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Abstract The thermodynamic properties of the de Rham–
Gabadadze–Tolley (dRGT) black hole in the asymptotically
de Sitter (dS) spacetime are investigated by using Rényi
entropy. It has been found that the black hole with asymp-
totically dS spacetime described by the standard Gibbs–
Boltzmann statistics cannot be thermodynamically stable.
Moreover, there generically exist two horizons correspond-
ing to two thermodynamic systems with different tempera-
tures, leading to a nonequilibrium state. Therefore, in order
to obtain the stable dRGT black hole, we use the alternative
Rényi statistics to analyze the thermodynamic properties in
both the separated system approach and the effective sys-
tem approach. Interestingly, we found that it is possible con-
currently obtain positive pressure and volume for the dRGT
black hole while it is not for the Schwarzschild-de Sitter (Sch-
dS) black hole. Furthermore, the bounds on the nonextensive
parameter for which the black hole being thermodynami-
cally stable are determined. In addition, the key differences
between the systems described by different approaches, e.g.,
temperature profiles and types of the Hawking–Page phase
transition are pointed out.
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1 Introduction

General relativity (GR) has been verified by several recent
astrophysical observations. Nevertheless, the discovery of
late time accelerated expansion of the universe [1,2] has led
to the curiosities, and also doubts, among the community in
the nature of gravitation, namely the theory itself, at the cos-
mic scale. Based on GR, dark energy needs to be proposed
in describing the cosmic accelerated expansion. Despite not
knowing the true candidate(s) for dark energy, the cosmo-
logical constant Λ is the most widely accepted model of
dark energy due to the fact that the standard model of cos-
mology, the so-called ΛCDM model, reconciles very well
with the current observations. Instead of introducing dark
energy, there is however an alternative to resolve this puzzle
by modifying GR so that the dynamical behaviors of space-
time deviate from GR mainly at the cosmic scale, especially
in such a way that the late-time universe coincides with that
dominated by positive cosmological constant, i.e. de Sitter
(dS) universe.

One of the interesting modifications is to introduce a mass
term for the graviton field. Historically, adding the mass term
in Einstein’s gravity can give theoretically undesirable conse-
quences, including ghost instability [3]. Although there have
been numerous attempts to formulate the models of ghost-
free massive gravity, the most successful one is the de Rham,
Gabadadze, and Tolley (dRGT) prescription in adding a com-
bination of mass terms in the Einstein–Hilbert action; these
allowed mass terms, including quadratic, cubic and quartic
ones in the dRGT massive gravity give no higher derivative
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term in the equations of motion, resulting in the absence of
ghost field [4,5]. See [6,7] for review papers. Fortunately,
the dRGT massive gravity can provide the solution whose
parameters can be interpreted as a cosmological constant.
As a viable model of gravity to address cosmological mys-
teries, there have been studies on the dRGT massive gravity
in many respects. These include several static and spheri-
cally symmetric black hole solutions in the dRGT massive
gravity and their thermodynamic properties [8–22], accre-
tion disk around a dRGT black hole [23], greybody factor
[24–26], quasinormal modes [27,28], black string solutions
[29,30] and their thermodynamics [31], and constraining the
model’s parameters using the observational data [32,33], etc.

The dRGT massive gravity can have a black hole in the
asymptotic background spacetime as anti-de Sitter (AdS) and
dS, depending on the values of parameters. With a certain
range of parameters that give rise to the dS-like universe, the
black hole thermodynamics in the dRGT model is expected
to provide several features as a natural extension of that of
the dS black hole. However, the discussion about the ther-
modynamic behaviors of a black hole in the asymptotically
dS space is not tractable as desirable due to the nature of the
multi-horizon system. Usually, the Schwarzschild-de Sitter
(Sch-dS) system has two horizons consisting of the black hole
event horizon and the cosmological horizon. Generically, the
temperature at one horizon is not the same as one another,
therefore the Sch-dS system is not in thermodynamic equi-
librium. Due to its similarity in nature with the Sch-dS, the
thermodynamic consideration of the dS black hole from the
dRGT massive gravity also encounters difficulties in apply-
ing the equilibrium thermodynamics due to its multi-horizon
nature.

There have been some lessons from dealing with the Sch-
dS black hole thermodynamics that can be used to apply in the
dRGT black hole. The problem of the multi-horizon system in
the Sch-dS can be addressed by using either the separated sys-
tem approach or the effective system approach. For the sepa-
rated system approach, the system evaluated at each horizon
can be defined independently [34]. For the effective system
approach, the whole system can be considered as a single sys-
tem in equilibrium [35]. The effective system approach can
be done in two versions with considering the black hole mass
M as the internal energy and chemical enthalpy. Considering
the mass as the internal energy, the first law of thermodynam-
ics can be in the form dM = Teff dS−Peff dV [35–39], where
the total entropy and the volume can be defined as S = Sb+Sc

and V = Vc −Vb, respectively. Note that the subscripts b and
c refer to the black hole event horizon and cosmological hori-
zon. On the other hand, treating the mass as the enthalpy, the
first law of thermodynamics of the effective system becomes
dM = Teff dS + Veff dP , where the total entropy and the vol-
ume can be defined as S = Sb + Sc and Veff = (

∂M
∂P

)
S ,

respectively, with pressure P ∼ Λ [39,40]. Accordingly,

the effective temperature of both versions can be defined

as Teff =
(

TbTc
Tb−Tc

)
. It is seen that the effective temperature

blows up at the limit Tb → Tc. This problem can be solved by
using the new definition of the total entropy as S = Sb − Sc

[41,42]. Using this form of total entropy, the effective temper-

ature can be defined as Teff =
(

TbTc
Tb+Tc

)
, which does not blow

up at the limit Tb → Tc. However, the entropy S = Sb − Sc

can be argued that it is not a physical entropy. In this work, we
use the total entropy defined as S = Sb + Sc. The change of
the total entropy can be investigated by considering that the
direction of heat flow for the system evaluated at the cosmo-
logical horizon is opposite to one at the black hole horizon,
since the observer stays between the black hole horizon and
cosmological horizon [43]. Consequently, the change of total
entropy can be obtained as dS = dSb−dSc. From the expres-
sion of the change of total entropy, the effective temperature

can be defined as Teff =
(

TbTc
Tb+Tc

)
. It is worth to apply these

methods to explore the black hole thermodynamics in the
dRGT massive gravity.

The black hole thermodynamics has been argued that it
should be studied with non-extensive entropy as evident from
the area law of the Bekenstein–Hawking entropy [44–46].
One of the generalized non-extensive entropy is proposed
by Tsallis [47]. Considering a system with two correlated
subsystems, its Tsallis entropy satisfies the pseudoadditive
composition rule

S12
T = S1

T + S2
T + λS1

TS
2
T, (1)

where S12
T is the Tsallis entropy of the entire system, S1

T and
S2

T are the Tsallis entropies of the two separated subsystems,
and λ is the non-extensive parameter. For one of the simplest
choices, the black hole entropy can be thought of as the Tsal-
lis entropy for the nonextensive system. However, the defini-
tion of the empirical temperature using Tsallis entropy is not
compatible with the zeroth law of thermodynamics [48]. To
address this unclear definition of the temperature, using the
formal logarithm, the Tsallis entropy can be transformed to
the additive generalized entropy known as the Rényi entropy
[49,50]

S12
R = 1

λ
ln

[
1 + λS12

T

]
, (2)

Thus, the empirical temperature cannot be defined as TR =(
∂M
∂SR

)
[48]. Moreover, using the Rényi statistics instead of

Gibbs–Boltzmann statistics, the spherically symmetric black
holes such as Sch black hole [51], Sch-dS black hole [52],
rotating black hole [53] and charged black hole [54] have
been found to be thermodynamically stable. In addition, the
investigation of the black hole thermodynamics with Rényi
entropy has been intensively considered [55–60].

In this work, the thermodynamic stability of the black hole
in asymptotically dS space in the dRGT massive gravity the-
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ory will be investigated using the Rényi statistics with both
the separated system and effective system approaches. Since
the dRGT black hole can provide corrections to the Sch-dS
black hole, we analyze how the thermodynamic properties of
the dRGT black hole are modified compared to the Sch-dS
black hole. It is well known that either the thermodynamic
pressure or volume of the Sch-dS black hole is negative.
Actually, for positive thermodynamic volume, the “pressure”
P = −Λ/(8π), the conjugate quantity to the volume, which
is obviously negative for Sch-dS black hole should be viewed
as tension rather than the pressure according to the standard
thermal concepts. Therefore, this may be one of the diffi-
culties in capturing the thermodynamic notion of the Sch-dS
black hole. However, for the dRGT black hole, we find that
it is possible to realize a black hole as a thermodynamic sys-
tem whose pressure and volume can be chosen to be positive,
thanks to the dRGT model parameters. In other words, dRGT
massive gravity may provide a black hole that may be under-
stood through the standard viewpoints of thermodynamics.
An ability to realize positive pressure as well as positive vol-
ume is one of the worthy properties of the dRGT black hole
compared to those in Sch-dS black holes.

With the separated system approach, the local stability of
the black hole is analyzed by considering the sign of heat
capacity. Moreover, the lower bound of the parameter λ for
the local stability condition is determined. Furthermore, the
global stability of the black hole can be analyzed by con-
sidering the Gibbs free energy, which also yields a stronger
lower bound on λ. Finally, for the separated system, the phase
transition between the non-black hole and the black hole can
be analyzed and the Hawking–Page phase transition is the
first-order phase transition. For the effective system, the ther-
modynamic quantities can be defined by using the first law of
thermodynamics as dM = Teff dS + Veff dP where the mass
M is thought as the chemical enthalpy and the total entropy
obeys the following addition rule, S = SR1 + SR2 , as seen in
[31,43]. The local stability of the black hole can be analyzed
by using the same steps as done in the separated system,
from which the lower bound on λ can be obtained. Further-
more, we find that there exists a particular range in temper-
ature for which the black hole is locally stable either viewed
through the effective system approach or the separated sys-
tem approach. As a result, if a black hole is observed to be
at a temperature within this range, one may distinguish these
two approaches by observing the size of the black hole. In the
effective system, there is no lower bound on the nonexten-
sive parameter determined through the global stability anal-
ysis. Eventually, the phase transition of the effective system
between the non-black hole and the black hole can be ana-
lyzed. In particular, the Hawking–Page phase transition is the
zeroth-order phase transition. This is one of the significant
results which is different from the separated system.

This paper is organized as follows. In Sect. 2, we review
the dRGT black hole solution and then analyze its horizon
structure. In Sect. 3, we investigate, on the former half of the
section, thermodynamic properties of the black hole treated
as two separated systems using Rényi entropy while the latter
half is devoted to an investigation on the effective system and
the thermodynamic properties according to Rényi statistics.
Finally, in Sect. 4, we conclude the investigation as well as
give remarks on the effects of nonextensivity on the black
hole in dRGT massive gravity.

2 dRGT black hole

The massive gravity theories have been investigated since
1939 Fierz and Pauli (FP) [61]. As discussed in the previous
section, there were many obstructions until 2010, the viable
nonlinear massive gravity theory was proposed by de Rham,
Gabadadze, and Tolley [4,5]. In this section, the dRGT mas-
sive gravity theory will be reviewed. The static spherically
symmetric solution in dRGT massive gravity theory and the
horizon structure of the dRGT black hole are discussed.

2.1 dRGT massive gravity

In this subsection, we review an important ingredient of
dRGT massive gravity theory. This theory is free of the
Boulware–Deser ghost by incorporating higher-order inter-
action terms into the Lagrangian. The dRGT Massive gravity
action is the well-known Einstein–Hilbert action including
suitable nonlinear interaction terms given by

S = 1

16π

∫
d4x

√−g
[
R + m2

g U(g, f )
]
, (3)

where R is the Ricci scalar. Note that we use the convention
with G = 1. The interaction terms include graviton mass,
mg , and the potential terms U expressed as

U = U2 + α3U3 + α4U4, (4)

where

U2 = [K]2 − [K2], (5)

U3 = [K]3 − 3[K][K2] + 2[K3], (6)

U4 = [K]4 − 6[K]2[K2] + 8[K][K3] + 3[K2]2 − 6[K4].
(7)

The parameters α3 and α4 are free parameters of the theory.
The quantity [Kn] is the trace of the n-th power of the matrix

Kμ
ν = δμ

ν − (√
g−1 f

)μ

ν
. (8)

gμν and fμν are the physical metric and the fiducial/reference
metric, respectively. The fiducial metric contains the Stuck-
elberg scalar playing the role to restore the diffeomorphism
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invariance. Note that the systematic construction of the
potential terms provides the scalar mode of the theory acting
similar to the scalar field in Galileon theory at the decoupling
limit. Hence, the theory admits 5 degrees of freedom without
the additional ghost mode.

By varying the action (3) with respect to the physical met-
ric gμν , the dynamical field equations can be expressed as

Gμν + m2
gXμν = 0, (9)

where Gμν is the Einstein tensor and Xμν is the effective
energy–momentum tensor obtained from varying the poten-
tial U . This effective energy–momentum tensor can be writ-
ten in terms of the matrix Kμν as

Xμν = Kμν − [K]gμν − α

(
K2

μν − [K]Kμν + U2

2
gμν

)

+3β

(
K3

μν − [K]K2
μν + U2

2
Kμν − U3

6
gμν

)
. (10)

The parameter α3 and α4 are redefined as

α3 = α − 1

3
, α4 = β

4
+ 1 − α

12
. (11)

From the Bianchi identity of the Einstein tensor,∇μGμν = 0,
the effective energy–momentum tensor is also covariantly
divergence-free

∇μXμν = 0, (12)

where∇μ is the covariant derivative associated with the phys-
ical metric gμν . These equations will be used in order to solve
for the static and spherically symmetric solutions. The result-
ing solutions correspond to the black hole called dRGT black
holes.

2.2 dRGT black hole solution and horizon structure

In this section, we will review of the dRGT black hole solu-
tion. By considering the static and spherically symmetric
spacetime, the metric contains four independent radial func-
tions. Note that we cannot use the coordinate transformation
to get rid of two functions since we have chosen the gauge
choice via the Stueckelberg scalars. The solutions can be
classified into two branches; the metric with off-diagonal
components and the diagonal metric. In this consideration,
we will focus on the diagonal solution. For this choice, there
are only two independent radial functions. As a result, the
general form of the metric tensor can be written as

ds2 = −n(r)dt2 + f −1(r)dr2 + r2dΩ2, (13)

where dΩ2 = dθ2 + sin θ2dφ2 is the line element on 2-
sphere. It is important to note that the solution of the physical
metric depends on the form of the fiducial metric. In principle,
the choice does not affect the existence of the ghost, one can
choose the form of the fiducial metric in order to obtain the

proper solution of the physical metric. For example, from a
cosmological viewpoint, the physical metric does not admit a
nontrivial flat cosmological solution with a Minkowski fidu-
cial metric [62], but it does for the open FLRW solution [63].
Moreover, the first FLRW solution with arbitrary geometry
exists when the FLRW fiducial metric is considered [64].
By generalizing the form of the fiducial metric, nontrivial
cosmological solutions can be obtained [65]. In this consid-
eration, let us choose the fiducial metric as [66]

fμν = diag
(
0, 0, c2, c2 sin2 θ

)
, (14)

where c is a constant. Substituting these ansatzes to Eq. (9),
one found that two functions can be related by a constant e.g.
n(r) = f (r)+C . In order to reduce the solution to the usual
form, the constant can be set as zero. As a result, the solution
can be written as

ds2 = − f (r)dt2 + f −1(r)dr2 + r2dΩ2, (15)

f (r) = 1 − 2GM

r
− m2

g(c2r
2 − c1r − c0), (16)

where M is the Arnowitt–Deser–Misner mass of the black
hole. c0 = c2(α + 3β), c1 = −c(1 + 2α + 3β) and c2 =
−3(1 +α +β). In addition, the horizon function can be split
into two branches as asymptotically de Sitter (dS) space for
m2

gc2 > 0 and asymptotically anti-de Sitter (AdS) space for
m2

gc2 < 0. Furthermore, it can be reduced to the Sch-dS/AdS
black hole by setting c0 = c1 = 0 and m2

gc2 = Λ/3.
It is important to note that there exists a nonlinear scale

called the Vainshtein radius, rV ∼ ( M
c2m2

g

)1/3, at which the

solution reduces to the Schwarzchild (Sch) black hole for
r � rV and corresponds to the dRGT black hole in asymp-
totically dS/AdS spacetime for r � rV . This radius can be
obtained by comparing the black hole mass term with the c2

term. Moreover, it is found that there exists another nonlinear
scale r1 ∼ ( M

c1m2
g

)1/2 and r0 ∼ M
c0m2

g
which is obtained by

comparing the black hole mass term to the c1 and c0 terms,
respectively. At this radius, the linear terms (c0 and c1 terms)
become dominant contributions and give significant modifi-
cations. In order to capture the significant contribution from
each term, let us redefine the dimensionless parameters as
follows

r =
(
M

a2

)
x, c0 =

(
a0

m2
g

)

,

c1 =
(
a1a2

2

Mm2
g

)

, c2 =
(

a3
2

M2m2
g

)

. (17)

As a result, the horizon function in Eq. (16) can be rewritten
as

f (x) = 1 + a0 − a2

(
2

x
− a1x + x2

)
. (18)
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Fig. 1 Left panel shows the
region of the existence of the
horizons in (a0, a1)-space with a
specific value of a2. The
oblique, vertical and horizontal
shading regions correspond to
ones for a2 = 1/10, a2 = 1/3
and a2 = 1, respectively. Right
panel shows the behaviors of the
horizon function f (x) of the
dRGT solution versus x with
various values of a0
(a0,c = −0.0336) by fixing
a1 = 1/10, a2 = 1/3

It is important to note that the dimensionless variables x is
actually scaled by the Vainshtein radius x = a2r/M = r/rV .
In this context, the parameter a2 = M/rV will characterize
how the event horizon differs from the Vainshtein radius.
Moreover, the parameters a1 = r2

V /r2
1 and a0 = rV /r0 will

characterize the nonlinear scale comparing to rV . In the limit
r1,0 → ∞, the parameter a1 and a0 will go to zero then the
nonlinear scale is characterized by only Vainshtein radius.
As a result, the solution recovers the Sch-dS/AdS solution as
setting a0 = a1 = 0. In this study, we are interested only in
the asymptotically dS black hole corresponding to a2 > 0.

In order to analyze the horizon structure of the black hole,
let us first consider the case of the Sch-dS black hole. The
horizon function in Eq. (18) for the Sch-dS black hole is
simply expressed as

f (x) = 1 − a2

(
2

x
+ x2

)
. (19)

Since we are considering asymptotically dS spacetime, the
horizon function f (x) is a concave function and the maxi-
mum point can be evaluated from d f

dx = 0. As a result, the
value of x at the extremum point of f (x) is given by

xex = 1. (20)

Substituting Eq. (20) to Eq. (19), the extremum value of the
horizon function is

f (xex ) = 1 − 3a2. (21)

By requiring f (xex ) ≥ 0, the condition, in which the Sch-dS
black hole has the horizon(s), is then written as

0 < a2 ≤ 1/3. (22)

Now, let us consider the full expression of the dRGT solu-
tion. The maximum point can be obtained by using the same
strategy as the one in the Sch-dS case. As a result, the value
of x at the maximum point of the horizon function is obtained

as

xex = 1

6

[

a1 + A1

(

1 + a2
1

A2
1

)]

, (23)

where A1 = 3 × 22/3
(

1 + a3
1

108 −
√

1 + a3
1

54

)1/3
. Substituting

Eq. (23) to Eq. (18), the condition for having horizon can be
obtained by using the requirement; f (xex ) ≥ 0. The max-
imum value f (xex ) is lengthy, it is not convenient to show
explicitly here. However, the condition for having the hori-
zons can be illustrated by using a region plot as shown in the
left panel of Fig. 1. From the right panel of this figure, it is
seen that there exist the horizons even a2 > 1/3 with a0 and
a1 are not zero. This is one of the important results compared
to the Sch-dS solution. It is allowed to have horizons with
the parameter range a2 > 1/3. For the case of a small value
of a2, one can perform the suitable approximation in order to
properly find the deviation from the Sch-dS solution since it
is in the region for having two horizons as shown in the left
panel of Fig. 1 for the oblique shading region.

Since the Sch-dS solution can have more than one hori-
zon, this affects the thermal properties of the corresponding
black hole. One of them is that the temperatures evaluated
at each horizon are different from one another, which causes
the black hole system to be out of thermal equilibrium. In the
next section, this problem will be treated through two differ-
ent approaches: the separated system approach where each
horizon is treated as two separated thermal systems, and the
effective system approach where all the horizons are treated
as a single effective thermal system.

3 Thermodynamics

From the previous section, with appropriate conditions on
parameters a0, a1, a2 as shown in Fig. 1, the dRGT black
hole can form two event horizons. In order to explore the
thermal properties of the black hole, one may start by evalu-
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ating temperatures which, in general, are different for differ-
ent horizons. This inevitably renders the black hole to be a
non-equilibrium thermal system and the standard thermody-
namics cannot be well applied. In order to do such an inves-
tigation, one may consider the two horizons, with their indi-
vidual temperatures and other thermal quantities, to be two
separated thermal systems, each in quasi-equilibrium. On the
other hand, one may collectively consider the two horizons
as a single effective thermal system that is in thermal equilib-
rium. This section is dedicated to such two thermodynamical
approaches.

3.1 Separated system approach

In this subsection, the thermodynamics of black hole in dRGT
massive gravity is investigated by defining the thermody-
namic quantities of each horizon separately. The mass M
can be found by solving f (rh) = 0, where rh is the horizon
of the black hole. As a result, the mass M is obtained as

M = rh

2

[
1 − m2

g

(
c2r

2
h − c1rh − c0

)]
. (24)

The Hawking temperature of the dRGT black hole can be
obtained from the surface gravity, κ , evaluated at the horizon
as follows:

Tb,c ≡ κb,c

2π
= | f ′(rb,c)|

4π

= ±
[
1 − m2

g(3c2r2
b,c − 2c1rb,c − c0)

]

4πrb,c
, (25)

where the subscriptsb denote quantities evaluated at the black
hole horizon, like rb, and the subscripts c denote those eval-
uated at the cosmological horizon, like rc. Here, the plus and
minus signs in Eq. (25) denote the temperature of the system
evaluated at rb and rc, respectively.

The entropy of the system corresponding to the temper-
ature defined in Eq. (25) is given by using the Bekenstein–
Hawking entropy, SBH as

SBH = A

4
, (26)

where A = 4πr2
h is the surface area of the horizon of the

black hole. The mass, M , temperature, Tb,c, and Bekenstein–
Hawking entropy, SBH, satisfy first law of thermodynamics as
dM = ±Tb,cdSBH. The first law of thermodynamics can be
extended by treating the other parameters as thermodynamic
variables. In order to generalize the first law of thermody-
namics, let us consider the Smarr formula of the black hole
by treating the mass M from Eq. (24) as the homogeneous
function. The mass M is said to be a homogeneous function
of thermodynamic quantities, S,m−2

g , c0, c2
1, if it satisfies the

following relation.

M(J S, Jm−2
g , Jc0, Jc

2
1) = J 1/2M(S,m−2

g , c0, c
2
1), (27)

Fig. 2 The figure shows the region of the existence of the positive
volume in (a0, a1)-space with various values of a2. The oblique, vertical
and horizontal shading regions correspond to one for a2 = 1/3, a2 =
1/10 and a2 = 1/100, respectively

where J ∈ R and the function M is said to be homogeneous
of order 1/2. By using the Euler’s theorem, the Smarr formula
can be written by using Eq. (27) as

M = ±2SBHTb,c − 2PVb,c + 2c0Φ0 + c1Φ1, (28)

where P ≡ 3
8π

m2
g . The conjugates to the thermodynamic

quantities can be identified via the Euler’s theorem as follows:

T = ±
(

∂M

∂S

)

rb,c

= Tb,c, (29)

Vb,c =
(

∂M

∂P

)

rb,c

= 4

3
πr3

b,c

(
c0

r2
b,c

+ c1

rb,c
− c2

)

, (30)

Φ0 =
(

∂M

∂c0

)

rb,c

= 4

3
π Prb,c, (31)

Φ1 =
(

∂M

∂c1

)

rb,c

= 4

3
π Pr2

b,c. (32)

Note that the temperature in Eq. (29) is the same as in Eq. (25).
Furthermore, it is possible for the black hole in dRGT massive
gravity to have positive thermodynamic volume as well as
positive thermodynamic pressure, if an appropriate set of
parameters is assumed for Eq. (30). In particular, there exists
a viable range of parameters corresponding to the positive
thermodynamic volume as shown in Fig. 2.

Mathematically, for the Sch-dS black hole, either volume
or pressure can be negative as follows:

P = ± Λ

8π
, Vb,c =

(
∂M

∂P

)

rb,c

= ∓4

3
πr3

b,c, (33)

whose physical interpretation can be ambiguous. On one
hand, the thermodynamic volume is chosen as the physical
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one so that Vb,c = 4
3πr3

b,c. It yields the conjugate quan-

tity of Vb,c being P = − Λ
8π

which is negative for Sch-dS
black hole, where Λ > 0. The negativeness of P is therefore
interpreted as tension rather than pressure. This considera-
tion corresponds to the lower signs of expressions in Eq. (33).
On the other hand, one must bear the cost of having a nega-
tive thermodynamic volume if one wishes to have a positive
thermodynamic pressure similar to the consideration of the
thermodynamic behavior of the Sch-AdS black hole. It cor-
responds to the upper signs of expressions in Eq. (33). Obvi-
ously, the thermodynamics of dRGT black hole can avoid
the aforementioned ambiguity. This may shed light on the
merit of thermodynamic interpretation for dRGT black hole
in asymptotically dS spacetime.

The first law of thermodynamics of the black hole in dRGT
massive gravity can be written as

dM = ±Tb,cdSBH + Vb,cdP + Φ0dc0 + Φ1dc1. (34)

If one considers that P , c0, and c1 are fixed, then the first law
of thermodynamics can be reduced to dM = ±Tb,cdSBH. In
our work, we consider the case where the parameters c0 and
c1 are fixed. Thus, the first law of thermodynamics can be
written as

dM = ±Tb,cdSBH + Vb,cdP. (35)

Note that the first law in Eq. (35) is a result of assuming that
the entropy of the black hole is that of Bekenstein–Hawking
entropy which is proportional to the surface area of the black
hole itself. This means the hole’s entropy is not an extensive
quantity. As mentioned in Sect. 1, in order for one to study the
black hole as an extensive thermal object, one may instead
use thermodynamics based on the Rényi statistics. To this
end, SBH is treated to obey the Tsallis composition rule. In
order to realize such a system as an extensive thermal object,
the formal logarithm of SBH, the so-called Rényi entropy, is
considered as an entropy representing the system. Thus, the
thermodynamics of the black hole can be studied by using
the Rényi entropy as

SR = 1

λ
ln(1 + λSBH), (36)

where λ is the non-extensive parameter and −∞ < λ < 1.
In order to restrict the Rényi entropy so that it is always
positive, it is sufficient to choose 0 < λ < 1. Note that, the
Rényi entropy reduces to the Bekenstein–Hawking entropy
when λ → 0. The first law of thermodynamics based on
Rényi statistics is assumed to be

dM = ±TR(b,c)dSR(b,c) + Vb,cdP, (37)

where TR(b) and TR(c) represent the Rényi temperatures cor-
responding to the system evaluated at the black hole horizon
and the cosmological horizon, respectively, and the thermo-
dynamic pressure is defined as P = 3

8π
m2

g . Applying the

Rényi entropy instead of SBH, the Rényi temperature can be
obtained as follows:

TR(b,c) = ±
(

∂M

∂SR(b,c)

)

P
= (1 + πλr2

b,c)Tb,c. (38)

Let us define a dimensionless temperature in terms of dimen-
sionless variables as follows

TR(b) = rV TR(b) = (1 + a0 + 2a1a2x − 3a2x2)(x2 + ε)

4πεx
,

(39)

TR(c) = rV TR(c) = − (1 + a0 + 2a1a2y − 3a2y2)(y2 + ε)

4πεy
,

(40)

where x = rb/rV , y = rc/rV and ε = 1/(πλr2
V ) which are

the dimensionless variables corresponding to rb, rc and λ,
respectively. Accordingly, the quantities in the GB descrip-
tion can be recovered by taking ε → ∞ corresponding to
λ → 0. In other words, the larger the deviation from stan-
dard extensive behavior, the smaller the value of ε will be.
Note that the valid values of the black hole horizon and the
cosmological horizon radii are in the ranges 0 < rb ≤ rc

and rb ≤ rc < ∞, respectively. With the dimensionless
variables, the mentioned ranges can be written as 0 < x ≤
1
3a1

(
1 +

√
1 + 3(1+a0)

a2
1a2

)
and 1

3a1

(
1 +

√
1 + 3(1+a0)

a2
1a2

)
≤

y < 1
2a1

(
1 +

√
1 + 4(1+a0)

a2
1a2

)
. Additionally, the black hole

becomes extremal when x = y = 1
3a1

(
1 +

√
1 + 3(1+a0)

a2
1a2

)
.

The Rényi temperatures for each horizon, T R(b) and T R(c),
are shown explicitly in Fig. 3. From this figure, one can see
that there exists a range for positive slope implying the pos-
itive heat capacity. We will see later that the sign of heat
capacity will directly relate to the slope of the temperature.
As a result, in order to find the condition to obtain the posi-
tive positive heat capacity, we analyze the slope of the tem-
perature. From Fig. 3, TR(b) exhibits two extrema while the
profile of TR(c) does not. Both extrema of TR(b) can be found
through its derivative as

Fb ≡ dTR(b)

dx

= −9a2x4 + 4a1a2x3 + (1 + a0 − 3a2ε)x2 − (1 + a0)ε

4πεx2 .

(41)

For the positive value of x , the graph of Fb is concave. There
are two real roots for Eq. (41). The extremum point, xb of the
function Fb, i.e. the turning point of TR(b), can be obtained
by solving dFb

dx = 0. Then, by substituting xb in the function
Fb, the locally stable condition on the non-extensive param-
eter can be found by requiring that the slope at the turning
point of T R(b) vanishes, or Fb(xb) = 0. As a result, one
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Fig. 3 Left (Right) panel
shows the temperature of the
system evaluated at the black
hole (cosmological) horizon
with various values of ε

(εc = 0.37507) by fixing
a0 = 1/2 and a1 = 0.1 = a2

can obtain the local bound on the nonextensive parameter as
εc = εc(a0, a1, a2). Note that the subscript C denotes the
bound corresponding to the heat capacity (being positive).
The expression for εc(a0, a1, a2) is too lengthy and not nec-
essary to be expressed explicitly here. However, it may be
useful to approximate εC in order to study its features. In
the case of a1 and a2 being negligibly small, one obtains the
local stability condition on the nonextensive parameter as

ε ≤ εc ≈ εC(dS)

3a2

[

1 +
√

13

5

(a1
√
a2 + a2

1a2)√
1 + a0

]

(1 + a0),

(42)

where εC and εC(dS) denote the upper bounds for the dRGT
and Sch-dS black holes, respectively. Note that the value of
εC(dS) is expressed numerically as εC(dS) = 7 − 4

√
3 ≈

0.0718 [52]. From Fig. 4, it can be seen that the exact upper
bound, εC, is more than the approximated upper bound. This
suggests that although Eq. (42) is an approximated expres-
sion, it serves well as a borderline to the condition on the
existence of locally stable systems. Note that, by setting
a0 = 0 = a1, we obtain εC(dS) = 3a2εC. The factor 3a2

appears due to the fact that we rescale the radial coordinate
by rV instead of Lmg ∼ 1/mg while the number 3 will be
gotten rid of by setting m2

g = Λ/3. In this limit, there exists

the nonextensivity length Lλ ∼ 1/
√

λ which may relate to
the fine-graining parameter as argued in [43,56],

Lλ

Lmg
≤

√
7 − 4

√
3 ≈ 0.268. (43)

This equation shows that nonextensivity length must be small
enough compared to Lmg to obtain the locally stable black
hole. From a cosmological viewpoint, the length scale of
graviton mass is proportional to the Hubble radius Lmg ∼
H−1

0 . This means in order to stabilize small black holes,
compared to the Hubble radius, the nonextensivity should
be taken into account.

For the dRGT black hole case, there are correction terms
corresponding to nonlinear effects at radius r1 and r0. For
setting a0 �= 0 and a1 = 0, one can see that the correction
term is proportional to the parameter a0 characterized by the
nonlinear scale r0 = rV /a0. For a0 < 1, we have r0 > rV
implying that between rV and the Hubble radius, there exists
a length scale r0 which modifies the bound of the nonex-
tensivity due to the structure of graviton mass. In addition to
length scale r0, there is nonlinear scale r1 which can be obtain
by setting a1 �= 0 and a0 = 0. From this setting, the leading
contribution can be expressed as a1

√
a2. In order to capture

some physical meaning of this contribution, let us consider
the horizon rh scaled as rh ∼ a1rV and nonextensive length
scaled Lλ ∼ rV /

√
a2. As a result, one obtains

rh

Lλ

∼ a1
√
a2. (44)

One can see that if the black hole horizon is comparable to
the nonextensive length rh ∼ a1

√
a2, the correction terms

become dominant while if it is small, we can neglect these
corrections.

For the thermodynamic system at the cosmological hori-
zon, the slope of temperature is always positive for 1

3a1(
1 +

√
1 + 3(1+a0)

a2
1a2

)
< y < 1

2a1

(
1 +

√
1 + 4(1+a0)

a2
1a2

)
. It

is also possible to find extrema of T R(c) by solving dTR(c)
dy =

0. However, the extrema are out of the valid range of y. There-
fore, there are no extrema for the temperature of the system
evaluated at rc. The behavior of the temperature at rc can be
shown in the right panel of Fig. 3.

The black hole system can also be considered in terms of
its local thermal stability. In particular, the system is said to
be locally stable if its heat capacity is positive. Otherwise,
it will radiate thermal radiation. Eventually, the black hole
will vanish. In other words, the black hole with negative heat
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Fig. 4 Left panel shows the
comparison of ε for the local
stability in the full version
(dashed line) and approximation
(dotted line) versus a1 by fixing
a2 = 1/4 (blue), a2 = 1/3 (red)
and a2 = 1/2 (green) with
a0 = 1/2. Right panel shows the
comparison of ε for the local
stability in the full version
(dashed line) and approximation
(dotted line) versus a2 by fixing
a1 = 0.9 (blue), a1 = 0.4 (red)
and a1 = 0.01 (green) with
a0 = 1/2

capacity is locally unstable. The heat capacity with fixing P
is defined as

CR(b,c) = ±
(

∂M

∂TR(b,c)

)

P
, (45)

CR(b) = CR(b)

r2
V

= 2πx2(−1 − a0 − 2a1a2x + 3a2x2)ε

9a2x4 − 4a1a2x3 − (1 + a0 − 3a2ε)x2 + (1 + a0)ε
,

(46)

CR(c) = CR(c)

r2
V

= 2πy2(−1 − a0 − 2a1a2y + 3a2y2)ε

9a2y4 − 4a1a2y3 − (1 + a0 − 3a2ε)y2 + (1 + a0)ε
.

(47)

These heat capacities are written in terms of dimensionless
parameters. For the heat capacity of the system evaluated at
black hole horizon, it can be shown explicitly in the left panel
of Fig. 5. The denominator of Eq. (46) is the same as one in
Eq. (41). Hence, the heat capacity diverges at the extrema of
the temperature of the system, namely, x− and x+. Moreover,
this means the heat capacity is inversely proportional to the
slope of the temperature, CR(b) ∝ 1( dTR(b)

drb

) , as can be seen

explicitly in the left panel of Fig. 5. There are three ranges of
x for the heat capacity of the system evaluated at black hole
horizon: the smaller black hole whose size is smaller than
the local minimum, x−, the larger black hole whose size is
bigger than the local maximum, x+, and the moderate-sized
black hole whose size lies within the range x− < x < x+.
According to their heat capacities, the moderate-sized black
hole is locally stable while the smaller and larger black holes
are locally unstable.

For the heat capacity of the system evaluated at the
cosmological horizon, there are no divergent points for

CR(c) in the ranges of 1
3a1

(
1 +

√
1 + 3(1+a0)

a2
1a2

)
< y <

1
2a1

(
1 +

√
1 + 4(1+a0)

a2
1a2

)
. The behavior of the heat capac-

ity of the system evaluated at the cosmological horizon can
be shown in the right panel of Fig. 5. It is obviously seen that
the heat capacity of the system evaluated at the cosmological
horizon is always positive, which implies the local stability
of the system.

Apart from the local stability, one may also consider the
global stability of this black hole system. The global stability
can be analyzed by the Gibbs free energy as follows

GR(b,c) = GR(b,c)

rV
= 1

rV

(
M − TR(b,c)SR(b,c)

)
, (48)

GR(b) = x

2

[
1 + a0 + a2x(a1 − x)

]

−[
1 + a0 + a2x(2a1 − 3x)

] (
x2 + ε

4x

)

ln

(
x2 + ε

ε

)
, (49)

GR(c) = y

2

[
1 + a0 + a2y(a1 − y)

]

+[
1 + a0 + a2y(2a1 − 3y)

] (
y2 + ε

4y

)

ln

(
y2 + ε

ε

)
. (50)

The system with global stability prefers the negative Gibbs
free energy. The local minimum/maximum of the Gibbs free
energy is the same points as the maximum/minimum of the
temperature as seen on the left-hand side in Fig. 6. Therefore,
the upper bound for ε can be found by requiring the condition
GR(b)(x+) = 0. In principle, the condition on ε can be written
in terms of a0, a1 and a2. However, it is not easy to solve for
the analytic solution. This problem is due to the logarithmic
function in the Gibbs free energy. To obtain the global bound
on the nonextensive parameter denoted by εG, we may use
the numerical method to show that the behavior of εG is a
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Fig. 5 Left (Right) panel
shows the heat capacity and
temperature of the system
evaluated at the black hole
(cosmological) horizon with the
parameters are set as a0 = 1/2,
a1 = 0.1 = a2 and ε = 0.1

Fig. 6 Left panel shows the
Gibbs free energy and
temperature versus x for the
parameter setting a0 = 1/2,
a1 = 0.1 = a2 and ε = 0.1.
Right panel shows the behavior
of εG versus a0 by fixing
a1 = 0.1 = a2

linear function of the parameter a0 as shown on the right-
hand side in Fig. 6. Therefore εG can be expressed in terms
of a0, a1 and a2 as

εG ≡ f (a1, a2) + g(a1, a2)a0. (51)

In order to find f (a1, a2) and g(a1, a2) for εG from the
above expression, we perform the numerical method evalu-
ating point by point. As a result, the condition on ε for the
black hole to have global stability while keeping a1 and a2

small is obtained as

ε ≤ εG ≈ εG(dS)

3a2

[{
1 + 1

5

√
79

(
a1

√
a2 + a2

1a2

)}

+
{

1 + 1

5

√
78

5

(
a1

√
a2 + a2

1a2

)}

a0

]

, (52)

εG(dS) =
√

26

125
εC(dS) =

√
26

125
(7 − 4

√
3) ≈ 0.0328, (53)

where εG(dS) is the upper bound on ε due to the global stabil-
ity analysis in the Sch-dS black hole [52]. From Fig. 7, one
can see that the approximated expression of εG in Eq. (52) is
closed to the exact value of εG obtained from GR(b) = 0. The
behavior of the Gibbs free energy can be analyzed by using

the relation SR = −
(

∂GR
∂TR

)
. This implies that the slope of

the graph GR −TR is always positive. The behavior of Gibbs
free energy with different values of ε is illustrated in the left
panel of Fig. 8. From this figure, there exist two cusps corre-
sponding to two extremum points in the temperature profile
denoted by x±. At these points, the heat capacity diverge and

change its sign inferring from the relation CR =
(

∂2GR
∂T 2

R

)

P
.

For the non-black hole phase or hot gas phase, the Gibbs
free energy is zero. In the viable range of the nonextensive
parameter, ε < εG, there exists the point that the Gibbs free
energy of the hot gas phase and one of the black hole phase
are equal. At this point, it is possible to obtain the phase tran-
sition corresponding to the first-order phase transition called
the Hawking–Page phase transition.

Now, let us study the stability of the system evaluated
at the cosmological horizon. It is found that there are no
extremum points for TR(c) corresponding to non-cusps in the
GR(c) − TR(c) diagram as shown in the right panel of Fig. 8.
Using the horizon equations as f (rb) = 0 and f (rc) = 0,
the mass and pressure can be expressed in terms of rb and rc

as follows
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Fig. 7 Left (Right) panel shows
the comparison of εG obtained
from GR(b) in full equation and
approximation versus a1 (a2) by
fixing a0 = 1/2 and a2 = 0.1
(a1 = 0.1)

Fig. 8 Left (Right) panel
shows the Gibbs free energy
versus temperature of the
system evaluated at the black
hole (cosmological) horizon
with various values of ε by
fixing a0 = 1/2, a1 = 0.1 = a2.
Note that εc = 0.37507, and
εG = 0.17082

Fig. 9 The Gibbs free energy
for the system evaluated at the
cosmological horizon,
GR(c)(ε, a0, a1, a2) for
0 < ε ≤ εG with fixing
a0 = 1/2, a2 = 0.1 (left) and
a1 = 0.1 (right)

M = rbrc
[
c1 − c2(rb + rc)

]

2
[
c0 + c1(rb + rc) − c2(r2

b + rbrc + r2
c )

] , (54)

P = − 3

8π

[
1

c0 + c1(rb + rc) − c2(r2
b + rbrc + r2

c )

]

. (55)

Since we have been interested in the systems which undergo
the isobaric process, i.e. dP = 0, the cosmological horizon
radius rc in terms of the black hole horizon one rb. As a result.
the relation in dimensionless variables is expressed as

y(x) = 1

2

⎛

⎝a1 − x +
√

4(1 + a0) + a2(a2
1 + 2a1x − 3x2)

a2

⎞

⎠ .

(56)

By substituting y corresponding to x+ in GR(c)(y), one can
obtain GR(c) = GR(c)(ε, a0, a1, a2). However, the expres-
sion of GR(c)(ε, a0, a1, a2) is too lengthy, we do not need to
show it explicitly here. It is shown numerically that GR(c)(ε)

is always negative for 0 < ε < εG as illustrated in Fig. 9.
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Therefore, the dRGT black hole is globally stable for the
nonextensive parameter being in the range 0 < ε < εG.

3.2 Effective system approach

In this subsection, the thermodynamic behavior of the black
hole is studied by considering the multi-horizon black hole
as a single effective system instead of two systems separately
defined at rb and rc. An advantage of this approach is solv-
ing the issue of nonequilibrium without imposing that the
systems are in the quasi-equilibrium state (as required for
the separated system approach). Furthermore, as seen previ-
ously, the black hole system can be thermally stable using the
Rényi statistics. Then, we are interested in the effective sys-
tem explained by the Rényi entropy. The entropy of the effec-
tive system is assumed to be the sum of the Rényi entropies
of both separated systems. Note that this sum obeys the addi-
tive composition rule of the Rényi entropy. Thus, the entropy
of the effective system is given by

S = SR(b) + SR(c) = 1

λ
ln

[(
1 + λπr2

b

)(
1 + λπr2

c

)]
. (57)

In order to restrict the well-defined entropy, λ is chosen to
be positive (0 < λ < 1). For this effective system approach,
the mass; M = M(S, P) is also treated as the enthalpy of
the system. The first law of thermodynamics for the effective
system is, therefore, written as

dM = Teff dS + Veff dP, (58)

where Teff and Veff are the effective temperature and the
effective volume, respectively. The pressure of this effective
system is also defined as the same as one in the separated
system approach, i.e., P = 3

8π
m2

g . The above first law is
expected to recover the first laws for separate systems in
Eq. (37) with a suitable limit as will be discussed later.

According to the first law in Eq. (58), the effective tem-
perature can be computed as follows [43]

Teff =
(

∂M

∂S

)

P

=

(
∂M

∂rb

)

rc

(
∂P

∂rc

)

rb

−
(

∂M

∂rc

)

rb

(
∂P

∂rb

)

rc(
∂S

∂rb

)

rc

(
∂P

∂rc

)

rb

+
(

∂S

∂rc

)

rb

(
∂P

∂rb

)

rc

. (59)

The above expression is indeed obtained from choosing the
change of the entropy from Eq. (57) as follows

dS = dSR(b) − dSR(c) =
(

∂S

∂rb

)

rc

drb −
(

∂S

∂rc

)

rb

drc. (60)

Note that the negative sign in front of dSR(c) is introduced
from the fact that, for an observer who stays between the
black hole and cosmological horizons, the direction of heat
transfer for the system evaluated at rc is opposite to that at

rb. In other words, when energy transfers from inside to out-
side of the horizon, the observer experiences positive energy
from the black hole horizon but negative energy from the
cosmological one. In addition, the effective temperature can
be expressed in terms of ones for the separated systems as

1

Teff
=

(
∂S

∂M

)

P
=

(
∂SR(b)

∂M

)

P
−

(
∂SR(c)

∂M

)

P

= 1

TR(b)

+ 1

TR(c)
. (61)

Interestingly, the definition of effective temperature in Eq.
(59) can avoid a singularity when TR(b) = TR(c) correspond-
ing to the extremal black hole (rb = rc). The usual definition
of the change of the entropy, dS = dSR(b) +dSR(c), provides

the effective temperature as Teff =
(

1
TR(b)

− 1
TR(c)

)−1
which

obviously diverges for the extremal black hole. Furthermore,
the effective temperature can be reduced to the temperature
of the separated system evaluated at the black hole horizon
for the limit rc → ∞ and the temperature of the separated
system evaluated at the cosmological horizon for the limit
rb → 0;

lim
rc→∞ Teff = TR(b), (62)

lim
rb→0

Teff = TR(c). (63)

These reductions in the effective temperature are also seen
from Eq. (61), such that TR(c) goes to infinity as rc → ∞.
The effective temperature in the limit rc → ∞ becomes
the temperature for the separated system evaluated at the
black hole horizon. It is also found that TR(b) goes to infinity
as rb → 0. The effective temperature in the limit rb → 0
becomes the temperature for the separated system evaluated
at the cosmological horizon.

Note that in a consideration of the limit rc → 0, the effec-
tive temperature still approaches the black hole temperature
limrc→0 Teff = TR(b). Even though the range of rc is not valid
at zero, this limit is just to eliminate the contribution due to
the system evaluated at rc from the effective system. The
interesting point is that this limit is the same one in which
the effective volume reduces to volume for the separated sys-
tem evaluated at rb as will be discussed later.

It is very important to note that the heat term for the effec-
tive system Teff dS can be reduced to those for the separated
systems evaluated at rb and rc, ±TR(b,c)dSR(b,c). However, if
the usual change of entropy is applied, there will be no neg-
ative sign in front of the heat term for the system evaluated
at rc. This is another advantage point of choosing the change
of the entropy as shown in Eq. (60).

From Eq. (59), the effective temperature can be rewrit-
ten in terms of only variable x by using the fact that, with
fixing the thermodynamic pressure, the cosmological hori-
zon radius depends on the black hole horizon one as shown
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Fig. 10 Left panel shows the
temperature profile of the
effective system (T eff = M

a2
Teff )

with various values of ε

(εeff = 0.264388) by fixing
a0 = 1/2, and a1 = 0.1 = a2.
Right panel shows the
comparison of temperatures for
the separated system evaluated
at black hole horizon and the
effective system by fixing
a0 = 1/2, a1 = 0.1 = a2 and
ε = 0.09

in Eq. (56). It is found that it is too lengthy and not suit-
able to show here. The behavior of the effective temperature
can be illustrated in the left panel of Fig. 10. Obviously, the
existence of a range with the positive slope in T eff = rV Teff

depends on the value of the nonextensive parameter ε similar
to TR(b). Indeed, the nonextensive parameter ε (or λ) needs
to be sufficiently small (or large) for having a positive slope
in T eff . Therefore, the nonextensivity in the Rényi entropy
is still required in order to form the locally stable black hole
in the effective system approach. In other words, the black
hole is always locally unstable using the Gibbs–Boltzmann
statistics (λ → 0 or ε → ∞). When the black hole is in its
extremal limit, the effective temperature goes to zero. This
value can be seen by rearranging the expression in Eq. (61)
as Teff = TR(b)TR(c)

TR(b)+TR(c)
. Although TR(b) and TR(c) go to zero for

the extremal black hole, the effective temperature is finite
(equal to zero) because the numerator approaches zero faster
than the denominator.

The comparison of temperature profiles between TR(b)

and T eff can be shown in the right panel of Fig. 10. It is seen
that TR(b) does not much deviate from T eff for small-sized
black holes while the difference gets large for moderated-
and large-sized black holes. At a high temperature such as
T 1 in the right panel of Fig. 10, the black hole in the separated
system approach is locally stable, but one in the effective sys-
tem approach is locally unstable. On the other hand, at a low
temperature such as T 3, the black hole in the effective system
approach is locally stable, while one in the separated system
approach is locally unstable. Finally, at an intermediate tem-
perature such as T 2, both black holes in the separated and
effective system approaches can be locally stable. If the tem-
perature and the radius of the black hole can be observed, it
is able to distinguish which approach prefers, since the black
hole in the effective system approach is always larger than
one in the separated system approach. This may be useful
if one wants to assess the possibility of which approach is
preferred over the other, one may need access to observations
on the radii of the black holes along with their temperatures.

Let us consider the local stability condition on the nonex-
tensive parameter. In order to find the bound on ε, one can
use the same strategy as done in the previous subsection by
considering the extremum points of the temperature. Since
the effective temperature depends on both x and y, one has
to use the fact that y can be expressed in terms of x with
keeping the pressure constant as shown in Eq. (56). Eventu-
ally, the condition of finding extremum points of the effective
temperature with respect only to the variable x is given by

Feff(x, y) ≡
(
TR(b) + TR(c)

TR(c)

)2
∂T eff

∂x

= Fb + Y (x, y) = 0, (64)

where Fb has been previously defined in Eq. (41) and

Y (x, y) = dy

dx

dT R(c)

dy

T
2
R(b)

T
2
R(c)

. (65)

The function Fb is the concave function of x as we have
already mentioned. Since dy/dx < 0 (y increases or
decreases as x decreasing or increasing, respectively) and
dTR(c)/dy > 0 (TR(c) is the increasing function of y as
illustrated in the right panel in Fig. 3), the function Y (x, y)
always has negative value. As a result, the function Feff(x, y)
is the concave function which is lower than Fb. This is why
the behaviors of TR(b) and Teff are similar.

Using Eq. (56), the function Y (x, y) in Eq. (64) can be
written in terms of only x . Generally, one can solve Eq. (64)
for two positive real roots of x . These two values of x corre-
spond to two extrema of the effective temperature. As seen
in Fig. 10, a range of the radius of the locally stable black
hole (the black hole with a positive slope of temperature)
lies between the two extrema. Hence, a critical point on ε, in
which the locally stable black hole phase appears or disap-
pears, can be evaluated by merging the two extrema of Teff

as a single point. In other words, this critical point can be
obtained when the maximum of Feff yields Feff = 0 itself.
Therefore, for the existence of a locally stable phase, it is pos-
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Fig. 11 Left (Right) panel
shows the comparison between
εeff obtained from the full data
and approximation versus a1
(a2) by fixing a0 = 1/2 and
a2 = 1/3 (a1 = 1/3)

sible to find an upper bound of the nonextensive parameter
denoted as εeff , i.e., ε ≤ εeff is the local stability condi-
tion for the effective system approach. This bound should
be expressed in terms of the dRGT parameters; a0, a1, and
a2. Unfortunately, the expression of εeff = εeff(a0, a1, a2)

is very complicated and it is then difficult to analyze on the
nonextensive length scale as done for the separated system.
We have used the numerical method to find it. It is also
expected that the value of εeff with arbitrary a0, a1 and a2

should smaller than the value of εC, since Feff is always lower
than Fb as we have analyzed previously. It is interestingly
found that, when a1 and a2 are small, εeff is approximated
by scaling εC as

εeff(app) ≈ 0.70616 εC, (66)

The coefficient is actually the same ratio of εeff(dS)/εC(dS)

for the Sch-dS black hole as investigated in Refs. [43,52].
Fig. 11 shows that the approximated bound εeff(app) is very
closed to the exact bound εeff(full). Since εeff(app) is slightly
smaller than εeff(full), this guarantees that the black hole with
ε ≤ εeff(app) is indeed locally stable.

Moreover, it is very important to note that the (upper)
bound on ε for the local stability in the effective sys-
tem approach is stronger than that in the separated system
approach, εeff < εC. One can conclude that the effective sys-
tem approach requires more nonextensivity (more deviates
from the Gibbs–Boltzmann statistics) than the separated one
in order to obtain the locally stable dRGT black hole.

Now, the effective heat capacity at the constant pressure
is defined as

Ceff =
(

∂M

∂Teff

)

P
. (67)

The explicit expression of the effective heat capacity is too
lengthy, it is not shown here. Similar to the analysis in the
previous subsection, the black hole mass M is the monoton-
ically increasing function in x for suitable values of param-
eters. The sign of the effective heat capacity Ceff is directly

Fig. 12 The effective temperature and heat capacity profiles with
respect to x for fixing a0 = 1/2, a1 = 0.1 = a2 and ε = 0.1

referred to as the sign of the slope of the effective temper-
ature Teff . The heat capacity then diverges at the extremum
points of the effective temperature. This feature of dimen-
sionless heat capacity Ceff = Ceff/rV and temperature T eff

are shown in Fig. 12. Let us emphasize that the positive effec-
tive heat capacity corresponds to the positive slope of the
effective temperature. The effective system is locally stable
for the moderate-sized black hole on ε ≤ εeff .

The thermodynamic volume of the effective system is
defined accordingly. The effective volume is computed from
[43]

Veff =
(

∂M

∂P

)

S

=

(
∂M

∂rb

)

rc

(
∂S

∂rc

)

rb

+
(

∂M

∂rc

)

rb

(
∂S

∂rb

)

rc(
∂P

∂rb

)

rc

(
∂S

∂rc

)

rb

+
(

∂P

∂rc

)

rb

(
∂S

∂rb

)

rc

. (68)

Note that this effective volume can be reduced to the vol-
umes of each system in the separated system point of view
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Fig. 13 Left panel shows the
profile of the effective Gibbs
free energy versus effective
temperature with various values
of ε (εeff = 0.264388). Right
panel shows the profiles of the
Gibbs free energy versus the
temperature for the separated
system evaluated at the black
hole horizon (blue line) and
effective system (red line) with
fixing ε = 0.08. In this figure,
we have used a0 = 1/2 and
a1 = 0.1 = a2

as follows:

lim
rc→0

Veff = Vb, (69)

lim
rb→0

Veff = Vc. (70)

In the limits, rc → 0 and rb → 0, the first law for the effective
system approach (58) recovers the first laws for the separated
system evaluated at the black hole and cosmological horizons
(37), respectively. Similarly to the previous analysis, it must
be emphasized that although the limit rc → 0 is not valid,
such a limit eliminates contributions from rc just like it did
in the temperature case. Furthermore, the effective volume
in Eq. (68) can be written in terms of Vb and Vc as [31,43]

Veff = Teff

(
Vb

TR(b)

+ Vc

TR(c)

)
. (71)

From the above expression, the effective volume is obviously
positive for the viable range of the dRGT parameters a0, a1

and a2 yielding positive Vb and Vc. Note also that, using the
usual definition of the change of the entropy, dS = dSR(b) +
dSR(c), the effective volume, Veff = Teff

(
Vb

TR(b)
− Vc

TR(c)

)
,

is possible to be negative which is unphysical. As seen in
Eq. (30), Vb and Vc are taken in the same functions of rb and
rc, respectively. Vc is always greater than Vb because rc > rb.
Using this fact and Eq. (61), it is straightforwardly obtained
that the effective volume is always greater than the volume
of the separated system evaluated at the black hole horizon.
It is important to emphasize that the (effective) volume and
pressure can be concurrently positive for the dRGT black
hole described by the effective system approach.

Let us consider global stability by using the effective
Gibbs free energy. The effective Gibbs free energy is defined
as

Geff = M − Teff S. (72)

It can be written in terms of the dimensionless variables as
Geff(x, y) = rV Geff . Instead of explicitly showing its full
expression, the behavior of the effective Gibbs free energy

with the various values of ε is illustrated in the left panel of
Fig. 13. It is seen that when ε < εeff , there exist cusps that
approximately correspond to the phase transitions between
the locally stable–unstable black hole phase.

Furthermore, one can notice that the cusps in the effective
system approach are not peaked as those in the separated sys-
tem approach are (see the right panel of Fig. 13). It is because,
due to the modification of dS in Eq. (60), the change of Geff

is not taken in the usual form, dG = −SdT + V dP , but is
written as dGeff = −SdTeff + Veff dP + 2Teff dSR(c). Then,
the first and second derivatives of the effective Gibbs free
energy with respect to effective temperature are not exactly
equal to −S and −Ceff/Teff , respectively. However, the cusps
in the Geff −T eff diagram are closed to the extremum points
of T eff or divergent points of Ceff as seen in Fig. 13. It can
be estimated that the left/right cusp is around the local min-
imum/maximum point of T eff . The range of the black hole
being locally stable (moderate-sized black hole) lies between
these cusps. From the left panel of Fig. 13, one also sees that
the locally stable black hole approximately has the lowest
Gibbs free energy when it is at the right cusp. Therefore, the
bound on ε for the moderate-sized black hole being glob-
ally stable can be estimated from the Gibbs free energy at
the right cusp being zero. By numerical analysis, it is found
that the moderate-sized black hole always has negative Gibbs
free energy. Apart from the local stability condition, ε ≤ εeff ,
there is no further bound on ε for the global stability of the
black hole in the effective system approach. In other words,
the locally stable black hole described by the effective sys-
tem approach is always globally stable. Using the result of
Eq. (66), the nonextensive length scale can be obtained as

rh

Lλ

∼ √
0.70616 a1

√
a2 ≈ 0.84a1

√
a2. (73)

Emphasize that this expression is applicable only for the case
of a1 and a2 being small.

Additionally, the global stability bound for the black hole
described by the separated system approach is stronger than
the bound for the black hole described by the effective system
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approach, e.g., εG ≈ 0.456εC for setting a0 = 1/2 and a1 =
a2 = 0.1. Hence, the nonextensivity in the effective system
approach is less required than that in the separated one in
order to obtain the locally and globally stable black hole.

Since the effective Gibbs free energy of the moderate-
sized black hole is always negative, the hot gas which has
zero Gibbs free energy will form the stable black hole via
the Hawking–Page phase transition. Moreover, the effective
Gibbs free energy is discontinuous when the phase transition
occurs. It implies that the phase transition between the non-
black hole and black hole phase is a zeroth-order type. This
is an important distinguishable feature between the separated
and effective system approaches. For example, from the right
panel of Fig. 13, one can see that, at a certain temperature
represented as T 0, the Hawking–Page phase transitions from
the hot gas to the stable black hole phases can occur for
both separated and effective systems as the first-order type
(the slope dGeff/dT eff jumps) and the zeroth-order type (the
value of Geff jumps), respectively.

4 Conclusion

Classically, nothing can escape from a black hole. However,
the black hole can emit Hawking radiation if the effect of
quantum mechanics is taken into account. This suggests that
the black hole can act as a thermal object. As a result, the
thermodynamic properties of black holes have been investi-
gated intensively in order to explore the quantum nature of
spacetime. In this work, we investigate the thermodynamic
properties of the black hole in de Rham, Gabadadze, and Tol-
ley (dRGT) massive gravity theory based on Rényi entropy.

Since the entropy of the black hole is proportional to its
area, the black hole entropy is supposed to be a nonextensive
quantity. Therefore, the thermodynamics of the black hole
should be based on nonextensive statistics. Rényi entropy is
one of the entropies which can characterize the nonextensive
nature of the thermodynamic system. Consequently, it is pos-
sible to obtain the thermodynamically stable Schwarzschild
(Sch) and Schwarzschild-de Sitter (Sch-dS) black holes in
the context of Rényi entropy while they are unstable if
the entropy of the black hole is classified as the usual
Gibbs–Boltzmann (GB) entropy [43,51,52]. In this work,
we explore how nonextensivity can influence the thermody-
namic stability of the black hole in the dRGT massive gravity
theory, called the dRGT black hole.

The dRGT massive gravity theory can provide the asymp-
totically de Sitter (dS) solution which is compatible with
the late-time expansion of the universe. For a spherically
symmetric solution, the dRGT black hole can provide cor-
rections to Sch-dS black hole. Therefore, we analyze how
the thermodynamic properties of the dRGT black hole are
modified compared to the Sch-dS black hole. For the Sch-dS
black hole, it is well known that either the thermodynamic

pressure or volume is negative. However, in the dRGT case,
it is possible to define the positive pressure by keeping a
volume positive. This is one of the worthy properties of the
dRGT black hole compared to the Sch-dS black hole. One of
the signatures of the black hole with asymptotically dS space-
time is that there exist two horizons between which we live.
Therefore, there are corresponding thermodynamic systems
with generally different temperatures. In order to deal with
this kind of black hole, we classified our analysis into two
categories: the separated system approach and the effective
system approach.

For the separated system approach, the systems are
assumed to be far from each other enough and are not sig-
nificantly different in temperature. By adopting the first law
of black hole thermodynamics, we examine the nonextensiv-
ity by replacing the GB entropy with the Rényi entropy. The
pressure is defined to be proportional to the graviton mass in
the same fashion as that P ∼ Λ in the Sch-dS black hole.
With this definition, we found that the pressure is positive
with some range of the graviton mass parameters by keeping
volume positive as shown in Fig. 2. Moreover, we analyze the
behavior of temperature and heat capacity of both separated
systems by defining the temperature properly via the first
law. We find that the dRGT black hole can be locally stable
due to the presence of nonextensivity with the dimensionless
nonextensive parameter ε = 1/(λπr2

V ), where rV is Vain-
shtein radius, less than an upper bound εC following Eq. (42).
Without graviton mass corrections, the bound of ε reduces
to one for the Sch-dS black hole, εC(dS). It implies that the
nonextensive length scale Lλ must be less than the Hubble
radius Lλ � 0.268 H−1

0 , where H0 is Hubble parameter at
the present (H0 ∼ mg ∼ L−1

mg). On the other hand, global
stability is investigated by analyzing the behavior of Gibbs
free energy. We find that the global bound of the nonexten-
sive parameter εG is stronger than one for the local bound,
ε < εG ≈ 0.456 εC. Remarkably, the transition from the
thermal radiation or hot gas phase to the stable black hole
phase, the so-called Hawking–Page phase transition, of this
system is found to be of the first-order type. It is shown in
the left panel of Fig. 8.

For the effective system approach, the thermodynamic
systems are assumed to be described by effective thermo-
dynamic quantities. By following the first law in the same
form as one in the separated system approach, the effective
quantities are defined by using the criterion such that the heat
flow for the system evaluated at the cosmological horizon has
the opposite direction to one at the black hole horizon [43].
This comes from the fact that the observer stays between the
black hole horizon and the cosmological horizon. We find
that, with the (positive) pressure defined in the same way as
one in the separated system approach, the effective volume
is still positive. By using the same strategy as performed
in the separated system approach, the bound to obtain the
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locally stable black hole is found to be stronger than one in the
separated system approach as ε < εeff = 0.70616εC. This
implies that the thermodynamic stability of the black hole in
the effective system approach requires the nonextensivity of
the system greater than one in the separated system approach.
Surprisingly, this relation gives exactly the same as one for
the Sch-dS case even though the effects of graviton mass
are included. Moreover, it is found that there exist particu-
lar temperatures in which the black hole in both approaches
will be locally stable. In this case, the black hole radius in
the effective system approach is always larger than the one
in the separated system approach. Furthermore, there exist
particular temperatures for which the black hole is locally
stable either in the effective or separated system approach.
As a result, these particular temperatures can be used to dis-
tinguish between the two approaches. For global stability, we
find that the Gibbs free energy in the range with local sta-
bility is always negative. Therefore, the locally stable black
hole is always globally stable without another requirement
as found in the separated system approach. Interestingly, the
Hawking–Page phase transition is found to undergo from hot
gas to the black hole with the zeroth-order phase transition.

From our results, the nonextensive bounds get modified
due to the additional contribution of graviton mass parameter-
ized by a1 and a0 corresponding to the nonlinear scales above
the Vainshtein radius. Interestingly, the correction term due to
the graviton mass is scaled by rh/Lλ where rh is the horizon.
Therefore, for a large nonextensivity limit, the Rényi entropy
can be expressed in the form of SR ∼ ln(rh/Lλ) which coin-
cides with one for the entanglement entropy Se ∼ ln(ξ/a)

[67,68]. Note that ξ and a denote the correlation length and
lattice spacing, respectively. As a result, we may argue that
the black hole horizon can play the role of the correlation
length. It should be emphasized that this speculation on the
relation between the black hole horizon and the correlation
length is based on the existence of rh/Lλ which arises from
the existence of the graviton mass. This may shed light on
the interplay between the nature of entanglement and gravi-
tational interaction contributed by the graviton mass.

It is important to note that in the dRGT massive gravity
theory, there exists the cutoff scale rΛ3 ∼ (m2

gMPl)
−1/3 =

(MPl/M)1/3rV which is much smaller than the Vainshtein
radius. The dRGT black hole with a radius comparable to
such a cutoff is not trustable. However, at this cutoff scale,
the effect of graviton mass is strongly suppressed and then the
gravitational interaction should be understood through gen-
eral relativity. With this respect, our analysis is not enough
to demonstrate correspondences between entropy which may
be related to the microscopic states of quanta spacetime and
the graviton mass. In particular, the dRGT black hole can be
treated as a classical background spacetime while the radia-
tion from the black hole can be treated as a quantum effect
without being influenced by graviton mass.

It is noteworthy to emphasize here that, for our analysis,
we collaborate the Rényi entropy with the black hole ther-
modynamics by adopting the first law of thermodynamics
derived from the gravitational description with GB statistics.
While there might be other ways to collaborate the Rényi
entropy to the black hole thermodynamics [69,70], this pre-
scription allows us to define the proper thermodynamic quan-
tities based on the thermodynamic laws. It would be interest-
ing to investigate the first law from the gravitational descrip-
tion with the Rényi entropy. We leave this investigation for
further works.
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