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Abstract Bayesian Machine Learning (BML) and strong
lensing time delay (SLTD) techniques are used in order to
tackle the H0 tension in f (T ) gravity. The power of BML
relies on employing a model-based generative process which
already plays an important role in different domains of cos-
mology and astrophysics, being the present work a further
proof of this. Three viable f (T ) models are considered: a
power law, an exponential, and a squared exponential model.
The learned constraints and respective results indicate that
the exponential model, f (T ) = αT0

(
1 − e−pT/T0

)
, has the

capability to solve the H0 tension quite efficiently. The fore-
casting power and robustness of the method are shown by
considering different redshift ranges and parameters for the
lenses and sources involved. The lesson learned is that these
values can strongly affect our understanding of the H0 ten-
sion, as it does happen in the case of the model considered.
The resulting constraints of the learning method are eventu-
ally validated by using the observational Hubble data (OHD).

1 Introduction

The current standard model of cosmology, �CDM, effi-
ciently explains the evolution and content of the Universe
by adding to its visible content two dark sectors: dark mat-
ter and dark energy. The first plays a crucial role in stabi-
lizing galaxies and clusters, while the latter is necessary to

a e-mail: muhsinaljaf@oakland.edu (corresponding author)
b e-mail: elizalde@ice.csic.es
c e-mail: khurshudyan@ice.csic.es
d e-mail: krmyrzakulov@gmail.com
e e-mail: a.a.zhadyranova@gmail.com

describe the late-time acceleration of the Universe. However,
even with these additions and remarkable efforts, the model
still suffers from serious issues, such as the coincidence and
the cosmological constant problems [1,2].

A rather new issue that reveals another trouble with the
physical background of �CDM is the H0 tension, to be dis-
cussed below. Essentially, there are two ways to tackle this
new issue, widely discussed in the recent literature. One may
just continue addressing the problems in the General Rela-
tivity (GR) framework by adding new exotic forms of matter
to the Universe’s energy content or either build new gravita-
tional theories beyond GR that could drive the accelerating
expansion directly. In both approaches, the new models are
bound to pass cosmological and astrophysical tests [3–13]
(See also references therein for related problems and mod-
els).

In the context of the second approach, several modified
theories have been proposed. For instance, the f (R) theory
is the simplest extension of GR in which instead of Ricci
scalar R in the Einstein-Hilbert action one considers an arbi-
trary function f (R) [14–21]. Another interesting modifica-
tion is the f (T ) theory wherein the gravitational interaction
is described by the Torsion T instead of the curvature ten-
sor. As a result, the Levi-Civita connection is replaced by the
Weitzenböck connection in the underlying Riemann–Cartan
spacetime. An important benefit of f (T ) is that its field equa-
tions appear in the form of second-order differential equa-
tions, significantly reducing the mathematical difficulties of
the models compared to f (R) theories where the field equa-
tion leads to fourth-order differential equations. Moreover,
the cosmological implications of f (T ) theories have already
been manifested in several proposed models. These models
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are not only able to explain the current accelerated cosmic
expansion but also provide alternatives to inflation. For all
that, the f (T ) theory and its cosmological applications have
attracted a lot of interest in the recent literature [22–36].

We have already mentioned that it is essential to study
and ensure that the crafted models pass cosmological and
astrophysical tests, especially now that various observational
missions are in operation, rendering lots of new data. More-
over, it is crucial to constrain the model parameters and learn
proper consequences because the constraints on the back-
ground dynamics are essential for understanding the nature
of (interacting) dark energy, structure formation, and future
singularity problems. In this regard, developing and utiliz-
ing techniques that allow us to get reconstructions (includ-
ing constraints) through a learning procedure in a model-
independent way, e.g., directly from observational data, are
of great importance.

One of the popular and widely used examples of such
techniques in cosmology is the Gaussian Processes [37–40]
which rely on a specific Machine Learning (ML) algorithm
indicating how generally ML can be used in cosmology,
astrophysics, or in any other field of science where data anal-
ysis is crucial. Generically, ML algorithms are data-hungry
approaches requiring huge amounts of data to perform train-
ing and validation processes. They also carry some draw-
backs that may cause catastrophic results in some cases [41].
In other words, ML may become useless in specific situa-
tions, in particular, if the collected data have some inherent
problem. Biasing is among the reasons that the ML approach
may fail. Unfortunately, biasing is a substantial and some-
times unavoidable part of the data collecting process. It can
originate from our particular understanding of reality or the
model we use to represent reality. For instance, an intrinsic
bias in flat �CDM has been pointed out by [42]. Generally, a
bias can arise in many situations, including those associated
with the reasoning under uncertainties actively studied in
robotics, dynamical vehicles, and various autonomous sys-
tem modeling. As a result, Over the years, researchers of
computer science and other science fields have developed
multiple methods to reduce bias and increase the robustness
of ML algorithms. Among them, an interesting case for us,
which will be applied in this paper, is Bayesian Machine
Learning (BML). It uses model-based generative processes
to improve the data problems, among others.1 A proper dis-
cussion about BML will appear below, in Sect. 3, where it
will be indicated how, in general, it can be used in cosmology.

1 We use BML as a tool to study cosmology and, for conciseness, have
to omit various theoretical and technical details about it, including how
it can be used in biased cases. We strongly suggest that readers interested
in ML topics search on the web about recent developments and existing
problems in this direction to gain more insight.

The rest of this section is devoted to the formulation of the
specific problem that motivates the present study. It is a rel-
atively new one, known as the H0 tension in the literature: a
huge difference between the early-time measurements (e.g.,
Cosmic Microwave Background (CMB) and Baryon acoustic
oscillations (BAO)) and late-time ones (e.g., Type Ia Super-
novae (SNe Ia) and H(z)) of the value of the Hubble constant
H0. In particular, according to the Planck 2018 [43] results,
in a flat �CDM model the value of the Hubble constant is
H0 = 67.27±0.60 km/s/Mpc at 1σ confidence level, while
the SHOES Team estimated that H0 = 73.2±1.3 km/s/Mpc
[44], which exhibits a 4.14σ tension.

This important tension motivated researchers to look for
different solutions ranging from indications of new physics
to possible hidden sources of systematic errors and biases
in observational data [45–50] (see references therein for
other options to solve the H0 tension). Indeed, to under-
stand the source of such discrepancy that can challenge
the �CDM model, other independent observational sources
have been used to determine the value of H0. For exam-
ple, strong gravitational lensing systems are powerful and
independent candidates for estimating the Hubble parameter
and its current tension [51]. The discovery of the first binary
neutron star merging event, GW170817, and the detection
of an associated electromagnetic counterpart has made this
possible, providing an estimate for the Hubble constant of
about H0 = 70+12

−8 km/s/Mpc. Moreover, the analysis of six
well-measured systems from the H0LiCOW lensing program
[52] has provided abound on the Hubble constant of 73.3+1.7

−1.8
assuming a flat �CDM cosmology [53]. Even though these
constraints are weaker than those from SNe Ia and CMB
observations, it is expected to improve with the discovery
of new merging events with an associated electromagnetic
counterpart [54–59]. Particularly with observations of the
lensed systems from future surveys such as the Large Syn-
optic Survey Telescope (LSST) [60], are expected to signifi-
cantly improve the number of well-measured strongly lensed
systems [61]. The increased number of observed lensed
sources will also allow constraining non-standard cosmolo-
gies.

In strong gravitational lensing systems, the total time delay
between two images (or two gravitational-wave events), i and
j , is given by

�ti, j = D�t (1 + zs) �φi, j ,

�φi, j =
[
(θ i − β)2 /2 − ψ (θ i ) − (

θ j − β
)2

/2 + ψ
(
θ j

)]
,

(1)

where �φi, j is the difference between the Fermat potentials
at different image angular positions θ i , θ j , andβ denoting the
source position, and ψ being the lensing potential [51,62,63].

On the other hand, the measured time delay between
strongly lensed images �ti, j combined with the redshifts
of the lens zs and the source zs, and the Fermat potential
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difference �φi, j determined by lens mass distribution and
image positions allow determining the time-delay distance
D�t . This quantity, which is a combination of three angular
diameter distances, reads

D�t = (1 + zl)
Dl Ds

Dls
, (2)

where Dl , Ds and Dls stand for the angular diameter dis-
tances to the lens, the source, and between the lens and the
source, respectively. In fact, Eq. (2) is a very powerful rela-
tionship, combined with BML, which allows us to constrain
cosmological models without relying on the physics or obser-
vations of the lensing model and Fermat potential. As a result,
having only cosmological models and taking into account
that in a flat Friedmann–Robertson–Walker (FRW) Universe,
the angular diameter distance reads

D(z′) = 1

H0(1 + z)

∫ z′

0

dz′

E (z′, r)
, (3)

where E
(
z′, r

)
is defined as dimensionless Hubble parameter

and it is possible to learn the constraints on the model param-
eters embedded in it . Ideally, future observational data com-
ing from lensed gravitational wave (GW) signals together
with their corresponding electromagnetic wave (EM) will
definitely provide us with some new and significant insights
which may lead to an alleviation of the H0 tension. There-
fore, it is worth investigating their implications on the dark
energy and modified theories of gravity.

In our study, we pursue two goals. First, we will use the
advantages given by BML to constrain various f (T ) models
using the physics of GW+EM systems. To our knowledge,
this is the first time where BML and time-delay of GW+EM
systems have been both involved in studying f (T ) mod-
els. In this case, the generative process used in BML will
be based on Eqs. (2) and (3), thus establishing a direct link
between cosmology and strong lensing time delay(SLTD).
Our second goal will be to learn how the H0 tension can be
solved in f (T ) gravity. However, given specific aspects of
the method, we have to limit ourselves to considering only
three specific viable f (T ) models. We emphasize again, tak-
ing into account the specific aspects of our analysis, that the
learned constraints will be validated using the observational
Hubble data (OHD) obtained from cosmic chronometers and
BAO data (see, for instance, [39] and references therein).

The validation of the BML results with OHD presented
in our study demonstrates that it is reliable to learn possible
biases between H(z) and future SLTD data. Moreover, since
BML uses a model-based generation process, we are here
able, for forecasting purposes, to consider different situations
to understand forthcoming data that could affect our under-
standing of the H0 tension. In particular, we should indicate
that, by considering different redshift ranges and numbers
for the lenses and sources, we have learned that future SLTD

data may strongly affect our understanding of the H0 ten-
sion. Hopefully, discussed predictions for the background
dynamics can be validated by new missions and data in the
near future, proving the forecasting and the robustness of the
method used in our analysis.

This paper is organized as follows. In Sect. 2, we pro-
vide a brief description of the cosmological dynamics in the
frame of the f (T ) theory and introduce three specific f (T )

models to be constrained using BML. Section (3) provides
the methodology of the BML approach used in our analysis.
Finally, in Sect. 4, our final results are presented. To finish,
the conclusions that follow from the analysis are displayed
in Sect. 5.

2 Theoretical framework and models

In this section we briefly introduce the formalism of f (T )

gravity and its application in cosmology. Then we introduce
three viable models that we will constrain in our study.

2.1 f (T ) gravity

In f (T ) gravity the dynamical variables are the tetrad
fields eAμ, where Greek indices correspond to the space-
time coordinates and Latin indices correspond to the tangent
space coordinates. The tetrad fields eAμ form an orthonor-
mal basis in the tangent space at each point of the space-
time manifold. This implies that they satisfy the relation
gμν = ηABeAμeBν , with gμν the spacetime metric and where
ηAB = (1,−1,−1,−1) is the tangent-space metric.

The Weitzenböck connection in torsional gravity is defined
as


̂λ
μν ≡ eλ

A∂νe
A

μ = −eAμ∂νe
λ
A. (4)

This connection does not include the Riemann curvature
but only a non-zero torsion, namely

T λ
μν ≡ 
̂λ

νμ − 
̂λ
μν = eλ

A

(
∂μe

A
ν − ∂νe

A
μ

)
. (5)

Additionally, the torsion scalar is

T = Sμν
ρ T ρ

μν, (6)

where

Sμν
ρ ≡ 1

2

(
Kμν

ρ + δμ
ρ T

αν
α − δν

ρT
αμ
α α

)
, (7)

with

K ρ
μν ≡ 1

2

(
T ρ

μ νρ + Tμ
νρ − T ρ

μν

)
. (8)

This theory is equivalent to general relativity at the level
of equations of motion and and the generalized Lagrangian
could be written as
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S =
∫

d4xe
M2

P

2
[T + f (T ) + Lm] (9)

where e = det
(
eAμ

) = √−g, MP is the Planck mass and
f (T ) is the arbitrary function of torsion scalar T (we use
units where c = 1 ).

By varying the above action with respect to the tetrads,
we obtain the field equations as

e−1∂ν

(
eeρ

AS
μν
ρ

)
[1 + fT ] − eλ

AT
ρ
νλS

νμ
ρ [1 + fT ]

+ eρ
AS

μν
ρ (∂νT ) fT T + 1

4
eμ
A[T + f (T )]

= 4πGeρ
AT (m)μρ

(10)

where fT ≡ ∂ f (T )/∂T, fT T ≡ ∂2 f (T )/∂T 2, and T (m)
μ
ρ

is the matter energy-momentum tensor.

2.2 Background dynamics

Concerning the background dynamics of the universe, we
should study the cosmology of f (T ) gravity in the context
of a homogeneous, isotropic, and spatially flat universe, char-
acterized by eAμ = diag(1, a, a, a), with the FLRW geometry
described by

ds2 = dt2 − a2(t)δi j dx
i dx j . (11)

The Friedmann equations in this context become

3H2 = 8πGρm − f

2
+ T fT , (12)

and

Ḣ = − 4πG (ρm + Pm)

1 + fT + 2T fT T
, (13)

with H ≡ ȧ
a being the Hubble parameter, and ρdm, Pdm

being the energy density and pressure for cold dark matter,
respectively. Accordingly, we can define the energy density
and pressure for dark energy as

ρde ≡ 3

8πG

[
− f

6
+ T fT

3

]

and Pde ≡ 1

16πG

[
f − fT T + 2T 2 fT T

1 + fT + 2T fT T

]
. (14)

Consequently, the dark energy equation of state can be writ-
ten as

wde ≡ Pde
ρde

= f − fT T + 2T 2 fT T
(2T fT − f ) (1 + fT + 2T fT T )

. (15)

In the above discussed setup the cold dark matter will have
its evolution dictated by the conservation of the energy-
momentum tensor

ρ̇dm + 3Hρdm = 0, (16)

while the dark energy density will also follow the conserva-
tion equation

ρ̇de + 3Hρde (1 + wde) = 0, (17)

with ρde and Pde defined by Eq. (14). Since T = −6H2,
the normalized Hubble parameter E(z) can be written as

E2(z) ≡ H2(z)
H2

0
= T (z)

T0
, with H0 being the present value

of the Hubble parameter, and T0 = −6H2
0 . It is worth to

mention that, in our analysis, for convenience we re-write
the Friedmann equation as

E2(z, r) = �
(0)
dm(1 + z)3 + �

(0)
de y(z, r), (18)

with y(z, r) being

y(z, r) ≡ 1

6H2
0 �

(0)
de

[2T fT − f ] , (19)

and �
(0)
de being the dark energy density parameter today,

�
(0)
de = 1 − �

(0)
dm, (20)

produced by the modifying f (T ) term. One can note the
effect from the modified dynamics of teleparallel gravity is
represented by the function y(z, r) , in which r corresponds
to the free parameters of the specific model considered. The
main characteristics of this function are that GR must be
reproduced for some limit of parameter, while at the cos-
mological level, the concordance model �CDM can also be
achieved (y = 1).

2.3 f (T ) models

In this section we present three f (T ) models to be investi-
gated in this work. The three selected functions have already
been studied in the literature and are among the preferred
ones by available data when compared to the �CDM model
(see, for instance, [31]). We will see how BML affects the
predictions for each model while verifying the consistency
with previous works. In what follows, we shall introduce the
considered f (T ) forms and comment on their cosmological
implications.

1. Power-law model
The first f (T ) model (hereafter f1CDM) is the power-
law model which reads as

f1 = α(−T )b, (21)

where α and b are the two free parameters that can be
related through

α =
(

6H2
0

)1−b 1 − �
(0)
dm

2b − 1
. (22)
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Taking z = 0, H(z = 0) = H0 in Eq. (19), the distortion
factor becomes simply

y(z, b) = E2b(z, b), (23)

and the Friedmann equation,

E2(z, b) = �m0(1 + z)3 + �
(0)
de E

2b(z, b). (24)

We can easily see that b = 0 reproduces the �CDM
cosmology. This model gives a de-Sitter limit for z = −1,
and deviations from the standard model are more evident
for higher |b|. However, these deviations are generally
small, as confirmed using numerical techniques.

2. Exponential model
The second f (T ) model (hereafter f2CDM) is known as
the exponential model, and reads

f1(T ) = αT0

(
1 − e−pT/T0

)
, (25)

where, again, α and p are model parameters that can be
related as

α = �
(0)
de

1 − (1 + 2p)e−p
. (26)

For this model the �CDM model is recovered when p →
+∞ or equivalently b → 0+. Replacing p = 1

b in the
above equation, the distortion becomes

y(z, b) =
1 −

(
1 + 2E2

b

)
e− E2

b

1 − (
1 + 2

b

)
e− 1

b

. (27)

and ,consequently, the Friedmann equation for this model
becomes

E2(z, b) = �
(0)
dm(1 + z)3 + �

(0)
de

1 −
(

1 + 2E2

b

)
e− E2

b

1 − (
1 + 2

b

)
e− 1

b

.

(28)

3. The square-root exponential model
Finally, the third f (T ) model (hereafter f3CDM) con-
sidered in this work is also of exponential form but has a
different exponent, namely

f3(T ) = αT0

(
1 − e−p

√
T/T0

)
, p = 1

b
(29)

where the α and p parameters are related as

α = �
(0)
de

1 − (1 + p)e−p
. (30)

It is easy to see �CDM model is recovered when p →
+∞ or equivalently b → 0+. Replacing p = 1

b to the
above equation, the distortion factor becomes

y(z, b) = 1 − (
1 + E

b

)
e− E

b

1 − (
1 + 1

b

)
e− 1

b

, (31)

and Friedman equations becomes

E2(z, b) = �
(0)
dm(1 + z)3 + �

(0)
de

1 − (
1 + E

b

)
e− E

b

1 − (
1 + 1

b

)
e− 1

b

. (32)

3 Methodology

In this section we review the building blocks of BML and dis-
cuss how it can be used to explore the parameter space of the
background dynamics of the three f (T ) models introduced
in the previous section.

3.1 Bayesian machine learning (BML)

Constraining a cosmological scenario with observational
data is the main tool in estimating whether the model is
applicable or not. It also reduces the phenomenology step
by step, revealing the acceptable scenario. Bayesian model-
ing and parameter inference with standard methods, Markov
chain Monte Carlo (MCMC), play a central role in this chain.
Here We will not discuss MCMC in great detail but provide
a basic motivation to clarify why we need to look for alterna-
tive ways to constrain models. For this purpose, lets us start
with the Bayes theorem

P(θ |D) = P(D|θ)P(θ)

P(D)
, (33)

where P(θ) is the prior belief on the parameter θ describ-
ing the model under consideration. P(D|θ) is the likelihood
that represents the probability of observing the data D given
parameter θ or model (in our case would be the cosmological
model). Finally, P(D) is the marginal likelihood or model
evidence. The Bayes theorem allows us to find the probability
of a given model with θ parameters explaining given data D.
This probability is noted as P(θ |D) and actually a conditional
probability. It should be mentioned that the marginal likeli-
hood P(D) is a useful quantity for model selection because it
shows that the model will generate the data, irrespective of its
parameter values. However the computation of the mentioned
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probabilities is impossible and this has led to the development
and usage of alternative methods to overcome the intractable
computational aspects. One of the alternative methods for
performing Bayesian inference is the variational inference
discussed below. It is considerably faster than MCMC tech-
niques and does not suffer from convergence issues, making
it very attractive for cosmological and astrophysical applica-
tions.

Now, how can variational inference be helpful, and what is
it? It is a helpful tool since it suggests solving an optimization
problem by approximating the target probability density. The
Kullback–Leibler (KL) divergence is used as a measure of
such proximity [64]. In our case, the target probability density
would be the Bayesian posterior which allows us to constrain
the model parameters. For this purpose, the first step is finding
or proposing a family of densities Q and then finding the
member of that family q(θ) ∈ Q which is the closest one to
the target probability density. This member is known as the
variational posterior that minimizes the KL divergence to the
exact posterior, that is

q∗(θ) = arg min
q(θ)∈Q

KL(q(θ)|p(θ |D)), (34)

where θ is the latent variable to measure of such proximity,
and the KL divergence is defined as

KL(q(θ)‖p(θ | D)) = Eq(θ)[log q(θ)]
−Eq(θ)[log p(θ | D)]. (35)

Using Bayes theorem, we can rewrite the above KL diver-
gence as

KL(q(θ)‖p(θ | D)) = log p(D) + Eq(θ)[log q(θ)]
−Eq(θ)[log p(D, θ)]. (36)

It can be noticed from the above equation that in order to
minimize the above KL divergence term, one needs to mini-
mize the second and third terms in Eq. (36). Now, expanding
the joint likelihood p(D, θ) in Eq. (36) the variational lower
bound can be rewritten as [65]

ELBO(q(θ)) = Eq(θ)[log p(D | θ)] − KL(q(θ)‖p(θ)).

(37)

The first term in the above equation is a sort of data fit term
maximizing the likelihood of the observational data. In con-
trast, the second term is KL-divergence between the varia-
tional distribution and the prior. It can be interpreted as a
regularization term that ensures that the variational distri-
bution does not become too complex, potentially leading to
over-fitting. That being said, we have a fitting tool to con-
trol the process and efficiently avoid computation problems
by increasing or decreasing the contribution of the first two
terms in Eq. (35). There is interesting and valuable informa-

tion on this topic which can be found in [66–69], to mention
a few references.

However, the above discussion does not answer how we
can find the approximation for the target probability density.
An easy option could be to guess it for a simple model where
the Bayes inference is also tractable. In practice, this is not
an option. The other option is to learn it from the model
directly (in our case, directly from the crafted cosmologi-
cal model), using Neural Networks (NN). In this case, both
terms in Eq. (37) can be interpreted from a new perspec-
tive, reducing to the initial personal belief and the generated
model belief, respectively. It is a convenient approach that
allows overcoming various data-related issues because, in
this case, even low-quality data can be used at the end to val-
idate the learned results. This idea and its success represent
years of development, allowing to transfer the whole sub-
ject to another level. Eventually, we should mention that as a
learning method, we use deep probabilistic learning, a type
of deep learning accounting for uncertainties in the model,
initial belief, belief update and deep neural networks. This
approach provides the adequate groundwork to output reli-
able estimations for many ML tasks.

3.2 Implementation of BML

We will make use of the probabilistic programming package
PyMC3 [70], which uses the deep learning library Theano,
that is, a deep learning python-based library, providing cut-
ting edge inference algorithms to define the physical model,
to perform variational inference and to build the posterior dis-
tribution. We found that thePyMC3 public library is enriched
with some excellent examples demonstrating how the learn-
ing process can be established and the probability distribu-
tions can be learned; therefore, we excluded any specific dis-
cussion on the mathematical framework behind ML algo-
rithms and BML. We strongly suggest that readers interested
in exploring BML and variational inference follow the exam-
ples and discussions provided in the PyMC3 manual.

Now, let us discuss how we should understand the above
discussion allowing us to integrate BML and variational
inference to learn the constraints on the crafted cosmological
model. To be short, in our analysis using PyMC3, we have
followed the steps:

1. We define our cosmological model and the observable
that would be generated, and hence we establish the ele-
ments of the so-called generative process. In this paper,
this process is based on Eqs. (2) and (3).

2. We treat the data obtained from the generative process
as data in the following sense. It is very important to
understand the meaning of this step. In particular, hav-
ing generated the so-called data, we now generate prob-
ability distributions showing how a given cosmological
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model can explain the data. In this way, we significantly
reduce the complexity of the problem because the fam-
ily of probabilities approximating the final posterior will
directly depend only on priors. To notice dependency, we
need to consider the meaning of the right-hand side of the
Bayes theorem, Eq. (33). This is a good starting point as
we will see below.

3. Finally, we run the learning algorithm to get a new dis-
tribution over the model parameters and update our prior
beliefs imposed on the cosmological model parameters.

Generating the learning process and the direction of the
learning is always controlled by KL divergence. Since we
have involved probabilistic programming, after enough gen-
erated probabilistic distributions, we expect to learn the
asymptotically correct form for the posterior distribution
allowing us to infer the constraints.

In our analysis we considered several different scenarios
where data have been generated, which should be understood
in the context of the above discussion, to cover different red-
shift ranges for both lens and sources and different numbers
of the lenses and sources. The distribution for the lens zl and
source zs considered in this paper can be found in Table 2.

To end this section, we would like to mention that we cover
lenses and sources distributed over both low and high red-
shifts. This is because the observational data for the cosmic
history of the Universe are available at low redshift ranges
and can be used to validate the learned results obtained from
BML. On the other hand, we consider high redshift ranges for
forecasting reasons; however, the complete validation of the
results will have to wait for the near future, when observations
of higher redshift data actually become available. Indeed the
validation of the learned results is based on the expansion
rate data presented in Table 1. Moreover, we need to stress
that our initial belief used as an input is the �CDM model.
Even if we start from different initial beliefs, our learning
procedure asymptotically converges to the results discussed
in this paper.

4 Learned constraints on the model parameters

In this section, we present the learned constraints on the f (T )

cosmological parameters obtained following the procedure
described in Sect. 3. For the sake of convenience, we provide
our results in three subsections.

4.1 f1CDM

The first case corresponds to the f1CDM model given by
Eqs. (21) and (24) when the generative process for BML
has been organized using Eqs. (2) and (3). Moreover, for
all cases discussed below, flat priors as H0 ∈ [64, 78],

Table 1 Currently available observational Hubble data (OHD) used
to validate the results of our analysis with BML. H(z) and its uncer-
tainty σH are in units of km/s/Mpc. The upper panel corresponds to
30 samples deduced from the differential age method. The lower panel,
to 10 samples obtained from the BAO method. See, for instance [39]
and references therein for more details about this data

z H(z) σH z H(z) σH

0.070 69 19.6 0.4783 80.9 9

0.090 69 12 0.480 97 62

0.120 68.6 26.2 0.593 104 13

0.170 83 8 0.680 92 8

0.179 75 4 0.781 105 12

0.199 75 5 0.875 125 17

0.200 72.9 29.6 0.880 90 40

0.270 77 14 0.900 117 23

0.280 88.8 36.6 1.037 154 20

0.352 83 14 1.300 168 17

0.3802 83 13.5 1.363 160 33.6

0.400 95 17 1.4307 177 18

0.4004 77 10.2 1.530 140 14

0.4247 87.1 11.1 1.750 202 40

0.44497 92.8 12.9 1.965 186.5 50.4

0.24 79.69 2.65 0.60 87.9 6.1

0.35 84.4 7 0.73 97.3 7.0

0.43 86.45 3.68 2.30 224 8

0.44 82.6 7.8 2.34 222 7

0.57 92.4 4.5 2.36 226 8

Table 2 The redshift distribution prior on the lens and source of
GW+EM lensed systems considered in this paper. The initial belief
used as an input to start the learning is the �CDM model

Lens distribution(zl) Source distribution(zs)

(0.1, 1.2) (0.3, 1.7)

(0.1, 1.5) [0.3, 1.7)

(0.1, 2.0) (0.3, 2.5)

(0.1, 2.4) [0.3, 2.5)

�
(0)
dm ∈ [0.2, 0.4] and b ∈ [−0.1, 0.1] have been imposed,

respectively. Also we need to mention that N lenses (and
respective sources) for a given redshift range are distributed
uniformly according to the intervals given in Table 2. From
our analysis, we have learned that:

• The best fit values and 1σ errors of the model parameters
when zl ∈ [0.1, 1.2] and zs ∈ [0.3, 1.7] for Nlens = 50
are �

(0)
dm = 0.28±0.012, H0 = 69.61±0.141 km/s/Mpc

and b = 0.00197 ± 0.005.
• On the other hand, when zl ∈ [0.1, 1.2] and zs ∈

[0.3, 1.7] with Nlens = 100 the best fit values of the
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Table 3 The best fit values and 1σ errors estimated for f1CDM model
given by Eqs. (21) and (24) when the model based generation process
is carried out on Eqs. (2) and (3). The flat priors as H0 ∈ [64, 78],

�
(0)
dm ∈ [0.2, 0.4] and b ∈ [−0.1, 0.1] have been imposed and used in

the generative process, respectively. Note that H0 is measured in units
of km/s/Mpc

f1CDM: f (T ) = α(−T )b Nlens �
(0)
dm H0 b

when zl ∈ [0.1, 1.2] and zs ∈ [0.3, 1.7] 50 0.28 ± 0.012 69.61 ± 0.141 0.00197 ± 0.005

when zl ∈ [0.1, 1.2] and zs ∈ [0.3, 1.7] 100 0.29 ± 0.012 68.81 ± 0.145 0.003 ± 0.005

when zl ∈ [0.1, 1.5] and zs ∈ [0.3, 1.7] 100 0.297 ± 0.011 68.84 ± 0.146 0.0043 ± 0.0051

when zl ∈ [0.1, 2.0] and zs ∈ [0.3, 2.5] 100 0.328 ± 0.012 69.06 ± 0.175 0.0071 ± 0.0051

when zl ∈ [0.1, 2.4] and zs ∈ [0.3, 2.5] 100 0.302 ± 0.0105 65.56 ± 0.134 0.00013 ± 0.0005

Fig. 1 1σ and 2σ

confidence-level contour plots
for the cosmological parameters
and the parameter b for f1CDM
model using the SLTD
simulated data obtained from
the generative process based on
Eqs. (2) and (3). Each contour
color stands for lenses and
sources distributed over a
specific redshift range with lens
number Nlens = 50 (navy
contour) and Nlens = 100
(green, gray, red, and blue
contours), respectively. The flat
priors as H0 ∈ [64, 78],
�

(0)
dm ∈ [0.2, 0.4] and

b ∈ [−0.1, 0.1] have been
imposed and used in the
generative process. Our initial
belief used as an input is the
�CDM model

model parameters are found to be �
(0)
dm = 0.29 ± 0.012,

H0 = 68.81 ± 0.145 km/s/Mpc and b = 0.003 ± 0.005.
• Moreover, for the other two cases when zl ∈ [0.1, 1.5]

and zs ∈ [0.3, 1.7], and zl ∈ [0.1, 2.0] and zs ∈
[0.3, 2.5] (in both cases Nlens = 100), we have found that
�

(0)
dm = 0.297 ± 0.011, H0 = 68.84 ± 0.146 km/s/Mpc

and b = 0.0043 ± 0.0051, and �
(0)
dm = 0.328 ± 0.012,

H0 = 69.06±0.175 km/s/Mpc and b = 0.0071±0.0051,
respectively.

• Finally, we found �
(0)
dm = 0.302±0.0105, H0 = 65.56±

0.134 km/s/Mpc and b = 0.00013 ± 0.0005, when zl ∈
[0.1, 2.4] and zs ∈ [0.3, 2.5] for Nlens = 100.

A compact summary of the learned results can be found in
Table 3, while Fig. 1 represents the 1σ and 2σ contour map
of f1CDM. It is easy to see that BML imposed very tight
constraints on the parameters. We note that the parameter b,
which determines the deviation from the �CDM model, is
close to zero in all cases, indicating that according to SLTD
measurements, the f1CDM model most likely does not devi-
ate from the �CDM model. This is not surprising because
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Fig. 2 BML predictions for the redshift evolution of the Hubble param-
eter H , dark matter abundance �m , deceleration parameter q, and equa-
tion of state parameter ωde = pde

ρde
for the best fit values of the model

parameters of f1CDM model presented in Table 3. Each color line

stands for lenses and sources distributed over a specific redshift range
with lens number Nlens = 50 (navy curve) and Nlens = 100, green,
gray, red, and blue curves, respectively

similar conclusions have already been achieved in the litera-
ture. However, we need to stress that this is the first indication
that the developed pipeline is robust and allows us to learn
previously known results from a completely different setup,
which is impossible to reproduce with classical methods used
in cosmology. As in any other ML algorithm, we also need
to validate our BML learned results, and for this purpose, we
use available OHD as discussed already. In our opinion, it
is reasonable to follow this particular way of validating the
learned results because we aimed to learn how to solve the
H0 tension in this particular model.

The graphical results of the validation process can be
found in panel (a) of Fig. 2 where we compare the redshift
evolution of the Hubble parameter predicted by BML with
OHD from cosmic chronometers and BAO. We also study the
dark matter abundance �

(0)
dm , deceleration parameter q, and

equation of state parameter ωde for a better understanding
of the background dynamics which can be found in (b), (c),
and (d) panels, respectively. We keep the same convention
for the navy, green, grey, red, and blue curves as the leg-
ends in Fig. 1, and the dots correspond to the 40 data points
representing available OHD to be found in Table 1.

We notice that, according to the mean of the learned
results, the redshift evolution of the Hubble function matches
the OHD at low redshifts perfectly, but some tension arises
at high redshifts. This is an interesting warning of the learn-
ing method, which should be kept under control in the future
analysis of this model with strong lensing time delay data.
Additionally, from panel (c) of Fig. 2 we observe a good
phase transition between a decelerating and an accelerating
phase in all studied cases. On the other hand, the panel (d)
of Fig. 2 shows that the model behaves like the cosmological
constant as ωde ≈ −1. However, a deviation from the cos-
mological constant is also expected to observe. Interestingly,
this result, in its turn, clearly indicates support for dynamical
dark energy models.

In conclusion, we see that the f1CDM model is not able to
solve the H0 tension, and new observational data with signif-
icantly increased lens-source numbers will eventually disfa-
vor the model. The same claim, with high fidelity according
to learned results, can be said even when the systems are
observed beyond currently available redshift ranges. Even-
tually, another significant result we learned, which should
be tackled in the future properly, is that the tension between
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Table 4 Best fit values and 1σ errors estimated for f2CDM given by
Eqs. (25) and (28), when the model generation process is based on

Eqs. (2) and (3). The flat priors as H0 ∈ [64, 78], �
(0)
dm ∈ [0.2, 0.4] and

p ∈ [−10, 10] have been imposed and used in the generative process,
respectively. H0 is measured in units of km/s/Mpc

f2CDM: f (T ) = αT0
(
1 − e−pT/T0

)
Nlens �

(0)
dm H0 p

when zl ∈ [0.1, 1.2] and zs ∈ [0.3, 1.7] 50 0.277 ± 0.01 73.59+0.174
−0.165 5.88+0.29

−0.34

when zl ∈ [0.1, 1.2] and zs ∈ [0.3, 1.7] 100 0.28 ± 0.01 74.68 ± 0.148 6.01 ± 0.256

when zl ∈ [0.1, 1.5] and zs ∈ [0.3, 1.7] 100 0.279 ± 0.0097 74.90 ± 0.135 5.26 ± 0.179

when zl ∈ [0.1, 2.0] and zs ∈ [0.3, 2.5] 100 0.276 ± 0.01 74.64 ± 0.145 5.4 ± 0.135

when zl ∈ [0.1, 2.4] and zs ∈ [0.3, 2.5] 100 0.275 ± 0.01 74.41+0.183
−0.178 5.67+0.175

−0.17

OHD and SLTD data at high redshifts should be considered
seriously.

4.2 f2CDM

The second model to be considered is f2CDM given by
Eqs. (25) and (28). In this case, the generative process for
BML has been also organized following Eqs. (2) and (3).
During the study of this model we have learned the best fit
values of the model parameters with their 1σ errors. In par-
ticular, we found:

• When zl ∈ [0.1, 1.2] and zs ∈ [0.3, 1.7] for Nlens = 50
the best fit values and 1σ errors to be �

(0)
dm = 0.277 ±

0.01, H0 = 73.59+0.174
−0.165 km/s/Mpc and p = 5.88+0.29

−0.34,
respectively.

• On the other hand, when zl ∈ [0.1, 1.2] and zs ∈
[0.3, 1.7] with Nlens = 100 the best fit values of the
model parameters are found to be �

(0)
dm = 0.28 ± 0.01,

H0 = 74.68 ± 0.148 km/s/Mpc and p = 6.01 ± 0.256.
• Moreover, for the other two cases when zl ∈ [0.1, 1.5]

and zs ∈ [0.3, 1.7], and zl ∈ [0.1, 2.0] and zs ∈
[0.3, 2.5] (in both cases Nlens = 100), we have found that
�

(0)
dm = 0.279 ± 0.0097, H0 = 74.90 ± 0.135 km/s/Mpc

and p = 5.26 ± 0.179 with �
(0)
dm = 0.276 ± 0.01,

H0 = 74.64 ± 0.145 km/s/Mpc and p = 5.4 ± 0.135,
respectively.

• Finally, we find that �
(0)
dm = 0.275 ± 0.01, H0 =

74.41+0.183
−0.178 km/s/Mpc and p = 5.67+0.175

−0.17 . This is
obtained for the case when zl ∈ [0.1, 2.4] and zs ∈
[0.3, 2.5] for Nlens = 100.

For all cases discussed above, flat priors as H0 ∈ [64, 78],
�

(0)
dm ∈ [0.2, 0.4] and p ∈ [−10, 10] have been imposed.

Moreover, N lenses (and sources respectively) for all the
considered cases are distributed uniformly as in the case of
f1CDM model discussed in the previous section.

The learned results are summarized in Table 4 and Fig. 3
shows the learned contour plots of the model parameters. The

BML again imposes tight constraints on the cosmological
parameters for all the considered cases. The learned results
indicate that the model at hand deviates more from the stan-
dard cosmological model| due to the relatively significant
value of the parameter b = 1/p compared to the previous
model. Moreover, we provide validation for our BML results
in the panel (a) of Fig. 4 where we compare the learned red-
shift evolution of the Hubble parameter with available OHD.
The same Fig. 4, but for the panels (b), (c) and (d), provides
the graphical behavior of dark matter abundance �m , the
deceleration parameter q, and equation of state parameter
ωde, respectively, taking into account learned mean values
of the model parameters. The same convention for the navy,
green, grey, red, and blue curves as the legends in Fig. 3 is
used.

Apparently, the dots in panel (a) of Fig. 4 represent again
the 40 data points from Table 1. We note that the BML
prediction for the redshifts evolution of the Hubble func-
tion matches the observational data at low redshifts, but we
observe some tension at high redshifts. On the other hand, in
the panel (c) of Fig. 4, we see a phase transition between a
decelerating and an accelerating Universe phase in all consid-
ered cases. Moreover, panel (d) shows that the model behaves
like the cosmological constant, ωde = −1, at z ≥ 0.75 and
the quintessence dark energy, ωde > −1, at z < 0.75. The
motioned behaviour holds for all cases considered, indicat-
ing an almost linearly increasing functional form for ωd for
z ∈ [0, 0.75].

Interestingly, we can say that the model can alleviate the
H0 tension because we have a significant deviation from the
standard �CDM model leading to a higher value for H0.
Although the model considered in the previous section also
deviates from the standard �CDM model, but according to
the learned constraints, it is not clear if the H0 tension can
or not be solved. We will come to this in the next section.
It is worth mentioning that according to these results, future
observations with more lenses-sources systems and covering
new redshift ranges will most likely not change the estima-
tions of �

(0)
dm . Moreover, we observe from Fig. 4 that the
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Fig. 3 The 1σ and 2σ

confidence-level contour plots
for the f2CDM model, using the
of SLTD simulated datasets
obtained from the generative
process based on Eqs. (2) and
(3). Each contour color stands
for lenses and sources
distributed over a specific
redshift range, with lens number
Nlens = 50 (navy contour) and
Nlens = 100, green, gray, red,
and blue contours, respectively.
The flat priors as H0 ∈ [64, 78],
�

(0)
dm ∈ [0.2, 0.4] and

p ∈ [−10, 10] have been
imposed and used in the
generative process. Our initial
belief, used as an input, is the
�CDM model

evolution of the deceleration parameter q and the evolution
of �m will not be strongly affected by future SLTD data mea-
surements. This point can only be validated in the future.

To finish this section, let us stress again that, accord-
ing to BML by which SLTD data has been generated, the
model considered can solve the H0 tension and describes a
quintessence dark energy dominated Universe where initially
the dark energy is the cosmological constant.

4.3 f3CDM

The third model we studied is f3CDM which is given by
Eqs. (29) and (32). We similarly performed the generative
process for BML using Eqs. (2) and (3). Imposing the same
flat priors as in the case of the f2CDM model, we are able to
learn the constraints on the model parameters. In particular,
we have:

• When zl ∈ [0.1, 1.2] and zs ∈ [0.3, 1.7] for Nlens = 50
the best fit values with their 1σ errors are �

(0)
dm = 0.267±

0.022, H0 = 67.58 ± 0.161 km/s/Mpc, p = 5.16 ± 0.1,
respectively.

• On the other hand, when zl ∈ [0.1, 1.2] and zs ∈
[0.3, 1.7] with Nlens = 100 the best fit values and
1σ errors of the model parameters are found to be
�

(0)
dm = 0.275 ± 0.018, H0 = 73.44 ± 0.1 km/s/Mpc

and p = 5.15 ± 0.1.
• Moreover, for the other two cases, when zl ∈ [0.1, 1.5]

and zs ∈ [0.3, 1.7], and zl ∈ [0.1, 2.0] and zs ∈
[0.3, 2.5] (in both cases Nlens = 100), we find that
�

(0)
dm = 0.237 ± 0.0167, H0 = 73.18 ± 0.16 km/s/Mpc

and p = 4.67 ± 0.142 �
(0)
dm = 0.259 ± 0.01, H0 =

69.86 ± 0.125 km/s/Mpc and p = 4.87 ± 0.135, respec-
tively.

• Finally, for the case when Nlens = 100, we find �
(0)
dm =

0.256 ± 0.006, H0 = 73.054 ± 0.102 km/s/Mpc and
p = 5.61 ± 0.095. In this case, zl ∈ [0.1, 2.4] and zs ∈
[0.3, 2.5].

The learned constraints on the model parameters have
been summarized in Table 5 and the validation of the BML
results for this model is presented in Fig. 5. We keep the same
convention for the navy, green, grey, red, and blue curves as
the legends in Fig. 6 which shows the learned contour plots.

123



1130 Page 12 of 17 Eur. Phys. J. C (2022) 82 :1130

Fig. 4 The BML predictions for the redshift evolution of the Hubble
parameter H , dark matter abundance �m , deceleration parameter q,
and equation of state parameter ωde = pde

ρde
for the best fit values of

the model parameters of f2CDM presented in Table 4. Each color line

stands for lenses and sources distributed over a specific redshift range
with lens number Nlens = 50 (navy curve) and Nlens = 100, green,
gray, red, and blue curves, respectively

Table 5 Best fit values and 1σ errors estimated for f3CDM given by
Eqs. (29) and (32), when the model based generation process is based

on Eqs. (2) and (3). The flat priors as H0 ∈ [64, 78], �
(0)
dm ∈ [0.2, 0.4]

and p ∈ [−10, 10] have been imposed, respectively. Note that H0 is
measured in the units of km/s/Mpc

f3CDM: f (T ) = −αT
(

1 − ep
√
T0/T

)
Nlens �

(0)
dm H0 p

when zl ∈ [0.1, 1.2] and zs ∈ [0.3, 1.7] 50 0.267 ± 0.022 67.58 ± 0.161 5.16 ± 0.1

when zl ∈ [0.1, 1.2] and zs ∈ [0.3, 1.7] 100 0.275 ± 0.018 73.44 ± 0.1 5.15 ± 0.1

when zl ∈ [0.1, 1.5] and zs ∈ [0.3, 1.7] 100 0.237 ± 0.0167 73.18 ± 0.16 4.67 ± 0.142

when zl ∈ [0.1, 2.0] and zs ∈ [0.3, 2.5] 100 0.259 ± 0.01 69.86 ± 0.125 4.87 ± 0.135

when zl ∈ [0.1, 2.4] and zs ∈ [0.3, 2.5] 100 0.256 ± 0.006 73.054 ± 0.102 5.61 ± 0.095

We also note that the b = 1/p parameter having a larger
value clearly indicates a deviation from the �CDM model.

From panel (a) of Fig. 6 we note that the BML prediction
for the redshift evolution of the Hubble function H fits the
observational data at low redshifts, though some tension can
be observed at high redshifts. Moreover, panel (d) shows that
the model behaves as the cosmological constant, ωde = −1,
at z ≥ 2.0 and the quintessence dark energy, ωde > −1,
at z < 2.0. In other words, the SLTD data-based learning
shows that the recent Universe should contain quintessence

dark energy, which started its evolution with a cosmological
constant. In panel (c), a good phase transition between a
decelerating and an accelerating phase can be noticed in the
learned behaviour of the deceleration parameter q for the
five cases that we have considered in this paper. However,
this model provided results different from the previous two
models. In particular, the model can be used to solve the
H0 tension; however, one should note that the SLTD data
is not able to give a final answer whether the model can
solve the tension or not. In other words, the STLD data can

123



Eur. Phys. J. C (2022) 82 :1130 Page 13 of 17 1130

Fig. 5 BML predictions for the redshift evolution of the Hubble param-
eter H , dark matter abundance �m , deceleration parameter q, and equa-
tion of state parameter ωde = pde

ρde
, for the best fit values of the model

parameters of f3CDM presented in Table 5. Each color line stands for
lenses and sources distributed over a specific redshift range with lens
number Nlens = 50 (navy curve) and Nlens = 100 (green, gray, red, and
blue curves), respectively

strongly affect our understanding of how to solve the H0

tension in f (T ) gravity. Moreover, it can strongly affect the
constraints on �

(0)
dm , indicating a tension there, too. This is

another important consequence that BML allowed inferring
from the study of this model.

To end this section, we should mention that the different
nature of BML as a tool combined with Eqs. (29) and (32)
allows us to develop a pipeline to study and constrain f (T )

gravity for cosmological purposes. It allows us to predict and
learn how the H0 tension can be solved and how the SLTD
data can challenge it in f (T ) gravity.

5 Conclusions

Using BML we have addressed the annoying H0 tension. The
real source of this issue is still unclear. A fair number of the
attempts at solving the problem are based on the idea that the
H0 tension is not a mere statistical mismatch or artefact but
that it is actually related to physical considerations. However,
it must be mentioned that, despite very serious attempts to
identify how this challenges our understanding of the Uni-

verse, there is still no reliable hint on the actual origin of the
problem, and much work should be done yet.

On the other hand, we may need to challenge the �CDM
model to understand this issue. This can be done by challeng-
ing not only our understanding of dark energy but also the
dark matter part. To this point, recently, it has been demon-
strated using BML that there is a deviation from the cold
dark matter paradigm on cosmological scales, which might
efficiently solve the H0 tension [48].

In the present paper, we have used BML to constrain f (T )

gravity-based cosmological models to see how the problem
may be solved there. We have considered and learned the con-
straints on power-law, exponential, and square-root exponen-
tial f (T ) models using the SLTD as the main element for the
generative process and the key ingredient of the Probabilistic
ML approach. In this analysis, we did not rely on the lens-
ing model itself, and what we needed is the redshifts of the
lens and sources only. We would like to stress that very tight
constraints on the parameters determining the f (T ) models
have been obtained.

Moreover, our results contain a hint showing that more
precise time delay measurements and the number of lensed
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Fig. 6 The 1σ and 2σ

confidence-level contour plots
for the f3CDM model, using the
of SLTD simulated data
obtained from the generative
process based on Eqs. (2) and
(3). Each contour color stands
for lenses and sources
distributed over a specific
redshift range with lens number
Nlens = 50 (navy contour) and
Nlens = 100 (green, gray, red,
and blue contours), respectively.
The flat priors as H0 ∈ [64, 78],
�

(0)
dm ∈ [0.2, 0.4] and

p ∈ [−10, 10] have been
imposed, respectively. Our
initial belief used as an input is
the �CDM model

systems could significantly affect the constraints on the
model parameters. Taking into account the H0 tension, we
have validated the learned results with the available OHD
and found a sign of tension that could exist between lensed
GW+EM signals and OHD. Therefore, it is not excluded
that utilizing both could lead to some misleading results in
the model analysis. On the other hand, we have learned that
exponential f (T ) in the light of SLTD data could solve the
H0 tension, while the power-law model slightly differs from
the �CDM and definitely cannot solve the problem.

The case of the power-law model is interesting for two
reasons: first, we have learned that it could be very close
to the �CDM model. Second, future SLTD data may indi-
cate slight deviations from the �CDM model. In our opin-
ion, this is another hint that in order to solve the H0 ten-
sion, the �CDM model should be challenged. According to
the learned best fit values of the parameters in the case of
square-root exponential and exponential f (T ) models, we
will have a quintessence dark energy dominated recent Uni-
verse, which for relatively high redshift evaluations contains
a cosmological constant as dark energy.Although the allevi-
ation of H0 tension by late time modification is achieved
through a phantom dark energy behavior [71] but recent

studies suggest the tension also can be resolved by reduc-
ing the ratio between effective Newton’s constant Gef f /GN

and Newton’s constant to less than one [72,73]. The expo-
nential and squared exponential model in our analysis should
therefore satisfy the condition Gef f /Gn < 1 which leads to
a faster H0 expansion rate as we see in our analysis is the
case. On the other hand, it has been shown that these models
are statistically indistinguishable from �CDM model [74],
however,in our present work we found that exponential and
squared exponential model deviate from �CDM model sig-
nificantly as the value of their p parameter ranging between
5 to 6. Moreover,the learned results indicate that an accel-
erated expanding phase transition will be observed naturally
and smoothly in all three cases considered.

Finally, We would like to mention some interesting aspects
that follow from our approach. Since the time delay distances
can be measured from the lensed gravitational wave signals
and their corresponding electromagnetic wave counterpart,
our approach could be very useful during the source identi-
fication process. Indeed, we found a clear hint that we can
have very strong constraints on lensed GW+EM systems and
a reasonable combination of it with the simulations based on
LSST, Einstein Telescope (ET), and the Dark Energy Survey
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(DES) can provide a powerful tool for the present cosmolog-
ical analysis. A more detailed discussion of such possibilities
will be the subject of a forthcoming paper. A final consider-
ation is that the approach proposed in the present one can be
easily extended to constrain the lensing systems.
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60. Ž. Ivezić et al. [LSST], LSST: from science drivers to ref-
erence design and anticipated data products. Astrophys. J.
873(2), 111 (2019). https://doi.org/10.3847/1538-4357/ab042c.
arXiv:0805.2366 [astro-ph]

61. M. Oguri, P.J. Marshall, Gravitationally lensed quasars and super-
novae in future wide-field optical imaging surveys. Mon. Not.
R. Astron. Soc. 405, 2579–2593 (2010). https://doi.org/10.1111/j.
1365-2966.2010.16639.x. arXiv:1001.2037 [astro-ph.CO]

62. P. Schneider, J. Ehlers, E.E. Falco, Gravitational Lenses (Springer,
Berlin, 1992)

63. P. Schneider, C.S. Kochanek, J. Wambsganss, Gravitational Lens-
ing: Strong, Weak and Micro (Springer, Berlin, 2006)

64. S. Kullback, R.A. Leibler, On information and sufficiency.
Ann. Math. Stat. 22, 79–86 (1951). https://projecteuclid.org/
journals/annals-of-mathematical-statistics/volume-22/issue-1/
On-Information-and-Sufficiency/10.1214/aoms/1177729694.full

65. D.M. Blei, A. Kucukelbir, J.D. McAuliffe, Variational inference:
a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877
(2017). https://doi.org/10.48550/arXiv.1601.00670

66. A. Graves, Practical variational inference for neural networks. In:
Advances in Neural Information Processing Systems, pp. 2348–
2356 (2011)

67. N. Metropolis et al., Equation of state calculations by fast comput-
ing machines. J. Chem. Phys. 21, 1087–1092 (1953). https://doi.
org/10.1063/1.1699114

68. J. Regier, A.C. Miller, D. Schlegel, R.P. Adams, J.D. McAuliffe,
Prabhat, Approximate inference for constructing astronomical cat-
alogs from images. arXiv:1803.00113 [stat. A.P.]

69. G. Gunapati, A. Jain, P.K. Srijith, S. Desai, Variational inference
as an alternative to MCMC for parameter estimation and model
selection. Publ. Astron. Soc. Austral. 39, e001 (2022). https://doi.
org/10.1017/pasa.2021.64. arXiv:1803.06473 [astro-ph.IM]

70. J. Salvatier, T. Wiecki, C. Fonnesbeck, Probabilistic programming
in Python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016,).https://
doi.org/10.48550/arXiv.1507.08050. arXiv:1507.08050 [stat.CO]

71. S. Banerjee, M. Petronikolou, E.N. Saridakis, Alleviating
H0 tension with new gravitational scalar tensor theories.
arXiv:2209.02426 [gr-qc]

72. L. Kazantzidis, L. Perivolaropoulos, σ8 tension. Is gravity getting
weaker at low z? Observational evidence and theoretical implica-
tions. Modified Gravity and Cosmology (Springer, Cham). https://
doi.org/10.1007/978-3-030-83715-0_33. arXiv:1907.03176
[astro-ph.CO]

73. F.K. Anagnostopoulos, S. Basilakos, E.N. Saridakis, Bayesian
analysis of f (T ) gravity using f σ8 data. Phys. Rev. D 100(8),
083517 (2019). https://doi.org/10.1103/PhysRevD.100.083517.
arXiv:1907.07533 [astro-ph.CO]

74. S. Nesseris, S. Basilakos, E.N. Saridakis, L. Perivolaropou-
los, Viable f (T ) models are practically indistinguishable from
�CDM. Phys. Rev. D 88, 103010 (2013). https://doi.org/10.1103/
PhysRevD.88.103010. arXiv:1308.6142 [astro-ph.CO]

123

https://doi.org/10.1126/science.aap9811
http://arxiv.org/abs/1710.05452
https://doi.org/10.1038/s41550-019-0820-1
https://doi.org/10.1038/s41550-019-0820-1
http://arxiv.org/abs/1806.10596
https://doi.org/10.1038/s41586-018-0606-0
https://doi.org/10.1038/s41586-018-0606-0
http://arxiv.org/abs/1712.06531
https://doi.org/10.3847/1538-4357/ab042c
http://arxiv.org/abs/0805.2366
https://doi.org/10.1111/j.1365-2966.2010.16639.x
https://doi.org/10.1111/j.1365-2966.2010.16639.x
http://arxiv.org/abs/1001.2037
https://projecteuclid.org/journals/annals-of-mathematical-statistics/ volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/ volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/ volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://doi.org/10.48550/arXiv.1601.00670
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
http://arxiv.org/abs/1803.00113
https://doi.org/10.1017/pasa.2021.64
https://doi.org/10.1017/pasa.2021.64
http://arxiv.org/abs/1803.06473
https://doi.org/10.48550/arXiv.1507.08050
https://doi.org/10.48550/arXiv.1507.08050
http://arxiv.org/abs/1507.08050
http://arxiv.org/abs/2209.02426
https://doi.org/10.1007/978-3-030-83715-0_33
https://doi.org/10.1007/978-3-030-83715-0_33
http://arxiv.org/abs/1907.03176
https://doi.org/10.1103/PhysRevD.100.083517
http://arxiv.org/abs/1907.07533
https://doi.org/10.1103/PhysRevD.88.103010
https://doi.org/10.1103/PhysRevD.88.103010
http://arxiv.org/abs/1308.6142

	Solving the H0 tension in f(T) gravity through Bayesian machine learning
	Abstract 
	1 Introduction
	2 Theoretical framework and models
	2.1 f(T) gravity 
	2.2 Background dynamics
	2.3 f(T) models

	3 Methodology
	3.1 Bayesian machine learning (BML)
	3.2 Implementation of BML

	4 Learned constraints on the model parameters
	4.1 f1CDM
	4.2 f2CDM
	4.3 f3CDM

	5 Conclusions
	Acknowledgements
	References




