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Abstract We obtain the reflected entropy for bipartite
states in a class of (1 + 1)-dimensional Galilean confor-
mal field theories (GCFT1+1) through a replica technique.
Furthermore we compare our results with the entanglement
wedge cross section (EWCS) obtained for the dual (2 + 1)
dimensional asymptotically flat geometries in the context of
flat holography. We find that our results are consistent with
the duality between the reflected entropy and the bulk EWCS
for flat holographic scenarios.
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1 Introduction

In the recent past quantum entanglement in extended many
body systems has emerged as a central theme in diverse areas
of condensed matter physics and quantum gravity and has
seen intense research activity leading to deep insights. It is
well known in quantum information theory that the entan-
glement of bipartite pure states may be characterized by
the entanglement entropy which is defined as the von Neu-
mann entropy of the reduced density matrix for the subsystem
under consideration. Although the computation of entangle-
ment entropy for finite quantum systems is straightforward
the reduced density matrix for quantum many body systems
involve infinite number of eigenvalues making it computa-
tionally intractable. Interestingly, for conformally invariant
(1 + 1)-dimensional quantum field theories (CFT1+1), the
authors in [1–3] developed a replica technique to compute
the entanglement entropy.

The characterization of the entanglement for bipartite
mixed states in quantum information theory is however a
complex issue as the entanglement entropy for such mixed
states receives contributions from irrelevant correlations and
hence fails to be a viable measure. In this context several
computable mixed state correlation and entanglement mea-
sures like the entanglement negativity [4,5], the odd entan-
glement entropy [6] and the entanglement of purification
[7,8] and balanced partial entanglement [9] have been pro-
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posed in the literature.1 In the recent past the authors in [10]
proposed another novel computable correlation measure for
mixed state entanglement termed as the reflected entropy.
This is defined as the entanglement entropy of the canonically
purified state obtained from the mixed state under considera-
tion. Utilizing an appropriate replica technique the reflected
entropy for various bipartite states in CFT1+1s was com-
puted in [10]. Recently, the authors in [11] further explored
the reflected entropy in the context of random tensor net-
works. Furthermore, following the gravitational path integral
techniques developed in [12], they also established a duality
between the reflected entropy in holographic CFT s and the
minimal entanglement wedge cross section (EWCS) for the
corresponding dual bulk AdS geometries. We note here that
the EWCS has also been proposed as the holographic dual of
other measures such as the entanglement of purification [7],
the balanced partial entanglement [9] and the entanglement
negativity [13–15].2

In a different context a class of (1 + 1)-dimensional con-
formal field theories with Galilean conformal symmetry was
obtained in [17–19] through a parametric İnönü–Wigner con-
traction of the relativistic conformal algebra for CFT1+1s.
The entanglement entropy for bipartite states in such Galilean
conformal field theories (GCFT1+1s) was obtained through
a replica technique in [20]. In the context of flat space holog-
raphy [21,22], the holographic characterization of the entan-
glement entropy was provided in [23–26]. As discussed ear-
lier the entanglement entropy was a valid measure for the
entanglement of pure states only which naturally leads to the
issue of the characterization of mixed state entanglement in
GCFT1+1s. In this context, the entanglement negativity for
bipartite pure and mixed states inGCFT1+1s was obtained in
[27] employing a replica technique. Subsequently the authors
in [28] proposed a holographic entanglement negativity con-
struction in the framework of flat holography for such bipar-
tite states in GCFT1+1s dual to asymptotically flat bulk
geometries. Their construction involved the algebraic sums
of the areas of codimension-2 extremal surfaces homologous
to certain combinations of intervals relevant to the bipartite
state configuration in the dualGCFT1+1 under consideration
which was earlier established in [29–31] in the context of the
AdS3/CFT2 scenario. Furthermore a novel geometric con-
struction for the bulk EWCS corresponding to bipartite mixed
state configurations in the dual GCFT1+1s was developed in

1 In quantum information theory many mixed state entanglement mea-
sures had been proposed but most of them were difficult to compute
as they involved optimization over the local operations and classical
communication (LOCC) protocols.
2 Note that in a recent communication the authors in [16] have intro-
duced a quantity termed as the Markov gap involving the number of
non-trivial boundaries of the EWCS. This indicates that the proposed
duality in [13–15] between the entanglement negativity and the bulk
EWCS also involves the Markov gap described in [16].

[32] for flat space holography.3 Very recently, the authors
in [35] investigated the balanced partial entanglement (BPE)
for bipartite mixed states in GCFT1+1s and compared their
result with the EWCS to verify the duality between the BPE
and the EWCS [9].

The above developments bring into sharp focus the issue
of the other mixed state correlation measure of the reflected
entropy for bipartite states in GCFT1+1s and its characteri-
zation through the EWCS for the dual bulk asymptotically flat
geometries in the context of flat holography. We address this
extremely interesting issue in the present article and estab-
lish a replica technique for the reflected entropy of bipar-
tite pure and mixed state configurations in GCFT1+1s and
compare our results with the EWCS computed in [32] in
the context of flat holography. In particular we compute the
reflected entropy for bipartite states involving a single, two
adjacent and two disjoint intervals in GCFT1+1s at zero and
finite temperature and for finite sized systems. For the bipar-
tite states involving two disjoint intervals we develop a geo-
metric monodromy analysis first described in [36] to obtain
the structure of the dominant Galilean conformal block for
the four point twist field correlator required for the reflected
entropy of the above mixed state configuration. We find con-
sistent matching of our field theory replica technique results
for all the pure and mixed state configurations with the corre-
sponding bulk EWCS in the dual asymptotically flat geome-
tries described in [32].

The rest of the article is organized as follows. In Sect. 2,
we briefly review the reflected entropy in the context of
CFT1+1s. Subsequently, in Sect. 3, following a brief review
of GCFT1+1s, we obtain the reflected entropy for vari-
ous bipartite pure and mixed state configurations in such
GCFT1+1s through a suitable replica technique and com-
pare with the bulk EWCS as mentioned above. In Sect. 4, we
present a summary of our work and our conclusions. Addi-
tionally in Appendix A, we illustrate that the reflected entropy
for subsystems in GCFT1+1s may also be obtained through
a specific non-relativistic limit of the correspondingCFT1+1

results.

2 Review of the reflected entropy

2.1 Reflected entropy

We begin with a brief review of the reflected entropy in the
context of quantum information theory as described in [10].
To this end, consider a bipartite quantum system A ∪ B in
the mixed state ρAB . Its canonical purification |√ρAB〉 in a
Hilbert space HA ⊗ HB ⊗ HA∗ ⊗ HB∗ involves the CPT
conjugate copies A∗ and B∗ of the subsystems A and B

3 See [33,34] for the study of entanglement structure in non-relativistic
hyperscaling violating theories.

123



Eur. Phys. J. C (2022) 82 :1169 Page 3 of 15 1169

respectively. The reflected entropy SR(A : B) for this bipar-
tite mixed state comprised of the subsystems A and B is
defined as the von Neumann entropy of the reduced density
matrix ρAA∗ as follows

SR(A : B) ≡ SvN (ρAA∗)√ρAB . (2.1)

The reduced density matrix ρAA∗ is given as

ρAA∗ = TrHB⊗HB∗ |√ρAB〉〈√ρAB |, (2.2)

where the degrees of freedom corresponding to the subsys-
tems B and B∗ are being traced out.

2.2 Reflected entropy in CFT1+1

Interestingly, the authors in [10] developed a suitable replica
technique which could be utilized to compute the reflected
entropy for a bipartite mixed state described by subsystems
A and B in arbitrary conformal field theories. One starts with
a state |ρm/2

AB 〉 ≡ |ψm〉 on a manifold which is constructed by
m-replication4 of the original manifold where the subsystems
A and B are defined, with m ∈ 2Z+. The reduced density
matrix for this state is given as

ρ
(m)
AA∗ = TrHB⊗HB∗ |ψm〉〈ψm |. (2.3)

The Rényi reflected entropy may now be obtained through
the Rényi entropy Sn(ρ

(m)
AA∗)ψm which involves another n-

replication resulting finally in an nm-sheeted replica mani-
fold as shown in Fig. 1. The reflected entropy for such bipar-
tite states may finally be obtained in the replica limit5 n → 1
and m → 1 as

SR(A : B) = lim
n,m→1

Sn(AA
∗)ψm . (2.4)

For conformal field theories in (1 + 1)-dimensions
(CFT1+1s), the reflected entropy may now be computed by
the utilization of this replica technique. In this context, the
Rényi reflected entropy may be obtained in terms of the parti-
tion function Zn,m on the nm-sheeted replica manifold. This
partition function can subsequently be expressed in terms of
the correlation function of the twist operators σgA and σgB
inserted at the end points of the intervals A ≡ [z1, z2] and
B ≡ [z3, z4] to obtain the Rényi reflected entropy as follows
[10]

Sn(AA
∗)ψm = 1

1 − n
log

Zn,m

(Z1,m)n

= 1

1 − n
log

〈
σgA (z1)σg−1

A
(z2)σgB (z3)σg−1

B
(z4)
〉
CFT⊗mn(〈

σgm (z1)σg−1
m

(z2)σgm (z3)σg−1
m

(z4)
〉
CFT⊗m

)n .

(2.5)

4 See [10,37] for details about the replica structure of |ρm/2
AB 〉.

5 The two replica limits n → 1 and m → 1 are non-commuting as
discussed in [11,38,39]. In this article, we compute the reflected entropy
by first taking n → 1 and subsequently m → 1 as suggested in [11,38].

Fig. 1 Structure of the replica manifold for the Rényi reflected entropy
between subsystems A and B in the state |ψm〉. The sewing of the indi-
vidual replicas along the subsystems A and B are denoted by magenta
and green arrows corresponding to the twist fields σgA and σgB , respec-
tively. Figure modified from [40]

In the denominator of the above equation the partition func-
tion Z1,m on the m-sheeted replica manifold arises from the
normalization of the state |ρm/2

AB 〉 and σgm are the twist fields
at the endpoints of the intervals in this m-sheeted replica
manifold.

In the context of the AdS/CFT duality, following the
gravitational path integral techniques developed in [12], the
reflected entropy has also been proved to have a bulk dual
in terms of the minimal entanglement wedge cross section
(EWCS) as follows [10,11,39]

SR(A : B) = 2EW (A : B), (2.6)

where the EWCS EW (A : B) is defined geometrically as
the minimal cross section of the bulk entanglement wedge
corresponding to a bipartite quantum state ρAB [41,42]. In
this article, we propose to compute the reflected entropy for
bipartite states in (1 + 1)-dimensional Galilean conformal
field theories. We will also verify the duality (2.6) by com-
paring our results with the EWCS obtained in the context of
flat space holography in [32].

3 Reflected entropy in Galilean conformal field theories

In this section, we first provide a brief review of the (1 + 1)-
dimensional Galilean conformal field theories. Subsequent
to that we compute the reflected entropy for bipartite states
in suchGCFT1+1s through an appropriate replica technique.
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3.1 Galilean conformal field theories in (1 + 1)-dimensions

In this subsection we briefly recapitulate the salient features
of the (1 + 1)-dimensional non-relativistic conformal field
theories with Galilean invariance (GCFT1+1s) as described
in [17–19]. The conformal algebra for such field theories
is described by the Galilean conformal algebra in (1 + 1)-
dimensions (GCA1+1) which may be obtained from the
usual relativistic Virasoro algebra through an İnönü–Wigner
contraction described by the rescaling of space and time coor-
dinates as

t → t, x → εx, (3.1)

with ε → 0. This is equivalent to the non-relativistic van-
ishing velocity limit v ∼ ε. Any generic Galilean conformal
transformation have the following action on the coordinates

t → f (t), x → f ′(t) x + g(t). (3.2)

These can be considered as diffeomorphisms and t−dependent
shifts respectively. The generators of the (1+1)-dimensional
GCA in the plane representation are given as follows [18]

Ln = tn+1∂t + (n + 1)tnx∂x , Mn = tn+1∂x . (3.3)

This leads to the lie algebra with different central extensions
in each sector as

[Ln, Lm] = (m − n)Ln+m + CL

12
(n3 − n)δn+m,0,

[Ln, Mn] = (m − n)Mn+m + CM

12
(n3 − n)δn+m,0,

[Mn, Mm] = 0, (3.4)

where CL and CM are the central charges for the GCA.
Utilizing the Galilean symmetry, one may express the four

point correlator for primary fields V (x, t) as [19,27]
〈

4∏
i=1

Vi (xi , ti )

〉
=

∏
1≤i< j≤4

t
1
3

∑4
k=1 hL ,k−hL ,i−hL , j

i j

×e
− xi j

ti j

(
1
3

∑4
k=1 hM,k−hM,i−hM, j

)
G
(
T,

X

T

)
, (3.5)

where xi j = xi − x j , ti j = ti − t j and (hL ,i , hM,i ) are the
weights of the primary fields Vi (xi , ti ). Note that G(T, X

T )

is a non universal function which explicitly depend on the
specific operator content of the GCFT1+1. The cross ratios
T and X

T of the GCFT1+1, are defined as

T = t12t34

t13t24
,

X

T
= x12

t12
+ x34

t34
− x13

t13
− x24

t24
. (3.6)

The entanglement entropy for bipartite states inGCFT1+1s
could be subsequently computed in [20] through the replica
technique involving twist fields. Although an explicit deriva-
tion of the Renyi entropy from a path integral over the replica
manifold is not available in [20], such a generalization is

plausible. Following [3] the authors in [20] described the
GCFT twist fields �n as primaries under the GCA in the
replica limit with conformal weights h(n)

L = CL
24

(
n − 1

n

)
and

h(n)
M = CM

24

(
n − 1

n

)
which could be obtained from the GCFT

Ward identities. The entanglement entropy for bipartite states
in the GCFT was then computed from the two point correlator
of these twist fields in [20]. Subsequently such GCFT twist
fields were also utilized to obtain the entanglement negativ-
ity in [27,28] and recently for the odd entanglement entropy
[43] for bipartite states in GCFTs through appropriate replica
techniques. The above results also matched with the corre-
sponding bulk holographic computations in the large central
charge limit.

Note that, unlike a theory with Lorentz invariance, the
choice of a frame affects the observables in GCFT1+1s. In
order to ascertain this frame dependence Galilean boosted
intervals were considered earlier in the literature in rela-
tion to the entanglement structure of GCFTs in [20,23–
25,27,28,43]. In the present article we will consider bipar-
tite states in GCFTs involving such boosted intervals to
compute the corresponding reflected entropy. Interestingly
such boosted intervals were also considered in [23–25] to
obtain the entanglement entropy from the bulk dual (2 + 1)-
dimensional asymptotically flat geometries in the context
of flat holography. Furthermore such boosted intervals were
also considered in [28] for the holographic entanglement neg-
ativity and in [32] for the bulk EWCS in flat holographic
scenarios.

Similar to the relativistic case, the Rényi reflected entropy
Sn(AA∗)ψm may be computed through a replica technique
and may be expressed as a twist field correlator in the
GCFT1+1 corresponding to the mixed state in question.
To illustrate this issue we consider the mixed state con-
figuration of two disjoint boosted intervals A ≡ [u1, v1]
and B ≡ [u2, v2] with C describing the rest of the sys-
tem as shown in Fig. 2. Here u1 = (x1, t1), v1 = (x2, t2),
u2 = (x3, t3), v2 = (x4, t4) are the end points of the intervals
A and B respectively.

Now similar to the case described in [27,28] in the context
of the entanglement negativity, the Rényi reflected entropy
in the GCFT1+1 may be expressed as

Sn(AA
∗)ψm = 1

1 − n
log

Zn,m

(Z1,m)n

= 1

1 − n
log

〈
σgA (u1)σg−1

A
(v1)σgB (u2)σg−1

B
(v2)

〉
GCFT⊗mn(〈

σgm (u1)σg−1
m

(v1)σgm (u2)σg−1
m

(v2)
〉
GCFT⊗m

)n ,

(3.7)

where the partition function Zn,m in the numerator is defined
on the nm-sheeted GCFT⊗mn replica manifold and the par-
tition function Z1,m in the denominator is described on the
m-replicated manifold GCFT⊗m . The twist operators σgA
and σgB appearing in the above expression are similar to the
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Fig. 2 Boosted intervals A and B in a GCFT1+1 plane

twist fields �n involved in the replica technique for the entan-
glement entropy, but are defined on the nm-sheeted replica
manifold and have the following weights

hL ≡ hA
L = hB

L = n CL

24

(
m − 1

m

)
, (3.8)

with similar expressions for hM ≡ hA
M = hB

M involving
the central charge CM . Also the conformal weights for the
twist operator σgm may be obtained from Eq. (3.8) by setting
n = 1. In the following subsections we will now compute
the reflected entropy for various bipartite state configurations
involving a single, two adjacent and two disjoint intervals in
the GCFT1+1.

3.2 Reflected entropy for a single interval

In this subsection we compute the reflected entropy for bipar-
tite pure and mixed states involving a single interval in
GCFT1+1s.

3.2.1 Single interval at zero temperature

For this case, we consider a bipartite pure state of a sin-
gle boosted interval A ≡ [(x1, t1), (x2, t2)], which may be
obtained by taking the limit u2 → v1 and v2 → u1 in the
construction described in Eq. (3.7) where the interval A ∪ B
now describes the full system with C as a null set (Fig. 3).
In this limit the denominator of Eq. (3.7) becomes the iden-

Fig. 3 A single boosted interval in a GCFT1+1 plane

tity operator and the numerator reduces to the following two
point twist correlator

log Zn,m =
〈
σg−1

B gA
(u1)σgBg

−1
A

(v1)
〉
GCFT⊗mn

, (3.9)

where the twist operators σg−1
B gA

and σgBg
−1
A

have the follow-
ing weights

hAB
L = 2CL

24

(
n − 1

n

)
, hAB

M = 2CM

24

(
n − 1

n

)
. (3.10)

By using the usual form of a GCFT two point twist corre-
lator [17] and Eqs. (2.4) and (3.7), the reflected entropy for
the single interval in question may be obtained as

SR(A : B) = 2SA = CL

3
log

t12

ε
+ CM

3

x12

t12
+ const.,(3.11)

where ε is a UV cut-off for the GCFT1+1 and the constant
arises from the normalization of the two point twist correlator.
Note that our field theory result is consistent with the quantum
information theory expectation [10] that for a pure state, the
reflected entropy is equal to twice the entanglement entropy
SA in [20].

Note here that the GCFT1+1 at zero temperature is holo-
graphically dual to a bulk (2+1)-dimensional asymptotically
flat topologically massive gravity (TMG) on a Minkowski
space time in the context of flat holography. This is described
by a Chern–Simons (CS) term coupled to the usual Einstein–
Hilbert action [24,25]. The bulk EWCS for the single interval
in this case has been computed in [32]. It may be observed
that our result described by Eq. (3.11) is exactly twice the
EWCS computed in [32], where the first term involves twice
the CS contribution and the second term corresponds to twice
the contribution from the Einstein gravity to the bulk EWCS.
This demonstrates the consistency of the duality described
in Eq. (2.6) with flat space holography.
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3.2.2 Single interval in a finite size system

For this case, we consider the bipartite pure state configura-
tion of a single interval in a finite sized GCFT1+1 defined on
a cylinder with circumference L . We may map the GCFT
complex plane to this cylinder through the conformal trans-
formation [27,44]

t = e
2π iξ
L , x = 2π iρ

L
e

2π iξ
L , (3.12)

where (x, t) are the coordinates on the complex plane and
(ξ, ρ) are the coordinates on the cylinder. The GCFT1+1

primaries transform under Eq. (3.12) as [27,44]

Ṽi (ξi , ρi ) =
(

L

2π i

)−hL ,i

e
2π i
L (ξi hL ,i+ρi hM,i )Vi (xi , ti ),

(3.13)

where (hL ,i , hM,i ) are the weights of the primaries Vi . Using
the above transformation in Eq. (3.9), we may obtain the
required two point twist correlator on the cylinder as [27]

〈
σg−1

B gA
(ξ1, ρ1)σgBg

−1
A

(ξ2, ρ2)
〉
=
[
L

π
sin

(
πξ12

L

)]−2hAB
L

× exp

[
−2hABM

πρ12

L
cot

(
πξ12

L

)]
, (3.14)

where (ξi , ρi ) are the endpoints of the interval A on the
cylinder. Now using the weights of the twist fields given in
Eq. (3.10) we may obtain the reflected entropy for the single
interval in question as

SR(A : B) = 2SA = CL

3
log

(
L

πε
sin

πξ12

L

)

+CM

3

πρ12

L
cot

πξ12

L
+ const., (3.15)

where ε is a UV cut-off for the GCFT1+1 and the constant
is due to the normalization of the corresponding two point
twist correlator. Once more it is to be noted that our field
theory result matches exactly with twice the entanglement
entropy SA which is consistent with quantum information
theory. The corresponding bulk dual in this case is described
by asymptotically flat TMG on a global Minkowski orbifold.
The EWCS for the single interval in this bulk geometry has
been computed in [32]. As earlier it is to be noted that the first
term in our field theory computation in the above expression
matches with twice the CS contribution and the second term
matches with twice the global Minkowski orbifold contribu-
tion to the bulk EWCS. This once again describes the consis-
tency of our field theory results with the holographic duality
between the reflected entropy and twice the bulk EWCS.

3.2.3 Single interval at a finite temperature

In this case we consider the single interval A ≡ [(−ξ,−ρ),

(0, 0)] in a GCFT1+1 at a finite temperature defined on a
thermal cylinder whose circumference is equal to the inverse
temperature β. In a very recent article [45], it has been shown
that in the case of a single interval at a finite temperature
in a CFT1+1 with an anomaly, a naive computation of the
reflected entropy leads to inconsistencies which arises due
to the presence of an infinite branch cut. For such a mixed
state, the reflected entropy is appropriately obtained through
a construction involving two large but finite auxiliary inter-
vals adjacent to the single interval in question on either
side. In the present non-relativistic case of a GCFT1+1 it
is also necessary to consider a similar construction where
the single interval in question is sandwiched by two large
but finite auxiliary intervals B1 ≡ [(−L ,−y), (−ξ,−ρ)]
and B2 ≡ [(0, 0), (L , y)] on either side. The Rényi reflected
entropy is then obtained with finite auxiliary intervals and
finally a bipartite limit B1 ∪ B2 ≡ B → Ac is taken to arrive
at the original configuration. The reflected entropy for the
single interval in question may then be obtained as follows

SR(A : B) = lim
L→∞ lim

n,m→1

1

1 − n
log

×

〈
σg−1

A
(−L ,−y)σg−1

B gA
(−ξ,−ρ)σgBg

−1
A

(0, 0)σgA (L , y)
〉
GCFT⊗mn

β(〈
σgm (−L ,−y)σg−1

m
(L , y)

〉
GCFT⊗m

β

)n ,

(3.16)

where the subscript β denotes that the twist correlators are
being computed on the thermal cylinder. The four point twist
correlator in the numerator of the above equation is given on
a GCFT complex plane as follows [27]
〈
σg−1

A
(x1, t1)σg−1

B gA
(x2, t2)σgBg−1

A
(x3, t3)σgA (x4, t4)

〉
GCFT⊗mn

= k2
mn

t2hL
14 t

2hAB
L

23

Fmn
(
T, X

T

)

T hAB
L

× exp

[
− 2hM

x14

t14
− 2hAB

M
x23

t23
− hAB

M
X

T

]
, (3.17)

where X/T and T are the GCFT1+1 cross ratios given in
Eq. (3.6) and the non-universal functionFmn may be obtained
in the limits T → 1 and T → 0 as [27]

Fmn(1, 0) = 1, Fmn

(
0,

X

T

)
= Cmn . (3.18)

Here Cmn is a non-universal constant that depends on the full
operator content of the theory.

We may utilize the following conformal map to transform
the GCFT1+1 plane with coordinates (x, t) to the thermal
cylinder with coordinates (ξ, ρ) [27,44]:

t = e
2πξ
β , x = 2πρ

β
e

2πξ
β . (3.19)
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The GCFT1+1 primaries transform under the above confor-
mal map as [27,44]

Ṽi (ξi , ρi ) =
(

β

2π

)−hL ,i

e
2π
β

(ξi hL ,i+ρi hM,i ) Vi (xi , ti ). (3.20)

We may obtain the required four point twist correlator on the
cylinder by using Eqs. (3.19) and (3.20) in Eq. (3.17) as
〈
σg−1

A
(−L , −y)σg−1

B gA
(−ξ, −ρ)σgBg

−1
A

(0, 0)σgA (L , y)
〉
GCFT⊗mn

β

= k2
mn

T hAB
L

[
β

π
sinh

(
2πL

β

)]−2hL [ β

π
sinh

(
πξ

β

)]−2hAB
L

× exp

[
− 2πy

β
coth

(
2πL

β

)
2hM

−2πρ

β
coth

(
πξ

β

)
hAB
M − X

T
hAB
M

]
Fmn

(
T,

X

T

)
. (3.21)

In the bipartite limit, the cross-ratios X and T transformed
under Eq. (3.19) have the following form

lim
L→∞ T = exp

(
−2πξ

β

)
, lim

L→∞
X

T
= −2πρ

β
. (3.22)

Now by substituting Eq. (3.21) and (3.22) in Eq. (3.16) and
taking the bipartite limit L → ∞ subsequent to the replica
limit n → 1 andm → 1, we may obtain the reflected entropy
for the single interval A at a finite temperature β to be

SR(A : B) = CL

3

[
log

(
β

πε
sinh

πξ

β

)
− πξ

β

]

+CM

3

[
πρ

β
coth

πξ

β
− πρ

β

]
+ f

(
e−

2πξ
β , −2πρ

β

)
+ · · · ,

(3.23)

where ε is a UV cut off and the non universal function
f (T, X/T ) is given as [27]

f

(
T,

X

T

)
≡ lim

n,m→1
ln

[
Fmn

(
T,

X

T

)]
. (3.24)

We observe that it is possible to express the reflected entropy
in Eq. (3.23) in a more instructive way as follows

SR(A : B) = 2
[
SA − Sth

A

]
+ f

(
e− 2πξ

β ,−2πρ

β

)
+ · · · ,

(3.25)

where SA denotes the entanglement entropy of the single
interval A [20] and Sth

A denotes the thermal contribution.
This is indicative of the absence of the thermal correlations
in the universal part of the reflected entropy. The holographic
dual for this case is described by bulk non-rotating flat space
cosmologies (FSC) with topologically massive gravity. As
earlier we observe that our field theory result in Eq. (3.23)
matches with twice the upper bound of the EWCS com-
puted in [32] apart from an additive constant contained in the
non universal function f (T, X/T ) which may be extracted

Fig. 4 Two adjacent intervals in a GCFT1+1 plane

through a large central charge analysis of the correspond-
ing conformal block. Here also the first term matches with
twice the CS contribution while the second term with twice
the FSC contribution to the bulk EWCS consistent with the
holographic duality mentioned earlier.

3.3 Reflected entropy for adjacent intervals

We now proceed to the computation of the reflected entropy
for the bipartite mixed states of two adjacent intervals in
non-relativistic GCFT1+1s. In particular we consider two
adjacent intervals at zero and a finite temperature, and in a
finite sized system.

3.3.1 Adjacent intervals at zero temperature

In this case we consider the bipartite mixed state of two adja-
cent intervals A ≡ [u1, u2], B ≡ [u2, v2] in GCFT1+1 at
zero temperature (Fig. 4). This configuration may be obtained
by taking the adjacent limit v1 → u2 in the disjoint intervals
example considered in Sect. 3.1. In this adjacent limit, the
Rényi reflected entropy in Eq. (3.7) reduces to

Sn(AA
∗)ψm

= 1

1 − n
log

〈
σgA (u1)σgBg

−1
A

(u2)σg−1
B

(v2)
〉
GCFT⊗mn(〈

σgm (u1)σg−1
m

(v2)
〉
GCFT⊗m

)n .

(3.26)

Using the usual structure of GCFT1+1 correlation func-
tions [17] and taking the replica limit n → 1 and m → 1 in
Eq. (3.26), we may obtain the reflected entropy for the mixed
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state of two adjacent intervals under consideration as

SR(A : B) = CL

6
log

(
t12t23

εt13

)

+CM

6

(
x12

t12
+ x23

t23
− x13

t13

)
+ · · · , (3.27)

where ε is a UV cut-off. As mentioned earlier GCFT1+1 at
zero temperature is holographically dual to a bulk (2 + 1)-
dimensional asymptotically flat TMG on a Minkowski space
time in the context of flat holography. Again, we observe that
in the large central charge limit, our result matches with twice
the bulk EWCS in [32] apart from an additive constant arising
from the undetermined OPE coefficient of the three point
twist correlator in Eq. (3.26). Here the first term corresponds
to twice the CS contribution and the second term involves
twice the contribution from the Einstein gravity to the bulk
EWCS.

3.3.2 Adjacent intervals in a finite size system

We now proceed to the bipartite mixed state configuration of
two adjacent intervals in a finite sized GCFT1+1 described
on a cylinder of circumference L . To this end we consider
the following adjacent intervals, A ≡ [(ξ1, ρ1), (ξ2, ρ2)]
and B ≡ [(ξ2, ρ2), (ξ3, ρ3)]. Using the transformation of
primaries given in Eq. (3.13) under the conformal map in
Eq. (3.12), we may obtain the required three point twist cor-
relator on the cylinder as follows
〈
σgA (ξ1, ρ1)σgBg

−1
A

(ξ2, ρ2)σg−1
B

(ξ3, ρ3)
〉

=
(

L

2π i

)−2hL−hAB
L

exp

[
2π i

L

(
ξ1hL + ξ2h

AB
L + ξ3hL

+ρ1hM + ρ2h
AB
M + ρ3hM

)]

〈
σgA (u1)σgBg

−1
A

(u2)σg−1
B

(v2)
〉
, (3.28)

where
(
hL , hM

)
,
(
hAB
L , hAB

M

)
are the weights of theGCFT1+1

twist fields σgA and σgBg
−1
A

respectively and the three point
twist correlator on the right-hand-side is defined on the
GCFT plane. We may now obtain the reflected entropy for
the bipartite mixed state of two adjacent intervals under con-
sideration using Eq. (3.28) in Eqs. (2.4) and (3.7) as follows

SR(A : B) = CL

6
log

⎡
⎣ L

πε

sin
(

πξ12
L

)
sin
(

πξ23
L

)

sin
(

πξ13
L

)
⎤
⎦

+CM

6

[
πρ12

L
cot

(
πξ12

L

)
+ πρ23

L
cot

(
πξ23

L

)

−πρ13

L
cot

(
πξ13

L

)]
+ · · · . (3.29)

Note that the bulk dual for this case is described by asymp-
totically flat TMG on a global Minkowski orbifold. Again,
we observe that in the large central charge limit, the first
term of the above expression involves twice the CS contribu-
tion while the second term corresponds to twice the global
Minkowski orbifold contribution to the EWCS [32], mod-
ulo an additive constant arising from the undetermined OPE
coefficient of the three point function in Eq. (3.28).

3.3.3 Adjacent intervals at a finite temperature

For this case we consider the mixed state configuration of two
adjacent interval described by A ≡ [(ξ1, ρ1), (ξ2, ρ2)] and
B ≡ [(ξ2, ρ2), (ξ3, ρ3)] at a finite temperature in aGCFT1+1

defined on a thermal cylinder with the circumference given
by the inverse temperature β. We may again utilize the trans-
formation of the primaries in Eq. (3.20) under the action of
the conformal map Eq. (3.19) from the GCFT plane to the
thermal cylinder to obtain the corresponding three point twist
correlator as
〈
σgA (ξ1, ρ1)σgBg

−1
A

(ξ2, ρ2)σg−1
B

(ξ3, ρ3)
〉
GCFT⊗mn

β

=
(

β

2π

)−2hL−hAB
L

exp

[
2π

β
(ξ1hL + ξ2h

AB
L

+ξ3hL + ρ1hM + ρ2h
AB
M + ρ3hM )

]

×
〈
σgA (u1)σgBg

−1
A

(u2)σg−1
B

(v2)
〉
GCFT⊗mn

. (3.30)

Here the subscript β denotes that the correlator is being com-
puted on the thermal cylinder and the three point twist corre-
lator on the right-hand-side is defined on the nm-replicated
GCFT plane. Now using the usual form of the three point
correlator in the GCFT plane [17] in the above expression,
we may obtain the reflected entropy for two adjacent intervals
at a finite temperature as

SR(A : B) = CL

6
log

[
β

πε

sinh
(

πξ12
β

)
sinh

(
πξ23

β

)

sinh
(

πξ13
β

)
]

+CM

6

[
πρ12

β
coth

(
πξ12

β

)

+πρ23

β
coth

(
πξ23

β

)
− πρ13

β
coth

(
πξ13

β

)]
+ · · · ,

(3.31)

where ε is a UV cut-off of the GCFT1+1. As mentioned ear-
lier the holographic dual in this case is described by a bulk
non rotating FSC with TMG. Note that in the large central
charge limit, the above result matches with twice the EWCS
computed in [32] apart from an additive constant contained
in the undetermined OPE coefficient of the three point twist
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correlator in Eq. (3.30). Here also the first term matches with
twice the CS contribution whereas the second term corre-
sponds to twice the FSC contribution to the bulk EWCS.

3.4 Reflected entropy for two disjoint intervals

Finally in this subsection we focus on the mixed state config-
uration of two disjoint intervals in GCFT1+1s. To this end
we consider two disjoint intervals A ≡ [(x1, t1), (x2, t2)] and
B ≡ [(x3, t3), (x4, t4)]. The computation of reflected entropy
in this case requires the monodromy analysis of the four point
twist correlator in Eq. (3.7). The numerator of Eq. (3.7) may
be expanded in terms of the Galilean conformal blocks Fα

corresponding to the t-channel (T → 1, X → 0) as follows
〈
σgA (x1, t1)σg−1

A
(x2, t2)σgB (x3, t3)σg−1

B
(x4, t4)

〉
GCFT⊗mn

= t−2hL
14 t−2hL

23 exp

[
−2hM

x14

t14
− 2hM

x23

t23

]

×
∑
α

Fα

(
T,

X

T

)
. (3.32)

The conformal blocks Fα are arbitrary functions of the cross
ratios and depend on the full operator content of the theory.
However in the large central charge limit CL ,CM → ∞,
similar to the relativistic case discussed in [46], the blocksFα

are expected to have an exponential structure which implies
that the dominant contribution to the four point twist correla-
tor arises from the conformal block with the lowest conformal
weight. We will extract the structure of these GCFT con-
formal blocks Fα through an appropriate (geometric) mon-
odromy analysis [36].

Note that unlike the relativisticCFT1+1 case, inGCFT1+1

the two components of the energy–momentum tensor are not
identical and are given as [36]

M ≡ Ttx =
∑
n

Mn t
−n−2,

L ≡ Ttt =
∑
n

[
Ln + (n + 2)

x

t
Mn

]
t−n−2, (3.33)

where Ln and Mn are the GCA generators defined in
Eq. (3.3). For the two components of the energy–momentum
tensor M and L, the Galilean Ward identities are given as
[36]

〈M(x, t)V1(x1, t1) . . . Vn(xn, tn)〉

=
n∑

i=1

[
hM,i

(t − ti )2 + 1

t − ti
∂xi

]
〈V1(x1, t1) . . . Vn(xn, tn)〉 ,

〈L(x, t)V1(x1, t1) . . . Vn(xn, tn)〉

=
n∑

i=1

[
hL ,i

(t − ti )2 − 1

t − ti
∂ti + 2hM,i (x − xi )

(t − ti )3

+ x − xi
(t − ti )2 ∂xi

]
〈V1(x1, t1) . . . Vn(xn, tn)〉 , (3.34)

where Vi s are GCFT1+1 primaries with (hL ,i , hM,i ) being
their corresponding weights.

In the following subsections we will implement separate
geometric monodromy analysis [28,36] for each of the two
components M and L in the semi classical limit of large
central charge to obtain the expression for the conformal
blocks Fα . Subsequently we will utilize these results to obtain
the reflected entropy for bipartite mixed states involving the
two disjoint intervals in GCFT1+1s.

3.4.1 Monodromy of M

In this subsection we will use the expectation value of the
energy–momentum tensor componentM and utilize the geo-
metric monodromy technique developed in [36] to obtain
a partial expression for the Galilean conformal block in
Eq. (3.32). To this end, we obtain the expectation value of
the M component of the energy–momentum tensor from the
Ward identities described in Eq. (3.34) as

M(ui ; (x, t)) =
4∑

i=1

[
hM,i

(t − ti )2 + CM

6

ci
t − ti

]
, (3.35)

where ui ≡ (xi , ti ) and the auxiliary parameters ci are given
by

ci = 6

CM
∂xi log

〈
σgA (u1)σg−1

A
(u2)σgB (u3)σg−1

B
(u4)

〉
.

(3.36)

Here the conformal symmetry does not completely fix the
structure of the four point function and hence not all auxiliary
parameters ci are known. Using conformal transformations
we place the corresponding twist fields operators at t1 =
0, t3 = 1, t4 = ∞ leaving t2 = T to be free.6 Requiring the
scaling of the expectation value M(T ; t) ∼ t−4 as t → ∞
and the fact that in the replica limit n → 1 and m → 1
the conformal dimension hM,i ≡ hM of the light operator
σgA , σgB vanishes, we may express three of the four auxiliary
parameters in terms of the fourth. The expectation value of
the energy–momentum tensor component M may then be
written as [28]

6

CM
M(T ; t) = c2

[
T − 1

t
+ 1

t − T
− T

t − 1

]
. (3.37)

Now under the generic Galilean conformal transformation
described in Eq. (3.2), the component M of the energy–
momentum tensor transforms as [36]

M′(t ′, x ′) = ( f ′)2M(t, x) + CM

12
S( f, t), (3.38)

6 The coordinate T used here is same as the non-relativistic cross ratio
T given in Eq. (3.6) in terms of the coordinates ti .
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where S( f, t) is the Schwarzian derivative for the coordinate
transformation t → f (t). For the ground state, the expec-
tation value M(ui ; (x, t)) vanishes on the GCFT1+1 plane
which leads to the following expression

1

2
S( f, t) = c2

[
T − 1

t
+ 1

t − T
− T

t − 1

]
. (3.39)

This may be expressed in the form of a differential equation
as [28]

0 = h′′(t) + 1

2
S( f, t) h(t) = h′′(t) + 6

CM
M(T, t) h(t),

(3.40)

where the transformation f has the form h1/h2 with h1 and
h2 as the two solutions of the differential equation. This dif-
ferential equation may be solved by the method of variation of
parameters up to linear order in the parameter εα = 6

CM
hM,α

which is the rescaled weight of the corresponding conformal
block Fα . The monodromy of the solutions whilst circling
the light operators at t = 1, T leads to the following mon-
odromy matrix [28]:

M =
(

1 2π i c2T (T − 1)

2π i c2(T − 1) 1

)
. (3.41)

We may now use the monodromy condition for the three point
twist correlator given as [28]
√

I1 − I2
2

= 2πεα, (3.42)

where I1 = tr M and I2 = tr M2 are invariant under global
Galilean conformal transformations. Using Eq. (3.42), the
auxiliary parameter c2 may now be obtained as follows

c2 = εα

1√
T (T − 1)

. (3.43)

This provides the form of the conformal block for the four-
point function in Eq. (3.32) to be

Fα = exp

[
CM

6

∫
c2 dX

]

= exp

[
hM,α

(
X√

T (T − 1)

)]
F̃(T ). (3.44)

Here F̃(T ) is an unknown function of the coordinate T which
will be determined by the monodromy analysis for the other
component of the energy–momentum tensor L in the next
subsection.

3.4.2 Monodromy of L

In this subsection, we will obtain the complete expression for
the Galilean conformal blockFα in Eq. (3.32) by performing
the geometric monodromy analysis of the energy momentum
tensor L. To this end, we begin with the expectation value

of L which may be obtained from the Ward identities in
Eq. (3.34) to be

6

CM
L(ui ; (x, t)) =

4∑
i=1

[
δi

(t − ti )2 − 1

t − ti
di

+2εi (x − xi )

(t − ti )3 + x − xi
(t − ti )2 ci

]
, (3.45)

where δi = 6
CM

hL ,i , εi = 6
CM

hM,i , the auxiliary parameters
ci are defined in Eq. (3.36) and di are given as [36]

di = 6

CM
∂ti log

〈
σgA (u1)σg−1

A
(u2)σgB (u3)σg−1

B
(u4)

〉
.

(3.46)

Similar to the previous subsection, by utilizing the global
Galilean conformal symmetry we place the twist field oper-
ators7 at t1 = 0, t2 = T, t3 = 1, t4 = ∞ and x1 = 0, x2 =
X, x3 = 0 and x4 = 0. Again requiring that L scales as
L(T, t) → t−4 with t → ∞ fixes three of the auxiliary
parameters di in terms of the remaining one. We may express
Eq. (3.45) in terms of the undetermined auxiliary parameter
d2 as

6

CM
L(ui ; (x, t)) = −c2X + d2(T − 1) − 2δL

t

+c2X + d2T − 2δL

t − 1
+ c1x

t2 + c2(x − X)

(t − T )2 + c3x

(t − 1)2

− d2

t − T
+ 2xεL

t3 + δL

t2 + δL

(t − 1)2

+ δL

(t − T )2 + 2εL(x − X)

(t − T )3 + 2xεL
(t − 1)3 , (3.47)

where δL = 6
CM

hL and εL = 6
CM

hM are the rescaled weights
of the twist operator σgA , σgB . Note that the auxiliary param-
eters ci s in the above expression are as obtained in the previ-
ous Sect. 3.4.1. On utilizing the transformation of the energy–
momentum tensorL under a generic Galilean transformation
Eq. (3.2), we arrive at the following differential equation

6

CM
L(ui ; (x, t))

=
g′
(
f ′ f ′′ − 3

(
f ′′)3)+ f ′ (3g′′ f ′′ − g′′′ f ′)

2 ( f ′)3

−
x
(

3
(
f ′′)2 + f ′′′ ( f ′)2 − 4 f ′′′ f ′ f ′′

)

2 ( f ′)3 . (3.48)

As described in [36], we now consider the following com-
bination of the expectation values of the two components of

7 Similar to the case of monodromy analysis of M, the coordinates X
and T here are the usual GCFT cross-ratios in terms of the coordinates
(xi , ti ).
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the energy–momentum tensor

L̃(ui ; (x, t)) = [L(ui ; (x, t)) + X M′(ui ; (x, t))
]
. (3.49)

Now we choose g(t) = f ′(t)Y (t) as an ansatz for the con-
formal transformation to reduce the above equation to the
following form

6

CM
L̃ = −1

2
Y ′′′ − 2Y ′ 6

CM
M − Y

6

CM
M′. (3.50)

Similar to the M monodromy in the previous subsection, we
may now solve this differential equation up to linear order
of the rescaled weights εα and δα = 6

CM
hL ,α of the corre-

sponding conformal block Fα . Through the monodromy of
the solutions circling around the light operators at t = 1, T ,
we may obtain the undetermined auxiliary parameter d2 as

d2 = (1 − 3T )Xεα + 2(T − 1)T δα

2(T − 1)2T 3/2 . (3.51)

Finally we may now obtain the full expression for the
Galilean conformal block by utilizing Eq. (3.46) to be

Fα =
(

1 − √
T

1 + √
T

)hL ,α

exp

[
hM,α

(
X√

T (T − 1)

)]
. (3.52)

We will utilize the above expression for the Galilean con-
formal block to obtain the reflected entropy for the bipar-
tite mixed state configurations of two disjoint intervals in
GCFT1+1s in the following subsections.

3.4.3 Two disjoint intervals at zero temperature

In this subsection we utilize the large central charge limit
expression for the Galilean conformal blocksFα to obtain the
reflected entropy for the bipartite mixed state of two disjoint
intervals in a GCFT1+1 at zero temperature. In the t-channel
described by T → 1, X → 0, the dominant contribution to
the four-point twist correlator in Eq. (3.32) comes from the
GCA2 conformal block corresponding to the primary field
σgBg

−1
A

. Also the four point twist correlator in the denomina-
tor of Eq. (3.7) may be obtained by taking n → 1 limit of
Eq. (3.32) as follows

〈
σgm (x1, t1)σ

g−1
m

(x2, t2)σgm (x3, t3)σ
g−1
m

(x4, t4)
〉
GCFT⊗m

= lim
n→1

〈
σgA (x1, t1)σ

g−1
A

(x2, t2)σgB (x3, t3)σ
g−1
B

(x4, t4)

〉

GCFT⊗mn

= lim
n→1

[
t
−2hL
14 t

−2hL
23 exp

(
−2hM

x14

t14
− 2hM

x23

t23

)

∑
α

Fα

(
T,

X

T

)]
, (3.53)

Now by using Eqs. (3.32), (3.52) and (3.53), we may obtain
the reflected entropy for two disjoint intervals as follows

SR(A : B) = CL

6
log

(
1 + √

T

1 − √
T

)

+CM

6

X√
T (1 − T )

+ · · · , (3.54)

where X and T are the non-relativistic cross ratios given in
Eq. (3.6). Note that the bulk dual for this case is (2 + 1)-
dimensional asymptotically flat TMG on a Minkowski space
time. We observe that the above expression for the reflected
entropy in the large central charge limit matches with twice
the corresponding EWCS obtained in [32]. Here the first term
corresponds to twice the CS contribution and the second term
involves twice the contribution from the Einstein gravity to
the bulk EWCS. Interestingly, taking the appropriate adjacent
limit given by (x2, t2) → (x3, t3) of our result for the disjoint
intervals in Eq. (3.54), we reproduce the corresponding adja-
cent intervals result which constitute a further consistency
check for our analysis.

3.4.4 Two disjoint intervals in a finite size system

For this case we consider the two disjoint intervals given by
A ≡ [(ξ1, ρ1), (ξ2, ρ2)] and B ≡ [(ξ3, ρ3), (ξ4, ρ4)] in a
GCFT1+1 described on a cylinder of circumference L . Sim-
ilar to the previous subsections, it is necessary to compute
the required four point twist correlator on this cylinder. We
can map the GCFT complex plane to this cylinder by utiliz-
ing Eq. (3.12). Under this conformal map the non-relativistic
cross ratios transform as follows

T̃ =
sin
(

πξ12
L

)
sin
(

πξ34
L

)

sin
(

πξ13
L

)
sin
(

πξ24
L

) , (3.55a)

X̃

T̃
= πρ12

L
cot

(
πξ12

L

)
+ πρ34

L
cot

(
πξ34

L

)

−πρ13

L
cot

(
πξ13

L

)
− πρ24

L
cot

(
πξ24

L

)
. (3.55b)

We may obtain the reflected entropy for this bipartite mixed
state configuration of two disjoint intervals by simply apply-
ing the conformal map (3.12) in Eq. (3.54) and utilizing the
modified cross ratios in Eq. (3.55) to arrive at

SR(A : B) = CL

6
log

(
1 +

√
T̃

1 −
√
T̃

)

+CM

6

X̃√
T̃ (1 − T̃ )

+ · · · . (3.56)

Similar to the previous case, taking the appropriate adja-
cent limit for the above result reproduces the corresponding
expression for the reflected entropy of two adjacent intervals
in Eq. (3.29). As mentioned earlier the bulk dual in this case is
described by asymptotically flat TMG on a global Minkowski
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orbifold. Note that the above expression for the reflected
entropy of the two disjoint intervals in question matches in
the large central charge limit with twice the corresponding
EWCS computed in [32]. Here the first term involves twice
the CS contribution while the second term corresponds to
twice the global Minkowski orbifold contribution to the bulk
EWCS. As earlier these serve as consistency checks for our
results.

3.4.5 Two disjoint intervals at a finite temperature

Finally we consider the case of two disjoint intervals at a finite
temperature in a GCFT1+1 described on a thermal cylinder
with circumference β = 1/T . Similar to the case of the two
adjacent intervals discussed in Sect. 3.3.3, we employ the
conformal transformation given in (3.19) to map the GCFT
complex plane to the thermal cylinder. Under this map the
GCFT cross ratios are modified as follows

T  =
sinh

(
πξ12

β

)
sinh

(
πξ34

β

)

sinh
(

πξ13
β

)
sinh

(
πξ24

β

) , (3.57a)

X

T 
= πρ12

β
coth

(
πξ12

β

)
+ πρ34

β
coth

(
πξ34

β

)

−πρ13

β
coth

(
πξ13

β

)
− πρ24

β
coth

(
πξ24

β

)
,

(3.57b)

where (ξ, ρ) are the coordinates on the cylinder. Now by
utilizing Eq. (3.19) in Eq. (3.54), the reflected entropy for
the mixed state configuration under consideration may be
obtained as follows

SR(A : B) = CL

6
log

(
1 + √

T 

1 − √
T 

)

+CM

6

X

√
T (1 − T )

+ · · · . (3.58)

Interestingly, the consistency of our results may be checked
by implementing the appropriate adjacent limit for the above
result which reproduces the corresponding expression for
the reflected entropy of two adjacent intervals described
in Eq. (3.31). Note that the holographic dual in this case
is described by the bulk non-rotating FSC with TMG. We
should also note that in the large central charge limit, the
first term of the above expression matches with twice the CS
contribution while the second term corresponds to twice the
FSC contribution to the bulk EWCS obtained in [32].

4 Summary and conclusion

To summarize, in this article we have obtained the reflected
entropy for various bipartite pure and mixed state config-

urations in a class of (1 + 1)-dimensional non-relativistic
Galilean conformal field theories. To this end we have
established an appropriate replica technique to compute the
reflected entropy for bipartite states involving a single, two
adjacent and two disjoint intervals in GCFT1+1s. In particu-
lar, we have computed the reflected entropy for the pure state
configuration of a single interval at zero temperature and
in a finite sized system and our results exactly match with
twice the corresponding entanglement entropies consistent
with quantum information theory expectations. Interestingly
for the mixed state configuration of a single interval at a
finite temperature in a GCFT1+1 it was required to employ
a construction involving two large but finite auxiliary inter-
vals adjacent to the single interval on either side to compute
the reflected entropy in a final bipartite limit. A similar con-
struction has been used in the literature for the computation
of the entanglement negativity for this particular mixed state
configuration. We also find that our results for the reflected
entropy match with twice the upper limit of the bulk EWCS
in the dual asymptotically flat geometries computed earlier in
the literature in the context of flat holography. This is consis-
tent with the proposed duality between the reflected entropy
and the EWCS described earlier in the literature for the usual
AdS/CFT scenario.

Subsequent to this, we have obtained the reflected entropy
for the mixed state configurations of two adjacent intervals
at zero and finite temperatures and in finite sized systems
in GCFT1+1s through our replica technique. For these case
also we observe that our field theory results match with the
bulk EWCS for the dual asymptotically flat geometries up
to an additive constant arising from the undetermined OPE
coefficient of the corresponding three point twist field corre-
lator required to obtain the reflected entropy.

Finally through suitable geometric monodromy analysis
of the corresponding four point twist field correlator, we
obtain the reflected entropy for the mixed state configuration
of two disjoint intervals at zero and finite temperatures and
for finite sized systems in the non-relativistic GCFT1+1s.
We also observe that through appropriate limits of the mixed
state configurations involving the two disjoint intervals, we
may obtain the results for the configuration of two adjacent
intervals and these are consistent with this limiting proce-
dure which constitutes an additional consistency check for
our analysis. Additionally, in the Appendix A we have also
reproduced the expression for the reflected entropy for two
disjoint intervals in a GCFT1+1 through a parametric con-
traction of the corresponding result in the usual relativis-
tic CFT1+1 which provides a strong substantiation for our
computations. Furthermore we mention here that for all the
three cases involving the two disjoint intervals, our results
for the reflected entropy match exactly with twice the bulk
EWCS obtained earlier in the literature in the context of flat
space holography. Through these results we conclude that

123



Eur. Phys. J. C (2022) 82 :1169 Page 13 of 15 1169

the holographic duality between the reflected entropy and
the EWCS, i.e., SR(A : B) = 2EW (A : B), also holds in flat
space holographic scenarios involving bulk asymptotically
flat (2 + 1)-dimensional geometries dual to GCFT1+1s.

Note added: While this article was in its final stage of com-
munication [47] appeared in the e-print arXiv which obtained
some of the results discussed in this article in a somewhat dif-
ferent context.
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Appendix A: Limiting analysis

In this appendix we will show through an example that the
reflected entropy for bipartite mixed states in GCFT1+1s
computed in Sect. 3 may be obtained through a parametric
contraction of the corresponding result obtained in context of
the relativisticCFT1+1s in [10,37]. To this end, the GCA1+1

algebra may be obtained through a parametric İnönü–Wigner
contraction given in Eq. (3.1) of the usual Virasoro algebra
for relativisticCFT1+1s. The İnönü–Wigner contraction may
alternatively be written in terms of the coordinates describing
the CFT1+1 complex plane as

z → t + εx, z̄ → t − εx, (A.1)

with ε → 0. We may also relate the central charges of the
GCA1+1 to those of the parent relativistic theory as [32]

CL = c + c̄, CM = ε(c − c̄). (A.2)

We will now utilize the above to illustrate that the results
for the reflected entropy in GCFT1+1s are consistent with
those in usual CFT1+1s under the above non-relativistic
limit. To this end, we recall the expression for the reflected
entropy for the generic bipartite mixed state of two disjoint
intervals at zero temperature in a CFT1+1 in the t-channel

to be [10,37]

SR(A : B) = c

3
log

(
1 + √

x

1 − √
x

)
(A.3)

where x = z12z34
z13z24

is the CFT1+1 cross ratio. If we allow
unequal central charges for the holomorphic and anti-
holomorphic sectors, the above expression may be written
as

SR(A : B) = c

6
log

(
1 + √

x

1 − √
x

)
+ c̄

6
log

(
1 + √

x̄

1 − √
x̄

)
. (A.4)

Utilizing Eq. (A.1), we may now express the CFT1+1 cross
ratios x, x̄ in terms of the GCFT1+1 cross ratios X, T as

x → T

(
1 + ε

X

T

)
, x̄ → T

(
1 − ε

X

T

)
. (A.5)

Using the above, the reflected entropy in GCFT1+1 may be
obtained through the İnönü–Wigner contraction of Eq. (A.4)
up to linear order in ε to be

SR(A : B) = CL

6
log

(
1 + √

T

1 − √
T

)
+ CM

6

X√
T (1 − T )

+ O(ε).

(A.6)

Remarkably, in the leading order the above expression
matches exactly with the replica technique result obtained
in Eq. (3.54) which provides a strong consistency check for
our computations. We have also checked that the reflected
entropy for the other bipartite states in GCFT1+1s discussed
in this article are also consistent with this limiting behaviour.
Although, we may obtain the results for the reflected entropy
for subsystems in GCFT1+1s through the above limiting
analysis, however, note that it does not provide any infor-
mation about the structure of the replicated manifold which
is necessary in the study of the Rényi reflected entropy and
its applications in different contexts including holography.
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