = 2M ,

and ζ0 = 0.1. Since ρ + pr > 0 and ρ + pt > 0, one verifies that the
NEC is satisfied. Furthermore, since ρ > 0 and ρ + pr + 2pt > 0, the
WEC and SEC are also satisfied for the whole spacetime

the WEC, one verifies that ζ̄− ∼ −1.19 and ζ̄+ ∼ 0.88.
These two bounds are weaker than the bounds imposed by
the NEC, as expected from the results of Sect. 3.2. For the
SEC one verifies that ζ̂− ∼ −0.76 and ζ̂+ ∼ 0.39. Again,
these bounds are weaker than the ones arising from the NEC,
as expected according to the results of Sect. 3.3. One can thus
choose ζ0 = 0.1 to complete the solution. The solutions for
the matter variables ρ, pr and pt , as well as the combinations
ρ + pr , ρ + pt , and ρ + pr + 2pt necessary for the NEC,
WEC and SEC, are plotted in Fig. 1. One can verify that
the NEC, WEC, and SEC are satisfied for the entire range
of the radial coordinate without the necessity of performing
a matching with an exterior vacuum spacetime, but that the
DEC is violated since ρ < pr .

Solution 2: Let us now consider the restrictions obtained
in Eq. (65). Under these restrictions, the simplest possible
choice is β = 4 and α = 5. Again, let us also take r0 = 2M
for some constant with units of mass. From Eq. (64), one
verifies that for this choice of parameters the constant λ must
satisfy the restriction λ < −36π . We can thus choose e.g.
λ = −100π to satisfy this constraint. For this combination
of parameters, we obtain ζc ∼ −0.240 and ζ+ ∼ 0.095.
It is not necessary to verify what constraints arise from ζ̄±
and ˆζ± as we have already proven that these constraints are
weaker than the ones arising from ζ±. Finally, one verifies
that ζ̃c ∼ −0.102 and ζ̃c ∼ −0.026, showing that the bounds
arising from the DEC are stronger than the ones arising from
the NEC, as anticipated. One can thus choose ζ0 = −0.1 to
complete the solution. The solutions for the matter variables
ρ, pr and pt , as well as the combinations ρ + pr , ρ + pt ,
ρ + pr + 2pt , ρ − |pr | and ρ − |pt |, necessary for the NEC,
WEC, SEC, and DEC, are plotted in Fig. 2. One can verify
that all four energy conditions considered are satisfied for the
entire range of the radial coordinate without the necessity of
performing a matching with an exterior vacuum spacetime.

4 Wormhole solutions requiring an exterior matching

Let us now consider a situation for which a given wormhole
solution satisfies the requirements in Eq. (17), but violates
one of the requirements in Eq. (29). In this case, the solution
will satisfy the NEC (and possibly also the WEC and SEC)
at the throat and up to some critical radius rc, but they will
be violated in some subset of the region r > rc. When such a
situation arises, a physically relevant wormhole solution can
still be constructed via the matching of the interior wormhole
solution to an exterior vacuum solution in the region where
the energy conditions are still satisfied. For this purpose, one
must first determine the junction conditions of the particular
case of f (R, T ) gravity considered here, which will then be
used to perform the matching.

4.1 Notation and assumptions

Let us start by introducing the notation to be used in the
following sections. Consider a spacetime � which can be
decomposed into two distinct regions �± separated by a
hypersurface � of constant radius r� < rc, where rc is the
critical radius above which the energy conditions are vio-
lated by the interior wormhole solution. Each of the space-
time regions �± is described by a metric g±

μν written in two
coordinate systems xμ

±. At the hypersurface � one defines
a set of coordinates ya , where the Latin indices exclude the
direction perpendicular to �. The projection vectors from
�± to � are given by eμ

a = ∂xμ/∂ya , and we define the nor-
mal vector to � as nμ, pointing in the direction from �− to
�+. Since the normal vector is a spacelike vector, it satisfies
the normalization condition nμnμ = 1 and the orthogonality
condition eμ

a nμ = 0. One can now define the induced metric
hab and the extrinsic curvature Kab of the hypersurface � as
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Fig. 2 Matter components ρ, pr and pt (left panel), combinations
ρ + pr , ρ + pt , and ρ + pr + 2pt (right panel) and combinations
ρ − |pr | and ρ − |pr | (middle panel) as functions of the normalized
radial coordinate r/M with α = 5, β = 4, λ = −100π , r0 = 2M ,

and ζ0 = −0.1. Since ρ + pr > 0 and ρ + pt > 0, one verifies that
the NEC is satisfied for the whole spacetime. Furthermore, since ρ > 0
and ρ + pr + 2pt > 0, the WEC and SEC are also satisfied. Finally,
since ρ − |pr | > 0 and ρ − |pr | > 0, the DEC is also satisfied

hab = gμνe
μ
a e

ν
b, (67)

hab = eμ
a e

ν
b∇μnν . (68)

The affine parameter along the geodesic congruence orthog-
onal to � is denoted as l and adequately set to be l < 0 in
the region �−, l > 0 in the region �+, and l = 0 at �.

The most appropriate mathematical framework for ana-
lyzing the junction conditions is the distribution formalism.
In this formalism, any regular quantity X can be written in
terms of distribution functions as X = X+	(l)+X−	(−l),
where the superscripts ± indicate the restriction of the quan-
tity X to the regions �± and 	(l) is the Heaviside dis-
tribution function, which takes the values 	(l < 0) = 0,
	(l > 0) = 1, and 	(0) = 1

2 . Taking a derivative of such a
quantity X , one obtains ∂μX = ∂μX+	(l)+∂μX−	(−l)+
nμ [X ] δ (l), where [X ] = X+|� − X−|� is the jump of X
across �, and δ (l) = ∂l	(l) is the Dirac delta distribution.
Note that, by construction, one has [nμ] = [

eμ
a
] = 0.

4.2 Junction conditions of f (R, T ) = R + λT

Let us now proceed to the derivation of the first junction con-
dition. The junction conditions for a general f (R, T ) gravity
were previously obtained in Ref. [49]. However, the junction
conditions for the particular case studied in this work, i.e.

f (R, T ) = R+λT , cannot be obtained simply as a limiting
case of the general set, and thus we will briefly derive the
adequate set in this section. We start by writing the metric
gμν in the distribution formalism as

gμν = g+
μν	(l) + g−

μν	(−l). (69)

One must now construct all the necessary geometrical quan-
tities, i.e., the Christoffel symbols, the Riemann tensor, the
Ricci tensor, and the Ricci scalar, from the metric above.
Taking the derivative of Eq. (69), one obtains ∂γ gμν =
∂γ g+

μν	(l)+∂γ g−
μν	(−l)+[gμν]nγ δ(l). This result implies

that the Christoffel symbols will feature a term proportional
to δ (l) in the distribution formalism. Although this term is
not problematic by itself, the presence of a δ (l) term in the
Christoffel symbols will give rise to terms proportional to
δ2 (l) in the Riemann tensor, which are singular in the dis-
tribution formalism. To avoid these problematic terms, one
must impose a restriction on the continuity of the metric gμν ,
i.e.

[
gμν

] = 0. This latter condition can be restated into a
covariant coordinate-independent form by taking the projec-
tion onto � and using

[
eμ
a
] = 0, from which one obtains the

first junction condition as

[hab] = 0. (70)
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Following the junction condition obtained in Eq. (70), the
Riemann tensor and its contractions become regular in the
distribution formalism. The Ricci tensor Rμν and the Ricci
scalar R can then be written as

Rμν = R+
μν	(l) + R−

μν	(−l)

−
(
eaμe

b
ν [Kab] + nμnν[K ]

)
δ(l),

(71)

R = R+	(l) + R−	(−l) − 2[K ]δ(l), (72)

where Kab is the extrinsic curvature of the hypersurface �

and K is the corresponding trace. The terms proportional to
δ (l) in Eqs. (71) and (72) can then be associated with the
presence of a thin-shell of matter at �. This implies that the
stress-energy tensorTμν must also feature a term proportional
to δ (l) in the distribution formalism, i.e. we write

Tμν = T+
μν	(l) + T−

μν	(−l) + Sμνδ(l), (73)

T = T+	(l) + T−	(−l) + Sδ(l), (74)

where Sμν = Sabeaμe
b
ν , Sab is the stress-energy tensor of the

thin-shell, and S = gμνSμν = habSab. For the perfect-fluid
case, one has Sab = diag (−σ, p, p), where σ is the surface
energy density and p is the surface pressure of the thin-shell.

Replacing Eqs. (73), (71), (72) and (74) into the field equa-
tions in Eq. (5) and projecting the result onto � using eμ

a eν
b ,

the terms not proportional to δ (l) cancel identically and one
obtains the second junction condition as

(8π + λ) Sab + λ

2
Shab = [K ]hab − [Kab] . (75)

With this all remaining problematic terms are eliminated and
thus Eqs. (75) and (70) constitute the full set of junction
conditions of this particular case of f (R, T ) gravity.

4.3 Solutions supported by thin-shells

We now have all the necessary tools to perform the matching
and find wormhole solutions supported by thin-shells that
satisfy the NEC for the whole spacetime. The interior region,
i.e. �−, is described by the metric given in Eq. (6), whereas
for the exterior region, i.e. �+, we consider a Schwarzschild
solution described by the line element

ds2 = −
(

1 − 2M

r

)
eζe dt2 +

(
1 − 2M

r

)−1
dr2 + r2d�2,

(76)

where ζe is a constant to be determined in what follows and
M represents the mass of the Schwarzschild spacetime. Note
that since the Schwarzschild solution is a vacuum solution,
one has Tμν = 	μν = 0 and the field equations in Eq. (3)
reduce to Einstein’s vacuum field equations, which admit
the metric in Eq. (76) as a solution. Using Eqs. (6) and (76)
for g−

μν and g+
μν respectively, the first junction condition in

Eq. (70) becomes
(

1 − 2M

r�

)
eζe = eζ(r�). (77)

Once the free parameters of both the interior and the exterior
solutions are set, as well as the matching radius r� , Eq. (77)
can then be used to determine the value of ζe.

Let us now turn to the second junction condition in
Eq. (75). To evaluate this condition explicitly, we must deter-
mine the extrinsic curvature Kab of the hypersurface �. The
extrinsic curvature as seen from the interior (K−

ab) and from
the exterior (K+

ab) spacetimes takes the forms

K−
ab =

√
1 − b(r�)

r�

⎛
⎝− ζ ′(r�)

2 0 0
0 r� 0
0 0 r� sin2 θ

⎞
⎠ , (78)

K+
ab =

√
1 − 2M

r�

⎛
⎜⎝

− M

r�2
(

1− 2M
r�

) 0 0

0 r� 0
0 0 r� sin2 θ

⎞
⎟⎠ , (79)

and the corresponding traces are

K− = 4 + r�ζ ′(r�)

2r�

√
1 − b(r�)

r�
, (80)

K+ = 2r� − 3M

r�2
√

1 − 2M
r�

. (81)

Given the spherical symmetry of the system, Eq. (75) will
feature only two linearly independent equations, one for the
time component and another for the angular components.
These equations can be solved for the surface energy density
σ and surface pressure p of the thin-shell, which take the
forms

σ = − C

r�2

⎧⎨
⎩

(λ + 16π)r� − (λ + 32π)M√
1 − 2M

r�

−

− r�
[
2λ + 32π + λr�ζ ′(r�)

] √
1 − b(r�)

r�

⎫⎬
⎭ , (82)

p = C

r�2

⎧⎨
⎩

(3λ + 16π)r� − (5λ + 16π)M√
1 − 2M

r�

−

− r�

[
3λ + 16π −

(
λ

2
+ 8π

)
r�ζ ′(r�)

]√
1 − b(r�)

r�

⎫⎬
⎭ ,

(83)

where we have defined a constantC ≡ [(λ − 16π)(λ + 8π)]−1

to simplify the notation.
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Fig. 3 Matter components ρ, pr and pt (upper left panel), combina-
tions ρ + pr , ρ + pt and ρ + pr +2pt (upper right panel) of the interior
(wormhole) spacetime, matter components σ and p of the thin-shell
at � (lower left panel) and combinations σ + p and σ + 2p (lower
right panel) as functions of the normalized radial coordinate r/M with

ζ0 = α = β = 1, r0 = 6M and λ = −9π . Performing the matching
at r� = 6.4M , one verifies that the NEC, WEC and SEC are all satis-
fied for both the interior and the exterior spacetimes, as well as at the
separation hypersurface �

Unlike in the previous section, an analytical study of the
energy conditions is impractical due to the complexity of the
shell matter quantities given by Eqs. (82) and (83). Instead,
and as the purpose of this section is to show that physically
relevant solutions can still be constructed when the bounds
of the previous section are violated, we will simply provide
an explicit example. Consider a combination of parameters
with ζ0 = α = β = 1, r0 = 6M and λ = −9π . This
combination satisfies the restrictions in Eq. (17), but vio-
lates some of the restrictions in Eq. (29), namely β > 1
and α > β + 1, implying that the interior wormhole solu-
tion satisfies the NEC only in a finite region of space around
the throat r0 < r < rc. One must thus perform a match-
ing with the exterior vacuum spacetime at some r� in the
same range. In Fig. 3 we plot the matter quantities ρ, pr ,
pt , σ , and p, as well as the combinations ρ + pr , ρ + pt ,
ρ + pr + 2pt σ + p and σ + 2p, for the solution consid-
ered. Indeed, one verifies that the NEC is violated in the
region r > rc ∼ 8M . Choosing as an example a matching
radius of r� = 6.4M , which consequently sets ζe ∼ 1.31
from Eq. (77), one effectively removes the region where the
NEC is violated from the solution. For this matching radius,
one further verifies that the NEC, WEC, and SEC are all
satisfied both in the interior spacetime and at the thin-shell,

thus providing a strongly physically relevant wormhole solu-
tion.

5 Conclusions

In this work we have performed a fully analytical parameter
space study for a family of wormhole solutions in the lin-
ear f (R, T ) = R + λT theory of gravity and obtained the
necessary restrictions one must impose on the free param-
eters of the model in order to guarantee that the wormhole
solutions are traversable and non-exotic, i.e., they satisfy all
the energy conditions for the entire spacetime. Furthermore,
even if some of the parameter bounds are violated and the
wormhole becomes exotic outside the throat at some finite
radius rc, we have shown that the exoticity can be effectively
removed by performing a spacetime matching to an exterior
vacuum solution. The wide parameter bounds derived and the
flexibility available for a matching with an exterior vacuum
indicate that non-exotic wormholes solutions in the f (R, T )

theory are plentiful and that no fine-tuning is required in the
search for physically relevant solutions.

For the family of wormholes considered with redshift and
shape functions given by the expressions in Eq. (8) and (9),
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respectively, and for a linear version of f (R, T ) = R +
λT , we have shown that forcing the solution to satisfy the
NEC for the whole spacetime automatically implies that the
solution will also satisfy the WEC and SEC, as the parameter
bounds arising from ρ > 0 and ρ + pr + 2pt > 0 are
always weaker than the ones arising from ρ + pi > 0. Note
however that these are one-directional implications, and thus
a solution that satisfies ρ > 0 or ρ + pr + 2pt > 0 does
not necessarily satisfy the NEC for the whole spacetime.
The situation changes for the DEC, where the bounds arising
from ρ > |pi | are effectively stronger than the ones arising
from ρ + pi > 0. Consequently, a solution satisfying the
NEC will not necessarily satisfy the DEC. Nevertheless, we
have proven that strong solutions satisfying the four energy
conditions, namely the NEC, WEC, SEC and DEC, can still
be obtained for a wide variety of parameter combinations.

The linear form R+λT chosen allows one to perform the
study of the parameter space analytically and to prove that
even the simplest possible extension of GR in the framework
of f (R, T ) allows one to successfully and easily solve the
problem of exotic matter in wormhole spacetimes. Despite
the simplicity of this model, the fact that a plethora of non-
exotic solutions were found serves as an indication that in
more complicated forms of the theory obtained e.g. via the
addition of crossed terms RT , even more physically inter-
esting solutions could be lurking. Note that the same is not
true for solutions requiring an exterior matching, as the junc-
tion conditions of the theory become more restrictive as the
complexity of the function f (R, T ) increases. A possible
drawback could be the necessity to recur to numerical meth-
ods to derive these solutions, but it is undeniable that these
solutions exist as these more complicated models still feature
the linear model as a limit.
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