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Abstract By implementing an error function on a Machine
Learning algorithm we look for minimal conditions to con-
struct stable Anti de Sitter and de Sitter vacua from dimen-
sional type IIB String theory compactification on Kähler
manifolds with torsion. This allows to have contributions to
the scalar potential from the five-form flux and from D-branes
wrapping torsional cycles, interpreted as non-BPS states. The
former implies the possibility to construct stable AdS vacua
while the latter constitutes a mechanism to uplift AdS to dS
vacua. Particularly we consider ̂D5 non-BPS states to uplift
the stable AdS vacua to an (apparently) stable dS minimum.
Both results – the generation of an AdS vacuum and the corre-
sponding uplifting to a dS one – are restricted to a certain type
of configurations, specifically with the number of O3 orien-
tifolds bounded from below by the number of D3-branes
and fluxes. Under these conditions, we report over 170 dS
(classical) stable vacua. In all of them, the uplifted effective
potential becomes very flat indicating the presence of possi-
ble sources of instabilities. We comment on their relationship
with the Swampland Conjectures.

1 Introduction

The Swampland Program has received a lot of attention over
the last few years. Its importance relies on the establish-
ment of some criteria to separate effective quantum field
theories −considered as consistent with Quantum Gravity,
a.k.a. String Theory− from those which are not. The pro-
gram focuses on different proposals commonly referred to
as Conjectures which appear to rule out some of the string
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model engineering constructions so far presented in the lit-
erature. Some of those conjectures are involved in our work,
such as the instability of non-SUSY Anti-de Sitter (AdS)
vacua, the AdS scale separation, and the Refined de Sitter
conjecture, which in turn seem to be interconnected [1–3]).

The refined dS conjecture establishes that the minima of
the scalar potential coming from the dimensional reduction
of the low energy theory in string theory have to be AdS
otherwise they are tachyonic or not consistent with Quantum
Gravity, at least in the asymptotic regions of moduli space
[4–8]. Even more restrictive, the AdS conjecture establishes
that the scale of the lightest moduli is not parametrically
separated from the AdS scale, and thus any attempt to uplift
an AdS to a dS vacuum shall result in their destabilization.1

Recently it has been argued that the use of non-BPS states,
classified by K-theory, shall be an interesting corner to evade
these restrictions [10,11], unless the total K-theory charge
must cancel as pointed out in [12] and related to the cobor-
dism conjecture in [13].2 The minimal ingredients necessary
to construct a dS vacua have been studied extensively in the
last years [14,15,35]. However, their presence is limited by
the selected scenario under study. For example, in a Type IIB
flux compactification, it seems that the RR 5-form and the
D5-brane contribution to the scalar potential upon dimen-
sional reduction, are key ingredients to the construction of a
dS vacuum. However, in the presence of O3-planes the RR
potential C6 is projected out and no D5-branes are allowed
to be on top of them, or equivalently, cannot wrap internal
2-cycles, but due to the same orientifold action, the tachyon
present between a pair of D5 and an anti D5 is also removed,

1 See [9] for the case in the deformed conifold.
2 The incorporation of non-BPS states in the compactification can be
realized in any region of the moduli space, in particular in the asymptotic
one. In the present case, we shall study a simple scenario where quantum
corrections to the Kähler potential have been neglected for which the
constructed vacua reside in the asymptotic limit of large volumes.
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making the pair to be stable while carrying a discrete topo-
logical charge Z2. This is the non-BPS state ̂D5 which does
have a contribution on the effective scalar potential, as a
D5-brane. For this reason, it is possible to construct a dS
vacuum in its presence. On the other hand, if the total K-
theory charge is trivial then the scalar potential contribution
coming from the ̂D5 vanishes, and the uplift to dS would not
be possible, validating the RdS. The use of non-BPS states,
typically constructed from a pair of stable branes and anti-
branes in the presence of an orientifold plane, emulates the
role played by non-perturbative contributions in KKLT sce-
narios by breaking the non-scale structure of the N = 1
superpotential and providing a nice mechanism to stabilize
all the moduli. However, their inclusion is not sufficient to
guarantee the presence of apparently stable dS vacua but con-
tributions to the effective scalar potential coming from the RR
5-form are necessary.

We are interested in two main aspects. First, in construct-
ing a (meta)-stable dS vacuum by identifying the minimal set
of ingredients the effective scalar potential must possess in
the spirit of [14,15] and also find possible compactification
scenarios where such conditions might be present. Second,
in case we can construct a classical stable dS vacuum we
want to look for possible sources of instabilities which in
turn can be taken as evidence (or not) of the realization of
the above-referred Swampland Conjectures .

In this work, we consider a compactification on a Kähler
manifold admitting torsion, upon which there is a contribu-
tion of the torsional part of F5 to the scalar potential allowing
us to find AdS vacua (but not dS). For that to happen it is nec-
essary that the number of orientifolds fixed points be greater
than the number of D3-branes such that their contribution
to the tadpole is negative, i.e., N3 < 0. Under this context,
it is then possible to wrap D5-branes on torsional 2-cycles
which we claim are precisely the ̂D5 non-BPS states and that
contribute with a positive amount of energy such that uplift
the AdS vacuum to a dS one which has been constructed in
a single step. However, we also show that a 2 step procedure
is available if the value at which the internal modulus is sta-
bilized is large (large volume limit) for which the uplifting is
free of tachyons although the resulting potential is very flat,
indicating that it can be easily perturbed.

As in the case of the AdS vacua, the realization of dS min-
ima requires some extra conditions which come from having
a positive value for the stabilized internal volume, namely
that there are fluxes in RR and NS-NS sectors supported in
more than two 3-cycles and that the number of orientifold
3-planes has a lower bound given by

NO3 > 4
(AH3 AF3)

1/2

A3
+ 2Nflux,

where AH3 , AF3 and A3 are the contributions – upon dimen-
sional reduction – of 3-form fluxes and 3-dimensional

sources as D3-branes and O3−-planes, while Nflux is the
usual flux number entering into the D3-brane charge tadpole
contribution.

These conditions were inferred after implementing a
Machine Learning (ML) algorithm specifically designed to
look for dS vacua. The use of ML algorithms and tools has
been proven to be prolific (and in a more systematic way)
to explore the vacua in string theory compactifications (see
for instance [16–25]). For that, we implemented a hybrid
algorithm to explore the minima of a scalar potential of the
form3

Veff = Veff(H3, F3, F5, ̂D5)

subject to the constraints of (1) having a positive value at the
minimum, (2) zero value of its derivative with respect to each
of the moduli, (3) positive definiteness of the mass matrix,
and (4) positiveness of the contribution of the ̂D5-brane. In
the context of ML, these restrictions can be implemented
through an objective function written as

Error =
N

∑

i=1

αierrori

where each of the errori contributions takes into account
every single restriction above mentioned with the α parame-
ter a real value giving a weight to each error contribution. In
the present work, we employ the hybrid algorithm including
the Simulated Annealing (SA) as well as the Gradient Conju-
gate (GC). The SA algorithm is a heuristic method for solving
optimization problems which, inspired by the annealing pro-
cedure of metalworking, is able to look for an approximate
solution to the optimization problem. The GC algorithm on
the other hand is a second-order deterministic iterative opti-
mization algorithm designed to find local minima provided
that the first derivative is known. The need to combine heuris-
tic algorithms together with deterministic ones relies on the
point that heuristic algorithms are not intended to provide
great accuracy, instead are employed to find the parameters
that are close to a global minimum. Once these parameters
close to the global minimum are found, the deterministic
algorithms improve the accuracy providing a good numeri-
cal approximation of the global minimum. Thus, at the first
step, the SA algorithm shall look for interesting points in
the error function whereas the GC shall improve the solution
guaranteeing the zero value of the first derivative of the scalar
potential. We describe in detail these algorithms in Appendix
A.

Our work is then organized as follows: in Sect. 2 we
present the most usual conditions for a type IIB compactifica-
tion and specify the notation we use along the paper. In Sect. 3

3 Other sources are considered in the Appendix A such as fluxes, branes,
and negative curvature. More exotic fluxes, as non-geometric have been
considered in the literature (see [26] and references therein).
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we show that it is possible to construct AdS vacua by com-
pactification of type IIB string Theory on a Kähler manifold
with torsion, such that the RR five-form has a torsional con-
tribution to the effective scalar. For that, we implement a ML
algorithm through the presence of an error function which
allows to easily find a large number of stable and unstable
vacua. In this case, we report 389 different AdS vacua whose
existence relies upon the requirement that the number of D3-
branes be less than one-half of the number of orientifolds
O3−-planes. However, no dS vacua were found under these
conditions. In Sect. 4, once we take a compactification on a
manifold with torsion, we also consider D5-branes wrapping
torsional 2-cycles while fulfilling the aforementioned condi-
tions on fluxes and the orientifold bound. Extra assumptions
were taken, such as the nonexistence of torsional compo-
nents of all 3-form fluxes. For this case, we report over 170
different dS stable vacua. In Sect. 5 we discuss the condi-
tions upon which the AdS vacua can be lifted to dS ones and
comment on the implications with respect to the Swampland
Conjectures. In Sect. 6 we present our conclusions, while in
the Appendix we describe some useful technical information
in relation to the Machine Learning algorithm to be imple-
mented in our search, particularly about the incorporation of
the above-mentioned two algorithms: the Simulated Anneal-
ing and the Conjugate Gradient.

2 Contribution to the scalar potential

Let us review the standard dimensional reduction procedure
to construct the effective scalar potential. Consider the type
IIB superstring compactified on a manifold X6 in the pres-
ence of 3-form fluxes and 3-dimensional local sources. In
order to explore the simplest possible scenario we are not
including 7-branes or orientifold 7-planes to avoid the pres-
ence of extra moduli related to their wrapping on internal
cycles [27] and also to have the possibility to add non-BPS
states related to the action of the O3-plane. See appendix
B for more scenarios. As usual, the action for the massless
modes in the string frame is

SI I B = SG + Sφ + SG3 + SF5 + SCS + Sloc, (1)

with

SG = 1

2κ2
10

∫

d10x
√−G e−2φR, (2)

Sφ = 1

2κ2
10

∫

d10x
√−G

[

e−2φ
(

4(∇φ)2) − ‖F1‖2

2

]

, (3)

SG3 = − 1

4κ2
10

∫

d10x
√−G

(

e−2φ‖H3‖2 − ‖F̂3‖2
)

, (4)

SF5 = − 1

8κ2
10

∫

d10x
√−G ‖F5‖2, (5)

SCS = − 1

4κ2
10

∫

C4 ∧ H3 ∧ F3, (6)

Sloc = SDBI + S3 = T3N3

∫

d4x
√−g4e

−2φ + 1

2
N3 μ3

∫

�4

C4,

(7)

where in terms of the string length ls ,

κ2
10 = l8s

4π
, (8)

T3 is the D3-brane tension, N3 = ND3 − 1
2NO3 counts the

number of D3-branes minus the number of orientifold planes
O3− with μ3 = T3 = 2π

l4s
. We consider the DBI action at

leading order in α′ for D3-branes and O3−-planes along the
extended coordinates, where the RR fluxes are

F̂3 = F3 − C0 ∧ H3,

F5 = dC4 − 1

2
C2 ∧ H3 − 1

2
B2 ∧ dC2. (9)

Thus, the action SF5 (before self-duality is imposed) can be
written as

SF5 = − 5!
8κ2

10

∫

F5 ∧ ∗F5

= 15

κ2
10

∫ [

C4 ∧ d ∗ F5 +
(

1

2
C2 ∧ H3 + 1

2
B2 ∧ dC2

)

∧ ∗F5

]

.

(10)

Due to the action of the orientifold planes O3−, the RR and
NS-NS potentials C2 and B2 are projected out and the equa-
tions of motion from δS/δC4 = 0 give us the tadpole condi-
tion for the 3-dimensional sources

N3 + 1

l4s

∫

F3 ∧ H3 = N3 + Nfluxes = 0. (11)

Therefore, the contribution from SF5 + SCS + S3 to effective
the scalar potential – in a compactification on a CY manifold
– vanishes. As we shall see we are going to depart from a
CY compactification into a more general setup such that SF5

does have a contribution.
In order to construct the effective scalar potential Veff, we

specify the ten-dimensional metric as

ds2
10 = gμνdx

μdxν + hmndy
ndym,

= e−2	e2A(y)g̃μνdx
μdxν + e−2A(y)h̃mndy

mdyn,

(12)

where e−2	 is the conformal factor fixed as

e−2	 = e−2φV6 (13)

to change into the Einstein frame, with V6 = ∫

d6y
√
h6.

Notice we are not taking into account warping effects on the
internal metric, thus, although the geometry and topology
of the internal space are important to the specifics in the
construction of a stable vacuum, in the following we shall
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focus only on a description based on the universal moduli
that appear in string compactifications, rendering our result
generic.

In terms of the axionic moduli fields τ and s are given by

τ = e−φ(V6)
2/3, s = e−φ, (14)

so, the contributions for the action terms SG3 and SDBI are
given by

SG3 =
∫

d4x
√−g4

(

AF3

sτ 3 + AH3s

τ 3

)

, (15)

SDBI =
∫

d4x
√−g4

A3N3

τ 3 , (16)

where AF3 , AF3 and A3 are the corresponding contributions
not depending on τ and s where

S = C0 + is, and T =
∫

C4 + iτ. (17)

On the above, we have assumed that complex structure
moduli zi are fixed through 3-form fluxes, by DziW = 0,4

where as usual

W =
∫

(F3 − SH3) ∧ 	(zi ), (18)

but DSW �= 0. Therefore SUSY is broken at least by the
axio-dilaton modulo S, and the fluxes we are turning on, have
not (1, 2)-components. Together with the Kähler potential of
the form

K = − log(−i(S − S̄)) − 3 log(−i(T − T̄ )), (19)

after the stabilization of the complex structure, the terms
in the scalar potential which are proportional to ‖W‖2 in
‖DTW‖2 cancel the gravitino mass term −3‖W‖2, thus the
flux contribution to the scalar potential reduces to

Vfluxes = eK‖DSW‖2K SS̄ = f̂ 2 + s2h2

2sτ 3 . (20)

with

f̂ =
∫

F̂3 ∧ 	, and h =
∫

H3 ∧ 	. (21)

Comparing with expression (15),

AF3 = ‖ f̂ ‖2

2κ2
10

, and AH3 = ‖h‖2

2κ2
10

. (22)

As known, by exploring different values for AF3 , AH3 ,
and A3 we find that no stable vacuum is obtained. More
ingredients are required.

4 A particular scenario where the stabilization of the complex struc-
ture can be carried out is in the well-known factorizable T

6 which is
parametrized by only one complex structure.

3 Stable non SUSY AdS vacua from torsion

As suggested in the literature (see [14,15,27–36]), it is pos-
sible to find stable vacua by turning on different contribu-
tions to the scalar potential. Here we are interested in a non-
vanishing contribution from SF5 to Veff. For that, we shall
take into account the presence of torsion in the internal man-
ifold X6 which, as we shall argue, naturally comes into play
in the presence of orientifold planes [37,38]. This implies
that the Kähler 2-form J2 is no longer closed, i.e., d J2 �= 0
pointing out the necessity to compactify on generalized CY
manifolds. By using the ML algorithm described in Appendix
A, we find that AdS stable vacua are obtained under some
specific conditions we shall describe in detail.

3.1 Effective scalar potential from torsion

Let us start by writing the action component SF5 in (10) as

SF5 = 15

2κ2
10

∫

ω5 ∧ ∗F5. (23)

where

ω5 = 1

2
C2 ∧ H3 + 1

2
B2 ∧ F3. (24)

As said, in generic compactifications on X6 with orientifold
planes O3−, 2-forms are divided on odd or even according to
the orientifold action on them [39]. Since 2-form RR and NS-
NS potentials are odd under an O3− action, and the fluxes
F3, H3 are even and it follows that

ω5 ∈ 	2−(X6, Z) ∧ H3+(X6, Z). (25)

Therefore, for a generic CY manifold, ω5 does not contribute
to Veff. Also notice that in the presence of orientifold O3−-
planes, the RR potential C6 is projected out and it is not
possible to have stable BPS D5-branes. The effective 4-
dimensional scalar potential only receives contributions from
the rest of the terms in the action S and from the Dirac-Born-
Infeld action of extended objects wrapping internal cycles on
X6, as D3-branes and orientifold planes O3−.

However, in the presence of orientifold planes, it is natu-
ral and expected to have torsional cycles. For instance, in a
IIB toroidal orientifold, the quotient space T

6/Z2 contains
torsional cycles of different dimensions (dual to torsional
fluxes), meaning that there are cycles that after wrapping
them a certain number of times, one ends up with a subspace
of T

6 with boundary. Since we are considering the presence of
orientifold planes, we shall assume the existence of torsional
cycles in generic Kähler manifolds. Under this context, we
shall study whether or not ω5 contributes to Veff via torsional
cycles.
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The pth-cohomology group of a six-dimensional Kähler
manifold is written as

Hp(X6; R) = Hp(X6; Z) + Tor Hp(X6; Z),

= Z
bp + (

Zk1 ⊕ · · · ⊕ Zkn

)

, (26)

where bp is the Betti number for Hp(X6, Z) and ki ∈ Z. Let
us consider the case for p = 3. A 3-form in the torsional part
can be decomposed as

π tor
3 = λiπ tor

3,i , (27)

with i = 1, . . . , n according to (26) and λi ∈ Z. In the case
in which the set of integers λi has a greatest common divisor
(gcd) κ , there exists a non-closed 2-form ω̂2 such that dω̂2 =
κπ tor

3 , i.e., π tor
3 ∈ Zk . The set of such 2-forms is denoted

	̂2(X6). If λi = κ i ki only for some i , then there exists ω̂i ∈
	̂2

i (X6, Z) such that dω̂i = kiπ tor
3,i . In this scenario, generic

RR and NS-NS potentials are given by

C2 = caωa + c̃i ω̂i ,

B2 = baωa + b̃i ω̂i (28)

where ωa ∈ H2−(X6, Z), ω̂i ∈ 	̂2(X6, Z) with a =
1 . . . h1,1

− (X6) and i = 1, . . . n. The presence of 2-forms ω̂i

implies that the Kähler form J2 can also be written as

J2 = taωa + t̃ i ω̂i , (29)

from which d J2 = ki t̃ iπ tor
3,i . Hence for t̃ i = τ i/ki , d J2 is

non trivial in H3(X6, Z) and X6 is not a CY manifold but at
least a Kähler manifold modulo ki .

If now we restrict the compactification over a Kähler man-
ifold with torsion as above, the contribution from SF5 is not
longer zero, but

SF5 = 5!
16κ2

10

∫

dVol4

∫

(

H3c̃
i − F3b̃

i
)

∧ ω̂i ∧ de4A(y),

(30)

with A(y) the warping factor in Eq. (12). Therefore, the con-
tribution of F5-form to the scalar potential, in the Einstein
frame, is given by

VF5 ∼ A5

τ 4 , (31)

where A5 = A mod ki for some A.

3.2 Conditions for finding stable AdS vacua

The above contribution toVeff from SF5 together with the con-
tributions from 3-form fluxes, D3-branes and O3−-planes,
lead us to a scalar potential of the form

Veff = AH3s

τ 3 + AF3

sτ 3 + AF5

τ 4 + A3N3

τ 3 , (32)

Fig. 1 Schematic picture of the compact space and the locii of the
orientifold planes and D3-branes

which actually has some stable AdS minima if there is at least
one negative contribution from the above terms. However,
since the flux contribution AG3 is positive definite5 and AF5 is
defined modulo an integer, the only option left is that from the
contribution of 3-dimensional sources, N3 must be negative.
In the following, the numerators are selected numerically by
the hybrid algorithm in order to find the conditions for a
stable AdS vacuum.6

By restricting the flux configurations and local sources
to satisfy that N3 < 0, the number of O3−-planes must be
larger than the number of D3-branes, implying that at some
points in the internal space, there must be isolated orien-
tifold planes, or in other words that there are no D3-branes
of top of some of the O3−-planes. This follows from the
usual assumption that orientifold planes are immovable and
from the fact that there is an attraction between D3-branes
and O3−-planes due to the RR D3-brane charge they carry.
For instance, the most simple configuration involving the
presence of D3-branes with N3 < 0 is to have 4 orientifold
fixed points and a single D3-brane sitting at one of those
points. In such case, N3 = −1 (see Fig. 1 for a schematic
representation of this configuration).

Under these conditions, we implemented our ML algo-
rithm described in Appendix A. With it, we were able to find
389 different stable AdS vacua. However, in spite of design-
ing our algorithm such that finding dS vacua was favored
over AdS, no dS one was found. Our results are shown in
Fig. 2 where all found vacua, stable or not, are represented
by black squares.

4 Stable dS vacua from non-BPS states

The presence of torsion opens up the possibility to consider
wrapping D-branes on torsional cycles. The existence of tor-

5 According to our previous analysis, this means that supersymmetry
is broken by the dilaton modulus.
6 In general, the numerators depend on the complex structure, and the
study of a concrete model with complex structure model is let for future
work.
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Fig. 2 Plot of the critical points found by the hybrid algorithm. The
black squares correspond to the cases where F5 contributions were taken
into account without non-BPS states, whereas the blue crosses consider
the presence of D̂5 non-BPS states. On the second image, we present a
zoom of the stable cases

sional cycles follows from the dual maps between homology
and cohomology, where
∫

�
j,tor
2

ω̂i =
∫

X6

ω̂i ∧ PD(�
j,tor
2 ) = δ

j
i . (33)

with

ki�
i,tor
2 = ∂̂i

3. (34)

This last assertion means that the homology group H2(X6, R)

also has a torsion component, i.e., �
i,tor
2 ∈ Tor H2(X6, Z)

and ̂i
3 ∈ 	̂3(X6, Z). It follows then that Tor H2(X6, Z) ∼

Tor H3(X6, Z). We shall follow the argument in which these
states – D-branes wrapped on torsional cycles – are in fact
related to the well-known non-BPS states constructed from
K-theory [40].

The existence of non-BPS states in the presence of an ori-
entifold plane O3− can be inferred by applying T-duality
on the corresponding coordinates on a torus compactifica-
tion of Type I string theory, which actually has non-BPS
branes as ̂D7, ̂D8, ̂D0 and D̂(−1). Hence, by taking for
instance a non-BPS ̂D7-brane spanned on 4 coordinates on
T 6 immersed in an O9−-plane and applying T-duality on the
compact coordinates, we get an extended O3−-plane and a 5-
brane wrapping a 2-dimensional space in the covering space.
We expect this object to carry a topological Z2 charge as its T-

dual partner. Indeed, by computing the 2nd-homology group
of T

6/Z2 we see that there are torsional 2-cycles. Wrapping
D5-branes of type IIB theory on such cycles seems to be the
way to construct the aforementioned non-BPS states. More-
over, by computing the corresponding T-dual K-theory group
one sees that stable non-BPS states are present, carrying dis-
crete topological charge Z2 with three extended coordinates
while the others are wrapped on the compact space.

For a more general compactification, one must compute
the K-theory groups of intersecting sources, i.e., of config-
urations of branes intersecting orientifold planes wrapping
cycles on a compact manifold. This is indeed a difficult task.
However, ignoring the compact component of the space, it
is possible to classify intersecting branes with orientifolds
by the use of the Kasparov KK-theory [41,42]. Since the
formulation is quite technical and it is beyond the scope of
this work,7 we just present the KK-theory group which clas-
sifies 5-branes fully intersecting an O3−-plane, i.e., with 2
transversal coordinates to the orientifold plane and its rela-
tion to the orthogonal K-theory group. This is:

KK H−2(R2,0, R
6,0) = KO(S2) = Z2, (36)

as expected.
Based on these results we are taking as valid the con-

struction of stable non-BPS states by wrapping D-branes on
torsional cycles of a Kähler manifold X6. In particular, we
can construct a non-BPS ̂D5-brane by wrapping a D5-brane
on a torsional 2-cycle �tor

2 ∈ Htor
2 (X6, Z), where �tor

2 is the
cycle where the 2-form ω̂2 is supported as in Eq. (33).

Summarizing, a compactification on a Kähler manifold
X6 with torsional components in (co)-homology, leads us to
the possibility to include D-branes wrapping torsional cycles.
Here we shall consider the contribution to the effective scalar
potential from non-BPS ̂D5-branes. However, before that, we
must discuss possible sources of instability on a configuration
constructed with fluxes, D3-branes, O3−-planes, and non-
BPS states.

4.1 Consistency by adding non-BPS D̂5-branes

As it is known [40], the non-BPS brane ̂D7 in type I theory
can be constructed by a pair of a D7 and D̄7-branes, where the
tachyon on the open sector string connecting the two branes is
projected out by the orientifold O9−. However, since in type
I theory there are 32 D9-branes, there is also a tachyon from

7 The KK-theory group classifying Dd-branes on top of an Op−-plane,
with p = 3 mod 4 and d > p is given by [42]

KK H−2(Rd−s,r , R
9−p,p+r−s) = KO(S2p−2s+d−3), (35)

where s are the number of coordinates of the Dd-brane overlapping the
orientifold plane and r is the codimension of the Dd-brane inside the
orientifold. For a D5-brane on top of an O3−-plane with 2 transversal
coordinates, p = s = 3, r = 0 and d = 5.
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the open string between D9-branes and D7-branes, making
the non-BPS ̂D7-brane to be unstable [43].

In a T-dual version, upon compactification on a six-
dimensional torus, the above configuration is mapped into
D3-branes and O3−-planes sitting at different points on T

6

and D5-branes wrapping torsional 2-cycles on the compact
space, corresponding to the non-BPS states ̂D5. Therefore,
by T-duality, it is expected that in a given fixed point in
the internal space, a ̂D5-brane coinciding with at least one
D3-brane, would be unstable to decay into a field config-
uration while preserving its topological charge Z2 . This
instability is not present (at least locally) if, at the given
fixed point, there are not D3-branes, a configuration we can
have if there are more orientifolds than D3-branes, i.e., if
N3 = ND3 − 1

2NO3 < 0. In order to cancel the D3-brane
charge tadpole, we then require a positive contribution from
fluxes. These two characteristics, N3 < 0 and Nflux > 0 are
essential to guarantee the stability of adding non-BPS ̂D5-
branes. Notice that N3 < 0 is one of the conditions to assure
the existence of stable AdS vacua without adding non-BPS
states.

Under the above circumstances, we shall take a D5-brane
and wrap it on a torsional 2-cycle �tor

2 ∈ Tor H2(X6, Z).
Following [44], we argue that such a state is classified by the
corresponding K-theory group on X6. Also, we shall consider
the contribution of this non-BPS D̂5-brane to the effective
scalar from the DBI term. However, it is important to notice
that its contribution must be measured as mod 2 since a pair of
non-BPS branes with topological charge Z2 annihilate each
other. This means that if the total discrete charge vanishes, the
effective contribution from non-BPS branes is null [10,13].
Another important fact we must have in mind is that we are
ignoring torsional components for 3-form fluxes, although
there is no restriction for their presence.8

Hence, the effective contribution of a non-BPS brane ̂D5
at leading order in α′ is given by the DBI action,

SD̂5 = −2T5

∫

d6ξ e−φ
√−g̃6 (37)

where g̃6 is the determinant of the induced metric on the ̂D5-
brane worldvolume. Therefore, the corresponding effective
scalar potential in the Einstein frame reads

VD̂5 = A
̂D5

s1/2τ 5/2
, (38)

where 2nA
̂D5 = 0 for n ∈ Z.

8 In [11] some consequences of turning on torsion components of fluxes
are commented.

4.2 Stable dS vacua with non-BPS states

In order to look for dS minima we shall employ a hybrid
method which consists in applying a stochastic method
known as Simulated Annealing followed by the conjugate
gradient algorithm (see Appendix A). The effective scalar
potential constructed by contributions from 3-form fluxes,
3-dimensional sources, a torsional component of F5, and
non-BPS ̂D5-branes is

Veff = AH3s

τ 3 + AF3

sτ 3 + AF5

τ 4 + A3N3

τ 3 + A
̂D5

s1/2τ 5/2
. (39)

As discussed in [15] (see also [14]), it is expected that this
anzats evades the no-go theorems and increases the possibil-
ity to find some stable dS vacua.

In Fig. 2 it is shown by blue crosses, the critical points
found by the above-mentioned algorithm. Notice the pres-
ence of many stable dS vacua. In Table 1 we present the
explicit values of the scalar potential contributions for some
of these vacua.

5 Uplifting conditions by non-BPS states

In this section, we are interested in discussing the uplifting
of AdS stable vacua to dS by the presence of non-BPS states
as the ̂D5-branes. As previously observed, a dimensional
reduction in the presence of 3-form fluxes H3 and F3, as
well as 3-dimensional sources as D3-branes and O3−-planes
together with a torsional F5 form, leads us to the possibility
to construct AdS stable vacua. For AD5 = 0, the minimum
for Veff is located at

s0 =
(

AF3

AH3

)1/2

τ0 = 4

3

AF5

�
(40)

for � = −(A3N3 + 2A1/2
H3

A1/2
F3 ). Notice that in the case

we are turning on a single flux G3, meaning that we are
considering a contribution to the superpotential along one
single period, � reduces to zero due to the tadpole can-
cellation. Therefore, it is necessary to consider more than
one flux in order to uplift the AdS vacua while keeping
‖A3N3‖ > 2(AH3 AF3)

1/2 such that τ0 > 0. Therefore we
require that two specific conditions must be taken:

1. W = ∫

G3 ∧ 	 must be constructed from more than just
one period.

2. NO3 > 4
(AH3 AF3 )1/2

A3
+ 2ND3.

We shall restrict the rest of our analysis to such a case.
The minima of the AdS can be written in the function of

the vacuum expectation value (vev) of the Kähler modulus
as
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Table 1 Selected vacua found by the hybrid SA+CG algorithm

min V m2
τ m2

s τ s AF3 AH3 AF5 A3N3 A
̂D5

1.309 × 10−6 0.000546 0.003728 3.695 2.363 0.7628 0.2486 0.9769 −1.704 0.4231

5.676 × 10−6 0.0005166 0.003874 3.727 2.298 0.7566 0.2575 0.9755 −1.708 0.4125

6.980 × 10−5 0.0006562 0.007878 2.917 2.111 0.7463 0.2189 0.3022 −1.135. 0.1851

9.561 × 10−5 0.0003757 0.003277 3.855 2.373 0.7638 0.2495 0.9778 −1.702 0.4238

4.039 × 10−4 9.460 × 10−7 0.004265 4.258 2.170 1.260 0.3864 0.6982 −2.067 0.3677

VAdS = −1

3

AF5

τ 4
0

, (41)

thus, the larger τ0, the smaller value for the AdS vacua, which
is compatible with the KKLT scenario. The eigenvalues can
be written in terms of the vev’s as

m2
s = 2A1/2

H3

s0τ0
and m2

τ = 4AF5

τ 6
0

, (42)

and we see that for large values of τ0, the smallest eigenvalue
is always in the τ direction.

Now, to uplift from stable AdS to dS vacua it is necessary
to add energy associated with the non-BPS states ̂D5 as in
Eq. (38), which changes the vev’s of the moduli shifting its
numerical values to greater values. In this case, the Kähler
modulus modify to

τ = 4(−AF3 + AH3 s̃
2)2

A2
̂D5
s̃

, (43)

where s̃ is an algebraic number that vanishes a polynomial
of degree 6 and at the limit of A

̂D5 � 1 can be written as

s = s0 + 1

2
√

3

(

AF5

A1/2
F3

A3/2
H3

)1/2
1

(�)1/2 ÂD5 + O
(

A2
̂D5

)

τ = τ0 + 1

26

τ 2
0

A3/2
F3

A1/2
H3

A
̂D5 + O

(

A2
̂D5

)

.

(44)

Notice from this and from Eq. (40) that for � > 0 this branch
of solution takes real values. In this context, one also can
express the effective potential at leading terms in AD̂5 as

Veff = VAdS + 1

s1/2
0 τ

5/2
0

A
̂D5 + O

(

A2
̂D5

)

(45)

where the uplifting from AdS to dS depends on how deep is
the AdS vacuum.

However, it is important to analyze whether the uplifting
would be stable or not. For that, we shall study under which
conditions there are tachyons. Let us start by establishing
the required stability criteria for the AdS vacua. Since we
are interested only in their presence, we shall take the mass
matrix as

(M2
AdS)i j = ∂i jVAdS, (46)

with i, j = s, τ . The eigenvalues λAdS are given by

λAdS = 1

2
tr M2

AdS ± α (47)

where α =
√

(tr M2
AdS)

2 − 4 det M2
AdS . According to Sil-

vester’s criterium, a stable minimum exists always that
tr M2

AdS > 0 and α be real. Notice that large values for the
eigenvalues λAdS indicate that it is difficult to destabilize the
minimum. On the contrary, small values of λAdS correspond
to very flat potentials from which it is easy to escape. Fol-
lowing this line of reasoning, we want to show that by adding
non-BPS states ̂D5 the eigenvalues related to an AdS vacuum
become smaller.

For that, let us consider adding the contribution from non-
BPS states V

̂D5, such that

(M2)i j = ∂i j
(VAdS + V

̂D5

) = (M2
AdS)i j + (M

̂D5)i j (48)

One realizes that the eigenvalues for each of the moduli
decrease as we add the A

̂D5 term. To clearly show this, lets us
split tr M2 and det M2 in terms of the contributions of A

̂D5
as

tr M2 = tr M2
AdS + f (A

̂D5),

det M2 = det M2
AdS + g(A

̂D5) , (49)

where f (A
̂D5) and g(A

̂D5) are positive definite homoge-
neous functions of degree 1 on A

̂D5. If the added potential is
of the form

V
̂D5 ∼ 1

smτ n
, (50)

with n,m > 0, which indeed is our case. Thus, by adding
the A

̂D5 terms, there is a contribution δλ to the eigenvalues
λAdS as

λ = λAdS + δλ. (51)

In this context, we say that if δλ < 0, the eigenvalues of the
mass matrix decrease due to the contribution of the non-BPS
states. Indeed, the change in the eigenvalues can be written
explicitly as

δλ = 1

2
( f ± α)

(

1 − √

1 + γ
)

(52)

123
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where

γ = 2 f
(

tr M2
AdS ± α

) + 4g

( f ∓ α)2 . (53)

Since f and g are positive functions and α < tr M2, then γ

is positive definite. In consequence the term
(

1 − √
1 + γ

)

shall be negative. This in general implies that

2(δλ)

( f ± α)
≤ 0. (54)

Finally, putting f and α in terms of the determinant and trace
of the mass matrix we find that

f ± α = tr M − tr M2
AdS ±

√

(tr M2
AdS)

2 − 4 det M2
AdS > 0,

(55)

and δλ < 0.
Adding non-BPS states drives two important features in

the effective potential. On one hand, uplifts the value ofVAdS

to a dS one, but on the other hand, since the contribution to
the energy at the minimum is positive, the scalar potential
becomes very flat increasing the probabilities for this vacuum
to be destabilized. We show this behavior, for one case, in
Fig. 3.

5.1 Comments about some Swampland conjectures

We have described a way to construct a dS vacuum by adding
the contribution to the scalar potential from a non-BPS ̂D5-
brane to a non-SUSY AdS vacuum (DSW �= 0).9 However,
as recently studied, there are some constraints around the
construction of both states. First of all, it has been argued that
a non-supersymmetric AdS vacuum is at most metastable in
the context of the Swampland program [45,46]. Second of
all, it is expected a constraint on the AdS scale with respect
to the lightest moduli mass, and finally, in case of uplifting
the non-SUSY vacuum to a dS one, the final vacuum is at
most, metastable. Let us comment on these three points and
how they are manifested in our setup.

As mentioned, one way to assure the construction of an
AdS vacuum by considering the contribution of F5 in a man-
ifold with torsion implies the stabilization of the complex
structure by DUW = 0 while keeping DSW �= 0. Therefore,
the AdS vacuum is non-SUSY. According to the Swampland
conjectures, such an AdS vacuum must be at most metastable.
In our case, the source for instabilities could come from two
places: first, from our assumption of not considering tor-
sional components of 3-form fluxes, which usually drives
some topological transitions as pointed out in [11]. Second,

9 As implied by the AdS conjecture, only the AdS vacua which are not
too far from the mass scale of the lightest modulus can be uplifted, thus
to check if our constructions are consistent with the AdS conjecture, it
is explored an uplift of the AdS to dS.

since the contribution from F5 is based on the existence of
torsional cycles, it is possible that the total discrete charge
must vanish following the recent proposal about having zero
global charges in Quantum Gravity and its relation to K-
theory by cobordisms as proposed in [13]. We believe that
both aspects are in fact related.

The second point concerns the AdS scale which it is also
conjectured to satisfy a relation of the form

mmodRAdS � c′ (56)

where c′ ∼ 1 and RAdS ∼ ‖V ‖1/2 in order to keep a robust
realization of a dS vacuum. Recent studies argue that effective
models which support such a parametric hierarchy are in fact
in the Swampland. Again, in our case, the above two factors
can be expressed in terms of each of the contributions to the
scalar potential, for which we obtain that

mmodRAdS = 3
√

3

2

2A1/2
H3

A1/2
F3

+ A3N3

AF5

. (57)

As all the constants Ai for i = {H3, F3, D3, O3} are of the
same order, the energy added by F5, for a Zk discrete torsion,
vanishes up to a multiple of k. Hence, unless k is too large,
the quotient (57) is slightly larger than order 1, and by taking
k = 2, mmodRAdS � c′.

In this context, it is possible to add energy for the uplifting
in such a way we stay in a region where stability can be
(parametrically) controlled. Indeed, in our model, the AdS
vacua contain tachyons neither in the axio-dilaton nor along
Kähler directions. Besides, the scale of the AdS is smaller
than the energy coming from the lightest moduli violating the
AdS conjecture. Thus, adding a non-BPS state whose energy
contribution scales a s−1/2τ−5/2 generates a flattering effect
accordingly.

Finally, according to the Swampland conjectures, a source
of instabilities is expected to affect the uplifted dS vacuum.
They could come from the fact that the pair ̂D5 − D3 (dual
to the ̂D7 -D9) is unstable [47,48] and although a decay into
a final state does not dilute the discrete charge, it is canceled
out by requiring a vanishing K-theory charge [12,43]. How-
ever, in our case, ̂D5-branes come from D5-branes wrap-
ping torsional 2-cycles around an O3−-plane with no D3-
branes. Hence, at least locally, there are no instabilities at
such points. Thus, the non-BPS states are stable and the only
decay channel is through tunneling leading to the decompact-
ification limit [49] probably described by a topological tran-
sition driven by torsional 3-form fluxes, as suggested in [11].
The presence of NS-NS 3-form fluxes triggers the appearance
of instantonic branes transforming branes into fluxes. In our
case, the non-BPS ̂D5 transforms into discrete 1-form fluxes
via the nucleation of a D7-brane [11], followed by the phys-
ical realization of the Atiyah Hirzebruch Spectral Sequence
connecting cohomology to twisted K-theory as described in
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Fig. 3 Plots for the uplift mechanism by employing the A
̂D5 contri-

bution. In red we show the effective potential in an AdS minimum
defined by the contributions AF3 = 0.77046, AH3 = 0.24018, AO3 =
−1.6974, AF5 = 0.97955 and with moduli vev’s given by s = 1.7911,
τ = 1.5603. By adding non-BPS ̂D5-branes with A

̂D5 = 0.43564, it

is observed that the uplift reduces the mass of the scalar field while
its expectation value moves to the right as s = 2.4473, τ = 3.8434.
Notice that the uplift of the Kähler moduli produces a nearly flat direc-
tion, which is compatible with the KKLT scenario

the paper of Maldacena et al. [50]. A detailed study of this
process is reserved for future work.

6 Conclusions and final comments

As expected, the incorporation of F5 fluxes by contribution
to the effective scalar potential Veff seems to be fundamen-
tal to finding classical stable dS vacua in an orientifolded
flux compactification of string theory. However, since in a
Calabi–Yau manifold F5 does not contribute to Veff, we need
to consider other internal manifolds, such as the considered
in [51,52].

As shown in [38] a Kähler manifold admitting torsion is
a suitable example in which F5 contributes to Veff. More-
over, these types of manifolds allow wrapping D5-branes on
torsional cycles, by which one can construct non-BPS states
actually classified by K-theory, with a non-zero contribution
to Veff.

Under these circumstances and by implementing a novel
ML algorithm we were able to find more than 200 dS critical
points for Veff out of which 170 are stable.

We also find that there are certain specific conditions that
our configurations of branes and fluxes must fulfill in order
to generate a stable dS vacuum by uplifting an AdS one.
First, to obtain a stable AdS it is necessary to turn on the
torsional part of F5 and to have a configuration of branes
and orientifolds such that the number of O3-planes or fixed
points is larger than the number of D3-branes implying that
N f lux > 0. Second, for these vacua to be uplifted to dS by
incorporating the non-BPS states ̂D5 we ought to have that:

1. The RR and NS-NS 3-form fluxes are supported in more
than a single cycle,

2. NO3 > 4
√

AH3 AF3
A3

+ 2N f lux ,

where AH3 and AF3 are the contributions to Veff (indepen-
dent of moduli) from the fluxes H3 and F3, while N3A3 is
the corresponding from 3-dimensional sources, with N3 =
ND3 − 1

2NO3. Under these conditions, it is possible to obtain
that all mass eigenvalues are positive under the uplifting by
non-BPS states. We observe, that

1. Getting a small positive value for Vmin seems to be a natu-
ral consequence by uplifting AdS vacua with small deep.
There are two consequences of this: the resulting uplifted
potential is very flat while the probability for destabiliza-
tion of the dS vacua increases since at the limit for large
volume, the potential goes to zero, indicating the presence
of a barrier potential between the dS local vacuum and the
runaway region for the Kähler moduli.

2. We believe that this possibility of the scalar potential to
become unstable could be generated by extra mechanisms
or topological transitions driven by torsional components
on the 3-form fluxes as suggested in [11] and in conse-
quence, establishing a rich scenario where Swampland
conjectures can be tasted.
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Appendix A: Machine Learning algorithm

In this section, we want to show with some detail the charac-
teristics of our Machine Learning algorithms and how they
can help us to find stable vacua in a flux string compacti-
fication. We make use of two specific algorithms called the
Simulated Annealing (SA) and the Conjugate Gradient (CG).

A.1 Simulated Annealing

The SA algorithm is one of the most preferred heuristic meth-
ods for solving optimization problems. SA was introduced by
inspiring the annealing procedure of metalworking. In a gen-
eral manner, the SA algorithm adopts an iterative movement
according to a variable parameter that imitates the annealing
transaction of the metals. Thus, by taking the objective func-
tion as “Error”, the SA takes the probability distribution with
support �Error used to replace a new solution as

P [�Error] = exp

(

�Error log(i + 1)

10

)

, (A1)

for �Error the change in the error function depends on an
arbitrary number of parameters such as moduli vev’s and
numerical coefficients that depend on fluxes as well as the
non-BPS states, and i the current iteration. Thus as �Error
or the iteration i becomes large the probability to replace a
new solution decreases. The SA takes an initial value φ1 and
checks if

Error (φ1) ≤ Error (φbest) , (A2)

if true, φbest is replaced by φ1, otherwise it is replaced with a
probability P [�Error]. A schematic picture of the SA algo-
rithm is shown in Fig. 4.

A.2 Conjugate gradient

Conjugate gradient (CG) is a second-order iterative optimiza-
tion algorithm designed to find a local minimum provided
that the first derivative is known (another alternative that gives
us a similar result is the Powells algorithm). The main idea
consists in to take repeated steps in conjugate directions of

Fig. 4 In a schematic view, the SA algorithm starts at an arbitrary
point in the parameter space of the Error function, then it lets to find in
a random manner the best solution leading to a local minimum. Once
the local minimum is reached, the algorithm shall find alternative paths
that find a better minimum by perturbing the solution with a probability
P [�Error] avoiding getting stuck in a local minimum

the scalar potential at a given point of the moduli space since
this is the direction of the steepest descent. Conversely, step-
ping in the direction of the gradient leads to a local minimum
of the scalar potential. Thus, if the Error function near the
global minima is approximated by

Error(φi+1) = −baφ
i
a + 1

2
φi
aφ

i
b Aab (A3)

the residual is defined as

ra (φ) = bia − Aakφ
i
k , (A4)

implies that ∂aError(φi+1) = −r ia vanishes at an extremum.
Now, in order to move to the minima of the error function,
the changes in the gradient have to follow the direction along

Aab∂aError(φi )∂bError(φi ) = 0 . (A5)

This implies that the directions ∂aError(φi ) and ∂bError(φi )

have to be conjugated. Thus, the CG moves through a conju-
gate direction leading to a local minimum for convex prob-
lems. By starting with an initial vector φ0

a the conjugate gra-
dient method finds two sequences of vectors as

φi+1
a = φi

a − s∂aErrori

∂aErrori+1 = −∂aErrori+1 + γ ∂aErrori
(A6)

where Aab∂aErrori∂bError j = 0 for j < i , s is an small
parameters and

γ = gi+1
a gi+1

a

giag
i
a

(A7)

is chosen in order to guarantee that the gradients in successive
iteration steeps are conjugated.
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A.3 Error functions

The objective function can be written as

Error =
∑

i=1

αi · errori (A8)

for αi ∈ R and in a range of
(

0, 104
)

.10 These parameters are
employed to give a penalty to regions on the moduli space
that are not of interest. For instance, if we are looking for dS
vacua, the error induced by finding a AdS is weighted by this
factor, forcing the algorithm to look for another direction.
Thus, in the present work, we are interested in finding dS
vacua free of negative mass square moduli. Thus our penalty
functions shall require (1) to avoid tachyons, (2) to avoid
AdS vacua, (3) to require that AD5 to be positive. In order to
penalize these constraints the following errors are employed

• As we are looking for the extrema of the scalar potential,
the first error contribution is related to the derivative of
the scalar potential. This is applied as

error1 = (∂ j V )2 (A9)

• The second contribution of the errors is defined by
proposing a continuous function that penalizes the error
function each time that the parameter space is in a AdS
vacua. This is,

error2 = ‖V ‖ − V (A10)

• The third contribution to the error function is proposed in
order to avoid tachyons in the spectrum. For the simple
case of two real moduli, the positive mass square moduli
require that tr m2

i j > 0 as well as det m2 − 1
4 (tr m)2 > 0.

Thus the third contribution of the error is defined as

error3 = ‖tr mi j‖ − tr mi j . (A11)

as well as

error4 = ‖ det m2
i j − 1

4
tr m2

i j‖ + det m2
i j − 1

4
tr m2

i j . (A12)

• The fifth contribution to the error is associated with a
penalization of the error function each time the algorithm
moves into the region of A

̂D5 < 0. This requirement is
implemented in the algorithm as

error5 = ‖A
̂D5‖ − A

̂D5 . (A13)

10 Notice that this way to implement penalty functions is known as
regularization in machine learning and is equivalent to implementing
Lagrange multipliers in an approximate manner, this is inside the bounds
of the convergence criteria.

Appendix B: More generic vacua

The implementation of our ML algorithms allows looking
for stable vacua in more generic conditions. Here we present
numerical results by considering extra terms in the scalar
potential without wondering whether they can be constructed
or not in a consistent scenario. Specifically, we incorporate
the contributions to the scalar potential from O5 and O7
planes and the internal curvature R6 besides the usual 3-
form fluxes, the O3-plane, D3-branes and the non-BPS ̂D5-
branes. Our results are shown in Fig. 5 where we have plot-
ted each vacuum in the function of the energy value at the
extreme point and the value of the minimal mass eigenvalue.
We observe that most of the vacua are unstable but some are
actually dS and stable.

All the cases explored in this landscape contain a contri-
bution of the curvature R6 of the internal space. In order to
check the landscape of critical points we employ different
configurations with different content of fluxes and O-planes.
Some particular comments for each case follow:

• For the case with F3, H3, O3, and O5, the algorithm is
able to find stable dS minima. However, almost all the
critical points are unstable.

• For the case of F3, H3, O5, and O7, the algorithm was
able to find a few stable dS minima.

• For the case of F3, H3, O3, and O5 the algorithm was
not able to find any dS minima.

• For the case of F3, H3, F5, O3 and ̂D5 the algorithm
was able to find several dS minima. In particular, it is
observed an abundance of dS is superior to all the other
cases. Besides, as the ̂D5 contribution is removed (black
squares), the algorithm was not able to find any dS min-
ima. This suggests that non-BPS states play an important
role in stabilizing the vacua.

Finally and just for the sake of comparison, we want to
show that the implementation of penalty constraints in the
ML algorithms really impacts the number of stable vacua we
find. Let us look for critical points with the same algorithm
and by considering the same content the fluxes as in the body
of the paper, i.e., F3, H3, and F5, as well as O3-planes and
non-BPS ̂D5-branes (no curvature term). In this case, we
realize that

• As we remove the constraints the algorithm finds a lot of
critical points but just 6 stable dS against 529 stable AdS.
This case is similar to the one obtained by employing the
GA+NN classification of our previous work.

• As we implement the penalty functions, the algorithm is
able to find 203 stable dS and 170 stable AdS. This is
shown in Fig. 6.
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Fig. 5 Landscape found by the hybrid method. The red points are
found by using a scalar potential with O3, the blue dots are the vacua
found by using O7, the green circles are the critical points found by
using O5, the cyan circles are found by employing RR F5 fluxes and
̂D5 and the black squares are found by using RR F5 fluxes but not ̂D5

Fig. 6 Plot obtained by using non-penalty constraints (red points) and
penalty constraints (blue points)
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