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Abstract Motivated by recent work on the Modified
Maxwell (ModMax) black holes [Phys Lett B 10.1016/j.phy
sletb.2020.136011], which are invariant in duality rotations
and conformal transformations founded in [Phys Rev D
10.1103/PhysRevD.102.121703], we probe its effects on the
shadow cast, weak field gravitational lensing, and neutrino
propagation in its vicinity. Using the EHT data for the shadow
diameter of Sgr. A* and M87*, and LIGO/VIRGO experi-
ments for the dyonic ModMax black hole perturbations, we
find constraints for ModMax parameters such as Qm and
the screening factor γ . We also analyze how the shadow
radius behaves as perceived by a static observer and one
that is comoving with the cosmic expansion. The effect of
the ModMax parameters is constant for a static observer, and
we found That it varies when the observer is comoving with
cosmic expansion. We also analyzed its effect on the weak
deflection angle by exploiting the Gauss–Bonnet theorem
and its application to Einstein ring formation. We also con-
sider the finite distance effect and massive particle deflection.
Our results indicate that the far approximation of massive
particle gives the largest deflection angle and amplifies the
effect of Qm and γ . Then we also calculate the quasinormal
modes and greybody bounds which encode unique charac-
teristic features of the dyonic ModMax black hole. With the
advent of improving space technology, we reported that it is
possible to detect the deviation caused through the shadow
cast, Einstein rings, quasinormal modes, and neutrino oscil-
lations.
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1 Introduction

One of the most important problems in Einstein’s theory
of general relativity is the singularities at the beginning of
the universe and black hole solutions. There are similar sin-
gularities in Maxwell’s theory of Electrodynamics [1]. To
avoid these singularities, firstly, Born–Infeld (BI) modified
the Maxwell theory of electrodynamics in 1934, which is also
relativistic and gauge-invariant theory, known as BI nonlin-
ear electrodynamics (NED) [2]. In BI NED, the self-energy
of charges is finite. Moreover, the effective action of BI NED
can also be derived from open superstrings at low energy
dynamics of D-branes, without any physical singularities,
[1,3]. Another example is Euler–Heisenberg (EH) NED,
which occurs due to the polarization of the vacuum [4]. Both
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BI NED and EH NED (which are SO(2) electric-magnetic
duality invariant) reduce to the Maxwell electrodynamics in
the weak field regime because of the fixed energy scale inter-
actions which break the conformal invariance. Afterwards,
based on the Einstein-NED theories, the regular black hole
solutions were obtained, with freedom of duality rotations
[5–7]. Recently authors in [8] constructed a generalization
of Maxwell electrodynamics known as ModMax electrody-
namics which has a low-energy limit of a one dimensionless
parameter generalization of BI, and γ = 0 condition gives
Maxwell’s equations. Recently, Flores-Alfonso et al. have
found new black hole solutions in ModMax electrodynam-
ics [9]. The SO(2) invariance for electric and magnetic fields
gives us the dyonic solutions. The effect of ModMax elec-
trodynamics on black hole spacetimes via screening factor γ

shields the actual charges. Then ModMax electrodynamics
have been considered by many authors [10–30].

One of the most striking features of a compact object such
as a black hole is the gravitational bending of light in its vicin-
ity. It introduces the innermost region for photon orbit, which
is unstable, and any perturbation will cause photons to spiral
into the black hole or escape to infinity. These photons that
escape to infinity determine the shadow cast perceived by an
observer at infinity. The Event Horizon Telescope Collabora-
tion’s [31,32] experimental findings revealed the first image
of the black holes M87* and Sgr. A*, which demonstrates the
existence of a black hole shadow that was theoretically stud-
ied by [33,34]. While the literature on the study of shadow
cast is quite exhaustive before and after the release of the
black hole image by the EHT, it leaves no doubt about the
importance of studying the black hole shadow since it reveals
imprints of the spacetime being considered, and the effects
of any type of astrophysical environments [35–59]. It led
to various methods being developed to explore such effects
[60–68]. This study aims to constrain the screening factor γ

using the EHT data and explore how the shadow cast/radius
behaves. We will also analyze a more realistic scenario, the
shadow cast as perceived by a non-static observer, that co-
moves with the cosmic expansion. Finally, we extend the
situation to different cosmological models.

According to Einstein’s theory of general relativity,
masses deflect light in a way similar to convex glass lenses
known as gravitational lensing, which is a powerful tool to
test alternative gravity theories [69–74]. In astrophysics, dis-
tances play a dominant role in determining the properties
of astrophysical objects. Contrary to this, Virbhadra showed
that just observation of relativistic images (no information
about the masses and distances are required) gives an incred-
ibly accurate value for the upper bound to the compactness
of massive dark objects [75]. Moreover, Virbhadra hypoth-
esized that there exists a distortion parameter such that the
signed sum of all images of singular gravitational lensing of
a source identically vanishes by testing this with images of

Schwarzschild lensing in weak and strong gravitational fields
[76].

Although there are many methods to calculate weak
deflection angle, Gibbons and Werner proposed an alternative
method to calculate it by applying the Gauss–Bonnet theo-
rem (GBT) on the optical metric of the asymptotically flat
black holes [77]. Werner then improved this method for rotat-
ing spacetimes such as Kerr black hole [78]. Afterwards, this
method was applied to various asymptotically flat spacetimes
and was also extended to non-asymptotically flat spacetimes
[39–48,79–92].

Detection of the gravitational waves by LIGO/VIRGO
collaborations opens a new gate in black hole physics.
The gravitational waves provide the characteristic vibration
modes of black holes (complex frequency of damped oscil-
lations) or imprint of the black holes, independent of what
exactly excited the modes), which are known as quasinormal
modes (QNMs). In the 1950s, the pioneering work on black
hole perturbations was done by Regge and Wheeler [93] and
then by Zerilli [94]. In the 1960s, Thorne studied the perturba-
tions of relativistic stars in GR [95,96]. First, Vishveshware
imagined and studied the QNMs of the Schwarzschild black
hole by calculating the scattering of gravitational waves [97].
Then Press used the term of quasinormal frequencies (QNF)
[98]. Afterwards, Davis et al. showed how to obtain QNM
oscillations from the infalling particle into Schwarzschild
black hole [99] and Detweiler et al. showed for Kerr black
holes [100]. Black hole perturbations and QNMs are a well-
studied and active field to study, and there are various meth-
ods on different spacetimes in literature (for more informa-
tion [101–116], see these reviews [117–119]). The QNMs
could be detected through the gravitational wave interferom-
eters, so we would like to explore the properties of back-
ground spacetime of ModMax black holes and try to probe
the ModMax BH parameters by studying gravitational waves
(GWs) at the ringdown stage.

In 1974 Hawking showed that there are ’grey holes’ and
not black holes because of their radiation, which is impossi-
ble classically for ingoing particles [120]. The quantum field
theory calculations near the black hole’s horizon provide the
emission of quantum radiation due to the creation and anni-
hilation of particles. The Hawking radiation is moving on a
curved spacetime ( as a potential barrier) so that some radia-
tions are reflected into the black hole and the rest travel to spa-
tial infinity [121]. These deviations from the blackbody radi-
ation spectrum, as seen by an asymptotic observer, are known
as the grey-body factor, which is a synonym for transmission
probability [110,122–128], and there are various methods to
calculate it. One can use the matching technique [129], the
WKB approximation [130] or the rigorous bound [131,132].
On the other hand, in 1968, Matzner studied the absorption
and scattering of a massive scalar field from hitting a black
hole [133]; hence he showed that the total cross-section for

123



Eur. Phys. J. C (2022) 82 :1155 Page 3 of 25 1155

the absorption process vanishes. In 1978 Sanchez calculated
the absorption spectrum of the Schwarzschild black hole and
obtained the total absorption cross section in the Hawking
formula [134]. Sanchez showed that the absorption spec-
trum as a function of the frequency makes clear oscillations
characteristic of a diffraction pattern, where the oscillations
occur around the constant value of the geometrical optics
with decreasing amplitude and constant period. The absorp-
tion cross-section for black holes has been studied in the lit-
erature for various black hole spacetimes [46,108,135–146],
especially for the low-frequency behaviour of the absorption
and for the zero-frequency limit (it becomes equal to the sur-
face area of the black hole horizon) [136,147,148], as well
as the high-frequency behaviour of the scalar absorption via
Sinc approximation [134,149,150].

In this paper, we also investigate the propagation of neu-
trinos in dyonic ModMax BH. We focus, in particular, on the
neutrino flavour oscillation and spin-flip of neutrinos when
they scatter off BH. Clear evidence that neutrinos may oscil-
late in different flavours comes from experiments on neu-
trinos [151–153]. These experiments indicate that neutrinos
are massive particles and, therefore, that physics beyond the
Standard Model is required to incorporate the neutrino par-
ticle properly. An important aspect related to the properties
of neutrinos is their interaction with external fields. These
interactions can be either electromagnetic or gravitational.
In these cases, the formulas of the oscillation probabilities
of mixed neutrinos (different flavours) are affected by the
external field, compared to the formulas computed in vac-
uum [154]. For example, the interactions of neutrinos with
external electromagnetic fields may induce the so-called spin
oscillation and/or spin-flavour oscillations, that is a helicity
transition of neutrinos with different helicities [155]. It is
also well known the gravitational interaction or propagation
of neutrinos in the curved background can affect the neu-
trino oscillations probability, or induce the change of the
polarization of a spinning particle [156–176]. In this paper
we study the neutrino oscillation probability for neutrinos
propagating in dyonic ModMax BH. We also study helicity
transitions of neutrinos, hence the transition ν f L → ν f R ,
where f = e, μτ , corresponding to the case in which neu-
trino flavour remains fixed (the generic case of neutrino spin-
flavour oscillations has been studied in [177]). This analy-
sis is important because neutrinos are produced with a fixed
left-handed polarization in the Standard Model so that if a
transition to right-handed polarization occurs, these neutri-
nos become sterile (they interact only gravitationally). As a
consequence, a detector would register a different neutrino
flux, providing in such a way a signature of the coupling of
neutrinos with the gravitational background. Here we shall
consider only the gravitational field described by ModMax
BH.

Our work’s layout is as follows: Sect. 3 is devoted to inves-
tigating the shadow cast behaviour and the effect of a co-
moving observer. In Sect. 4, we analyzed the behaviour of
the weak deflection angle of both massive and null parti-
cles. Then, in Sects. 5–7, we study the effect of the screening
parameter on the spherical infalling accretion, quasinormal
modes, and bounds of the greybody factors. Finally, in Sect. 8,
we investigate its effect on neutrino oscillations. In particu-
lar, we focus on the neutrino flavour and spin transition in the
background described by a dyonic ModMax BH. We shortly
analyzed also the effect on nucleosynthesis processes. Con-
clusions are discussed in Sect. 9. Throughout this paper, we
used geometrized units G = c = 1, and the metric signature
(−,+,+,+).

2 Dyonic ModMax black holes

In this section, we study the spherically symmetric metric
of Dyonic ModMax black hole solutions derived in [9] as
follows;

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2d�, (1)

where d� := dθ2+sin2 θdφ2 and (t, r, θ, φ) with the metric
function:

fdyon(r) = 1 − 2M

r
+ (Q2

e + Q2
m)e−γ

r2 . (2)

We plot the above metric function shown in Fig. 1. Here, we
can see theoretically that only a single horizon is formed for
the Schwarzschild case, while there are inner and outer hori-
zons for the RN case when Qe = 0.75M . As the plot indi-
cates, we can observe how the screening parameter affects
these null boundaries. The event horizon of the ModMax
black hole is located at:

r± = M ±
√
M2 − Q2

ee
−γ . (3)

Note that the mass must always be larger than the charge;
however, it is not valid for the case of the ModMax black
hole because, in the extremal case of the ModMax black
hole, it occurs at r+ = r−:

Mext = |Qe|e−γ /2, (4)

so that γ > 0, then Mext < |Qm|; similarly with non-linear
electrodynamics [178,179].

3 Shadow cast

In this section, we first analyze the behaviour of the ModMax
black hole’s shadow as the screening parameter γ varies.
Since spacetime has spherical symmetry, we can analyze null

123



1155 Page 4 of 25 Eur. Phys. J. C (2022) 82 :1155

Fig. 1 Plot of the f (r), which reveals the location of the inner and outer
horizons due to the dyonic ModMax black hole. Here, Qm = 0.25M

geodesics θ = π/2, along the equatorial plane. To derive the
null particle’s equation of motion, consider the Lagrangian

L = 1

2

(−A(r)ṫ + B(r)ṙ + C(r)φ̇
)
, (5)

where we wrote A(r) = f (r), B(r) = 1/ f (r) and C(r) =
r2. With the least action principle, two constants of motion
can be derived:

E = A(r)
dt

dλ
, L = C(r)

dφ

dλ
, (6)

where we can define a useful constant called the impact
parameter:

b ≡ L

E
= C(r)

A(r)

dφ

dt
. (7)

Going back to the metric, ds2 = 0 for null geodesics allows
us to derive how the r changes with φ. In other words,

(
dr

dφ

)2

= C(r)

B(r)

(
h(r)2

b2 − 1

)
, (8)

where we have defined

h(r)2 = C(r)

A(r)
. (9)

With the above function, one can solve or locate the pho-
tonsphere radii via h′(r) = 0 where the prime denotes the
derivative with respect to r . For our case, we obtained

rph = 3M

2
± 1

2

√
9M2 − 8

(
Q2

e + Q2
m

)
e−γ . (10)

A non-rotating black hole, such as in this study, only pro-
duces a circular shadow silhouette. The shadow is caused
by photons escaping the photonsphere due to tiny perturba-
tions. In the Schwarzschild case, in particular, rph = 3M ,
while the shadow radius is Rsh = 3

√
3M . It is important to

note that this shadow radius coincides with the critical impact
parameter bcrit. In some situations, if the cosmological con-
stant is considered, this is not the case since the photons are
affected by the astrophysical environment as it travels toward
the receiver, usually a remote and static observer [62].

Considering the static observer and following the formal-
ism found in Ref. [62], a careful inspection of the line element
and situation allows us to define

tan(αsh) = lim
�x→0

�y

�x
=
(
C(r)

B(r)

)1/2 dφ

dr

∣∣∣∣
r=robs

, (11)

or, written in another way,

cot2(αsh) =
(
B(r)

C(r)

) (
dr

dφ

)2
∣∣∣∣∣
r=robs

. (12)

With the orbit equation and elementary trigonometry, it is
easy to see that

sin2(αsh) = b2
crit

h(robs)2 , (13)

where bcrit is associated with the photonsphere radius. It can
be derived by satisfying the condition d2r/dφ2 = 0 and
imposing r → rph:

b2
crit = h(r)

[B ′(r)C(r) − B(r)C ′(r)]

[
h(r)B ′(r)C(r)

−h(r)B(r)C ′(r) − 2h′(r)B(r)C(r)

]
, (14)

where in our case yields

b2
crit = 3r3

ph

rph − M
. (15)

Using Eqs. (9), (10), and (15) to Eq. (13), we obtain an exact
formula for the shadow radius as

Rsh

= rph

[
2

(
1 − 2M

robs
+
(
Q2

e + Q2
m

)
e−γ

r2
obs

)(
1 − M

rph

)−1
]1/2

.

(16)

Let us first discuss the observational constraint of the
screening parameter using the obtained data from M87* [31]
and Sgr. A* [32]. First and foremost, these astrophysical
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Fig. 2 Observational constraints. Left: Sgr. A*, right: M87*. The same plot appearance is obtained for Qm < 0

black holes are indeed rotating. However, as pointed out in
Ref. [180], the constraints for the spin parameter a on Sgr. A*
is not clear, but recent constraints place the spin parameter at
a � 0.1M due to the impact of frame-dragging precession
on the orbit of S-stars [181]. Similar uncertainties for the
spin of M87 are also present: Using accretion physics, recent
estimates have shown that 0.20 < a < 0.50 [182]. Other
authors [183] reported that through the measurements of the
average power of the relativistic jet and using the upper limit
of mass accretion rate for black holes in general relativis-
tic magnetohydrodynamic models of jet formation, the spin
parameter of M87* would likely fall from a ≥ 0.40M for
the prograde case, and a ≥ 0.50M for the retrograde case. It
was also shown in Ref. [180] that slow spin does not affect
the shadow radius dramatically, and a ∼ 0 can be safely
assumed for constraining parameters coming from different
black hole models. Finally, astrophysical black holes such as
these are more likely to contain no charge due to the neu-
tralization process of the accreting ionized plasma. In Ref.
[184], constraints indicate that Qm/M can be very close to
zero. Nonetheless, in the following analysis, we will assume
the role played by Qe and Qm, as well as the parameter γ .
We will analyze the Modmax black hole for low and average
values of Qe. Finally, we need to remark that we will only
analyze the classical shadow silhouette, where its bound-
ary is dominated by the glowing accretion disk causing it to
become invisible. The dark spot in the EHT image of M87*
and Sgr. A* is the imprint of the event horizon’s shadow.
It is caused by highly redshifted escaping photons coming
from accreting matter near the event horizon. As a result,
this shadow is smaller than the classical shadow [65].

According to the seminal EHT papers [31,32], the
reported classical shadow angular diameter is θM87* = 42 ±
3 μas. Other parameters are the distance of the M87* from
the Earth, which is D = 16.8 Mpc, and the mass of the M87*

is MM87* = 6.5 ± 0.90 × 109 M�. For Sgr. A* the angular
shadow diameter is θSgr. A* = 48.7 ± 7 μas (EHT), the dis-
tance of the Sgr. A* from the Earth is D = 8277±33 pc and
the mass of the black hole is MSgr. A* = 4.3±0.013×106M�
(VLTI). Let us now calculate the diameter of the shadow size
in units of the black hole mass using

dsh = Dθ

M
, (17)

which is just the standard arc-length formula. Meanwhile,
the theoretical shadow diameter can be obtained via d theo

sh =
2Rsh. Therefore, by using Eq. (17), we get the diameter of the
shadow image of M87* and Sgr. A* as dM87*

sh = (11±1.5)M ,

and dSgr. A*
sh = (9.5 ± 1.4)M respectively.

In Fig. 2, we plotted the allowed values of Qm while main-
taining the screening parameter γ fixed. Such a plot will give
how the shadow diameter behaves at our location from Sgr.
A* and M87* as we vary Qe and Qm. We included a very
small value for Qe to represent the notion that these astro-
physical black holes may contain a negligible charge. We see
that if γ = 1, it amplifies the effect of Qe and Qm, in con-
trast with γ = −1. Nevertheless, we observe how γ affects
the curve. An important observation of this plot is that as γ

decreases, the line becomes more curved, allowing smaller
values of ±Qm within the 1σ uncertainty. It is also worth
noting that if Qe is close to zero, the value of γ is irrelevant
when Qm is also close to zero. While it happens above the
mean for Sgr. A*, it happens below the mean for M87*. As
a result, the range for Qm at 1σ level is lesser than Sgr. A*.

Let us now plot how a static observer, at different points
robs, will perceive the shadow size of Sgr. A* and M87*.
We plotted this in Fig. 3, along with the Schwarzschild and
RN cases, where Q = 0.10M to see its effect. Our current
position from these SMBHs is represented in the right inset
plot, where we zoomed in on the effects of the screening
parameter γ and Qm, manifest in visuals in Fig. 2. The pattern
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is the same for M87*, except that we are much farther. Such a
similarity is expected because the ModMax parameters have
no dependence on r . Finally, it is interesting how the shadow
behaves near the black hole, where we can see an abrupt
increase in the shadow radius until robs/M ∼ 316. The case
where γ < 0 shows that the shadow forms early or nearer the
event horizon, compared to the case where γ > 0. However,
as robs increases, γ > 0 gives a larger shadow. The point
where the curves intersect is also interesting, for it represents
that θsh = π/2, indicating that in such a location, half of the
sky is dark [62].

3.1 Behavior of the shadow due to a co-moving observer

In reality, observers are not static. Thus, this study aims
to investigate the effect of the screening parameter on the
shadow perceived by an observer co-moving with the cosmo-
logical expansion of the Universe. Here, we apply the recent
formalism in Ref. [60], first focusing on the dark energy-
dominated Universe. Then, we also extend the analysis to
matter and radiation-dominated Universes.

An observer in a co-moving frame is better understood
using the McVittie metric. According to Ref. [185], we can
find that

ds2 = −
⎡
⎢⎣

1 − M2

4a(t)2r2 + (Q2
e+Q2

m)e−γ

4a(t)2r2

(
1 + M

2a(t)r

)2 − (Q2
e+Q2

m)e−γ

4a(t)2r2

⎤
⎥⎦

2

dt2

+ a(t)2

[(
1 + M

2a(t)r

)2

− (Q2
e + Q2

m)e−γ

4a(t)2r2

]2

× (dr2 + r2d�2), (18)

where d�2 = sin2 ϑdϕ2 +dϑ2, and a(t) = eH0t is the scale
factor. In addition, H0 is the present value of the Hubble
constant. The relation between the cosmological constant �

and H0 is

� = 3H2
0 . (19)

At present, � = 1.1056 × 10−52 m−2, which makes the dis-
tance of the cosmological horizon to be dcosmo = 9.51 ×
1025 m. Note the time dependence of Eq. (18), but such
dependence is negligible if one is near the black hole. Being
near means comparing the distance of the black hole to the
observer and the cosmological horizon. Indeed, even if we
are so far to M87* or Sgr. A*, our distances from these
black holes are so small compared to the scale of the cos-
mological horizon. Then by [60], t0 − t << H−1

0 . Thus, as
a(t) ∼ a(t0) =constant and using x = a(t0)r , we can recast
Eq. (18) as

ds2 = −
⎡
⎣ 1 − M2

4x2 + (Q2
e+Q2

m)e−γ

4x2(
1 + M

2x

)2 − (Q2
e+Q2

m)e−γ

4x2

⎤
⎦

2

dt2

+
[(

1 + M

2x

)2

− (Q2
e + Q2

m)e−γ

4x2

]2

× (dx2 + x2d�2), (20)

which is the RN black hole within isotropic coordinates.
Introducing

R = x

(
1 + 2M

x
− (Q2

e + Q2
m)e−γ

x2

)2

, (21)

where in the weak field limit (M, Qe, Qm ∼ 0), R ∼ x , we
recover a form similar to the RN metric:

ds2 = −
(

1 − 2M

R
+ (Q2

e + Q2
m)e−γ

R2

)
dt2

+ dR2
(

1 − 2M
R + (Q2

e+Q2
m)e−γ

R2

) + R2d�2. (22)

Let the present time be t0 where the observer is at some
radial position rin, who observes the black hole shadow in
the strong field regime. Here, the subscript “in” indicates the
inner region. Then we should have xin = a(t0)rin and using
these, Eq. (21) can be recast as

Rin = xin

(
1 + 2M

xin
− (Q2

e + Q2
m)e−γ

x2
in

)2

. (23)

Then using Eq. (22), an observer co-moving with the space-
time in Eq. (20) will then observe the shadow radius Rin as

Rin = Rin sin αcomov = rph

⎡
⎢⎢⎣

2

(
1 − 2M

Rin
+ (Q2

e+Q2
m)e−γ

R2
in

)

1 − M
rph

⎤
⎥⎥⎦

1/2

,

(24)

where rph is still given by Eq. (10). We note that Eq. (24) is
the “inner” solution to the shadow radius where the effect of
the cosmological expansion is considered negligible.

Next, we consider the solution to the outer region in the
weak field regime of the black hole while considering a
stronger effect of the cosmological expansion. It is easy to
see how Eq. (18) will reduce to an FRW metric in such a
case:

ds2 = −dt2 + a(t)2(dr2 + r2d�2). (25)

123



Eur. Phys. J. C (2022) 82 :1155 Page 7 of 25 1155

Fig. 3 Behavior of shadow radius for a static observer located at robs. Left: Sgr. A*. Right: M87*. Here, we have chosen Qm = 0.10M , which fits
the constrained values in Fig. 2. The shadow behaviour for M87* follows the same pattern

In this spacetime, it is well-known that the effective linear
shadow radius Lsh, now applied to the shadow, is given in
terms of the angular size of the black hole shadow �cosmo as

Lsh = �cosmoDA(z), (26)

where

DA(z) = 1

1 + z

∫ z

0

dk

H(k)
, (27)

and

H(k) = H0[�mat(1 + k)3 + �rad(1 + k)4 + ��]1/2. (28)

Here, �mat,�rad,�� are present dimensionless density
parameters for matter, radiation and dark energy, respec-
tively. The angle �cosmo is considered to be so tiny that the
relation sin(�cosmo) ∼ �cosmo remains valid. Due to the
dependence of Eq. (26) z, we can assume that xout ∼ Rout

due to the enormous distance from the black hole. It enables
one to connect z to Rout via by [60]

Rout =
∫ z

0

dk

H(k)
. (29)

Between these inner and outer regions, there is a loca-
tion where the influence of the black hole and cosmological
expansion begins to lose and gain, respectively. This overlap
region, denoted by Ro, is still remote from the black hole.
Thus, the approximation z << 1 is valid since the scale fac-
tor is a(t0) at the location of such an observer at time t0. Thus,
we have DA(z) ∼ Ro and

Lo = �oRo, (30)

which is still equal to the weak field approximation of Eq.
(24):

Ro = Lo = 3
√

3M +
√

3((Q2
e + Q2

m)e−γ )2

2

[
1

M
+ 1

Ro

]

+O(R−2
o , R−3

o ). (31)

Then, we can match Lo and Lsh [60]. Using Rout instead of
Ro, the effective shadow radius Rcosmo in the outer region of
rapid expansion is obtained:

Rcosmo = �cosmoRout = Rout

DA(z)

[
3
√

3M

+
√

3
(
Q2

e + Q2
m

)
e−2γ

2

(
1

M
+ 1

Rout

)
+ O(R−2

out, R
−3
out)

]
.

(32)

Finally, the perceived shadow radius Rapprox by an observer
co-moving with the cosmic expansion is approximated via
composite solution [60]:

Rapprox = Rin + Rcosmo − Ro. (33)

Note that in Ref. [60], the authors analyzed the situation
using the angular radius, whereas, in this study, we slightly
extended the formulation to investigate the shadow radius
behaviour.

Equation (33) enables us to calculate the approximated
shadow radius using different models for our Universe. In
particular, let us take, for example, a Universe dominated by
dark energy, where, after evaluating Eqs. (27) and (29), we
find

DA(z) = z

(1 + z)H0
, Rout = z

H0
. (34)
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Now for brevity, let

W = rph

⎡
⎢⎢⎣

2

(
1 − 2M

Rout
+
(
Q2

e+Q2
m
)
e−γ

R2
out

)

1 − M
rph

⎤
⎥⎥⎦

1/2

,

w = 3
√

3M +
√

3
(
Q2

e + Q2
m

)
e−2γ

2

[
1

M
+ 1

Rout

]
. (35)

Then, Eq. (33) implies that the approximate shadow radius
seen by a co-moving observer is

R�
approx = W + wH0Rout. (36)

Consider a Universe dominated by matter where

DA(z) = 2
(√

z + 1 − 1
)

H0(z + 1)3/2 , Rout = 2
(√

z + 1 − 1
)

H0
√
z + 1

, (37)

and we find

Rmat
approx = W + w

[(
1 − H0Rout

2

)−2

− 1

]
. (38)

Lastly, for the radiation dominated Universe,

DA(z) = z

(z + 1)2H0
, Rout = z

(z + 1)H0
, (39)

and

Rrad
approx = W − w

[
1 + (RoutH0 − 1)−1

]
. (40)

The shadow radius behaviour seen by an observer in these
models of the Universe can be visualized by plotting Eqs.
(36), (38), (40) numerically for an immediate comparison.

In Fig. 4, we note that the Hubble constant is scaled to
see the cosmological expansion’s overall effect at short dis-
tances. However, it is understood that without this scaling
and if one uses the experimental value of H0, the effect can
only be noticeable at distances near the cosmological hori-
zon. Note that at low values of Robs/M , we can see that the
difference between these models is almost negligible. How-
ever, for large values of Robs/M , we can observe the differ-
ences between these models of the Universe. Worth noting is
the radiation-dominated Universe since there is some point
where a peak is reached, and the shadow rapidly decreases
in size for a very small change in Robs/M . For dark energy
and matter-dominated Universe, the co-moving observer sees
no limit on large the shadow radius will increase. As a final
remark, it can also be observed in the plot that the effect of
the screening parameter γ is affected by the co-moving state
of motion and the type of Universe the observer lives in.

Fig. 4 Plot of the shadow radius for an observer co-moving with cos-
mological expansion in dark energy, matter, and radiation dominated
Universes. Here, Qm = 0.10M , and H0 = 0.0408 M−2

4 Deflection angle using Gauss–Bonnet theorem in
weak field limits

In this section, we aim to investigate the weak deflection
angle of both massive and null particles by exploiting the
Gauss–Bonnet theorem (GBT), which is originally stated as
[77,186],

∫∫

D
KdS +

N∑
a=1

∫

∂Da

κgd� +
N∑

a=1

θa = 2πχ(D). (41)

In this equation, the Gaussian curvature K that describes
the domain D can be oriented in a 2D curved surface S
with infinitesimal area element dS. The boundaries of D
are given by ∂Da (a=1, 2, .., N ), and the geodesic curvature
κg is integrated over the path d� in a positive sense. Also,
the jump angle is denoted by θa, wherein χ(D) is the Euler
characteristic equal to 1 due to the non-singularity of D.

In Ref. [85], the GBT is applied to accommodate black
hole metrics with non-asymptotic flatness. Although our met-
ric is asymptotically flat, we can still use this formalism as a
special case. With the photonsphere radius rco as being part of
the quadrilateral, which serves as the domains of integration,
the weak deflection angle can be derived via

α̂ =
∫∫

R
rco�S

rco

KdS + φRS, (42)

where S and R are the radial positions of the source and
receiver, respectively. Furthermore, the infinitesimal curve
surface dS is given by

dS = √
gdrdφ, (43)
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and φRS is the coordinate position angle between the source
and the receiver defined as φRS = φR − φS, and g is the
determinant of the Jacobi metric. line element of a static,
spherically symmetric (SSS) spacetime

ds2 = gμνdx
μdxν = −A(r)dt2 + B(r)dr2 + C(r)d�2,

(44)

where d�2 = dθ2 + sin2 θdφ2, the Jacobi metric is defined
as

dl2 = gi j dx
i dx j = (E2 − μ2A(r))

(
B(r)

A(r)
dr2 + C(r)

A(r)
d�2
)

.

(45)

Here, E is the energy of the massive particle defined by

E = μ√
1 − v2

, (46)

where v is the particle’s velocity. Due to spherical symmetry,
we can analyze along the equatorial plane without losing
generality. The determinant of the Jacobi metric can then be
sought off as

g = B(r)C(r)

A(r)2 (E2 − μ2A(r))2. (47)

We need the orbit equation to determine the expressions
for φRS. For time-like particles, this can be derived through
gμνdxμdxν = −1 which results to

F(u) ≡
(
du

dφ

)2

= C(u)2u4

A(u)B(u)

[(
E

J

)2

− A(u)

(
1

J 2 + 1

C(u)

)]
, (48)

where we have used the substitution r = 1/u and the angular
momentum of the massive particle

J = μvb√
1 − v2

, (49)

and b is the impact parameter. With the metric coefficients,
we find

F(u) = E2 − 1

J 2 − u2 − u2
(

1

J 2 + u2
)(

Q2
e + Q2

m

)
e−γ

+
(

1

J 2 + u2
)

2Mu. (50)

Solving the above iteratively, we find

u(φ) = sin(φ)

b
+ 1 + v2 cos2(φ)

b2v2 M −
(
Q2

e + Q2
m

)
e−γ

2v2b3 .

(51)

The Gaussian curvature K , in terms of affine connections
and determinant g, is defined as

K = 1√
g

[
∂

∂φ

(√
g

grr
�φ
rr

)
− ∂

∂r

(√
g

grr
�

φ
rφ

)]

= − 1√
g

[
∂

∂r

(√
g

grr
�

φ
rφ

)]
(52)

since �
φ
rr = 0 for Eq. (45). Then with the analytical solution

to rco,

[∫
K

√
gdr

] ∣∣∣∣
r=rco

= 0, (53)

thus,
∫ r(φ)

rco

K
√
gdr

= − A(r)
(
E2 − A(r)

)
C ′ − E2C(r)A(r)′

2A(r)
(
E2 − A(r)

)√
B(r)C(r)

∣∣∣∣
r=r(φ)

. (54)

The prime denotes differentiation with respect to r . The weak
deflection angle is then [85],

α̂ =
∫ φR

φS

[
− A(r)

(
E2 − A(r)

)
C ′ − E2C(r)A(r)′

2A(r)
(
E2 − A(r)

)√
B(r)C(r)

∣∣∣∣
r=r(φ)

]

× dφ + φRS. (55)

Using Eq. (51) in Eq. (54), we find

[∫
K

√
gdr

] ∣∣∣∣
r=rφ

= −
(

2E2 − 1
)
M(cos(φR) − cos(φS))
(
E2 − 1

)
b

−
(

3E2 − 1
)

(
(
Q2

e + Q2
m

)
e−γ
[
φRS − (sin(2φR)−sin(2φS)

2

]

4
(
E2 − 1

)
b2 − φRS

+ O[M
(
Q2

e + Q2
m

)
e−γ ]. (56)

Next, we find the expression for φ. To do this, we use Eq.
(51) and solve for φ. For the source and receiver, we find

φS = arcsin(bu) + M
[
v2
(
b2u2 − 1

]− 1
)

bv2
√

1 − b2u2

+
(
Q2

e + Q2
m

)
e−γ

2b2v2
√

1 − b2u2
+ O[M

(
Q2

e + Q2
m

)
e−γ ], (57)

φR = π − arcsin(bu) − M
[
v2
(
b2u2 − 1

]− 1
)

bv2
√

1 − b2u2

−
(
Q2

e + Q2
m

)
e−γ

2b2v2
√

1 − b2u2
+ O[M

(
Q2

e + Q2
m

)
e−γ ] (58)
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respectively. Careful observation of these equations will
allow us to write φRS = π − 2φS. Now, we take note of
the following relations:

cos(π − φS) = − cos(φS), cot(π − φS) = − cot(φS),

sin(π − φS) = sin(φS). (59)

The last property cancels the sine terms in Eq. (56). We find
cos(φS) as

cos(φS) =
√

1 − b2u2 −
Mu
[
v2
(
b2u2 − 1

)
− 1
]

v2
√(

1 − b2u2
)

−
(
Q2

e + Q2
m

)
e−γ u

√
2
√
bv2
(
1 − b2u2

) + O[M
(
Q2

e + Q2
m

)
e−γ ],

(60)

and cot(φS) as

cot(φS) =
√

1 − b2u2

bu
+

M
[
v2(−b2u2 + 1) + 1

]

b3u2v2
√

1 − b2u2

−
(
Q2

e + Q2
m

)
e−γ

2b4u2v2
√

1 − b2u2
+ O[M

(
Q2

e + Q2
m

)
e−γ ].

(61)

Using Eq. (46) and by plugging Eqs. (57)–(61) in Eq. (55),
we finally obtain

α̂ ∼ M
(
v2 + 1

)

bv2

(√
1 − b2u2

R +
√

1 − b2u2
S

)

−
(
Q2

e + Q2
m

)
e−γ
(
v2 + 2

)

4b2v2

[π − (arcsin(buR) + arcsin(buS))]

+ O[M
(
Q2

e + Q2
m

)
e−γ ], (62)

which also involves the finite distance uS and uR. The above
expression can still be further approximated as b2u2 ∼ 0:

α̂ ∼ 2M
(
v2 + 1

)

bv2 −
(
Q2

e + Q2
m

)
e−γ π

(
v2 + 2

)

4b2v2

+ O[M
(
Q2

e + Q2
m

)
e−γ ]. (63)

For the case of photons where v = 1, we find

α̂ ∼ 4M

b
− 3π

(
Q2

e + Q2
m

)
e−γ

4b2 + O[M
(
Q2

e + Q2
m

)
e−γ ].
(64)

The above agrees with the result in Ref. [187].

How will the screening parameterγ affect the weak deflec-
tion angle, in combination with the finite distance effects?
These can be seen in Fig. 5, where we also compared the α̂

caused by both massive and null particles. Our results indi-
cate that α̂ is increased as both the source and the receiver
are approximated at r → ∞. Interestingly, massive parti-
cles also give a larger deflection angle than photons. When it
comes to the effect of γ , it does not discriminate whether it is
massive or null particles. That is, γ > 0 has a larger value for
α̂ as compared to γ < 0. We also remark that γ < 0 gives a
much lower bound to the critical impact parameter. It means
that near (but greater) than the critical impact parameter, α̂

has more range to exist.
A useful astronomical application of the weak deflection

angle involves the Einstein ring. Let DSL and DLR be the posi-
tion of the source and receiver from the black hole (lensing
object L), respectively. The thin lens approximation implies
that DRS = DSL + DLR, and the position of the weak field
images is given by

DRS tan β = DLR sin θ − DSL sin(α̂ − θ)

cos(α̂ − θ)
. (65)

An Einstein ring will be formed when β = 0, and the above
equation simplifies to

θE ∼ DSL

DRS
α̂. (66)

Finally, using the relation b = DLR sin θ ∼ DLRθ we can
obtain

θE = −9πεDSLDLR

4DLR (� + 6) (DRS)

+
√

3DSLDLR
{
128 (� + 6) (DRS) M + 27π2DSLDLRε2

}1/2

4DLR (� + 6) (DRS)

(67)

where the parameter ε = (Q2
e + Q2

m

)
e−γ /b2.

We plot Eq. (67) as shown in Fig. 6. In this plot, we com-
pared four cases, and the solid lines represent the effect of
the screening parameter on the Einstein ring. As γ decreases,
it can be gleaned that the Einstein rings angular radius
decreases for a given impact parameter. Furthermore, how
fast these angular radii change with b/M is less than cases
with no screening parameter (dashed line). As b/M → ∞,
the Einstein rings approach the Schwarzschild case. Note
that with these parameters, the angular radius of the formed
Einstein ring can be experimentally detected since the lowest
value we can get in the plot is ∼ 10,000μas. Furthermore,
if the deviation from Qm = 0.25M and Qm = 0.50M at
γ = −1 is examined, one needs a device capable of detail-
ing a difference of 570μas at b/M = 10. We see that as
b/M → ∞, the effect of the dyonic Modmax parameters
lessens.
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Fig. 5 Left: Weak deflection angle with finite distance given by Eq.
(62). Here, uS = uR = 0.5b−1. The dashed lines represent the massive
particles, and the solid lines are for photons. Right: Weak deflection

angle as given by Eq. (63), where uS = uR ∼ 10−10b−1. In these plots,
the dot represents the critical impact parameters in every case

Fig. 6 Plot (theoretical) of the Einstein ring formation in μas. Here,
we set Qe = 0.10M , and DS = DR = 1010b. The dots represent the
critical impact parameter

5 Spherically infalling accretion

In this section, we study the spherically free-falling accretion
model on the BH from infinity using the method defined in
[188,189]. This method gives us realistic visualization of the
shadow cast with the accretion disk. In reality, the actual
image of the BH can not be seen as an apparent boundary
in the universe. Moreover, it is not realistic to use a static
accretion disk model because there is a moving accretion
disk around a black hole, and also it provides a synchrotron
emission from the accretion. To do so, we first study the
specific intensity observed at the observed photon frequency

νobs solving this integral along the light ray:

I (νobs, bγ ) =
∫

γ

g3 j (νe)dlprop. (68)

It is noted that bγ is the impact parameter, j (νe) is the
emissivity/volume, dlprop is the infinitesimal proper length
and νe stands for the photon frequency of the emitter. Here
we define the redshift factor for the infalling accretion as
follows:

g = kμu
μ
o

kμu
μ
e

, (69)

where the 4-velocity of the photon is kμ = ẋμ and 4-velocity
of the distant observer is uμ

o = (1, 0, 0, 0). Moreover, the uμ
e

stands for the 4-velocity of the infalling accretion

ute = 1

A(r)
, ure = −

√
1 − A(r)

A(r)B(r)
, uθ

e = uφ
e = 0. (70)

Using the relation of kαkα = 0, one can derive kr and kt
which is a constant of motion for the photons:

kr = ± kt

√
B(r)

(
1

A(r)
− b2

r2

)
. (71)

Note that sign of ± shows that the photon gets close to (away
from) the black hole. Then the redshift factor g and proper
distance dlγ can be written as follows

g =
(
ute + kr

kt
ure
)−1

, (72)
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and

dlγ = kμu
μ
e dλ = kt

g|kr |dr. (73)

We then consider only the monochromatic emission for the
specific emissivity with rest-frame frequency ν∗ as follows:

j (νe) ∝ δ(νe − ν∗)
r2 . (74)

Afterwards, the intensity equation given in (68) becomes

F(bγ ) ∝
∫

γ

g3

r2

kte
kre

dr. (75)

We investigate the shadow cast with the thin-accretion disk
of the black hole in ModMax. First of all, we solve the above
equation numerically using theMathematica notebook pack-
age [146], (also used in [42,46,190,191]) and this integration
of the flux show the effects of the parameters of the ModMax
γ on the specific intensity seen by a distant observer for an
infalling accretion in Figs. 7, 8 and 9. These plots in Figs.
7, 8 and 9 show the specific intensities for various values of
the parameter γ versus b observed by the distant observer.

We observe that increasing the value of b, increases the
intensity first. Afterwards, intensity reaches the peak value
sharply where the photons are captured by a black hole
quickly ( at the photon sphere). It is seen that after the peak
value, intensity slowly decreases. Moreover, we show the
shadow cast of the black hole in the two-dimensional image
with a photon sphere by a distant observer in (X, Y) plane
where the dark centre of it the event horizon is located, and
it is circled by a bright ring with a strongest luminosity (pho-
ton sphere). It can be seen that brightness decreases gradually
after the maximum region. Hence, we show the effect of the
screening parameter γ on the black hole luminosity of the
shadow cast where the intensity decreases with increasing
the value of the screening parameter γ as seen in Fig. 9.

6 Quasinormal modes of dyonic ModMax black holes

Since the first detection of gravitational waves (GWs) from
the coalescence of two stellar-mass black holes in 2015 by
the LIGO/VIRGO collaborations [192], gravitational wave
physics has begun. Then data from gravitational waves are
analyzed to test alternative theories of gravity and different
models of compact objects. Perturbative analysis of black
hole spacetimes dominated by ‘quasinormal ringing’ is used
to do this. Quasinormal modes (QNMs) are oscillations with
complex frequencies with energy dissipation. The complex
frequencies of QNMs have the characteristic properties of the

Fig. 7 The specific intensity Iobs seen by a distant observer for an
infalling accretion at fixed M = 1, Qe = Qm = 0.2, and γ = 0.2m

Fig. 8 The specific intensity Iobs seen by a distant observer for an
infalling accretion at fixed M = 1, Qe = Qm = 0.2, and γ = 5m

BHs, such as mass, charge, and angular momentum, indepen-
dent of the initial perturbations.

In this section, we use the method of WKB approximation
to study quasinormal modes (QNMs) of the Dyonic ModMax
BHs. This method is known as an effective way to derive
QNMs, which is firstly used in [193] by Schutz and Will, then
Iyer and Will extended to the third order of WKB approx-
imation in [194]. Recently, WKB approximation has been
extended to sixth order and higher-order cases in [130,195].
To study QNMs of the Dyonic ModMax BHs, first, we use
a massless scalar field perturbation in the background of the
black hole 81. The Klein–Gordon equation, which is used
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Fig. 9 The specific intensity Iobs seen by a distant observer for an
infalling accretion at fixed M = 1, Qe = Qm = 0.2, γ = 0m (black),
γ = 0.2m (orange), γ = 0.9m (blue) and γ = 5m (green)

for the scalar field, can be written as follows:

1√−g
∂μ

(√−ggμν∂ν�
) = 0, (76)

where g is the determinant of the metric gμν . Then to solve
the above equation, we first use the separation of variables:

�(t, r, θ, φ) = Yl(θ, φ)�(t, r)/r. (77)

It is noted that Yl(θ, φ) are spherical harmonics with
the multipole number l = 0, 1, 2, . . . . We then obtain
the Schrodinger-like wave equation (Regge–Wheeler–Zerilli
equations) [117,196]:

∂2�

∂t2 +
(

− ∂2

∂r2∗
+ V (r)

)
� = 0. (78)

where the following relaton defines the tortoise coordinate
r∗:

dr∗ = dr√
A(r)B(r)

, (79)

with the effective potential for the scalar field

V (r) = A(r)
l(l + 1)

r2 + 1

2r

d

dr
[A(r)B(r)] . (80)

where the line element is written as:

ds2 = −A(r)dt2 + B(r)−1dr2 + r2d�2, (81)

Note that A(r) = B(r) = f (r) in Eq. 2.
One can think of the effective potentials as the potential

barriers which provide decaying on the event horizon and at
infinity. Apply the following ansatz

�(t, r) = e−iωtψ(r), (82)

where e−iωt is the time evolution of the scalar field, then we
obtain the time-independent wave equation

d2ψ

dr2∗
+
[
ω2 − V (r)

]
ψ = 0, (83)

where ω is the complex QNM frequency (or eigenvalues
of the above wavelike equation) written in the form ω =
Re(ω) + i Im(ω) to be determined after the appropriate
boundary conditions are applied (ψ(r) corresponds to the
purely outgoing wave at spatial infinity; ψ(r) behaves as the
purely ingoing wave at the event horizon):

ψ(r) ∼ ±e±iωr∗
, r∗ → ±∞. (84)

Here we use the numerical method of the sixth-order WKB
formula to calculate QNMS, which is based on the WKB
expansion of the wave function at both the event horizon and
spatial infinity. It is then matched with the Taylor expansion
is near the peak of its effective potential. There are two turn-
ing points/monotonic decay for this potential. To do so, we
should solve the following equation [194]

i
[
ω2 − V (r∗)|r̄∗

]
√

2V ′′(r∗)|r̄∗
−

N∑
j=2

� j (n) = n + 1

2
, (85)

where � j (n) (N indicates the order of the WKB method) are
the WKB correction terms, r̄∗ is the location of the maximum
of the QNM potential V (r∗) in the tortoise coordinate. Note
that �2,3 are defined in [194]1 and �4,5,6 are given in [195].
The dependence of the QNM frequencies on the screening
parameter γ is qualitatively different for lowest and higher
multipoles, as seen in Table 1. We can see in Tables 1 and 2
that both real and imaginary parts of the ω decrease when the
parameter γ is increased. The scalar field QNMs for different
values of l is plotted in Fig. 10, as well as for l = 0, 100 for
different values of γ are presented in Figs. 11, 12 and 13.

Next, we study the eikonal quasinormal modes for dyonic
ModMax black holes. This method is also known as the geo-
metric optics method due to its relation with the parameters
on the null geodesics [197,198]. The imaginary part of the
quasinormal mode frequency (Im ω=-ωI ), which is responsi-
ble for the temporal, exponential decay, can be calculated in
the large-l limit (l → ∞) (only the gtt component is relevant)
[199,200] i.e., as the angular momentum number describing
our mode solution becomes very large, as follows:

ωl�1 = l�ph − i

(
n + 1

2

)
|λL| , (86)

1 �2 in [194] is missing a factor of i in the numerator.
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Table 1 QNM frequencies of
scalar field perturbation for
ModMAx black hole
(M = 1, Qe = 0.2, Qm = 0.2)

QNM via WKB (Mω) method
γ /M 3th order WKB (Mω) (l = 0) (Mω) 6th order WKB (Mω) (l = 0) 6th order WKB (Mω) (l = 100)

0.0 0.106364 − 0.11523i 0.112044 − 0.101227i 19.6069 − 0.0966434

0.2 0.106046 − 0.115229 i 0.111767 − 0.101141i 19.5576 − 0.0965692i

0.4 0.105787 − 0.115226 i 0.111529 − 0.101081i 19.5176 − 0.0965079i

0.6 0.105577 − 0.115223i 0.111328 − 0.101039i 19.4851 − 0.0964573i

0.8 0.105406 − 0.115219i 0.111169 − 0.101i 19.4587 − 0.0964157i

1.0 0.105267 − 0.115216i 0.111039 − 0.100968i 19.4372 − 0.0963815i

1.2 0.105154 − 0.115213i 0.110923 − 0.100952i 19.4197 − 0.0963534i

1.4 0.105061 − 0.115211i 0.11085 − 0.100918i 19.4053 − 0.0963303i

1.6 0.104986 − 0.115208i 0.110785 − 0.100895i 19.3937 − 0.0963114i

1.8 0.104924 − 0.115206 i 0.110727 − 0.100881i 19.3841 − 0.0962958i

Table 2 QNM frequencies of scalar field perturbation for ModMax
black hole (M = 1, Qe = 0.2, Qm = 0.2)

QNM via WKB (Mω) method
γ /M 6th order WKB (Mω) (l = 2) (Mω)

0.0 0.490316 − 0.097176 2i

0.2 0.489077 − 0.0971035 i

0.4 0.488072 − 0.0970434 i

0.6 0.487256 − 0.0969938 i

0.8 0.486592 − 0.096953 i

1.0 0.486051 − 0.0969194 i

1.2 0.485611 − 0.0968918 i

1.4 0.485251 − 0.0968692 i

1.6 0.484958 − 0.0968506 i

1.8 0.484718 − 0.0968353 i

with the angular velocity �ph:

�ph =
√

−gtt
(
rph
)

rph
=
√

f
(
rph
)

rph
, (87)

and Lyapunov exponent λL:

λL =

√√√√√ f
(
rph
) [

2 f
(
rph
)− r2

ph f
′′ (rph

)]

2r2
ph

, (88)

where n is the overtone number and take values n =
0, 1, 2, .... Note that the eikonal limit is independent of the
spin of the perturbation, so that black holes’ scalar, elec-
tromagnetic, and gravitational perturbations give the same
behaviour in the eikonal limit [201]. Table 3 shows that the
real parts decrease, but the imaginary part of the QNMs
increase with the increasing parameter γ . We can conclude
that these modes are stable because the imaginary parts of
the QNMs frequencies are negative. The decay rates (imag-

inary part) of QNMs frequencies increase as the screening
parameter γ increases.

To study time-domain profiles of the scalar field perturba-
tion of the BHs, we use the initial disturbance as a Gaussian
wave packet:

� (r∗, t = 0) = AExp

(
− (r∗ − r̄∗)2

2σ 2

)
,

∂t�(r∗, t)|t=0 = −∂r∗� (r∗, 0) . (89)

It is noted that we assume that σ = 2, r̄∗ = −40, and
A = 10. Then apply the boundary conditions such that
the wavefunction vanishes at (r∗ = −200, r∗ = 250) to
observe the differences between the Schwarzschild black
hole and ModMax black hole spacetimes. Afterwards, the
time-domain profiles of the scalar field perturbation for
l = 0 and l = 2 cases are plotted numerically in Figs. 14
and 15. The ModMax black hole is given in blue, while the
Schwarzschild case is in black. The logarithmic plot shows
that the ModMax frequency is slightly lower. For the l = 0
case, the plot shows the relatively short period of quasinormal
ringing, which makes it hard to extract values of frequencies
with good accuracy.

To examine the gravitational signal emitted by an oscil-
lating black hole within the bandwidth of the LIGO/VIRGO
interferometers, its frequency must be in the range of around
10−40 Hz, or for the LISA interferometer, about 10−4−10−1

Hz [202]. We assume M = αM�,
(
M� = 1.48 × 105 cm

)
,

for the frequencies and damping times obtained by [202]

ν = c

2πα × M� (Mω0)
= 32.26

α
(Mω0) kHz,

τ = αM�
(Mωi ) c

= α × 0.4937 × 10−5

(Mωi )
s. (90)

After calculating the fundamental frequencies, we show
the allowed range of masses of oscillating ModMax black
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Fig. 10 The QNM spectrum
for γ = 0.2. We show the cases
in which l ∈ {0, 1, 2, 3, 4, 5, 6}

Fig. 11 Scalar QNM spectrum for s = l = 0 and Qe = Qm = 0.2 for different values of γ
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Fig. 12 Scalar QNM spectrum for s = 0, l = 100 and Qe = Qm = 0.2 for different values of γ

holes which LIGO and LISA can detect:

13M� � M � 1.3 × 103M�, (91)

for the fundamental frequency rangeν ∈ [12 Hz, 1.2 kHz],
and for LISA the detectable mass range is

1.56 × 105M� � M � 1.56 × 108M�. (92)

Note that it corresponds to frequenciesν ∈ [10−4, 10−1
]

Hz.
Moreover, in the future, LISA will be able to detect sig-
nals emitted by the oscillations of the massive black hole
at the centre of our Galaxy SGR A*, the mass of which is
M = 4.1 × 106M� [32].

7 Bounds of greybody factors and high-energy
absorption cross-section

Greybody factor (GF) is a quantity related to the quantum
nature of a black hole, and its high value gives a high proba-
bility that Hawking radiation can reach infinity, so the GF of
test fields is important for estimating the intensity of Hawk-
ing radiation. Here, we study the rigorous bound on the GF
of the dyonic ModMax black hole to probe the effect of γ

Fig. 13 You can see the convergence of the WKB formula for s = 0,
l = 0 and Qe = Qm = 0.2 for the value of γ = 0.6

Table 3 Effects of the parameter on the frequencies of the quasinormal
modes in eikonal limits for fixed Qe = Qm = 0.2M , s = 1, n = 0,
l = 100

γ /M ωR ωI

0.2 19.4602 0.862748

0.6 19.3881 0.863857

0.1 19.3404 0.864585

1.4 19.3087 0.865065

1.8 19.2876 0.865384
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on the bound. Rigorous bound of the GF was first proposed
in [131,132] which gives qualitative description of a black
hole as follows:

T ≥ sech2
(∫ ∞

−∞
ϑdr∗

)
, (93)

with

ϑ =
√

[h′ (r∗)]2 + [w2 − V (r∗) − h2 (r∗)
]2

2h (r∗)
. (94)

Note that h (r∗) is a function satisfying the condition
h(−∞) = h(∞) = w. [131]. Selecting h = w, and sub-
stituting the tortoise coordinate r∗, we write

Tb ≥ sech2
(

1

2w

∫ ∞

−∞
|V | dr

f (r)

)
. (95)

Here V is the effective potential for the massless scalar
field given in (80). We can calculate the bound as follows:

T ≥ Tb = sech2

⎛
⎜⎜⎜⎜⎝

l(l+1)

e− γ
2
√

−Q2
e+eγ M2−Q2

m+M
+ M(

e− γ
2
√

−Q2
e+eγ M2−Q2

m+M

)2 − e−γ
(
2Q2

m+2Q2
m
)

3

(
e− γ

2
√

−Q2
e+eγ M2−Q2

m+M

)3

2w

⎞
⎟⎟⎟⎟⎠

. (96)

The bound reduces to the Schwarzschild case for (γ, Qe, Qm)

→ 0, as TSch ≥ sech2
(

2l(l+1)+1
8mw

)
. We illustrate the effect

of the screening parameter γ on the greybody bound for a
scalar field in the ModMax black hole in Fig. 16. It is seen
that when the value of γ parameter increases, the greybody
bound Tb grows larger.

Afterwards, the high-energy absorption cross-section is
studied by applying the Sinc approximation, which Sanchez
first studied for the Schwarzschild black hole. It is shown
that increasing the frequency for the ordinary material sphere
monotonically increases the absorption cross-section oscil-
lated around the constant geometric-optics value for the black
hole (related to the photon sphere) [134] which shows the
relation between the impact parameter and cross-section of
the photon sphere at the critical value.

On the other hand, it was concluded that at low energy
scales, the characteristic properties of BHs and the cross-
section of BHs equal the BH area [147]. However, at high
energies, one should use the complex angular momentum
technique to study the geometrical cross-section of the pho-
ton sphere [150]. Decanini et al. use the Regge pole tech-
niques to show the relationship between the oscillatory pat-
tern of the high-energy absorption cross-section and the
Sinc(x) function (with Sinc(x) denote the sine cardinal

sinc(x) ≡ sin x
x ) with the photon sphere. This method exten-

sively discussed in the literature [203–209].
In the limit of high energy, the oscillatory part of the

absorption cross-section can be calculated by using [150]:

σ osc
abs (w) = −8πσgeo nce

−πnc sinc [2πbcritw] (97)

where the nc =
[(

frph − r2
ph
2 f ′′

rph

)]1/2

, the eikonal cross-

section is σgeo = πb2
crit, with the critical impact parameter

given in (14) as bcrit = rph√
f (rph)

and Lyapunov exponent λL

is given in Eq. ((88)). The absorption cross-section can also
be written as

σ osc
abs (w) = −4π

λLb2
crit

w
e−πλLbcrit sin

2πw

�cri t
(98)

where �ph is the angular velocity with the radius of the pho-
ton sphere rph. The total high energy formula for the absorp-
tion cross-section is equal to σabs ≈ σ osc

abs + σgeo [149,150].
In Fig. 17 the total absorption cross section for various val-

ues of γ is plotted. The numerical analysis shows that the
greater values of screening parameter γ , the total absorption
cross section becomes more and more unstable for higher
energies and exhibits the largest amplitude. Moreover, there
is a regular oscillatory behaviour around the high-frequency
limit. Figure 17 presents the absorption spectrum as a func-
tion of the frequency, making clear oscillations characteristic
of a diffraction pattern, where the oscillations occur around
its constant value of the geometrical optics with decreasing
amplitude and constant period.

8 Effects on neutrino

8.1 Flavour oscillation

In this Section we will study the effects of the metric in Eq. (2)
on neutrinos, following the treatment in Refs. [210–213].
Even if in the Standard Model neutrinos are assumed mass-
less, in the last fifty years there have been various detection of
the neutrino flavour oscillation phenomenon. The common
explanation for the latter is to take into account the exis-
tence of small neutrino masses and that neutrino mass and
flavour eigenstates are not coincident. Therefore, neutrinos
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Fig. 14 The time-domain profiles of the scalar field perturbation for the case l = 0. The ModMax black hole is given in blue while the Schwarzschild
case is in black. In the logarithmic plot, we see that the ModMax frequency is slightly lower

Fig. 15 The time-domain profiles of the scalar field perturbation for the l = 2 cases. The ModMax black hole is given in blue, while the Schwarzschild
case is in black. The logarithmic plot shows that the ModMax frequency is slightly lower

Fig. 16 (Scalar field) the greybody bound Tb versus the w for different values of values of γ parameter, with M = 1, l = 1, s = 0, and
Qe = Qm = 0.12m

123



Eur. Phys. J. C (2022) 82 :1155 Page 19 of 25 1155

Fig. 17 The total absorption
cross section for various values
of the γ , parameter with M = 1,
and Qe = Qm = 0.2m

will be treated as massive particles in this Section. Firstly, let
us define the oscillation length:

Losc = 2π
dlpr

d�αβ

, (99)

where dl2pr = −gi j dxi dx j is the infinitesimal proper dis-
tance, with i, j that runs over the spatial coordinates, �αβ =
�α − �β and:

�α =
∫

dr
mα

ṙ
=
∫

dr
m2

α√
E2 − g00(r)

(
L2

r2 − m2
α

) ,

(100)

where L is the angular neutrino momentum. Considering
E � m2

α and L = 0, one obtains

Losc = 2πE√
g00(m2

α − m2
β)

. (101)

Using Eq. (101), we show in Fig. 18 the behaviour of the
oscillation length in r for the different parameters of the met-
ric in Eq. (2). As it is possible to see, the main differences in
General relativity (GR) occur at low values or r , up to a 10%
of changes in the neutrino oscillation length.

Moreover, we can discuss the effects of gravitational red-
shift of the considered metric on the energy spectra of νe
and ν̄e Type II supernova explosion. The gravitational effects
affect the r-process nucleosynthesis in astrophysical environ-
ments, and we might theoretically estimate that with the Ye
parameter [212–215]:

Ye = 1

1 + Rn/p
, Rn/p = R0

n/p�, (102)

with the local neutron to proton ratio R0
n/p and � are defined

as:

R0
n/p �

[
L ν̄e 〈Eν̄e 〉
Lνe 〈Eνe 〉

]
, � =

[
g00(rν̄e )

g00(rνe )

] 3
2

, (103)

where L ν̄e and Lνe = are the antineutrinos and neutrinos
luminosity respectively, 〈Eν̄e 〉 = 25 MeV, 〈Eνe 〉 = 10 MeV
and rν̄e = 5 km, rνe = 0.9rν̄e are the two neutrino-sphere
radius for ν̄e and νe respectively. In Fig. 19, we show the
behaviour of Ye for the different ratio of the νe, ν̄e luminosity
with the metric in Eq. (2). It is possible to see that, compared
to GR (red curve), we obtain a difference up to 5%, which
could be important in the supernovae’ evolution.

8.2 Spin oscillation

In this subsection, we treat the neutrino spin oscillation
problem in the metric in Eq. (2), following the Refs.
[213,216,217]. The evolution of the spin vector sa is given
by

dsa

dt
= 2 ζ × �g , (104)

where ζ and sa are defined as

sa =
(

ζ · u, ζ + u(ζ · u)

1 + u0

)
, (105)

u = (u0, u) , (106)

with u the four-velocity in the local Minkowski space. In
the metric of our interest, �g = (0,�2, 0) and therefore we
can use the following representation for ζ = (ζ1, 0, ζ3) =
(cos α, 0, sin α). Focusing on the neutrino spin oscillation,
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Fig. 18 Neutrino oscillation
length in the metric in Eq. (2)
over the same quantity in GR for
various parameters set (Qm, γ )

reported in the legend. For all
the curves, we fixed Qm = 0.25

Fig. 19 Ye parameter for the
metric in Eq. (2) for various
parameters set (Qe, γ ) reported
in the legend. For all the curves,
we fixed Qm = 0.25

we define the helicity h = ζ · u/|u|. The initial condition is

h−∞ = −1 , (107)

u−∞ =
(

−
√
E2 − m2

m
, 0, 0

)
, (108)

ζ−∞ = (1, 0, 0) , (109)

α−∞ = 0 . (110)

Moreover, we can write thatu+∞ =
(
+√

E2 − m2/m, 0, 0
)

and therefore h+∞ = cos α. From that, we write the helicity
states as

ψ−∞ = | − 1〉 (111)

ψ+∞ = a+| − 1〉 + a−|1〉 , (112)

where a2+ +a2− = 1 due to the normalization and a2+ −a2− =
cos α = 〈h〉+∞. Therefore, one finds that

PLR = |a−|2 = 1 − cos α+∞
2

. (113)

Using Eq. (104), we obtain

d sin α

dt
= 2 cos α�2 → α = 2�2t . (114)

dα

dr
= dα

dt

dt

dr
= dα

dt

dt

dτ

dτ

dr
, (115)

where dt/dτ = U 0 and dr/dτ = U 1. Finally, the angle
α+∞ reads

α+∞ =
∫

dr
dα

dr
. (116)

Using Eq. (116) it is possible to obtain the spin-flip prob-
ability for metric in Eq. (2), shown in Fig. 20. The important
feature is that, with the used metric, the spin-flip phenomenon
is suppressed. The analysis with the inclusion of a magnetic
field will be faced elsewhere.

9 Conclusions

In this work, we probed how the dyonic ModMax black
hole parameters would affect the shadow, lensing, and neu-
trino propagation in its vicinity. To do so, we initially con-
strained the values of Qm under the effect of γ = 1 and
γ = −1 charge screening parameters using the EHT data
on the shadow diameter of Sgr. A* and M87*. Focusing on
Qe = 0.01M − 0.10M , since astrophysical black holes may
contain a nearly zero electric charge, we see that the value of
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Fig. 20 Spin flip probability
for the metric in Eq. (2), for
different parameter values
specified in the legend (we set
always Qm = 0.25). We have
also shown the GR spin-flip
probability (red line) for
comparison. We have considered
neutrinos with γ = E/m = 10

γ is irrelevant near Qm = 0. For Sgr. A* occurs above the
observed shadow diameter, while it occurs below for M87*.
With these parameters, the deviation to the observed shadow
radius is still within 2σ uncertainty, while for M87*, lower
bounds for Qm can be observed. See Fig. 2.

We also analyzed the shadow cast behaviour for a static
observer and one that is comoving with cosmic expansion for
a different model of Universes (i.e., dark energy, matter, and
radiation-dominated Universes). With the parameters chosen
from the constraints, we saw that the shadow radius decreases
due to Qm > 0, and such an effect is amplified asγ decreases.
As robs → ∞, the rate of change in the shadow radius is zero.
However, when the observer is comoving with the cosmic
expansion, such change is no longer zero. See Fig. 4. While
empirical data favours that our Universe is a dark energy-
dominated one, it is interesting how we can also confirm
this by using the deviation observed from the shadow cast.
According to Fig. 4, such a deviation is amplified if one
observes the shadow of a black hole near the cosmological
horizon.

Next in our analysis is how the Modmax parameters are
manifested through the deviations on the weak deflection
angle, which is so sensitive even for large b/M . Our results
revealed that the effect is amplified when u → 0. Further-
more, it was shown that relativistic massive particles give a
larger deflection angle than photons. As γ decreases, so does
α̂, which is also manifested in Einstein ring formation. With
the chosen parameters, these deviations can be detected by
current sophisticated experiments. For instance, the EHT is
capable of achieving an angular resolution of 10μas, which
is used in mapping the stellar distributions near Sgr. A*. Fur-
thermore, the ESA’s GAIA mission can provide a sensitivity
from 20μas to 7μas, which still depends on certain stellar
magnitudes, used to map the Milky Way galaxy [218]. The

smaller the angular resolution, the more the device can probe
deflection at larger impact parameters. Note that the eikonal
limit is independent of the spin of the perturbation, so that
black holes’ scalar, electromagnetic, and gravitational pertur-
bations give the same behaviour in the eikonal limit [201].
Table 3 shows that the real parts decrease, but the imaginary
part of the QNMs increase with the increasing parameter γ .
We can conclude that these modes are stable cause the imag-
inary parts of the QNMs frequencies are negative. The decay
rates (imaginary part) of QNMs frequencies increase with
the increase of the screening parameter γ .

In Sect. 5, the spherically free-falling accretion model on
the ModMax BH from infinity has been investigated to pro-
vide realistic visualization of the shadow cast with the accre-
tion disk. To do so, we first calculate the flux numerically
to illustrate the effects of the parameters of the ModMax γ

on the specific intensity seen by a distant observer for an
infalling accretion in Figs. 7, 8 and 9 where show the spe-
cific intensities for various values of the parameter γ versus
b observed by the distant observer. We have concluded that
increasing the value of b, increases the intensity first. After-
wards, intensity reaches the peak value sharply, where the
photons are captured by a black hole quickly. There is a peak
value, and then intensity slowly decreases. Furthermore, it
is shown that the shadow cast of the black hole in the two-
dimensional image with a photon sphere by a distant observer
in (X, Y) plane where the dark centre of it the event horizon
is located, and it is circled by a bright ring with a strongest
luminosity (photon sphere). It can be seen that brightness
decreases gradually after the maximum region. As a result,
we have concluded that the effect of the screening parameter
γ on the black hole luminosity of the shadow cast where the
intensity decreases with increasing the value of the screening
parameter γ as seen in Fig. 9.
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In Sect. 6, we calculate the quasinormal modes (QNMs) of
the Dyonic ModMax BHs by applying the method of WKB
approximation. To study QNMs of the ModMax BHs, first,
we use a massless scalar field perturbation in the background
of the black hole 81. The dependence of the QNM frequen-
cies on the screening parameter γ is qualitatively different
for lowest and higher multipoles, as seen in Table 1. We can
see in Tables 1 and 2 that both real and imaginary parts of
the ω decrease when the parameter γ is increased. The scalar
field QNMs for different values of l is plotted in 10, as well
as for l = 0, 100 for different values of γ are presented in
Figs. 11, 12 and 13. Then, we study the eikonal quasinormal
modes for dyonic ModMax black holes. This method is also
known as the geometric optics method due to its relation with
the parameters of the null geodesics. Furthermore, the time-
domain profiles of the scalar field perturbation for l = 0 and
l = 2 cases have been plotted numerically in Figs. 14 and 15.
The ModMax black hole is given in blue; on the other hand,
the Schwarzschild case is black. The logarithmic plot shows
that the ModMax frequency is slightly lower. For the l = 0
case, the plot shows the relatively short period of quasinor-
mal ringing, making it hard to extract values of frequencies
with good accuracy. After calculating the fundamental fre-
quencies, we have provided constraints for the allowed range
of masses of oscillating ModMax black holes which LIGO
and LISA can detect.

Moreover, in Sect. 7, first we investigated the greybody
factor of the ModMax black hole by using the rigorous bound.
We show the effect of the screening parameter γ on the grey-
body bound for the scalar field of the ModMax black hole
in Fig. 16 where it is seen that when the value of γ param-
eter increases, the greybody bound Tb grows larger. Second,
the high-energy absorption cross-section has been studied
by applying the Sinc approximation for the ModMax black
hole. We have shown in Fig. 17 that the total absorption cross
section for various values of γ where shows that the greater
values of screening parameter γ , the total absorption cross
section becomes more and more unstable for higher ener-
gies and exhibits the largest amplitude. Furthermore, there
is a regular oscillatory behaviour around the high-frequency
limit. Figure 17 presents the absorption spectrum as a func-
tion of the frequency, making clear oscillations characteristic
of a diffraction pattern, where the oscillations occur around
its constant value of the geometrical optics with decreasing
amplitude and constant period.

We have analyzed the neutrino oscillations and spin-flip
phenomena in the dyonic ModMax black holes field. This
analysis can be relevant in relation to the recent observa-
tions of the event horizon silhouette of a supermassive BH
[31,32]. The accretion disk around BHs is a source of pho-
tons and neutrinos [219]. The neutrino flavour oscillations
and spin oscillations may affect the neutrino flux expected in
a neutrino telescope. We have seen that neutrino oscillation

lengths get modified of ∼ 10% in dyonic ModMax geometry,
as compared to GR spacetime. Spin flip oscillations, instead,
are suppressed, as in GR. This is a consequence of the fact
that one has to consider relativistic neutrinos. Moreover, we
have only considered the effects of the gravitational field,
while a complete analysis should include the magnetic field
[216]. We have also discussed the influence of the dyonic
ModMax geometry on the nucleosynthesis processes, get-
ting a difference ∼ 5%, with respect to GR, which could be
relevant in the Supernovae evolution. We conclude by noting
that a follow-up of these studies will be: the propagation of
neutrino in both gravitational and electromagnetic fields; the
coupling of neutrino magnetic momentum in non-linear elec-
trodynamics; the neutrino spin oscillations (in gravitational
fields) can be potentially observed in core-collapsing SN (in
our Galaxy) since a huge amount of neutrinos are emitted.
These effects are expected to be probed with future neutrino
telescopes. All these topics will be faced in future works.

Acknowledgements The work of G.L. and L.M. is supported by
the Italian Istituto Nazionale di Fisica Nucleare (INFN) through
the “QGSKY” project and by Ministero dell’Istruzione, Università e
Ricerca (MIUR). G.L., A. Ö. and R. P. would like to acknowledge net-
working support by the COST Action CA18108 - Quantum gravity
phenomenology in the multi-messenger approach (QG-MM).

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Data sharing is
not applicable as only public data has been used and no data has been
generated.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

References

1. G.W. Gibbons, AIP Conf. Proc. 589, 324 (2001).
arXiv:hep-th/0106059

2. M. Born, L. Infeld, Proc. R. Soc. Lond. A 144, 425 (1934)
3. E.S. Fradkin, A.A. Tseytlin, Phys. Lett. B 163, 123 (1985)
4. W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936).

arXiv:physics/0605038
5. E. Ayon-Beato, A. Garcia, Phys. Rev. Lett. 80, 5056 (1998).

arXiv:gr-qc/9911046
6. K.A. Bronnikov, Phys. Rev. Lett. 85, 4641 (2000)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/hep-th/0106059
http://arxiv.org/abs/physics/0605038
http://arxiv.org/abs/gr-qc/9911046


Eur. Phys. J. C (2022) 82 :1155 Page 23 of 25 1155

7. K.A. Bronnikov, Phys. Rev. D 63, 044005 (2001).
arXiv:gr-qc/0006014

8. I. Bandos, K. Lechner, D. Sorokin, P.K. Townsend, Phys. Rev. D
102, 121703 (2020). arXiv:2007.09092

9. D. Flores-Alfonso, B.A. González-Morales, R. Linares, M.
Maceda, Phys. Lett. B 812, 136011 (2021). arXiv:2011.10836

10. A. Banerjee, A. Mehra (2022). arXiv: 2206.11696
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