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Abstract We calculate the primordial power spectrum
of tensor perturbations, within the emergent universe sce-
nario, incorporating a version of the Continuous Spontaneous
Localization (CSL) model as a mechanism capable of: break-
ing the initial symmetries of the system, generating the per-
turbations, and also achieving the quantum-to-classical tran-
sition of such perturbations. We analyze how the CSL model
modifies the characteristics of the B-mode CMB polariza-
tion power spectrum, and we explore their differences with
current predictions from the standard concordance cosmo-
logical model. We have found that, regardless of the CSL
mechanism, a confirmed detection of primordial B-modes
that fits to a high degree of precision the shape of the spec-
trum predicted from the concordance �CDM model, would
rule out one of the distinguishing features of the emergent
universe. Namely, achieving a best fit to the data consistent
with the suppression observed in the low multipoles of the
angular power spectrum of the temperature anisotropy of the
CMB. On the contrary, a confirmed detection that accurately
exhibits a suppression of the low multipoles in the B-modes,
would be a new feature that could be considered as a favor-
able evidence for the emergent scenario. In addition, we have
been able to establish an upper bound on the collapse param-
eter of the specific CSL model used.

1 Introduction

The indirect detection of primordial gravitational waves,
through features imprinted in the cosmic microwave back-
ground (CMB) polarization (i.e. B-modes), would be taken
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b e-mail: gleon@fcaglp.unlp.edu.ar (corresponding author)

as an extraordinary experimental support for the inflationary
model of the early universe. Although this weak signal has
not yet been detected, many projects are already operating
or have been proposed to measure the primordial B-modes
polarization of the CMB; and thanks to some of them, we
already have valuable constraints on, for instance, the so-
called tensor-to-scalar ratio parameter [1–20].

The current cosmological model provides us the possibil-
ity of being able to reconstruct the evolution of the universe,
which includes a quantum description of the early universe,
where during an inflationary phase the seeds of cosmic struc-
ture are generated, as a result of small quantum fluctuations of
the fields in their vacuum state. These predictions have been
verified with very high precision in analyses, for example, of
the CMB [16,21]. According to this scheme, our description
of the early universe starts from a phase where both, space-
time and the quantum state of the fields, have symmetries
such that they correspond to a perfectly isotropic and homo-
geneous situation. One might then ask: how is it that we ended
up in a situation where small inhomogeneities appeared and
the aforementioned symmetries were lost? This question is
intimately linked to the so-called “measurement problem”
in quantum physics, or more frequently referred to as the
quantum-to-classical transition, see e.g. [22–31]. Although
we think that quantum theories give a more fundamental
description of nature than classical theories, and therefore
in reality such a transition would never occur, we want to
find a mechanism that allows us to better understand how
it is that under certain circumstances the classical descrip-
tion is an excellent approximation for our purposes. Such a
proposal must keep in mind that observers and measuring
apparatuses cannot be fundamental notions, in the search for
a theoretical description of the early universe where neither
existed [32]. On the other hand, such a mechanism must also
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be able to account for how it is that the initial symmetries of
the cosmological situation at hand were lost [33–35].1

In [24], the author manages to approach the measurement
problem in such a way that the different proposed alternatives
fall into three claims mutually inconsistent: (A) The wave-
function of a system is complete, i.e. it specifies all of the
physical properties of a system, (B) the wave-function always
evolves in accord with a linear dynamical equation, i.e. the
Schrödinger equation, and (C) measurements always have
determinate outcomes. The different ways of approaching
the subject have been studied by many authors, for example
through the addition of hidden variables [37–42], or works
based on decoherence and/or “many-worlds” interpretation
of quantum mechanics [43–48]. In this work we will choose
to address a possible solution to these problems within the
framework of objective collapse theories, modifications to
the Schrödinger equation with the aim to alter the evolution
of the wave function. These modifications negate claim (B),
and the fundamental idea behind them is that the collapse
of the wave-function would happen without the involvement
of external agents, such as observers or measuring devices
[49–54]. In particular, we will use a version of the Continu-
ous Spontaneous Localization (CSL) model [49,51]. These
models should still be taken as effective approximations and
not as fundamental theories, since they are under develop-
ment, but with great activity in recent years and have shown
interesting and encouraging results [35,55–84], showing that
there is an extensive landscape of possibilities open [85].

Some proposals that aim to give a description of the
early universe, with some modifications to the inflationary
paradigm or with particular features, have been analyzed in
some depth (e.g. [86–103]). Among them, one of the alterna-
tives that seeks to escape the singularity theorems [104–112],
and with some renewed motivation as a result of the recent
debate about what is the spatial curvature of the universe
[113–130], is the known emergent universe [131].

Built in the framework of General Relativity, the emergent
universe (EU) model is one in which the dynamics is driven
by a scalar field minimally coupled to gravity, but whose
initial phase has been modified [131,132]. A spatially closed
universe starts from a static initial state with a finite size. At
a certain time, the universe begins to evolve into a super-
inflation phase, then slow-roll inflation occurs, and finally
give rise to the standard hot-Big Bang. Different variants
analyzing its viability and open issues have been studied in
recent years, which has allowed to put into play an attractive
possibility that deserves further exploration [133–173].

A characteristic that was pointed out in [174] is that a phase
of super-inflation (i.e. a period where the Hubble parame-
ter increases with time) prior to slow-roll inflation could be
related to the suppression of power in the low CMB multi-

1 A pedagogical review on this subject can be find in [36].

poles. In [175], some of us showed that implementing the
CSL mechanism to the emergent universe scenario intro-
duces extra modifications in the CMB temperature angu-
lar spectrum. Specifically, the angular spectrum in the low
multipoles sector can exhibit a suppression or an increment,
something different from what happens in the case of the
standard EU, where the super-inflation phase only causes the
spectrum curve to decrease on large angular scales. Such a
scenario gives good predictability to the CSL collapse pro-
posal in the emergent universe model, distinguishing it from
preceding works.

The work [175] was carried out within the framework of
semiclassical gravity, where it is well known from previous
works [72,74,75] that tensor perturbations would be practi-
cally null, remarkably consistent with current observational
constraints [6,13,16–19]. On the other hand, the exploration
of studies in the framework of standard quantization (SQ),
where a joint metric-matter quantization is performed, has
also been done in many works, e.g. [63,73,76,79–83,176–
178].

Let us mention some words about this particular point.
Since we still do not fully understand the quantum nature
of gravitation, it is interesting to study how our predictions
depend on how one implements the theoretical ideas under
different quantization approaches (i.e. semiclassical vs SQ).

In an earlier paper [85], some of us analyzed pros and
cons of each of them and in particular we pointed out the
problems facing the SQ approach. However, if one insists on
following this approach, it is necessary to know what would
be the effects of incorporating a collapse mechanism that
allows solving the aforementioned problems related to the
origin of the primordial inhomogeneities.

Under certain appropriate assumptions, previous works
have explored situations that incorporated collapses under
the SQ approach, e.g. [63,76,177,178], and it was found that
in some cases the results were different from the standard
inflationary model and in other cases the results were simi-
lar. Furthermore, despite the technical and conceptual diffi-
culties presented by the SQ approach [85], one can find CSL
models that agree with all the empirical data to date. How-
ever, we must emphasize once again that, even in the cases
in which one obtains results similar to the standard approach
without collapses, the last one has no physical process that
clearly explains the following: how the primordial perturba-
tions emerged, how the breaking of the initial symmetries
(both of spacetime and of the initial vacuum state) occurred,
and how the so called “quantum-to-classical transition” of
those perturbations took place. The latter of course refers to
the passage from dealing with quantum fields to treat them
as classical fields under a very good approximation.

On the other hand, within the SQ approach, let us note
that there are different ways to incorporate collapses, e.g.
[176,178,179]. In fact, in a previous paper [63] some of us

123



Eur. Phys. J. C (2022) 82 :1146 Page 3 of 13 1146

showed that the results and predictions for primordial spectra
could differ, depending on how the role of the CSL mecha-
nism was implemented in the standard inflationary scenario.
Those findings serve as the primary motivation for the present
work. Specifically, we wish to explore what is the predic-
tion for the primordial tensor power spectrum employing the
SQ scheme within the framework of the emergent universe.
The CSL model considered here will be incorporated in a
manner consistent with [63]. Another motivation is purely
empirical, i.e. if B-modes were to be detected observation-
ally, and the semiclassical quantization approach faces some
tension,2 then it is necessary to know the details of the differ-
ences (or similarities) in the theoretical predictions between
the emergent universe with and without collapses incorpo-
rated, following the SQ scheme.

In summary, here we decided to extend our previous anal-
ysis of the emergent universe with the inclusion of the CSL
model, to explore what would be the prediction for the pri-
mordial power spectrum associated to the tensor modes and
the tensor-to-scalar ratio, within the framework of the joint
quantization of metric and matter. In the present work we also
set out to analyze if there are characteristics of the CSL that
are manifested or not in the B-mode polarization spectrum
of the CMB, which can be distinguished from the standard
�CDM cosmological model in the observations of future
projects.

We divided this work as follows. We begin in Sect. 2
reviewing the basic concepts of the emergent universe, as
well as the theory behind the CSL model. We also show
the predicted primordial tensor power spectrum within this
framework. Next, in Sect. 3 we show and discuss our results.
Finally, in Sect. 4, we present our conclusions analyzing the
main points that stand out to us. With respect to the con-
ventions, we will use the (−,+,+,+) signature for the
spacetime metric and units such that c = 1 = h̄ and
M2

P ≡ (8πG)−1.

2 Emergent universe in the CSL framework revisited

2.1 A brief theoretical background

In this subsection, we start reviewing the theoretical back-
ground of the CSL model and how it is applied to the case of
tensor perturbations into the emergent universe (EU) frame-
work.

2 The inflationary CSL model within the semiclassical gravity frame-
work could face some tension if there is a confirmed detection of the
primordial B modes and is consistent with the standard prediction of
slow roll inflation. This is because, in the former case, the predicted
amplitude of the tensor power spectrum is of order 10−12ε2 [74,75],
while the standard prediction is of order 10−9ε, where ε is the slow roll
parameter ε � 1.

We will be working under the same assumptions of
[131,175], i.e. the action of General Relativity with a scalar
field φ minimally coupled to gravity and driving the early
expansion. A typical scalar potential, as shown in [132], is
V (φ) = (4πG)−1(eCφ − 1)2. In the reconstruction of such
potential, the evolution of the background given by the scalar
factor a(t) � a0 + AeH0t was assumed, with a0 > 0 the (ini-
tial) radius of the Einstein static universe, C and A positive
constants, and H0 is the Hubble parameter at the onset of
slow-roll inflation. In [169], it was shown that the universe
evolves from an Einstein static state to a (slow-rolling regime)
de Sitter type of expansion. That is, the temporal evolution
given by Friedmann and Klein–Gordon equations leads the
system towards an attractor, where H tends to a constant
and φ̇2 → 0. The de Sitter type inflation is followed by a
re-heating phase and finally the universe enters the standard
expansion of the hot Big Bang.

A generic characteristic of the EU scenario is that, before
to the slow-roll inflation, there is a phase of super-inflation
where the Hubble parameter increases with time, i.e. Ḣ > 0.
On the other hand, the spatial curvature is quickly negligible
after a few e-foldings and furthermore slow-roll inflation can
always be made to end for some negative value of φ [132].
As in [166,175], in this work we will make a first approach to
the analysis and therefore we will neglect the contributions
of the space curvature to the primordial perturbations.3

As usual in perturbation analysis, we will separate the
metric and the scalar field into a homogeneous background
plus small perturbations, i.e. gμν = g(0)

μν + δgμν and φ =
φ0 + δφ. At first order in the tensor metric perturbations, the
corresponding line element is

ds2 = a2
[
−dη2 + (

δi j − hi j
)
dxidx j

]
. (1)

In these coordinates, the scale factor results,

a(η) = a0

1 − ea0H0η
. (2)

From here on, a prime over variables will denote derivative
with respect to conformal time η.

Since the CSL theory is based on a stochastic non-linear
modification of the Schrödinger equation, it will be conve-
nient to carry out the quantization in the Schrödinger picture.
Therefore, the first step will be to write the total Hamiltonian
of the system. As it is known, tensor perturbations represent
gravitational waves, and they are characterized by a sym-
metric, transverse and traceless tensor field. These properties
lead to the existence of only two degrees of freedom, i.e. two
polarizations. But, as each polarization term is independent,

3 See, for instance, Appendix A of Ref. [166] for details about this
subject.
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and as each polarization leads to the same result, we will
work with only one polarization. Then, we will just multiply
by a factor of two the spectrum associated to an individual
case, at the end of our calculations, to obtain the final result.

The action for tensor perturbations can be obtained
by expanding the Einstein action up to the second order
in transverse, traceless metric perturbations hi j (x, η) [48,
180]. Then, writing these perturbations in Fourier modes,
hi j (k, η) = ei j (k)hk(η), where ei j (k) is a time-independent
polarization tensor (which is symmetric, traceless and trans-
verse to k), and if we also perform the change of variable

hk(η) ≡ 2

Mp

(
eij e

j
i

)1/2

vk(η)

a(η)
, (3)

the action up to the second order for these perturbations can
be written as S(2)

v = 1
2

∫
dηd3kLv , where

Lv =
[
v′
kv

′−k −
(
k2 − a′′

a

)
vkv−k

]
(4)

Notice that, since v(x, η) describes a real scalar field, we have
that v∗

k = v−k. On the other hand, the momentum canonical

to vk is pk = ∂Lv

∂v∗′
k

.

Therefore, the total Hamiltonian in Fourier space results

H =
∫

R3+
d3k

[
p∗
k pk + v∗

kvk

(
k2 − a′′

a

)]
(5)

To work with real variables, it will be convenient to sep-
arate the canonical variables into their real and imaginary
parts as:

vk ≡ 1√
2

(
vR
k + ivI

k

)
, pk ≡ 1√

2

(
pR
k + i pI

k

)
(6)

Next, the fields vk and pk are promoted to quantum oper-
ators, satisfying the equal time commutator relation given by

[
v̂sk, p̂

s′
k′

]
= iδ

(
k − k′) δss′ (7)

where s = R, I and δss′ is Kronecker’s delta. Using (6) and
(7), the Hamiltonian results to be Ĥ = ∫

R3+ d3k(Ĥ R
k + Ĥ I

k ),
with

Ĥ R,I
k = ( p̂R,I

k )2

2
+ (v̂

R,I
k )2

2

(
k2 − a′′

a

)
(8)

In order to apply the CSL model into the EU scenario,
we will follow the approach presented in [60,63] for the

inflationary case. The temporal evolution characterizing each
mode of the quantum field is given by:

∣∣∣
R,I
k , η

〉
= T̂ exp

{
−

∫ η

τ
dη′ [i ĤR,I

k

+ 1

4λk

(
WR,I

k (η) − 2λk v̂
R,I
k

)2
]} ∣∣∣
R,I

k , τ
〉 (9)

where T̂ is the time-ordering operator and τ denotes the con-
formal time at the beginning of the EU regime. This modifi-
cation of the Schrödinger equation allows it to be possible to
attain a collapse in the relevant operators corresponding to
the Fourier components of the field. We will further assume
linearity in the collapse generating operator, so that the CSL
will act on each mode of the field independently. The stochas-
tic field Wk(η) depends on the conformal time and k, so it
could be regarded as a Fourier transform on a certain stochas-
tic spacetime field W(x, η). On the other hand, the second
main CSL equation is the one that gives the probability for
the stochastic field, i.e. the Probability Rule

P(WR,I
k )dWR,I

k = 〈
R,I
k , η|
R,I

k , η〉
η−dη∏
η′=τ

dWk(η
′)R,I

√
2πλk/dη

. (10)

From the CSL evolution given by Eq. (9), it can be seen
that we have chosen the field variable v̂

R,I
k as the collapse

generating operator. Operationally, what happens is that the
evolution given by the CSL mechanism drives the initial state
of the system to an eigenstate of v̂

R,I
k , with a certain col-

lapse rate given by the CSL parameter λk . As usual in the
framework of a joint metric-matter quantization of the per-
turbations, we will adopt the point of view that the classical
characterization of hk is an adequate description if the quan-
tum state is sharply peaked around some particular value. As
a consequence, the classical value corresponds to the expec-
tation value of ĥk [177]. More precisely, the CSL collapse
mechanism will lead to a final state |
〉 such that the relation

hk = 〈
|ĥk|
〉 (11)

is valid. It is evident that a quantization of vk from the action
built with Eq. (4) yields a quantization of ĥk. In other words,
Eqs. (3) and (11) imply that:

hk(η) = 2

MP

(
eij e

j
i

)1/2

〈v̂k(η)〉
a(η)

(12)

Thus, Eq. (12) relates the quantum field variable v̂k to the
amplitude of the classical tensor mode hk. In particular, Eq.
(12) serves as a justification for choosing v̂k as the collapse
operator. Let us note here that when the quantum state is
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the vacuum, we have that 〈0|v̂k|0〉 = 0 and then the tensor
perturbation is hk = 0 (the same occurs to the primordial
curvature perturbation, namely to the scalar perturbations of
the metric). It is only after the state has evolved, accord-
ing to the CSL mechanism, that generically 〈v̂k〉 �= 0 and
the tensor perturbation is generated (as well as the scalar
curvature perturbation). The quantum expectation value 〈v̂k〉
acts as a source for the tensor perturbation. This illustrates
how the self-induced collapse provided by the CSL model
can generate the primordial perturbations and achieve the
quantum-to-classical transition.

In Fourier space, the wave functional 
[v, η] can be fac-
torized into mode components 
[vk, η] = ∏

k 
R
k [vR

k , η] ×

I

k[v I
k, η]. On the other hand, since the ground state of the

Hamiltonian (8) is a Gaussian, and because the Hamiltonian
and the CSL evolution equation are quadratic in both v̂

R,I
k

and p̂R,I
k , the wave functional at any time can be written in

the form:


R,I[vR,I
k , η] = exp[−Ak(η)(v

R,I
k )2 +BR,I

k (η)v
R,I
k +CR,I

k (η)]
(13)

with initial conditions given by

Ak(τ ) = k

2
, BR,I

k (τ ) = 0, CR,I
k (τ ) = 0, (14)

corresponding to choose as the initial state of the field the
standard Bunch–Davies (BD) vacuum.

2.2 Primordial tensor power spectrum

In this subsection, we will focus on deriving a prediction for
the primordial spectrum of the tensor perturbations. Notice
that, since the equations have the same mathematical struc-
ture, we will closely follow the steps shown in [175] for the
scalar spectrum case.

The tensor power spectrum associated to hi j (k, η) is
defined as

hij (k)h j∗
i (k′) ≡ 2π2

k3 Pt (k)δ(k − k′) (15)

where Pt (k) is the dimensionless power spectrum and the bar
appearing in the last equation means an ensemble average
over possible realizations of the stochastic field hi j (k, η).
It should be remembered here that, in the CSL framework,
each realization is associated to a particular realization of the
stochastic process characterizing the collapse.

By using Eq. (12) we arrive at

hij (k)h j∗
i (k′) = 4

M2
Pa

2
E(k,k′)〈v̂k〉〈v̂k′ 〉∗ (16)

where E(k,k′) is a scalar factor dependent on the polariza-
tion tensor, defined by

E(k,k′) = eij (k)e ji (k
′)∗

(
emn (k)enm(k)

) 1
2

[(
ers (k′)esr (k′)

) 1
2

]∗ (17)

that satisfies E(k,k) = 1.
From definition (15) and Eq. (16), we can identify an

equivalent tensor power spectrum as:

Pt (k)δ(k − k′) = 2k3

π2M2
Pa

2
E(k,k′)〈v̂k〉〈v̂k′ 〉∗ (18)

Taking into account the real and imaginary parts of v̂k, the
ensemble average in (18) is

〈v̂k〉〈v̂k′ 〉∗ = 1

2
(〈v̂R

k 〉2 + 〈v̂I
k〉2)δ(k − k′) (19)

Since 〈v̂R
k 〉2 = 〈v̂ I

k〉2, we will omit the indexes R,I from
now on. On the other hand, using the main equations of the
CSL model, Eqs. (9) and (10), one obtains:

〈v̂k〉2 = 〈v̂2
k〉 − 1

4 Re(Ak)
(20)

Then, substituting Eqs. (19) and (20) into Eq. (18), we
find that the power spectrum can be expressed as:

Pt (k) = 2k3

π2M2
Pa

2

(
〈v̂2

k〉 − 1

4 Re(Ak)

)
(21)

The final steps of the calculation consist of explicitly cal-
culating the two terms on the right of the Eq. (20). Since
this calculation is similar to the one performed in [175], we
refer the reader to Appendix A where we have reproduced
the details particularized for the present case. The final result
for the tensor power spectrum turns out to be:

Pt (k) = Atχ
2 |F(χ)|2 C(k), (22)

where χ ≡ k/a0H0, and we have defined the amplitude of
the tensor power spectrum as

At ≡ 2H2
0

π2M2
P

. (23)

The functions F(χ) and C(k) are defined in Appendix A.
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3 Results: impact on the B-modes angular spectrum

In this section, we shall proceed to examine possible obser-
vational features in the B-modes of the CMB polarization
spectrum, as a consequence of the introduction of the CSL
mechanism in the emergent universe model.

First, notice that the mathematical structure of the tensor
power spectrum Pt (k) of Eq. (22) is similar (except for the
amplitude) to the scalar spectrum Ps(k) shown in Eq. (36)
of [175]. Therefore, we will proceed to do the analysis in a
similar manner; and in particular, under the same assump-
tions discussed in the aforementioned work. In this way, the
primordial tensor power spectrum, in order to include the
small scale dependence normally associated with the tensor
spectral index, can be expressed as:

Pt (k) = Atχ
2|F(χ)|2C(k)

(
k

kP

)nt
(24)

where kP is a pivot scale, which we set as kP = 0.05 Mpc−1,
and nt is the tensor spectral index. As shown in Appendix A,
the last expression can be approximated by Eq. (A34). Then,

Pt (k) � At
χ2

(1 + χ)2

λk |τ |
k

(
k

kP

)nt
. (25)

A well known result is that, using the action for the pertur-
bations hi j and the action of the scalar field v (correspond-
ing to the Mukhanov-Sasaki field variable), together with the
definitions of the tensor and scalar (curvature) power spec-
tra, leads to r = 16ε, with ε the first slow-roll parameter
of inflation. As a consistency check, we can see that from
the amplitude of the scalar spectrum found in [175] (i.e.
As = H2

0 /8π2εM2
P , together with the amplitude of the ten-

sor power spectrum found in this work, At = 2H2
0 /π2M2

P ),
yields r ≡ At/As = 16ε accordingly.

Second, we will also assume the same parameterization
for the collapse rate λk as in [175] (see that Ref. for the
motivation of such a choice), i.e

λk = λ0 (k + B) (26)

where λ0 = 1.029 Mpc−1, this numerical value is motivated
by the fact that such a value is within the range allowed by
current laboratory experiments [181]. Also, the parameteri-
zation of the form (26), i.e. at linear order in k, is necessary
to achieve the approximation (25), specifically in the func-
tion C(k). For the initial conformal time, we have chosen
|τ | � 108 Mpc; in this manner, the condition k|τ | � 1
is fulfilled for the modes k within the range of observable
interest: 10−6 Mpc−1 ≤ k ≤ 1 Mpc−1. On the other hand,
we fix a0H0 = 2 × 10−4 Mpc−1 and the parameter B ≥ 0

will take values between 10−3 and 10−4 Mpc−1, which rep-
resent the preferred values obtained from the analysis in
[175]. In particular, those values yield theoretical curves
of the scalar power spectrum Ps(k) and the CMB tempera-
ture angular power spectrum that seem to be consistent with
the latest data from Planck collaboration [182] (see Figs.
1 and 2 of [175]). Given that in the present section we are
seeking to perform the complementary analysis using the
tensor modes, the choice of these values for the parame-
ters ensures that what was found for the scalar case remains
valid and consistent. We remind the reader that B = 0 cor-
responds to practically “turning off” the effects of the col-
lapse mechanism.4 In that case, the tensor power spectrum
obtained would correspond to the one from the original EU
model presented in [166], which we will name the original
emergent universe model (OEU). In this way, B quantifies
small deviations from the OEU reflecting the inclusion of
the CSL model. Also, we include in each Figure the canon-
ical model, which will be used as a second reference. The
canonical model corresponds to the standard �CDM cos-
mological model, with parameters coming from the latest
data from Planck collaboration [21]. At the 68% confidence
level these values are: �bh2 = 0.02236, �ch2 = 0.1202,
Htoday = 67.27 km s−1 Mpc−1, As = 2.101 × 10−9 and the
optical depth τd = 0.0544. For the tensor power spectrum,
we have At = r As , with the tensor-to-scalar ratio param-
eter r = 0.036 at 95% confidence [17]. The latter implies
that, by the consistency relation nt = −r/8, we can use
nt = −0.0045.

As was mentioned in the Introduction, an important fea-
ture of the emergent universe is that a phase of super-inflation
prior to slow-roll inflation could be related to the suppression
of power in the low CMB multipoles. In [175], some of us
showed that implementing the CSL collapse proposal to the
emergent universe scenario (through the parameter B) intro-
duces extra modifications in the CMB temperature angular
spectrum. Specifically, the angular spectrum in the low mul-
tipoles sector (l < 50) can exhibit a suppression or an incre-
ment, a different feature from what is generically produced
in the emergent universe, which only decreases the curve
spectrum at large angular scales.

Our next step is to analyze if there are characteristics of the
CSL mechanism that are manifested or not in the B-modes
angular spectrum of the CMB, which can be distinguished
from the standard �CDM cosmological model in the obser-
vations of future projects. To achieve this, we modify the
public Code for Anisotropies in the Microwave Background
(CAMB) software [183].

4 It should be remembered that, in our case, collapses through the CSL
model are always present; since, strictly speaking, non-collapse implies
that λk = 0.
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Fig. 1 Predicted B-mode spectra for different values of the collapse
parameter B of the CSL model implemented in the emergent universe
scenario. The canonical �CDM model and the original emergent uni-
verse (OEU) are also shown

Figure 1 depicts the resulting B-modes CMB polarization
power spectrum, for different values of the collapse param-
eter B. There, it can be seen that by varying B there is an
excess or suppression of the angular spectrum for low mul-
tipoles l < 10, which is precisely the region of the CBB

l
spectrum where primordial gravitational waves contribute
the most. In the case of the CTT

l spectrum, exactly the same
behavior occurred (Fig. 2 of [175]), but the fact that the curve
was above or below the canonical model did not allow one to
rule out any of these possibilities. At most, from the known
fact of ’anomalies’ at low multipoles [184,185], one could
say that the set of parameter values of the model that sup-
press such low multipoles have some observational advan-
tage. However, if we now also take into account the CBB

l
plot, we see that from a certain value Bmax � 4 × 10−4, the
emergent universe + CSL curve passes above the canonical
one. That is, values higher than Bmax would already be ruled
out because they exceed the canonical spectrum. Let us recall
that the canonical CBB

l spectrum was constructed using the
maximum observationally allowed constraint on the tensor-
to-scalar ratio r . Thus, with the current constraints on the
primordial B-modes, we can jointly use the CTT

l and CBB
l

spectra to further constrain the B parameter of the CSL col-
lapse model.

Another interesting case to analyze is what would happen
if there was a confirmed detection of primordial B-modes
and the standard theoretical CBB

l curve, i.e. the one obtained
from the canonical model, fits the data to a high degree of
precision. To analyze this case, we will turn off the collapse
effect by setting B = 0, so that the collapse effect is practi-
cally eliminated from the emergent universe model case (also
we can always arrange |τ |, λ0 and H0 so that the amplitude
At remains unchanged).

Fig. 2 Predicted B-mode spectra, when the CSL effect is (practically)
turned off (i. e. B = 0) for different values of the emergent model
parameter a0H0. The canonical �CDM model is also displayed

In Fig. 2, we see that the value a0H0 = 2 × 10−4 Mpc−1

(typically assumed for the analyses) would be ruled out under
the mentioned hypothesis. However, it is possible to decrease
the value of a0H0 in such a way that the CBB

l curve of the
OEU model fully approaches the canonical one. If this hap-
pens, the OEU prediction for the CBB

l would be indistin-
guishable from the canonical one and consistent with the data.
The remarkable aspect about this effect is that, decreasing
the value of a0H0, also causes the ’tail’ of the low multipoles
corresponding to the temperature spectrum (i.e. the CTT

l )
to increase, approaching the canonical one. In other words,
a confirmed detection of primordial B-modes that matches
accurately the canonical CBB

l curve, would rule out a main
feature of the OEU model, namely that it can solve the prob-
lem associated with a lack of power at large angular scales
observed in the CTT

l spectrum.
On the contrary, if a confirmed detection of the primordial

B-modes shows a suppression of low multipoles with respect
to the canonicalCBB

l curve, as it apparently does for theCTT
l

one, then we find that the OEU model could be preferred by
the data over the canonical one, precisely because it has the
characteristic that it suppresses the low multipoles simulta-
neously in both spectra. Finally, notice that ’turning on’ the
parameter B of the CSL model, would not have any effect
that substantially changes the previous analysis. That is, if
B > 0, then it would not be possible to suppress the low
multipoles in the CTT

l spectrum and, at the same time, not
affect the CBB

l in the same way.

4 Conclusions

In this work, we have studied the primordial tensor power
spectrum in the emergent universe scenario, incorporating a
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particular version of the CSL model as a mechanism capable
of generating and explaining the quantum-to-classical tran-
sition of the primordial perturbations; that is, to achieve a
regime in which quantum quantities can be described to a
sufficient accuracy by their classical counterparts.

The search and detection of the CMB B-modes is an
active field currently involving many collaborations. We have
shown that non-trivial features might be detectable in the B-
modes CMB polarization power spectrum within the emer-
gent universe scenario, either with or without the additional
effects of the CSL model considered here.

By varying the collapse parameter B, there is an excess
or suppression of the angular spectrum for low multipoles
l < 10, which is precisely the region of the CBB

l spectrum
where primordial gravitational waves contribute the most.
This result is similar to the case of the CTT

l spectrum anal-
ysed in [175]. However, in the tensor case, we see that above
a certain value given by Bmax � 4 × 10−4, the curve corre-
sponding to the emergent universe with the addition of the
CSL model, passes above the canonical one. That is, val-
ues higher than Bmax would already be ruled out by present
data, because they produce curves that exceed the canonical
tensor spectrum, which was constructed using the current
maximum constraints allowed for the tensor-to-scalar ratio
r . This result confirms that, using the spectra CTT

l and CBB
l

together enables to establish further observational constraints
on the parameter B of this version of the CSL collapse model.

Another main result is that, regardless of the CSL mecha-
nism, a confirmed detection of primordialB-modes that fits to
a high degree of precision the shape of the spectrum predicted
from the concordance �CDM model, would rule out one of
the distinguishing features of the emergent universe. Namely,
producing a best fit to the data consistent with the observed
suppression in the low multipoles of the angular power spec-
trum of the temperature anisotropy of the CMB. Although the
emergent universe model would not be ruled out, the values
allowed fora0H0 would not be those that grants the advantage
to the emergent universe over the �CDM model; specifically,
to achieve a better fit in the low multipole region of the CTT

l
spectrum. In fact, in that case, the �CDM and the emergent
universe predicted spectra (i.e. the CTT

l and CBB
l theoretical

curves) would be indistinguishable. On the contrary, only for
a confirmed detection of the primordial B-modes that shows
a suppression of low multipoles with respect to the canon-
ical CBB

l spectrum, the emergent universe model could be
favored by the data.

To conclude, let us note that as long as precise data of
the CBB

l spectrum are not available, from the mere fact of
the decrease in the power of the low-� tensor spectrum, one
cannot conclusively say whether a collapse mechanism was
at play in the early universe or not, because such an effect is
achieved in the emergent universe with or without the CSL
model. If, in the event that, in addition to a suppression in

the low multipoles, some different feature in the shape of
the tensor spectrum is detected, then we would be able to
distinguish in a more precise manner between the cases B =
0, i.e. the OEU model, and the case with non-zero B collapse
parameter. However, we must emphasize that even in the case
in which the standard OEU and the one with a CSL model are
not distinguishable, the OEU lacks the mechanism that allows
explaining the breaking of symmetries and the quantum-to-
classical transition. Furthermore, we must remember that it
is in conjunction with observations of the scalar temperature
spectrum that we will be able to achieve a distinction between
models. As mentioned in [175], we expect that in the scalar
case the parameter B is not centered at B = 0, which would
help distinguish our proposal from both the canonical �CDM
case and the one explored in [166].
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Appendix A: Annex calculations of the power spectrum

We show here, guided by the analysis shown previously in
[175], the intermediate steps of the calculation to arrive at the
final expression in Eq. (22) of the tensor power spectrum, and
its approximate version given by Eq. (25).

Let us start with the second term of Eq. (20). The quan-
tity [Re(Ak)]−1 represents the variance of the field variable,
which in turn is related to the width of the wave functional
(13). From Eq. (9) and the wave functional (13), one can
obtain an equation of evolution for this quantity, which results

A′
k = −2i A2

k + i

2

(
k2 − a′′

a

)
+ λk (A1)
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It is convenient to rewrite this last equation, making the
change of variables given by Ak ≡ f ′/(2i f ). In this way,
we have

f ′′ +
(
q2 − a′′

a

)
f = 0 (A2)

with:

q2 ≡ k2
(

1 − 2i
λk

k2

)
. (A3)

A solution to Eq. (A2) with the Bunch–Davies initial condi-
tions given by Eq. (14) can be found, which results

f = e−iqη

√
2k(1 − ea0H0η)

2F1(q−, q+, b; ea0H0η), (A4)

where 2F1 is the hypergeometric function, q± and b defined
by

q± ≡ −1 − iq

a0H0
±

√
1 −

(
q

a0H0

)2

(A5)

b ≡ 1 − 2iq

a0H0
(A6)

Now, returning to the original variable Ak , we find that
[Re(Ak)]−1 = (λη)−1. On the other hand, by virtue of the
definition for f results,

Re[Ak(η)] = W

| f |24i
(A7)

being W = f
′
f ∗ − f

′∗ f the corresponding Wronskian.
Notice that if λk = 0, then W = i for all η, and q = k.

Next, we will focus on the first term of Eq. (20). Here, it
will be convenient to define the following quantities:

Q ≡ 〈v̂2
k〉, R ≡ 〈 p̂2

k〉, S ≡ 〈
p̂kv̂k + v̂k p̂k

〉
(A8)

Then, from the CSL equations we can obtain equations for
Q, R and S, which result:

Q′ = S

R′ = −wk(η)S + λk

S′ = 2R − 2Qwk(η)

(A9)

where we name wk(η) ≡ k2 − a′′/a. This is a linear system
of coupled differential equations. The general solution will
be a particular solution to the system plus a solution to the
homogeneous equation (λk = 0). The solution results:

Q(η) = C1v
2
1 + C2v

2
2 + C3v1v2 + Qp (A10)

where C1, C2 and C3 are found by imposing the initial con-
ditions corresponding to the Bunch–Davies vacuum state:
Q(τ ) = 1/2k, R(τ ) = k/2, and S(τ ) = 0. On the other
hand, the functions v1 and v2 are two linearly independent
solutions of v′′ + wkv = 0, and Qp is a particular solution
of

Q′′′
p + 4wk Q

′
p + 2w′

k Q p = 2λk (A11)

The exact solutions v1 and v2 are:

v1(η) = e−ikη

√
2k

(
1 − ea0H0η

) 2F1

(
k−, k+, b; ea0H0η

)

v2(η) = v1(η)∗
(A12)

with k± and b are defined in the same manner as in (A5) an
(A6) but replacing q → k.

We should note here that an exact solution to Eq. (A11) is
difficult to find. However, given the regimes of interest in the
present work (the initial static regime where de BD conditions
are imposed, and the de Sitter phase where de power spectrum
is evaluated), we can find approximate solutions. In the static
regime wk � k2, and in the de Sitter one wk = k2 −2/η2. In
these two regimes mentioned, Qp can be approximated by

Qp(η) � λkη

2k2 (A13)

With this in hand, the constants that appear in Eq. (A10)
can be calculated, which turn out to be:

C1 = −iλk
4k2 e2ikτ , C2 = C∗

1 , C3 = 1 − λkτ

k
. (A14)

With all this, we can now obtain the power spectrum (21).
Before that, let us note that if λk = 0 then Pt (k) = 0, because
Q(η) = (4Re[Ak(η)])−1 exactly in that case. This result is
consistent with our point of view in which, if there is no
collapse, then the metric perturbations are zero.

Then, by considering the modes in the super-Hubble limit
(−kη → 0), the power spectrum (21) can be written as

Pt (k) = 2H2
0

π2M2
P

χ2 |F(χ)|2 C(k), (A15)

with:

χ ≡ k

a0H0
(A16)

F(χ) ≡ 2� (1 − 2iχ)

�
(

2 − iχ − √
1 − χ2

)
�

(
2 − iχ + √

1 − χ2
)

(A17)

C(k) ≡ 1 + λk

k
|τ | + 1

2
sin(2δ)

λk

k2 (A18)
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δ ≡ arctan

(
ImF

ReF

)
− χa0H0|τ | (A19)

To arrive at Eq. (A15) we have multiplied by two due to
the different polarizations, and approximated the scale factor
by a ≈ − 1

ηH0
.

As discussed in depth in [175], numerical calculations
set a restriction for implementing the exact equation (A15).
However, for the whole k range of observational interest,
namely

10−6 Mpc−1 ≤ k ≤ 1 Mpc−1, (A20)

one can use an approximate expression. Let us see how to
implement it.

Starting from Eq. (A17), we can rewrite this function as
follows:

F(χ) = 2�(x1)

�(x2)�(x3)
(A21)

with:

x1 = 1 − 2iχ, (A22)

x2 = 2 − iχ −
√

1 − χ2, (A23)

x3 = 2 − iχ +
√

1 − χ2. (A24)

In Eq. (A15) we have |F(χ)|2, so given the properties of
the Gamma function, we explicitly write it as:

|F(χ)|2 = 4|�(x1)|2
|�(x2)|2|�(x3)|2 . (A25)

We now consider the two asymptotic regimes for χ , i.e
χ2 � 1 and χ2 � 1.

• If we consider χ2 � 1, then
√

1 − χ2 ≈ iχ . Therefore,
x2 ≈ x1 + 1 and x3 ≈ 2. Using these approximations in
the exact expression of |F(χ)|2 (A17), and taking into
account that �(z+ 1) = z�(z) and �(2) = 1, we obtain

|F(χ)|2 ≈ 4|�(x1)|2
|x1|2|�(x1)|2 = 4

1 + 4χ2 ≈ 1

χ2 . (A26)

• On the other hand, in the regime χ2 � 1, we can
approximate

√
1 − χ2 ≈ 1 − χ2/2; hence x2 ≈ 1 − iχ

and x3 ≈ 3 − iχ = x2 + 2. By using the property
|�(1 + bi)|2 = πb/sinh(πb), we can write

|F(χ)|2 ≈ 4|�(x1)|2
|x2 + 1|2|x2|2|�(x2)|4 (A27)

= 4 tanh(πχ)

πχ(4 + χ2)(1 + χ2)
≈ 1 + O(χ2) (A28)

Fig. 3 Two possible approximations for the function χ2|F(χ)|2 (black
line) mentioned in the text. Option (i) corresponds to f (χ) = g(χ) (blue
line) and option (ii) corresponds to f (χ) = h(χ) (red line). We observe
that χ2h(χ) is a better approximation to the exact solution in the full
regime

where at the end we have performed a Taylor series
around χ = 0.

Thus, we have two asymptotic regimes: (i) |F(χ)|2 →
1/χ2 for χ2 � 1 and (ii) |F(χ)|2 → 1 for χ2 � 1. In
order to match smoothly these two regimes, we can consider
two options: g(χ) = 1/(1 + χ2) and h(χ) = 1/(1 + χ)2.
Plotting both functions, together with the exact form |F(χ)|2,
we can see that h(χ) is a better approximation and thus we
will use that

χ2|F(χ)|2 ≈ χ2

(1 + χ)2 , (A29)

in the power spectrum (see Fig. 3).
On the other hand, C(k) is defined by Eq. (A18), which

we can rewrite it as

C(k) = 1 + λk |τ |
k

(
1 + sin(2δ)

2k|τ |
)

. (A30)

Taking into account that as an initial condition in the Bunch–
Davies vacuum we have k|τ | � 1 (and that also |sin 2δ| ≤ 1),
we can neglect the last term, thus,

C(k) ≈ 1 + λk |τ |
k

. (A31)

Next, we recall that the parameterization used for λk is given
by λk = λ0(k + B). Note that if B = 0, the predicted angu-
lar spectrum is indistinguishable from the one corresponding
to the OEU model. Therefore, we can think of the parame-
ter B as representing a small deviation the OEU model due
to the inclusion of the collapses. Using the aforementioned
parametrization in Eq. (A31), we have
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C(k) ≈ λ0|τ |
(

1 + B

k
+ 1

λ0|τ |
)

. (A32)

In the analysis presented in Sect. 3, the value of the param-
eter B is within the interval [10−4, 10−3] Mpc−1, while k is
within the range of observational interest [10−6, 1] Mpc−1.
Consequently, B/k is bounded within [103, 10−4]. More-
over, since we have chosen λ0 ≈ 1 Mpc−1 and |τ | ≈ 108

Mpc, then 1/λ0|τ | ≈ 10−8. Thus, we can neglect the last
term of Eq. (A32), i.e.

C(k) ≈ λ0|τ |
(

1 + B

k

)
= λk

k
|τ |. (A33)

Finally, using approximations (A29) and (A33), the tensor
power spectrum (A15) becomes:

Pt (k) ≈ 2H2
0

π2M2
P

χ2

(1 + χ)2

λk |τ |
k

. (A34)
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