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Abstract In cosmic ray physics and high-energy neutrino
astronomy, muons are ubiquitous. Due to their slow energy
loss and consequently large range at high energies, the cor-
rect simulation of their transport through matter is espe-
cially important for underground experiments. The domi-
nant energy loss processes are ionization and at higher ener-
gies pair production, bremsstrahlung and inelastic interaction
with nuclei. A muon energy loss process, which has hitherto
been neglected in such simulations, is the diffractive scatter-
ing of virtual photons on nuclei. As the elastic channel of
this process has the same final state as the bremsstrahlung
process (μ + A → μ + A + γ ), an interference term arises,
whose sign depends on the charge of the lepton. It is found
that the contribution of this process was overestimated in
earlier works and is significantly affected by shadowing.

1 Introduction

High energy muons travel large distances through matter
because they lose their energy slowly. This is advantageous
for high-energy neutrino astronomy as neutrinos interacting
outside the detector can travel into the instrumented volume,
thus enlarging the effective volume of the detector. The large
range of muons requires that simulations of their transport
be sufficiently accurate, in particular the description of their
interaction cross sections.

The main energy loss processes of muons are ionisation,
electron–positron pair production, bremsstrahlung and pho-
tonuclear interaction. Denoting the cross section differential
in the relative energy lost per interaction as dσ/dy, the aver-
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age energy loss per distance is given by
〈
−dE

dx

〉
= NA

A
ρ

∫
y

∑
processes

dσ

dy
dy, (1)

where NA is the Avogadro number, A the mass number, and ρ

the mass density of the material. The ionisation leads to small
energy losses, which result in a roughly constant contribution
to 〈−dE/dx〉; the other processes lead to an average energy
loss that rises approximately linear with energy, such that
〈
−dE

dx

〉
≈ a + bE . (2)

Pair production energy losses are predominantly very small
(y � 1), while bremsstrahlung and photonuclear interac-
tion also lead to large stochastic losses, in which the muon
looses a large fraction of its energy. The dependence of the
average energy loss for these dominant processes in water
is shown in Fig. 1. While the first calculations of these pro-
cesses date back to the 1930s [1–3], over the decades numer-
ous corrections have been calculated, including the effect of
nuclear formfactors [4,5], atomic electrons as target [6,7],
Coulomb corrections [8,9], and radiative corrections [10,11],
as well as numerous calculations of photonuclear interaction
and nuclear shadowing (e.g. [12–15]).

Another process influencing the behaviour of muons is the
diffractive scattering of virtual photons to a final-state real
photon

γ ∗ + A → γ + A(′). (3)

This process is known as deeply virtual Compton scattering
for photons of high virtuality Q2 and has been studied for
the proton, together with other diffractive processes γ ∗ +
p → X + p, at colliders. For nuclei, deeply virtual Compton
scattering has been studied for electron-ion colliders (e.g.
[16]).
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Fig. 1 Average energy loss of muons per distance in water

The diffractive scattering of photons is in principle a sub-
process of photonuclear interaction; however, in coherent
scattering of virtual photons, where the nucleus stays intact,

γ ∗ + A → γ + A, (4)

the initial and final state coincide with the bremsstrahlung
process when considered on the lepton level

μ± + A → μ± + γ + A. (5)

This fact gives rise to interference between the
bremsstrahlung amplitude Mbrems and the diffractive scat-
tering amplitude Mdiff

|Mtot|2 = |Mbrems|2 + |Mdiff|2 + 2 Re(MdiffM
∗
brems). (6)

Because the bremsstrahlung amplitude is proportional to the
square of the muon charge, while the diffractive amplitude
depends linearly on it, the interference term is proportional to
the sign of the muon charge. In addition, the bremsstrahlung
amplitude is purely real in leading order, such that only the
real part of the diffractive scattering amplitude contributes.

In the context of muon transport calculations, the interest
lies chiefly in the region of low Q2, as opposed to the deeply
virtual region of large Q2 mainly studied in preceding work.
The first discussion of diffractive virtual Compton scattering
in the context of muon transport was given by [17], which
remained largely unnoticed, however.

The article is structured as follows: in Sect. 2, the calcula-
tion of [17] is briefly explained; this is done to make the article
self-contained, since [17] is difficult to obtain. In Sect. 3, a
calculation using the color dipole model is presented, where
also the effect of shadowing is taken into account. The arti-
cle closes in Sect. 4 with a comparison of the results of the
different approaches with one another and other corrections
to muon energy loss cross sections.

2 Mass-operator calculation of Kelner and Fedotov

The Green’s function for the electromagnetic field in nuclear
matter can be obtained by the introduction of a mass opera-
tor. The vector potential Ai in a gauge with vanishing scalar
potential can be expressed by a current density jk as

Ai (x) = −
∫

Dik(x, x
′) jk(x ′)d4x ′, (7)

where Dik(x, x ′) is the quantum retarded Green’s function.
The difference between the Feynman propagator and retarded
Green’s function can be disregarded according to the authors
of [17], since the problem is limited to the evaluation of tree-
level diagrams in this formulation. In this case the equation
to be solved is given in coordinate-space by
(

(ω2 + Δ + 2ωΠ(ω)ρ(r))δik − ∂2

∂xi ∂xk

)
Ak(r, ω)

= − ji (r, ω), (8)

whereω is the energy of the photon,Δ is the Laplace operator,
Π(ω) the mass operator, and ρ(r) the number density of
nucleons normalized as

∫
ρ d3r = V with V the effective

nuclear volume. This derivation is analogous to the treatment
of diffractive hadron-nucleus reactions in [18], however in the
limit of a transparent nucleus (more appropriate to photon-
nucleus reactions) instead of a “black” nucleus (appropriate
for hadron-nucleus reactions).

A possible dependence on the virtuality of the photon was
neglected by [17]. Solving by perturbation theory for a small
mass operator Π(ω) the leading approximation for the pho-
ton Green’s function is given in momentum space by

Dik(k, l, ω) = (2π)3δ(k − l)D(0)
ik (k, ω)

+D(0)
il (k, ω)2ωΠ(ω)δlmV Fn(k − l)D(0)

mk (l, ω).

(9)

Here, D(0)
ik is the vacuum photon Green’s function and Fn(q)

is the nuclear form factor. This corresponds to a two-photon-
nucleus vertex

Mik(k, l) = 2ωδikΠ(ω)V Fn(k − l), (10)

where k, l are the 4-momenta of the outgoing and incoming
photons; this can be expressed in a gauge-invariant way by
replacing the Kronecker symbol δik by

Δμν = −gμν + lμkν

(kl)
− (kl)

(
lμ

(kl)
− Uμ

(Uk)

) (
kν

(kl)
− Uν

(Ul)

)
,

(11)

where U is the four-velocity of the nucleus and (Uk) =
(Ul) = ω, neglecting the energy transfer to the nucleus. The
imaginary part of the mass operator is determined by the
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photoabsorption cross section via the optical theorem

σγ A = 1

ω
Im ε∗μ

(k)Mμν(k, k)ε
ν(k) = 2V Im Π; (12)

the real part follows from dispersion relation.
The interference term of the diffractive amplitude

Mdiff = ieμ

[ū(p2)γμu(p1)]
Q2 Mμν(q, k)ε∗ν(k), (13)

and the bremsstrahlung amplitude

Mbrems = i Zee2
μ

Fn(
√−t) − Fa(

√−t)

−t

×ū(p2)

[
γα

p̂2 + k̂ + μ

2(p2k)
Û − Û

p̂1 − k̂ + μ

2(p1k)
γα

]

×u(p1)ε
∗α(k), (14)

where p1,2 are the incoming and outgoing lepton momenta,
q, k the virtual and final state photon momenta, ε∗ν(k) the
polarization vector of the final state photon, Q2 = −q2 the
virtuality of the virtual photon, and Fa is the atomic formfac-
tor, which turns out to be irrelevant for the interference term,
can be evaluated mostly analytically for ultrarelativistic par-
ticles (E2

1,2, ω
2 
 μ2, |t |, where μ is the muon mass, t the

invariant momentum transfer to the nucleus, and E1,2, ω the
energies of the leptons and final state photons) with the result

y
dσint

dy
= − sgn(eμ)

4α2ZV

π
Re Π(ω) f (y),

f (y) =
∫ ∞

0

dx

x

1 − y + [1 + (1 − y)2]x2

x
√

1 + x2
ln(x +

√
1 + x2)

×
[
F2
n (2μxy) − F2

n

(
2μxy

1 − y

)]
. (15)

In their numerical calculations, Kelner and Fedotov in [17]
used a parametrization of the photoabsorption cross section
of the form

σγ A = A(Xsε + Ys−η) (16)

with s = 2mpω/GeV2; assuming a mass operator of the
form Π ∝ (−s − i0)λ, they derived the ratio of real and
imaginary part of the mass operator as

Re Π

Im Π
= −Xsε cot(πε) + Ys−η cot(πη)

Xsε + Ys−η
. (17)

However, this form of the mass operator leads to an amplitude
which is not crossing invariant. The correct form of the mass
operator is given by Π ∝ (−s−i0)λ−(s+i0)λ, correspond-
ing to an amplitude Mγ p→γ p ∝ (−s− i0)1+λ +(s+ i0)1+λ.
This leads to a ratio of the real and imaginary part of the mass
operator (and therefore of the amplitude)

Re Π

Im Π
= Xsε tan(πε/2) − Ys−η tan(πη/2)

Xsε + Ys−η
. (18)

At large energies, the ratio between (17) and (18) amounts
to about a factor of 30 and a difference in the sign of the real
part of the amplitude.

3 Calculation of the interference of diffractive Compton
scattering and bremsstrahlung in the color dipole
approach

3.1 Compton tensor in the color dipole approach

Instead of the mass operator approach used by [17], in this
work the color dipole model is used [19–21], which expresses
the amplitude of diffractive processes on nucleons in the for-
ward direction as

Aγ ∗ p→Xp

= (βdip + i)
∫

d2r
∫ 1

0
dz [Ψ ∗

XΨγ ∗ ](Q2, r, z)σdip(r,W
2),

(19)

where [Ψ ∗
XΨγ ∗ ](Q2, r, z) is the overlap between the wave-

functions of the initial photon and the final state as a function
of photon virtuality Q2, transversal separation of the quark–
antiquark pair r and energy fraction of the quark (antiquark)
z (1− z), βdip is the ratio between the real and imaginary part
of the amplitude, and σdip(r,W 2) is the dipole cross section
describing the interaction of the quark–antiquark pair with
the nucleus. For virtual Compton scattering, only transver-
sally polarized virtual photons contribute, with the wave
function overlap

[Ψ ∗
γ Ψγ ∗ ](Q2, r, z) = 3α

2π2

∑
q

(eq
e

)2

×{[z2 + (1 − z)2]εmqK1(εr)K1(mqr)

+m2
q K0(εr)K0(mqr)}, (20)

where ε =
√
Q2z(1 − z) + m2

q , and the sum is over quark

flavors q. The dipole cross section cannot be deduced from
first principles, so phenomenological parametrizations have
to be used. Here, two parametrizations are used, the FKS two-
component parametrization [22], unitarized according to the
prescription in [13], and the color glass condensate IIMS
parametrization [23,24]. The formulæ for the dipole cross
section are given in the Appendix. The FKS model is cho-
sen, despite its age, because it explicitly takes into account the
limiting case of real photons and measurements of the pho-
toabsorption cross section are taken into account in fitting,
including a phenomenological modification for the photon
wave function [cf. (A.5)], whereas more recent models such
as the IIMS model are usually more concerned with higher
values of Q2.
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As in the mass operator calculation by [17], for the calcu-
lation of the interference between the bremsstrahlung ampli-
tude and the Compton scattering amplitude the Compton
tensor is required. The Compton tensor is not uniquely
determined from symmetry considerations: a gauge-invariant
rank-two tensor obeying all applicable symmetries for the
process γ ∗ + N → γ ∗ + N is in general described by
21 coefficients [25,26]; in the spin-independent case this
reduces to five coefficients and further to three coefficients
in the case of a real photon in the final state, which can-
not be unambiguously identified with the amplitudes for
transversal-transversal and longitudinal-transversal transi-
tion, so to determine the tensorial structure one has to choose
a model. The color dipole model [19–21], which is com-
monly used for calculations of forward Compton scattering
and diffractive processes (e.g. [16,27,28]) and also in this
work, does not offer a covariant way to determine this Lorentz
tensor structure; the tensor structure would have to be recon-
structed from the contraction with the photon polarization
vectors for the different helicities. Since the color dipole
model corresponds physically to the pomeron exchange, it
is much easier to determine the tensor structure using the
Feynman rules worked out in [29] to describe hadronic inter-
actions in the Regge regime, treating the pomeron as an effec-
tive spin-2 exchange. Calculating the amplitude in the high-
energy region, keeping only the leading terms in energy, one
obtains the tensorial structure

Mμν = Aγ ∗A→γ A

{
t − l2 − k2

(s − u)2 (P + P ′)μ(P + P ′)ν

− gμν

2
+ kμ(P + P ′)ν + (P + P ′)μlν

s − u

}
(21)

with P, P ′ denoting the four-momenta of the nucleus before
and after the interaction and s, t, u the usual Mandelstam
variables in the photon-nucleus system. In contrast to the
preceding calculation, this does not neglect the recoil of the
target nucleus. Calculating the interference of this ampli-
tude with the usual bremsstrahlung amplitude is elementary,
but tedious. Denoting the scalar products of the final pho-
ton momentum and the in- and outgoing lepton momenta as
η1, η2, respectively, we obtain the expression

2 Re(MdM
∗
b ) (22)

= (4πα)2F1(t)

t Q2 Mμν(P + P ′)ρ
(

−gνσ + kνkσ

k2

)

× Sp

{
( p̂2 + m)γ μ( p̂1 + m)

×
[
γρ

p̂2 + k̂ + m

2η2
γσ − γσ

p̂1 − k̂ + m

2η1
γρ

]}

= (4πα)2

t Q2 F1(t) Re(MTT)

{
2(η1 + η2) − 4mN E(2 − y)

+
(

1

η1
+ 1

η2

) (
m2(t + Q2) +

(
m2 − Q2

2

)
(s − u)

)

−
(

1

η1
− 1

η2

)
4m2m2

N E(2 − y)

+ 1

s − u

[
8mN E(2 − y)(s + t − m2

N + 7Q2)

+ (η1 + η2)(8m
2
N − 10Q2 − 4t) + 16mN E((1 − y)η1 − η2)

×
(

1

η1
+ 1

η2

) (
Q2

2
(Q4 + Q2(4m2

N − 7t) − 4tm2
N )

+m2(t + Q2)(4m2
N − t) − 56m2

N Q2E2(1 − y)
)

+
(

1 − y

η1
− 1

η2

)
2m2

N Q2E(7Q2 + t)

+
(

1

η1
− 1 − y

η2

)
2mN E(4EmN ty − 2Q4 + 5Q2t + t2)

×
(

1

η1
+ (1 − y)2

η2

)
8m2

N Q2E2
]

+ 1

(s − u)2

[
16mN E(t + Q2)(η2 − (1 − y)η1)

+ (η1 + η2)(−4Q4 − 56Q2m2
N + 10Q2t − 8m2

N t + 2t2)

+ 4mN E(2 − y)(−4s(t + Q2) + 32Q2m2
N

+ t (8m2
N − 7Q2) − t2)

+ 64m3
N E3(t + Q2)(1 − y)

(
1

η1
− 1 − y

η2

)

− 16m2
N E2(t + Q2)

(
t

(
1

η1
+ (1 − y)2

η2

)

+2Q2(1 − y)

(
1

η1
+ 1

η2

))

− 2mN E(t + Q2)

((
1

η1
− 1 − y

η2

) (
t2 − 4m2

N t − 2m2t

−Q2t − 8m2m2
N − 12Q2m2

N

)

+
(

1 − y

η1
− 1

η2

)
(−2Q4 − 2m2(t − 4m2

N ))

)

−
(

1

η1
+ 1

η2

)
t + Q2

2
(2m2(t + Q2)(t − 4m2

N )

−Q2(t (t − 4m2
N ) + Q2(t − 12m2

N )))
] }

. (23)

This expression differs noticeably from the expression by
[17], in particular the nuclear recoil is not neglected and the
theoretical basis (pomeron exchange instead of photon mass
operator) differs considerably. The phase space integration
is elementary (cf. Appendix C).

3.2 Calculation in the color dipole approach with account
for nuclear shadowing

The amplitude of nuclear Compton scattering is given in the
dilute limit, i.e. without shadowing, by the amplitude on a free
nucleon (cf. (19)) multiplied by the nuclear mass number A.

The effect of nuclear shadowing can be taken into account
in the color dipole picture using a Glauber–Gribov approach
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Fig. 2 Bremsstrahlung, photonuclear, and interference energy loss of
muons on protons

[30–32], as was done in [16,27,28]. The amplitude for the
coherent channel γ ∗A → γ A is then given by

Aγ ∗A→γ A = 2(βdip + i)
∫

d2b
∫

d2r
∫ 1

0
dz[Ψ ∗

γ Ψγ ∗ ]e−ib·Δ

×
[

1 − exp

(
−1

2
σdipATA(b)

)]
, (24)

where TA is the transversal density of the nucleus, defined
by the integral over the longitudinal coordinate

TA(b) =
∫ ∞

−∞
dζρ(b, ζ ) (25)

and normalized so that
∫
d2b TA(b) = 1, and Δ denotes

a transverse vector with Δ2 = −t . These expressions are
justified for large coherence lengths compared to the dimen-
sions of the nucleus. The used nuclear density is given by a
Woods-Saxon distribution

ρ(x) = ρ0
exp[−(|x| − RA)/d]

exp[−(|x| − RA)/d] + 1
(26)

with surface thickness d = 0.54fm and nuclear radius RA =
(1.12A1/3 − 0.86A−1/3)fm.

4 Numerical results and conclusion

The average energy loss divided by the energy is shown
in Figs. 2, 3, and 4 for protons, oxygen and standard rock
(Z = 11, A = 22) as the most important media for large
volume neutrino telescopes. For comparison, together with
the modulus of the interference correction, the energy loss
due to bremsstrahlung and photonuclear interaction is shown,
as well as the energy loss according to the calculations of [17]
in its original form and with corrected ratio of the real and
imaginary part of the Compton amplitude.

Fig. 3 Bremsstrahlung, photonuclear, and interference energy loss of
muons on oxygen

Fig. 4 Bremsstrahlung, photonuclear, and interference energy loss of
muons on standard rock

Compared to the bremsstrahlung cross section, the cor-
rections slowly rise with energy and reach the percent level
for very high muon energies in the PeV-regime. Since at PeV
energies the average energy loss is roughly equally deter-
mined by pair production, bremsstrahlung and photonuclear
interaction – where the latter slowly rises, while the former
two give a constant contribution to the average energy loss
–, this correction is of minor importance for energy loss cal-
culations of high-energy muons. Other corrections, such as
the uncertainty of the photonuclear energy loss or radiative
corrections [33], which are at a percent level or larger already
at lower energies, play a larger role.

Acknowledgements This work has been performed during a research
fellowship by the Deutsche Forschungsgemeinschaft (SA 3867/1-1)
at the National Research Nuclear University MEPhI. I would like to
acknowledge permanent stimulating interest and help from R. P. Kok-
oulin and A. A. Petrukhin. I would like also to thank E. V. Bugaev for
valuable discussions and comments.

123



1157 Page 6 of 7 Eur. Phys. J. C (2022) 82 :1157

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: Numerical programs
to calculate the contributions to the energy loss are available from the
author upon request.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

AppendixA:FKSparametrization of the dipole cross sec-
tion

The two-component parametrization of [22] with the hard
component unitarized according to the prescription in [13] is
given by

σdip(r, s) = σsoft(r, s) + σunit(r, s), (A.1)

σsoft(r, s) = aS0

(
1 − 1

1 + aS4 r
4

)
(r2s)λS , (A.2)

σunit(r, s) = 2πR2
u

{
ln

σhard(r, s)

2πR2
u

+ C − Ei

(
−σhard(r, s)

2πR2
u

)}
,

(A.3)

σhard(r, s) = (aH2 r2 + aH6 r6)e−rνH (r2s)λH . (A.4)

The wave function overlap is modified according to [22] by
a factor

f (r) = 1 + B exp(−c2(r − R)2)

1 + B exp(−c2R2)
, (A.5)

which influences mainly the soft component. The values
of the parameters are λs = 0.06, λH = 0.44, aS0 =
30.0 GeV−2, aS4 = 0.027 GeV4, aH

2 = 0.072, aH
6 =

1.89 GeV4, νH = 3.27 GeV, B = 7.05, R = 6.84 GeV−1,
and R2

u = 10 GeV−2.

Appendix B: IIMS parametrization of the dipole cross
section

The IIMS parametrization [23,24] of the dipole cross section
in the color glass condensate model is given by

σdip(x, r) =
⎧⎨
⎩N0

(
τ
2

)2
(
γs+ ln(2/τ)

κλY

)
τ ≤ 2

1 − exp[−A ln2(Bτ)] τ > 2,
(B.6)

where τ = r Qs , Y = ln(1/x), with N0 = 0.7, γs =
0.7376, κ = 9.9, λ = 0.2197, x0 = 1.632 × 10−5, Qs =
(x0/x)λ/2GeV, and σ0 = 27.28mb. A, B are determined by
N p and its derivative with regard to τ being continuous at
τ = 2 to be

A = − (N0γs)
2

(1 − N0)2 ln(1 − N0)
, (B.7)

B = (1 − N0)
1/γs−1/N0γs/2. (B.8)

Appendix C: Phase space integration

The corresponding completely differential cross section is
given by

dσinter = 2 Re(MdM
∗
b )

4
√

(p1P)2 − p2
1 P

2

×(2π)4δ(4)(p1 + P − p2 − k − P ′)

× d4 p2

(2π)3 δ(p2
2 − m2)

d4k

(2π)3 δ(k2)
d4P ′
(2π)3 δ(P ′2 − m2

N ).

(C.9)

The phase space element can be transformed as

dΦ = (2π)4δ(4)(p1 + P − p2 − k − P ′)

× d4 p1

(2π)3 δ(p2
2 − m2)

d4k

(2π)3 δ(k2)
d4P ′
(2π)3 δ(P ′2 − m2

N )

= 1

(2π)5
δ(4)(l + P − k − P ′)

×d4l d4k d4P ′δ(l2 − 2p1l)δ(k
2)δ(P ′2 − m2

N )

×dQ2δ(l2 + Q2)dtδ(t + Q2 + 2kl)

= 1

(2π)5

E

32mN

√
E2 − m2

√
(Ey)2 + Q2

×dy dQ2 dt dφl dφk . (C.10)

Here, the z-axis is chosen along l. The azimuthal angle φl

can be trivially integrated over, because it corresponds to a
rotation of the entire system. The angle φk appears in the
scalar products η1,2 as

η1 = kp1 = Ek E1 − k|| p1|| − k⊥p1⊥, η2 = kp2 = η1 − kl,

(C.11)

where

p1|| = p1l
|l| = EEl − p1l√

E2 − p2
1

= E2y + Q2/2√
(Ey)2 + Q2

,

k|| = lk
|l| = Ek El − lk√

E2
l + Q2

= Ek El + (t + Q2)/2√
E2
k + Q2

;

p1⊥ =
√
p2

1 − p2
1||, k⊥ =

√
k2 − k2||. (C.12)
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with El = Ey, Ek = Ey + t/(2mN ).
The integration over φk reduces to the five integrals

J2 =
∫

η2dφk, J1 =
∫

η1dφk, J0 =
∫

dφk,

J−1 =
∫

dφk

η1
, J−2 =

∫
dφk

η2
, (C.13)

which can be solved by elementary integration using the
above decomposition into transversal and longitudinal com-
ponents. Rearranging terms to obtain numerically stable
expressions, we obtain

J2 = 2π

E2
l + Q2

[
(E − El )EkQ

2 + (E − El )El
t + Q2

2

]
, (C.14)

J1 = 2π

E2
l + Q2

[
(E − El )EkQ

2 − EEl
t + Q2

2
− Q2(t + Q2)

2

]
,

(C.15)

J0 = 2π, (C.16)

J−1 = 4π

√
E2
l + Q2{[Et + (E − Ek)Q

2]2

+ 4m2[E2
k Q

2 − El Ek(t + Q2) − (t + Q2)2/4]}−1/2, (C.17)

J−2 = 4π

√
E2
l + Q2{[(E − El )(t + Q2) + EkQ

2]2

+ 4m2[E2
k Q

2 − El Ek(t + Q2) − (t + Q2)2/4]}−1/2. (C.18)
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