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Abstract We study the proposal by Kharzeev–Levin to
determine entanglement entropy in Deep Inelastic Scattering
(DIS) from parton distribution functions (PDFs) and to relate
the former to the entropy of final state hadrons. We find sev-
eral uncertainties in the current comparison to data, in partic-
ular the overall normalization, the relation between charged
versus total hadron multiplicity in the comparison to experi-
mental results as well as different methods to determine the
number of partons in Deep Inelastic Scattering. We further
provide a comparison to data based on leading order HERA
PDF as well as PDFs obtained from an unintegrated gluon
distribution subject to next-to-leading order Balitsky–Fadin–
Kuraev–Lipatov and Balitsky–Kovchegov evolution. Within
uncertainties we find good agreement with H1 data. We pro-
vide also predictions for entropy at lower photon virtualities,
where non-linear QCD dynamics is expected to become rel-
evant.

1 Introduction

Entanglement is a nonlocal correlation unique to quantum
systems [1], see also the reviews [2,3]. There are various
proposals how to study entanglement in high energy physics
such as neutrino oscillations, spin correlations of t− t̄ quarks
or � hyperons [4–7]. A measure of entanglement which is of
particular interest is entanglement entropy [8]. In [9] it has
been proposed that one can associate entanglement entropy
with the system of partons probed in Deep Inelastic Scatter-
ing (DIS) experiments. The proposal necessarily requires a
measurement process which introduces a bi-partition to the
system. The measured system is no longer in a pure quan-
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tum state and as a consequence entropy arises. The proposal
in [9] considers coordinate space entropy and is motivated
by exact results obtained in conformal field theories in 1 +
1 dimensions [10,11]. The 1 + 1 dimensional picture pro-
vides reasonable guidance, since the basic quantity which
describes the system of partons at some resolution scale is
the integrated density of partons, i.e. the parton distribution
function (PDF). It provides information about the one dimen-
sional spatial structure of protons, although the underlying
dynamics may take place in transverse dimension as well.
For further developments and other approaches see [12–30].

The measurement process is provided by a probe. In DIS
this probe is given by the virtual photon that is exchanged
between electron and proton. Since the photon probes only
parts of the partonic system of the proton, the remaining
part has to be integrated out or traced over, giving rise to a
reduced density matrix and therefore entanglement entropy.
We note that this approach was also used to estimate entan-
glement entropy produced in proton-proton collisions at the
LHC [13]. It can be motivated as follows: for DIS at low x
and referring to the proton rest frame, it is possible to take
color dipoles as the basic degrees of freedom. Color dipoles
are color singlets and therefore natural candidates to generate
entanglement entropy.1 The mechanism of the entanglement
is the following:

• Once the virtual photon resolves substructure in the pro-
ton, it singles out a certain region of area ∼ 1/Q2 see
Fig. 1.

• It might happen that one of the quarks that is a constituent
of the dipole is inside the singled out region A and the

1 See also [22] where the dipole degrees of freedom are used to obtain
entanglement entropy.
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Fig. 1 The figure illustrates the generation of entanglement in DIS
within the dipole picture with Q the photon virtuality. The blue region
represents the proton, the red circle the area singled out by the virtual
photon. The segments represent color dipoles in color singlet states.
The entanglement arises due to dipoles that are partially in the red and
blue region

other part is in the region B. Since the dipole is a color
singlet state, the quark-antiquark system is strongly cor-
related and provides the source of entanglement between
both regions. Due to the interaction, the dipole breaks up
and the quark in the region B gives rise to the observed
final state hadrons.

• The other quark gives a contribution to the parton distri-
bution function measured in the DIS process.

• since both constituents of the dipole were in different
regions, the entropy of both regions is identical. Only
dipoles that bridge the regions give rise to the observed
entropy.

• As one goes to higher energies the number of dipoles
increases (higher twists) and more and more dipoles are
partially in region A and region B. As a consequence,
entropy grows.

• Turning to smaller Q2, more and more dipoles are com-
pletely inside region A and the entropy should eventually
decrease.

The framework presented in [9] provides furthermore an
explicit formula on how to calculate this entanglement
entropy as well as means how to obtain the latter from data
through the determination of the entropy of the observed final
state hadrons. Since the entire approach is based on distri-
butions of color dipoles, which themselves can be derived
from QCD within high energy factorization with x � 1 the
expansion parameter, the proposed description is naturally

restricted to the low x regime. NLO fits of low x gluon dis-
tribution are found to provide a good description of HERA
data in the region x < 0.01, see [31,32] for a fit with the unin-
tegrated gluon evolved with next-to-leading (NLO) Balitsky–
Fadin–Kuarev–Lipatov (BFKL) evolution. The same phase
space restriction x < 0.01 has been used in the fits based on
leading order running coupling [33] and NLO [34] Balitsky–
Kovchegov evolution, which is the non-linear low x evolu-
tion equation formulated in terms of the dipole amplitude. It
is therefore natural to use x < 0.01 as an upper limit on phase
space region, where the above arguments can be expected to
be applicable. It is needless to say that more conservative
bounds would yield even stronger justification for the under-
lying low x approximations.

In the recent paper [35] we provided numerical evidence
for this proposal, see also [36] for related work. In this way
entropy at the partonic level is determined through

Spartonic

(
x, Q2

)
= ln

[
xg

(
x, Q2

)
+ x�

(
x, Q2

)]
, (1)

where g(x, μ2
f ) denotes the gluon distribution function at the

factorization scale μ f and �(x, μ2
f ) = ∑n f

a=1

(
qa(x, μ2)+

q̄a(x, μ2)
)

the quark flavor singlet distribution, withq(x, μ2)

and q̄(x, μ2) quark and antiquark distribution functions for
flavor a; this contribution is absent in [9] and has been added
by two of us in [35]. It was further found that a frame-
work based on the Balitsky–Fadin–Kuraev–Lipatov [37–39]
(BFKL) formalism and accounting both for quarks and glu-
ons yields satisfactory agreement with data. However, there
are remaining puzzles that are still left unanswered.

From a formal point of view, the above definition and its
identification with the measured hadronic entropy has the
obvious shortcoming that it relates an unphysical object, i.e.
scheme dependent parton distribution functions (PDFs), to an
observable, i.e. hadronic entropy. From the phenomenolog-
ical side, the H1 collaboration determines hadronic entropy
from the multiplicities of charged hadrons [40]. On the other
hand, the theoretical framework of [9] is based on the treat-
ment of purely gluonic emissions which give naturally rise
to both charged and neutral hadrons. Comparing therefore
the prediction of [9] with data for charged hadron multiplici-
ties, one clearly expects a certain mismatch. A related issue is
the large discrepancy between partonic and hadronic entropy
encountered in [40], if the former is evaluated using leading
order HERA PDFs.

The outline of this paper is as follows: in Sect. 2 we pro-
vide an overview of ambiguities and open questions in the
current description and how they might reflect themselves
in the comparison to data. In Sect. 3 we provide updated
numerical results for the BFKL description of experimental
results obtained by the H1 collaboration as well as a descrip-
tion based on leading order HERA PDFs and PDFs obtained
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from an unintegrated gluon distribution subject to rcBK evo-
lution. In Sect. 4 we provide a first analysis of the transition
of this framework towards a region of phase space dominated
by non-linear QCD dynamics. In Sect. 5 we give our conclu-
sions, while the Appendix Sect. A summarizes details on the
HSS and rcBK unintegrated gluon distribution.

2 Ambiguities in the current description

2.1 Overall normalization

The derivation of Eq. (1) is based on the expansion of the von
Neumann entropy for large y = ln 1/x , or equivalently low
x limit which is dominated by gluonic degrees of freedom.
One finds

Spart. = −
∑

pn ln pn, pn(y) = e−�y (
1 − e−�y)n−1

,

(2)

where pn denotes the probability to find n dipoles in the
proton which satisfy p1(0) = 1 and pn>1(0) = 0. They are
obtained as a solution to the following evolution equation,

d

dy
pn(y) = −�npn(y) − �(n − 1)pn−1(y), (3)

with � the BFKL intercept in the 2 dimensional model. Even
within the 2-dimensional model, the above expression can be
slightly generalized to

pgen.
n (y) = Ce−�y (

1 − Ce−�y)n−1
, (4)

with a certain constant C ≤ 1, which yields pn(0) ≤ 1 for
all n. The mean number of dipoles is then obtained as

〈n〉 =
∑
n

npn = 1

C
e�y . (5)

Given that the gluon PDF is within the 2 dimensional model
subject to the BFKL equation in zero dimensions,

d

d ln 1/x
xg(x) = � · xg(x) (6)

and taking into account that PDFs have a certain interpreta-
tion as number densities, i.e. their integral over momentum
fraction x yields the expectation value of the parton num-
ber operator, it is somehow natural to interpret Eq. (5) as
the gluon distribution. Even though xg(x) denotes usually
the momentum fraction carried by gluons, while the num-
ber density is associated with the integral of g(x), the above
identification is correct, since one really determines the mean

value of the number of partons per ln(1/x), i.e. 〈dn/dy〉, see
also the more detailed discussion in Sect. 2.4.

There arises however an issue, whenever the identification
of Eq. (5) as the PDF is lifted from the two dimensional model
to four dimensions. While the PDF in four dimensions pro-
vides merely information about the one dimensional spatial
structure of the proton, it carries an additional dependence
on the factorization scale, which can be traced back to an
integration over the two remaining transverse dimensions.
It is this additional dependence on the factorization scale as
well as the associated scheme dependence of PDFs which
prohibit a direct identification of PDFs as number densities.
Indeed, for renormalizable gauge theories the number den-
sity interpretation applies only to certain sum rules, i.e. the
difference between the number of quarks and anti-quarks of
a certain flavor, which is scheme independent, see e.g. [41]
for a detailed discussion. For the gluon distribution such an
interpretation may at best hold within e.g. light-cone gauge
at leading order; beyond leading order, the PDF turns scheme
dependent. In the light of such complication the best one can
hope for is that Eq. (5) is proportional to the gluon distribu-
tion at leading order, with corresponding modifications, once
higher order corrections are invoked. This observation leads
us to the slightly modified relation,

〈n〉=
∑
n

npn =C−1e�Y = B−1 · xg(x), xg(x) = B

C
e�y .

(7)

with some so far undetermined parameter B. Assuming2

B =const. and lifting this expression to four dimensions,
one would then realistically test in the comparison with data
the evolution in y = ln 1/x and/or in ln Q2. Statements about
the overall normalization should on the other hand be taken
with care. Similarly the quark contribution is absent in the
above expression due to the use of the purely gluonic effec-
tive 2 dimensional model. Since the low x seaquark distri-
bution is driven by the gluon, the same statement applies to
the relevance of this contribution, although it is naturally to
be included as long as one interprets 〈n〉 as the mean number
of partons. Sticking for the moment with the gluon distribu-
tion,3 the above expression allows to re-express probabilities

2 Within high energy factorization, B = const. is a meaningful assump-
tion, since the x dependence is in general determined by the low x
resummed gluon density; the same is true for collinear factorization at
leading order. Collinear factorization beyond leading order (which is
so far not worked out for this quantity) would most likely yield an x
dependent parameter B; nevertheless, if the perturbative expansion is
converging, this should imply a small correction.
3 To include quarks one would merely replace xg → xg + x�.
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as

pgen.
n (x) = B

xg(x)

(
1 − B

xg(x)

)n−1

, (8)

which finally yields the following partonic entropy,

Spart.(x) = ln

[
xg(x)

B
− 1

]
− xg(x)

B
ln

[
1 − B

xg(x)

]
.

(9)

Note that this expression is only meaningful for xg(x)/B >

1, which is the region where Eq. (8) yields probabilities pn ≤
1. Expanding Eq. (9) for xg(x) � 1 and assuming B =
O(1), one finds

Spart.(x) = ln

[
xg(x)

B

]
+ 1 + O

[
B

xg(x)

]
= ln

[
xg(x)

B/e

]
,

(10)

with e 	 2.71828 Euler’s number. While for asymptoti-
cally large xg(x), the contributions due to B, e might be
ignored, for realistic gluon distributions in the kinematic
region covered by the HERA experiments, Spart. ≤ 4 and
while xg(x) � 1 is satisfied, ln(xg) = O(1) and the above
finite terms should be in principle kept.

2.2 Charged versus total hadron multiplicity

The above expression allows to determine partonic entropy
as a function of the average number of partons in the sys-
tem. It is then conjectured that the resulting partonic entropy
agrees with the hadronic entropy. The latter can be obtained
from the multiplicity of final state hadrons. Since the detec-
tion of neutral hadrons is experimentally challenging, this
hadronic multiplicity distribution is usually determined for
charged hadrons only. With pions the predominantly pro-
duced hadron species, and assuming that final state gluons
turn with equal probabilities into positively, negatively, and
neutral pion states, one can as a first estimate assume that the
total number of produced hadrons is roughly 3/2 times the
number of charged hadrons observed in experiment. In turn,
the number of gluons and possibly seaquarks which yield
charged hadrons is approximate the fraction 2/3 of the total
parton number. This suggests to correct the partonic entropy
by a corresponding factor,

Spart. → Scharged = Spart. + ln(2/3). (11)

Clearly this factor is not exact, but merely an estimate of
order of magnitude.

2.3 Gluon versus quark contribution

In [9] entanglement entropy has been determined from a
2 dimensional model calculation, based on the dipole pic-
ture, which has been related to purely gluonic degrees of
freedom. In a follow up study the same authors proposed
in [36] to evaluate for the kinematic region covered by the
HERA experiment the partonic entropy as the logarithm of
the seaquark distribution. Finally, in [35], two of us proposed
to evaluate partonic entropy as the logarithm of the sum of
gluon and quark contribution. This treatment was motivated
by the observation that the 2 dimensional gluonic model of [9]
which identifies entropy as the logarithm of the average gluon
number; for the complete theory, it seems therefore appro-
priate to generalize the average gluon number to the average
number of quarks and gluons combined. While [35] man-
aged to successfully describe HERA data, this description
was plagued by several shortcomings. While the description
based on the HSS gluon of [35] uses an inconsistent combi-
nation of overall normalization constants (which we correct
in the subsequent numerical study, see also Appendix Sect.
A for a detailed discussion), the description based on NNLO
PDFs is subject to the above mentioned scheme dependence
of parton distribution functions which allows for B 
= 1, as
already pointed out [35].

In the numerical study presented in Sect. 3, we show that
a description based on a combination of quark and gluon
contribution yields a good description of data within uncer-
tainties if Eq. (11) is being employed, while we set B = e,
i.e. we ignore all pre-asymptotic factors for the time being.
While the observed agreement is pleasing, we believe that in
the light of the above uncertainties in normalization, the main
goal of the following study is the correct description of x and
Q2 dependence. The latter are directly related to evolution
equations, to which the underlying distributions are subject
to.

2.4 Binning and comparison to data

Assuming B = e for the moment, and assuming ln(xg) � 1,
partonic entropy is directly determined as the logarithm of the
number of partons; indeed this has been the original proposal
[9]. In practice this can however lead to confusion, since par-
ton distribution functions are number densities, i.e. leaving
aside the above mentioned issues of scheme dependence of
such distributions, one expects that the number of gluons in
a proton is obtained through

ng(Q
2) =

∫ 1

0
dx g(x, Q2), (12)

with a similar expression in the case of quarks. In DIS reac-
tions, the proton is on the other hand probed at a certain
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Fig. 2 Partonic entropy
evaluated as the logarithm of the
number of gluons in a certain
bin [xmin, xmax ], see also
Eq. (12) for two different bin
sizes. The result clearly depends
on the size of the bin. The LO
HERAPDF gluon distribution is
evaluated at a factorization scale
corresponding to the lower Q2

value of the Q2 bin as in [40]

0

1

2

3

4

5

6

fixed value of Bjorken x . Experimentally this corresponds to
counting final states for a certain bin size x ∈ [xmin, xmax ].
It is therefore tempting to define the number of gluons at a
certain value of x through

ng(x̄) =
∫ xmax

xmin

dxg(x, Q2), (13)

where x̄ ∈ [xmin, xmax] and might be defined through

x̄ =
∫ xmax
xmin

dx xg(x, Q2)∫ xmax
xmin

dxg(x, Q2)
, (14)

or alternatively as the arithmetic mean of xmin and xmax. Par-
tonic entropy is then obtained as ln ng(x̄). To the best of
our understanding, this is the method used by the H1 col-
laboration to determine the partonic entropy, with xmax 	
5.71xmin , see also the determination of this quantity using
this method in Fig. 2. While the method yields the number
of partons in the region of phase space [xmin, xmax] if the
PDF is interpreted as a number density, the result obviously
depends strongly on the size of the interval [xmin, xmax]. In
particular the number of partons would approach zero, when-
ever the size of the interval turns infinitesimally small. For
a meaningful comparison it is therefore necessary to study
the number of partons, normalized to the bin size. Taking
into account that usually one uses logarithmic bins in x , i.e.
binning takes place in y = ln(1/x), one arrives at

n̄g(x̄) = 1

ymax − ymin

∫ ymax

ymin

dy
dng
dy

= ng(ymax ) − ng(ymin)

ymax − ymin
, ymax,min = ln 1/xmin,max ,

(15)

which in the limit of infinitesimally small bin sizes leads to

n̄g(x, Q
2) = dng

d ln(1/x)
= xg(x, Q2). (16)

Despite of the usual association of xg(x, Q2) with momen-
tum sum rules, this quantity is therefore indeed the correct
expression to compare to data binned in Q2 andY = ln(1/x).
For the following numerical study, we further add the con-
tribution due to quarks and average over the bin size in Q2,

〈n̄(x, Q2)〉Q2 = 1

Q2
max − Q2

min

×
∫ Q2

max

Q2
min

dQ2
[
xg(x, Q2) + x�(x, Q2)

]
,

(17)

which finally yields the expression used for our comparison
to data

〈S(x, Q2)〉Q2 = ln〈n̄(x, Q2)〉Q2 . (18)

3 Numerical results

Despite the above ambiguities in the overall normalization,
we believe that is meaningful to compare at the current
level of accuracy theory predictions to data. Ambiguities are
mainly due overall normalization constants which for the
partonic entropy turn into additive constants. In the follow-
ing we use three theoretical models (to be described in more
detail in the Appendix):

123



1147 Page 6 of 12 Eur. Phys. J. C (2022) 82 :1147

• Leading order HERA PDF, subject to DGLAP evolution
[42]. This particular set was chosen due to the observed
mismatch between partonic and hadronic entropy by the
H1 collaboration (which use LO HERAPDF). The goal
of the comparison to LO HERAPDF is to demonstrate
that such comparison should be done in the way outlined
in the previous section, i.e. in bins of rapidity.

• Leading order PDFs calculated from the HSS uninte-
grated gluon, subject to BFKL evolution. The gluon den-
sity obtained in this scheme accounts for NLO corrections
to the evolution kernel together with a collinear resum-
mation of enhanced NLO contributions. The higher order
corrections slow down the growth of the gluon density in
the low x region, but do not lead to saturation. The fit
is limited to the region Q2 > 2 GeV2, see [31,32] for
details.

• Leading order PDFs calculated from an unintegrated
gluon, subject to rcBK evolution. The gluon density in
this framework is subject to leading order BK evolution
in x ; albeit formally leading order, the evolution kernel
includes NLO resummed running coupling corrections.
The evolution takes into account effects due to high gluon
densities and leads to a saturated gluon density (for devel-
opments that take into account exact kinematics in com-
bination with saturation effects see [43–45]). A descrip-
tion of HERA data for the proton structure function F2 is
possible, since the nonlinear term in the evolution tames
the rapid growth of the gluon distribution, induced by the
linear term.

The first set has been used in [40] to compare to data. We
show that once the corrective factor Eq. (11) is taken into
account and the number of partons is evaluated as discussed
in Sect. 2.4, this set of PDFs gives actually a good description
of data, in contrast to the observation made in [40], leaving
aside a small off-set in the normalization, which might be
traced back to the effects discussed in Sect. 2.1. The second
set has been used previously in [35], while the last set is
obtained from an unintegrated gluon distribution subject to
Balitsky–Kovchegov (BK) evolution [46,47] which allows us
to investigate possible contributions due to non-linear QCD
evolution. In all three cases we use Eq. (1) to compare to data.
The contribution due to seaquarks is in general small; the nor-
malization of the description based on leading order HERA
PDFs would slightly improve if one would only consider the
contribution due to the gluon.

To obtain entropy from the low x QCD evolution equa-
tions, we need to determine PDFs i.e. integrated parton den-
sities. The gluon density is obtained from

xg(x, μF ) =
∫ μ2

F

0
dk2F(x, k2), (19)

where F(x, k2) is the unintegrated gluon distribution, which
is obtained from a solution to BFKL or BK evolution equa-
tions, including a fit to data. To obtain the quark PDF we
apply the Catani-Hautmann procedure [48]

x�(x, Q) =
∫ ∞

0

d�2

�2

∫ ∞

0
dk2

∫ 1

0
dz

× �

(
Q2 − �2

1 − z
− zk2

)
P̃qg

(
z,

k2

�2

)
F(x, k2),

(20)

where the splitting function reads [48]

P̃qg

(
z,

k2

�2

)
= αs2n f

2π
TF

�2

[�2 + z(1 − z)k2]2

×
[
z2 + (1 − z)2 + 4z2(1 − z)2 k2

�2

]
, (21)

and μF denotes the factorization scale which we identify for
the current study with the photon virtuality Q. k denotes
the gluon transverse momentum and � = q − zk with
q the t-channel quark transverse momentum; TF = 1/2.
Pqg(z) = αs2n f

2π
TF

[
z2 + (1 − z)2

]
. In [35] the HSS inte-

grated gluon Eq. (19) has been determined using a version of
the unintegrated gluon with an overall normalization incon-
sistent with the normalization used for the determination of
the quark PDF. In the following numerical study this has
been corrected. In more general terms, the possibility of
such inconsistencies can be traced back to a relatively large
uncertainty in the overall normalization of the unintegrated
gluon distributions, which have been obtained through fits
which rely on the use of the leading order virtual photon
impact factor. Since the latter is – as the seaquark distribu-
tion – proportional to αs , it induces a relatively large nor-
malization uncertainty on the extracted unintegrated gluon.
To assess these uncertainties we multiply in the case of the
HSS distributions the integrated gluon distribution by a fac-
tor αs(Q2)/αs(μ

2) and vary the renormalization scale μ in
the range μ ∈ [Q/2, 2 · Q]. The unintegrated dipole gluon
density subject to rcBK evolution is obtained through

F(x, k2) = Nck2S⊥
8π2αs

∫
dr2(1 − N (r, x))J0(r

2k2), (22)

where N (r, x) is dipole amplitude obeying BK equation in
coordinate space, see Appendix Sect. A for more details. In
the above expression αs is kept constant, while it is running in
the kernel of the evolution equation. In order to obtain uncer-
tainties we use αs ∈ [0.2, 0.3], which are typical values for
the hard scales investigated in this study. For the description
based on leading order HERA PDFs we show the relatively
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Fig. 3 Partonic entropy corrected for charged hadrons only
ln (xg + x�) + ln(2/3) versus Bjorken x . Results are compared to
the final state hadron entropy derived from the charged multiplicity

distributions measured by the H1 collaboration [40] for track pseudora-
pidities η∗ in the hadronic centre-of-mass frame restricted to the range
0 < η∗ < 4

small leading order PDF uncertainties, making use for the
numerical evaluation of the package [49].

We find in Fig. 3 that the partonic entropy Eq. (18)
obtained from the total number of partons gives a still a very
good description of H1 data [40]. In particular within uncer-
tainty bands, both HSS and rcBK give a good description
of data. The HERA PDFs slightly overshoot the data but
not as drastically as presented in [40]. This is due to the
factor ln(2/3) which corrects for the fact that only charged
hadrons have been measured as well as the effects discussed
in Sect. 2.4. Since gluon and quark contribution add up, the
description would slightly improve without the latter.

4 Towards the real photon limit

Having described the moderate and large Q2 data, a natural
question to ask is what happens if we go to lower values of
Q2. With 1/Q2 the effective area resolved in the interaction
of virtual photon and proton, the limit Q2 → 0 naturally
leads to the case where the photon would observe the entire
proton; entanglement entropy should be therefore absent in

this limit. While the complete description of such a scenario is
still unknown, we believe that investigating this limit within
the current framework is already of interest. A more complete
description should be probably formulated within the more
general frameworks [50,51], where saturation effects [52]
and therefore classicalization of wee gluons are taken into
account [20]. For the moment we do not consider such modi-
fications. Instead we will investigate the limit of small photon
virtualities Q2. In Fig. 4 we show entanglement entropy as
obtained from the solution to the rcBK evolution equation, as
well as the HSS gluon and leading order HERA PDFs. While
the rise with x flattens for three descriptions, this effect is
clearly stronger for the rcBK description, which we attribute
to effects related to gluon saturation. For leading order HERA
PDFs and the HSS gluon, we limit the calculations to val-
ues Q2 > 1 GeV2 since for smaller values these descrip-
tions would break down. This is however not a limitation for
the rcBK or Golec-Biernat Wusthoff saturation model [53],
which has been fitted for smaller values of Q2. From a formal
point of view, one may justify this through the presence of a
semi-hard saturation scale Qs(x) > �QCD. While results for
Q2 < 1 GeV2 must be interpreted with care, they allow for
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a first qualitative investigation of this region of phase space.
We will proceed with analytical studies of this region using
the GBW model. Within this model, the dipole unintegrated
gluon density reads:4

F(x, k2) = NcS⊥
αs8π2

k2

Q2
s
e−k2/Q2

s (23)

where Qs = Q2
0

( x0
x

)λ. The integrated gluon distribution is
then obtained as5

xg(x, Q2) = NcS⊥
αs8π2

[
Qs(x)

2
(

1 − eQ
2/Q2

s (x)
)

−Q2eQ
2/Q2

s (x)
]
. (24)

For large photon virtualities Q2 � Qs(x)2 this yields

lim
Q2�Q2

s

xg(x, Q2) = NcS⊥
αs8π2 Q

2
s , (25)

i.e. the integrated gluon distribution is directly proportional
to the saturation scale. In the limit of small photon virtualities
one finds on the other hand:

lim
Q2�Q2

s

xg(x, Q2) = Nc

αs16π2

S⊥Q4

Q2
s (x)

∼ xλ, (26)

i.e. the integrated gluon distribution turns into a falling func-
tion of x . In particular one has the formal limit xg(x, Q2 =
0) = 0. For entanglement entropy one finds, extrapolating
the current framework to low Q2,

lim
Q2�Q2

s

S(x, Q2) = ln

(
S⊥Q4

Q2
s (x)

)
+ ln

Nc

16αsπ2 . (27)

Depending on the precise values of the transverse size S⊥,
this expression will for some value of x turn eventually nega-
tive. Note however that the definition of probabilities Eq. (8)
requires xg(x) ≥ B = e, for the current setup, which pre-
vents us from reaching negative values. On the other hand
for Q2 � Qs(x)2 we have

lim
Q2�Q2

s

S(x, Q2) = ln
(
S⊥Q2

s (x)
)

+ ln
Nc

8αsπ2

= λ ln
1

x
+ const., (28)

i.e. we recover the original expression for partonic entropy
obtained in [9] plus a certain constant contribution.

4 The BK for dipole gluon density has very similar x and k⊥ dependence
for |k⊥| < Qs .
5 we use the 4 flavor fit of [53] with the fit parameter values S⊥ =
14.55 mb, x0 = 0.41 10−4, λ = 0.277, Q2

0 = 1 GeV2.

A numerical study of the GBW model compared to rcBK
is provided in Fig. 5. In the figure we plot only the contribu-
tions due to gluons. Entropy is being evaluated at low values
of Q2 < 1 GeV2 since the both gluon densities have been
fitted for this region of phase space. Moreover there exist in
principle data for this region of phase and a comparison to
those data would be of high interest, once they are available
in a suitable form. From a formal point of view, the existence
of a semi-hard saturation scale allows for the evaluation of
the gluon density at such low scales. We however stress here
that the entropy formula in this region is an extrapolation. As
can be seen from the plot to the right, the integrated gluon
distribution is no longer necessarily large at lowest values
of x . The expansion of Eq. (9) for large xg(x) is therefore
not necessarily a good approximation. We therefore com-
pare in Fig. 6 both the exact formula for entropy, derived
within the 2 dimensional model, and its asymptotic expan-
sion. The exact formula is not necessarily more accurate than
the asymptotic expression, but the observed deviation indi-
cates in which regions of phase space effects due to non-
linear QCD dynamics might become relevant. In all of the
the calculations we assume B = e which is the choice which
minimizes the contribution due to constant terms. Note that
the observation that for certain values of Q2 the gluon PDF is
a falling function of x can be directly linked to the behavior
of the dipole amplitude featuring saturation stemming from a
solution to BK or JIMWLK [54–57] evolution and which has
been already observed for the solution of the BK equation in
[58]. We interpret this as a mechanism of localization due to
saturation of wee partons in longitudinal direction.

5 Conclusions

In this paper we continued the study of the proposal for-
mulated in [9] to calculate for DIS reactions entanglement
entropy from parton distribution functions. The purpose of
this study has been twofold: on one hand we attempted to
clarify some of the lose ends of this proposal such as the over-
all normalization, the relation between entanglement entropy
and hadronic entropy of charged hadrons as well as a discus-
sion on how to evaluate the number of partons for the deter-
mination of partonic entropy. On the other hand we provided
a first exploration of the proposal towards low photon vir-
tualities and very low x , where eventually non-linear QCD
dynamics is expected to manifest itself.

To this end we provided a description of the data mea-
sured by the H1 collaboration through parton distribution
functions subject to BFKL and BK evolution equations as
well as leading order HERA PDFs. As outlined in Sect. 2,
the description is at the moment mainly qualitative, due to
various ambiguities in the theoretical description. In partic-
ular a precise phenomenology would require to work out an
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Fig. 4 Partonic entropy corrected for charged hadrons only, ln (xg + x�) + ln(2/3) versus Bjorken x , calculated for low Q2 bins. The result
demonstrates saturation of entropy at low Q2 and low x
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Fig. 5 Gluon PDF (left) and entropy (right) from rcBK (blue continu-
ous lines) and GBW (purple dotted lines) unintegrated gluon distribu-
tions, versus Bjorken x , as given by Eqs. (19) and (1) (for gluons only)

calculated for low Q2 values. The result demonstrates saturation and
decrease of entropy at low Q2 and low x . The values are Q2 = 0.3 GeV2

(bottom of the plot) up to 2.3 GeV2 (top of the plot)
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Fig. 6 Left: GBW partonic entropies for increasing Q2 from bottom
to top with Q2 = 1 GeV2 the lowest and Q2 = 11 GeV2 the highest
value with increments by Q2 = 2.5 GeV2, versus Bjorken x , as given

by Eq. (18) (orange continuous) and Eq. (10) (purple dashed) assuming
B = e. Right: the same as left but the integrated gluon obtained from
the rcBK unintegrated gluon is used to determine entropy
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appropriate factorization of entanglement entropy into parton
distribution functions and corresponding perturbative coef-
ficients which would guarantee factorization scheme inde-
pendence of the framework beyond leading order. While the
frameworks used in this paper agree for moderate and large
values of Q2, we find differences between BFKL evolution
and leading order PDFs on the one hand and BK evolution
on the other hand, if we turn to smaller values of Q2. In par-
ticular nonlinear dynamics, as encoded in the BK equation,
suggests that entropy saturates or even decreases. On techni-
cal level we link this behavior to the feature of the BK gluon
PDF which predicts a valence like gluon PDF i.e. a distribu-
tion falling as a function of x at some low enough value of x .
This behavior of entanglement entropy is expected since at
very low values of Q2 the photon virtuality is so low that the
system can not be bi-partitioned and entanglement entropy
needs to vanish. To provide a definite answer to those ques-
tions, a generalization of the framework discussed here is
necessary; in particular to explain the observed decrease of
entropy with x .

Acknowledgements We would like to thank Valerio Bertone, Krzysztof
Golec-Biernat, Franceso Hautmann, Alex Kovner, Genya Levin, Misha
Lublinsky, Al Mueller, Jacek Otwinowski, Andreas Schäfer, Zhoudun-
ming Tu, Raju Venugopalan for stimulating discussions. KK acknowl-
edges the support of The Kosciuszko Foundation for the Academic year
22/23 for the project ”Entropy of dense system of quarks and gluons”.
MH is grateful for hospitality at the Institute of Nuclear Physics and
acknowledges support by Consejo Nacional de Ciencia y Tecnología
Grant number A1 S-43940 (CONACYT-SEP Ciencias Básicas).

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The results of
our numerical studies can be obtained by the authors upon request.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix A: Some details on the rcBK and HSS

The procedure of getting the HSS unintegrated gluon density
relies on solving NLO BFKL equation with BLM prescrip-
tion for scale choice, collinear improvements and fitting ini-
tial condition to HERA data [31,32]. The rcBK is basically

the LO BK equation formulated in the coordinate space and
with running coupling constant included. The initial condi-
tions are fitted [33] to HERA data [59].

• The unintegrated dipole gluon density from the BK is
obtained via

F(x, k2) = Nck2S⊥
8π2αs

∫
dr2(1 − N (r, x))J0(r

2k2) (29)

where N (r, x) is dipole amplitude obeying BK equation
in the coordinate space. We use S⊥ = 16.4 mb and αS

is kept constant.6 In order to assess normalization uncer-
tainties due to the choice of this coupling constant, we
vary it in the range [0.2–0.3]. The BK equation reads [61]

∂N (r,Y )

∂Y
=

∫
d �r1 K

run(�r , �r1, �r2)(N (r1,Y )

+ N (r2,Y ) − N (r,Y ) − N (r1,Y )N (r2,Y )) (30)

where, Y = ln(x0/x) and �r2 = �r − �r1. The kernel Krun

is given by

Krun(�r , �r1, �r2) = αs(r2)

2π2 Nc

×
[

r2

r2
1r

2
2

+ 1

r2
1

(
αs(r2

1 )

αs(r2
2 )

−1

)
+ 1

r2
2

(
αs(r2

2 )

αs(r2
1 )

−1

)]
,

(31)

with

αs(r
2) = 12π

(11Nc − 2N f ) ln

(
4C2

r2�2
QCD

) ; (32)

the maximal allowed value for αs is αs,max = 0.7.
The initial condition is given by McLerran-Venugopalan
model [33,62]

NMV(r,Y = 0)

= 1 − exp

[
− (r2Q2

s0)
γ

4
ln

(
1

r�QCD
+ e

)]
(33)

The equation was solved by newly developed code using
Runge–Kutta method and using the parameters in the fit
[33] to HERA data [59]. The numerical values of the
parameter read Qs0 = 0.165GeV , γ = 1.135, C =
2.52, �QCD = 0.241, N f = 3, S⊥ = 16.4 mb.

6 This choice is often use once obtaining gluon density from the BK
equation solved in coordinate space (see for example [60]). The cou-
pling constant at LO accuracy cancels for such observable as F2 between
impact factor and the gluon density independently on whether it is run-
ning (for the same choice of scale) or whether it is fixed.
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• The HSS gluon density follows from the BFKL evolution
equation with the kernel obtained at NLL accuracy with
collinear improvements [31,32,63,64]. The unintegrated
gluon density reads

F
(
x, k2, M

)
= 1

k2

1
2 +i∞∫

1
2 −i∞

dγ

2π i
ĝ

(
x,

M2

Q2
0

, γ

) (
k2

Q2
0

)γ

(34)

where M is a characteristic hard scale of the process
which we identify with Q. ĝ is an operator in γ space,

ĝ

(
x,

M2

Q2
0

γ

)
= C · �(δ − γ )

π�(δ)
·

(
1

x

)χ(γ )

·

×
{

1 + ᾱ2
s β0χ0 (γ )

8Nc
log

(
1

x

)

×
[

− ψ (δ − γ ) + log
M2

Q2
0

− ∂γ

]}
, (35)

where ᾱs = αs Nc/π with Nc the number of colors and
χ(γ ) is the next-to-leading logarithmic (NLL) BFKL
kernel which includes a resummation of both collinear
enhanced terms as well as a resummation of large terms
proportional to the first coefficient of the QCD beta func-
tion. For the current study we set M = M = Q and
n f = 4 with �QCD = 0.21 GeV. Q0 = 0.28 GeV,
and δ = 6.5. have been determined from a fit to the F2

structure function in [31]. In this fit the overall running
coupling constant has been evaluated at the renormaliza-
tion scale μ2 = QQ0, with Q the photon virtuality. For
the construction of parton distribution function μ2 = Q2

is however a more natural choice. We therefore reevalu-
ated the underlying fit and found that data on the proton
structure F2 [59] are equally well described, if we use
μ2 = Q2 for the photon impact factor with a normaliza-
tion C = 4.31. It is then this convention which we use
in this study. In [35] the integrated quark distribution has
been evaluated using C = 4.31, while the gluon has been
evaluated with the normalization constant correspond-
ing to the scale choice μ2 = QQ0. Since distributions
arise from the same unintegrated gluon distribution, such
a treatment is not consistent. This has been corrected in
the present study, including a variation of the overall run-
ning coupling to indicate the normalization uncertainty
of our result.

References

1. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki,
Rev. Mod. Phys. 81, 865–942 (2009). https://doi.org/10.1103/
RevModPhys.81.865. arXiv:quant-ph/0702225

2. H. Casini, M. Huerta, arXiv:2201.13310 [hep-th]
3. M. Headrick, arXiv:1907.08126 [hep-th]
4. B. Kayser, J. Kopp, R.G.H. Roberston, P. Vogel, Phys. Rev. D

82, 093003 (2010). https://doi.org/10.1103/PhysRevD.82.093003.
arXiv:1006.2372 [hep-ph]

5. M. Fabbrichesi, R. Floreanini, G. Panizzo, Phys. Rev. Lett.
127(16), 16 (2021). https://doi.org/10.1103/PhysRevLett.127.
161801. arXiv:2102.11883 [hep-ph]

6. Y. Afik, J.R.M. de Nova, Eur. Phys. J. Plus 136(9),
907 (2021). https://doi.org/10.1140/epjp/s13360-021-01902-1.
arXiv:2003.02280 [quant-ph]

7. W. Gong, G. Parida, Z. Tu, R. Venugopalan, arXiv:2107.13007
[hep-ph]

8. A. Kovner, M. Lublinsky, Phys. Rev. D 92(3), 034016 (2015).
https://doi.org/10.1103/PhysRevD.92.034016. arXiv:1506.05394
[hep-ph]

9. D.E. Kharzeev, E.M. Levin, Phys. Rev. D 95(11), 114008 (2017).
https://doi.org/10.1103/PhysRevD.95.114008. arXiv:1702.03489
[hep-ph]

10. C. Holzhey, F. Larsen, F. Wilczek, Nucl. Phys. B 424,
443–467 (1994). https://doi.org/10.1016/0550-3213(94)90402-2.
arXiv:hep-th/9403108

11. P. Calabrese, J.L. Cardy, J. Stat. Mech. 0406, P06002
(2004). https://doi.org/10.1088/1742-5468/2004/06/P06002.
arXiv:hep-th/0405152

12. K. Zhang, K. Hao, D. Kharzeev, V. Korepin, Phys. Rev. D
105(1), 014002 (2022). https://doi.org/10.1103/PhysRevD.105.
014002. arXiv:2110.04881 [quant-ph]

13. Z. Tu, D.E. Kharzeev, T. Ullrich, Phys. Rev. Lett. 124(6),
062001 (2020). https://doi.org/10.1103/PhysRevLett.124.062001.
arXiv:1904.11974 [hep-ph]

14. K. Kutak, Phys. Lett. B 705, 217–221 (2011). https://doi.org/10.
1016/j.physletb.2011.09.113. arXiv:1103.3654 [hep-ph]

15. R. Peschanski, Phys. Rev. D 87(3), 034042 (2013). https://doi.org/
10.1103/PhysRevD.87.034042. arXiv:1211.6911 [hep-ph]

16. A. Stoffers, I. Zahed, Phys. Rev. D 88(2), 025038 (2013). https://
doi.org/10.1103/PhysRevD.88.025038. arXiv:1211.3077 [nucl-th]

17. A. Kovner, M. Lublinsky, M. Serino, Phys. Lett. B 792,
4–15 (2019). https://doi.org/10.1016/j.physletb.2018.10.043.
arXiv:1806.01089 [hep-ph]

18. N. Armesto, F. Dominguez, A. Kovner, M. Lublinsky, V. Skokov,
JHEP 05, 025 (2019). https://doi.org/10.1007/JHEP05(2019)025.
arXiv:1901.08080 [hep-ph]

19. H. Duan, C. Akkaya, A. Kovner, V.V. Skokov, Phys. Rev. D
101(3), 036017 (2020). https://doi.org/10.1103/PhysRevD.101.
036017. arXiv:2001.01726 [hep-ph]

20. G. Dvali, R. Venugopalan, arXiv:2106.11989 [hep-th]
21. Y. Liu, M.A. Nowak, I. Zahed, arXiv:2205.06724 [hep-ph]
22. Y. Liu, M.A. Nowak, I. Zahed, Phys. Rev. D 105(11),

114028 (2022). https://doi.org/10.1103/PhysRevD.105.114028.
arXiv:2203.00739 [hep-ph]

23. Y. Liu, M.A. Nowak, I. Zahed, Phys. Rev. D 105(11),
114027 (2022). https://doi.org/10.1103/PhysRevD.105.114027.
arXiv:2202.02612 [hep-ph]

24. A. Dumitru, E. Kolbusz, Phys. Rev. D 105, 074030 (2022). https://
doi.org/10.1103/PhysRevD.105.074030. arXiv:2202.01803 [hep-
ph]

25. G.S. Ramos, M.V.T. Machado, Phys. Rev. D 101(7), 074040
(2020). https://doi.org/10.1103/PhysRevD.101.074040.
arXiv:2003.05008 [hep-ph]

123

https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
http://arxiv.org/abs/quant-ph/0702225
http://arxiv.org/abs/2201.13310
http://arxiv.org/abs/1907.08126
https://doi.org/10.1103/PhysRevD.82.093003
http://arxiv.org/abs/1006.2372
https://doi.org/10.1103/PhysRevLett.127.161801
https://doi.org/10.1103/PhysRevLett.127.161801
http://arxiv.org/abs/2102.11883
https://doi.org/10.1140/epjp/s13360-021-01902-1
http://arxiv.org/abs/2003.02280
http://arxiv.org/abs/2107.13007
https://doi.org/10.1103/PhysRevD.92.034016
http://arxiv.org/abs/1506.05394
https://doi.org/10.1103/PhysRevD.95.114008
http://arxiv.org/abs/1702.03489
https://doi.org/10.1016/0550-3213(94)90402-2
http://arxiv.org/abs/hep-th/9403108
https://doi.org/10.1088/1742-5468/2004/06/P06002
http://arxiv.org/abs/hep-th/0405152
https://doi.org/10.1103/PhysRevD.105.014002
https://doi.org/10.1103/PhysRevD.105.014002
http://arxiv.org/abs/2110.04881
https://doi.org/10.1103/PhysRevLett.124.062001
http://arxiv.org/abs/1904.11974
https://doi.org/10.1016/j.physletb.2011.09.113
https://doi.org/10.1016/j.physletb.2011.09.113
http://arxiv.org/abs/1103.3654
https://doi.org/10.1103/PhysRevD.87.034042
https://doi.org/10.1103/PhysRevD.87.034042
http://arxiv.org/abs/1211.6911
https://doi.org/10.1103/PhysRevD.88.025038
https://doi.org/10.1103/PhysRevD.88.025038
http://arxiv.org/abs/1211.3077
https://doi.org/10.1016/j.physletb.2018.10.043
http://arxiv.org/abs/1806.01089
https://doi.org/10.1007/JHEP05(2019)025
http://arxiv.org/abs/1901.08080
https://doi.org/10.1103/PhysRevD.101.036017
https://doi.org/10.1103/PhysRevD.101.036017
http://arxiv.org/abs/2001.01726
http://arxiv.org/abs/2106.11989
http://arxiv.org/abs/2205.06724
https://doi.org/10.1103/PhysRevD.105.114028
http://arxiv.org/abs/2203.00739
https://doi.org/10.1103/PhysRevD.105.114027
http://arxiv.org/abs/2202.02612
https://doi.org/10.1103/PhysRevD.105.074030
https://doi.org/10.1103/PhysRevD.105.074030
http://arxiv.org/abs/2202.01803
https://doi.org/10.1103/PhysRevD.101.074040
http://arxiv.org/abs/2003.05008


1147 Page 12 of 12 Eur. Phys. J. C (2022) 82 :1147

26. D.E. Kharzeev, Quantum information approach to high energy
interactions. arXiv:2108.08792 [hep-ph]

27. Y. Hagiwara, Y. Hatta, B.W. Xiao, F. Yuan, Phys. Rev.
D 97(9), 094029 (2018). https://doi.org/10.1103/PhysRevD.97.
094029. arXiv:1801.00087 [hep-ph]

28. D. Neill, W.J. Waalewijn, Phys. Rev. Lett. 123(14), 142001
(2019). https://doi.org/10.1103/PhysRevLett.123.142001.
arXiv:1811.01021 [hep-ph]

29. G.S. Ramos, M.V.T. Machado, Phys. Rev. D 105(9), 094009
(2022). https://doi.org/10.1103/PhysRevD.105.094009.
arXiv:2203.10986 [hep-ph]

30. H. Duan, A. Kovner, V.V. Skokov, Phys. Rev. D 105(5),
056009 (2022). https://doi.org/10.1103/PhysRevD.105.056009.
arXiv:2111.06475 [hep-ph]

31. M. Hentschinski, A. Sabio Vera, C. Salas, Phys. Rev. Lett. 110(4),
041601 (2013). https://doi.org/10.1103/PhysRevLett.110.041601.
arXiv:1209.1353 [hep-ph]

32. M. Hentschinski, A. Sabio Vera, C. Salas, Phys. Rev.
D 87(7), 076005 (2013). https://doi.org/10.1103/PhysRevD.87.
076005. arXiv:1301.5283 [hep-ph]

33. J.L. Albacete, N. Armesto, J.G. Milhano, P. Quiroga-Arias, C.A.
Salgado, Eur. Phys. J. C 71, 1705 (2011). https://doi.org/10.1140/
epjc/s10052-011-1705-3. arXiv:1012.4408 [hep-ph]

34. G. Beuf, H. Hänninen, T. Lappi, H. Mäntysaari, Phys. Rev.
D 102, 074028 (2020). https://doi.org/10.1103/PhysRevD.102.
074028. arXiv:2007.01645 [hep-ph]

35. M. Hentschinski, K. Kutak, Eur. Phys. J. C 82(2), 111
(2022). https://doi.org/10.1140/epjc/s10052-022-10056-y.
arXiv:2110.06156 [hep-ph]

36. D.E. Kharzeev, E. Levin, Phys. Rev. D 104(3), L031503
(2021). https://doi.org/10.1103/PhysRevD.104.L031503.
arXiv:2102.09773 [hep-ph]

37. E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 44, 443–
450 (1976)

38. E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 45, 199–
204 (1977)

39. I.I. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822–829 (1978)
40. V. Andreev et al. [H1], Eur. Phys. J. C 81, 3, 212 (2021). https://doi.

org/10.1140/epjc/s10052-021-08896-1. arXiv:2011.01812 [hep-
ex]

41. J. Collins, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 32,
1–624 (2011) (Cambridge University Press, 2013, ISBN 978-
1-107-64525-7, 978-1-107-64525-7, 978-0-521-85533-4, 978-1-
139-09782-6)

42. H. Abramowicz et al. [H1 and ZEUS], Eur. Phys. J. C 75(12),
580 (2015). https://doi.org/10.1140/epjc/s10052-015-3710-4.
arXiv:1506.06042 [hep-ex]

43. K. Kutak, J. Kwiecinski, Eur. Phys. J. C 29, 521 (2003). https://
doi.org/10.1140/epjc/s2003-01236-y. arXiv:hep-ph/0303209

44. K. Kutak, S. Sapeta, Phys. Rev. D 86, 094043 (2012). https://doi.
org/10.1103/PhysRevD.86.094043. arXiv:1205.5035 [hep-ph]

45. B. Ducloué, E. Iancu, A.H. Mueller, G. Soyez, D.N. Tri-
antafyllopoulos, JHEP 04, 081 (2019). https://doi.org/10.1007/
JHEP04(2019)081. arXiv:1902.06637 [hep-ph]

46. Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1999). https://doi.org/
10.1103/PhysRevD.60.034008. arXiv:hep-ph/9901281

47. I. Balitsky, Nucl. Phys. B 463, 99–160 (1996). https://doi.org/10.
1016/0550-3213(95)00638-9. arXiv:hep-ph/9509348

48. S. Catani, F. Hautmann, Nucl. Phys. B427, 475–524 (1994). https://
doi.org/10.1016/0550-3213(94)90636-X. arXiv:hep-ph/9405388

49. D.B. Clark, E. Godat, F.I. Olness, Comput. Phys. Commun.
216, 126–137 (2017). https://doi.org/10.1016/j.cpc.2017.03.004.
arXiv:1605.08012 [hep-ph]

50. A. Kovner, E. Levin, M. Lublinsky, JHEP 05, 019 (2022). https://
doi.org/10.1007/JHEP05(2022)019. arXiv:2201.01551 [hep-ph]

51. F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, Ann.
Rev. Nucl. Part. Sci. 60, 463–489 (2010). https://doi.org/10.1146/
annurev.nucl.010909.083629. arXiv:1002.0333 [hep-ph]

52. L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1–150
(1983). https://doi.org/10.1016/0370-1573(83)90022-4

53. K.J. Golec-Biernat, M. Wusthoff, Phys. Rev. D 59,
014017 (1998). https://doi.org/10.1103/PhysRevD.59.014017.
arXiv:hep-ph/9807513

54. J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Phys.
Rev. D 59, 014014 (1998). https://doi.org/10.1103/PhysRevD.59.
014014. arXiv:hep-ph/9706377

55. J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert,
Nucl. Phys. B 504, 415–431 (1997). https://doi.org/10.1016/
S0550-3213(97)00440-9. arXiv:hep-ph/9701284

56. J. Jalilian-Marian, A. Kovner, L.D. McLerran, H. Weigert, Phys.
Rev. D 55, 5414–5428 (1997). https://doi.org/10.1103/PhysRevD.
55.5414. arXiv:hep-ph/9606337

57. E. Iancu, A. Leonidov, L.D. McLerran, Nucl. Phys. A 692, 583–
645 (2001). https://doi.org/10.1016/S0375-9474(01)00642-X.
arXiv:hep-ph/0011241

58. K. Kutak, https://doi.org/10.3204/DESY-THESIS-2006-034.
arXiv:hep-ph/0703068

59. F.D. Aaron et al., [H1 and ZEUS], JHEP 01, 109 (2010). https://
doi.org/10.1007/JHEP01(2010)109. arXiv:0911.0884 [hep-ex]

60. H. Fujii, C. Marquet, K. Watanabe, JHEP 12, 181 (2020). https://
doi.org/10.1007/JHEP12(2020)181. arXiv:2006.16279 [hep-ph]

61. I. Balitsky, Phys. Rev. D 75, 014001 (2007). https://doi.org/10.
1103/PhysRevD.75.014001. arXiv:hep-ph/0609105

62. L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 2233–
2241 (1994). https://doi.org/10.1103/PhysRevD.49.2233.
arXiv:hep-ph/9309289

63. V.S. Fadin, L.N. Lipatov, Phys. Lett. B 429, 127–134
(1998). https://doi.org/10.1016/S0370-2693(98)00473-0.
arXiv:hep-ph/9802290

64. I. Bautista, A. Fernandez Tellez, M. Hentschinski, Phys. Rev.
D 94(5), 054002 (2016). https://doi.org/10.1103/PhysRevD.94.
054002. arXiv:1607.05203 [hep-ph]

123

http://arxiv.org/abs/2108.08792
https://doi.org/10.1103/PhysRevD.97.094029
https://doi.org/10.1103/PhysRevD.97.094029
http://arxiv.org/abs/1801.00087
https://doi.org/10.1103/PhysRevLett.123.142001
http://arxiv.org/abs/1811.01021
https://doi.org/10.1103/PhysRevD.105.094009
http://arxiv.org/abs/2203.10986
https://doi.org/10.1103/PhysRevD.105.056009
http://arxiv.org/abs/2111.06475
https://doi.org/10.1103/PhysRevLett.110.041601
http://arxiv.org/abs/1209.1353
https://doi.org/10.1103/PhysRevD.87.076005
https://doi.org/10.1103/PhysRevD.87.076005
http://arxiv.org/abs/1301.5283
https://doi.org/10.1140/epjc/s10052-011-1705-3
https://doi.org/10.1140/epjc/s10052-011-1705-3
http://arxiv.org/abs/1012.4408
https://doi.org/10.1103/PhysRevD.102.074028
https://doi.org/10.1103/PhysRevD.102.074028
http://arxiv.org/abs/2007.01645
https://doi.org/10.1140/epjc/s10052-022-10056-y
http://arxiv.org/abs/2110.06156
https://doi.org/10.1103/PhysRevD.104.L031503
http://arxiv.org/abs/2102.09773
https://doi.org/10.1140/epjc/s10052-021-08896-1
https://doi.org/10.1140/epjc/s10052-021-08896-1
http://arxiv.org/abs/2011.01812
https://doi.org/10.1140/epjc/s10052-015-3710-4
http://arxiv.org/abs/1506.06042
https://doi.org/10.1140/epjc/s2003-01236-y
https://doi.org/10.1140/epjc/s2003-01236-y
http://arxiv.org/abs/hep-ph/0303209
https://doi.org/10.1103/PhysRevD.86.094043
https://doi.org/10.1103/PhysRevD.86.094043
http://arxiv.org/abs/1205.5035
https://doi.org/10.1007/JHEP04(2019)081
https://doi.org/10.1007/JHEP04(2019)081
http://arxiv.org/abs/1902.06637
https://doi.org/10.1103/PhysRevD.60.034008
https://doi.org/10.1103/PhysRevD.60.034008
http://arxiv.org/abs/hep-ph/9901281
https://doi.org/10.1016/0550-3213(95)00638-9
https://doi.org/10.1016/0550-3213(95)00638-9
http://arxiv.org/abs/hep-ph/9509348
https://doi.org/10.1016/0550-3213(94)90636-X
https://doi.org/10.1016/0550-3213(94)90636-X
http://arxiv.org/abs/hep-ph/9405388
https://doi.org/10.1016/j.cpc.2017.03.004
http://arxiv.org/abs/1605.08012
https://doi.org/10.1007/JHEP05(2022)019
https://doi.org/10.1007/JHEP05(2022)019
http://arxiv.org/abs/2201.01551
https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1146/annurev.nucl.010909.083629
http://arxiv.org/abs/1002.0333
https://doi.org/10.1016/0370-1573(83)90022-4
https://doi.org/10.1103/PhysRevD.59.014017
http://arxiv.org/abs/hep-ph/9807513
https://doi.org/10.1103/PhysRevD.59.014014
https://doi.org/10.1103/PhysRevD.59.014014
http://arxiv.org/abs/hep-ph/9706377
https://doi.org/10.1016/S0550-3213(97)00440-9
https://doi.org/10.1016/S0550-3213(97)00440-9
http://arxiv.org/abs/hep-ph/9701284
https://doi.org/10.1103/PhysRevD.55.5414
https://doi.org/10.1103/PhysRevD.55.5414
http://arxiv.org/abs/hep-ph/9606337
https://doi.org/10.1016/S0375-9474(01)00642-X
http://arxiv.org/abs/hep-ph/0011241
https://doi.org/10.3204/DESY-THESIS-2006-034
http://arxiv.org/abs/hep-ph/0703068
https://doi.org/10.1007/JHEP01(2010)109
https://doi.org/10.1007/JHEP01(2010)109
http://arxiv.org/abs/0911.0884
https://doi.org/10.1007/JHEP12(2020)181
https://doi.org/10.1007/JHEP12(2020)181
http://arxiv.org/abs/2006.16279
https://doi.org/10.1103/PhysRevD.75.014001
https://doi.org/10.1103/PhysRevD.75.014001
http://arxiv.org/abs/hep-ph/0609105
https://doi.org/10.1103/PhysRevD.49.2233
http://arxiv.org/abs/hep-ph/9309289
https://doi.org/10.1016/S0370-2693(98)00473-0
http://arxiv.org/abs/hep-ph/9802290
https://doi.org/10.1103/PhysRevD.94.054002
https://doi.org/10.1103/PhysRevD.94.054002
http://arxiv.org/abs/1607.05203

	Maximally entangled proton and charged hadron multiplicity in Deep Inelastic Scattering
	Abstract 
	1 Introduction
	2 Ambiguities in the current description
	2.1 Overall normalization
	2.2 Charged versus total hadron multiplicity
	2.3 Gluon versus quark contribution
	2.4 Binning and comparison to data

	3 Numerical results
	4 Towards the real photon limit
	5 Conclusions
	Acknowledgements
	Appendix A: Some details on the rcBK and HSS 
	References




