
Eur. Phys. J. C (2022) 82:1133
https://doi.org/10.1140/epjc/s10052-022-11103-4

Regular Article - Theoretical Physics

Chiral nonet mixing in πη scattering

Amir H. Fariborz1,a , Soodeh Zarepour2,b, Esmaiel Pourjafarabadi3,c, S. Mohammad Zebarjad3,d

1 Department of Mathematics and Physics, State University of New York, Polytechnic Institute, Utica, NY 13502, USA
2 Department of Physics, University of Sistan and Baluchestan, Zahedan, Iran
3 Department of Physics, Shiraz University, Shiraz 71454, Iran

Received: 6 October 2022 / Accepted: 5 December 2022 / Published online: 15 December 2022
© The Author(s) 2022

Abstract The generalized linear sigma model for mixing
among two- and four-quark components of scalar (and pseu-
doscalar) mesons below and above 1 GeV is applied to the πη

channel in which the isovector scalars a0(980) and a0(1450)

are probed. In the leading order, the model parameters have
been previously fixed by various low-energy experimental
data, and then applied to ππ and πK channels in which
the properties of the light and broad σ and κ mesons are
extracted in agreement with estimates reported in the litera-
ture. With the same parameters fixed in the leading order, in
the present work the prediction of the model for the πη scat-
tering amplitude in the elastic region is given and unitarized
with the K-matrix method. The poles of the unitarized scat-
tering amplitude, which determine the mass and decay width
of a0(980) and a0(1450) are computed. It is found that the
model predicts an isovector scalar state below 1 GeV, with
mass 984 ± 6 MeV and decay width 108 ± 30 MeV which
is a clear signal for the a0(980). The a0 pole extracted in this
work, further supports the plausibility of the mixing patterns
for scalar mesons predicted by this model according to which
there is a significant underlying mixing among scalars below
and above 1 GeV, with those below 1 GeV being generally
of four-quark nature while those above 1 GeV being over-
all closer to quark–antiquark states. Predictions for various
scattering lengths as well as for properties of a0(1450) are
also presented.

a e-mail: fariboa@sunypoly.edu (corresponding author)
b e-mail: szarepour@phys.usb.ac.ir
c e-mail: epourjafar@shirazu.ac.ir
d e-mail: zebarjad@shirazu.ac.ir

1 Introduction

Although the perturbative implementation of the fundamen-
tal theory of strong interactions (QCD) breaks down at
low energies wherein the light hadrons reside, neverthe-
less, pioneering works have opened the path of significant
progress in uncovering the strong interaction phenomena in
this important low-energy QCD region. Historically, linear
sigma model [1], nonlinear realization of spontaneous sym-
metry breaking [2] and Nambu–Jona–Lasinio approach to
dynamical chiral symmetry breaking [3] have provided pow-
erful platforms for understanding the general characteristics
of strong interactions. Lattice QCD [4–7] has spearheaded
an ambitious path of working directly with the fundamental
QCD degrees of freedom, while chiral perturbation theory
[8–12], and its extensions such as chiral unitary approach
[13–22] (for a recent review see [22]) and inverse ampli-
tude method [23–29], have provided practical frameworks
for computing physical quantities in terms of a systematic
energy expansion. Most (if not all) models and approaches
that are currently used to explore low-energy QCD have
been inspired by these pioneering works, and, in one way
or another, solicit the general guiding principles of low-
energy QCD including the chiral symmetry and its break-
down, U(1)A and trace anomalies and various assumptions
about the QCD vacuum.

The physics of light pseudoscalar mesons, the Goldstone
bosons of strong interaction, have been fairly well under-
stood and their quark substructure have generally followed
the basic quark–antiquark model. The scalar mesons on the
other hand, have continuously challenged the conventional
wisdom of the quark model and have effectively turned
into the predicaments of low-energy QCD. Their light mass
and inverted mass spectrum deviates from what one would
expect solely from a quark–antiquark spectroscopy. Many
approaches have been put forward for analyzing the physics
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of scalar mesons. In the seminal approach of the MIT bag
model [30] the light scalars are considered to be diquark–
antidiquark states which provides an explanation for their
unusually low and inverted mass spectrum. Many other inves-
tigators have tackled scalar mesons from different perspec-
tives [30–142]. For comprehensive reviews see [143,144].

Scalars above 1 GeV are generally expected to be closer to
quark–antiquark states, however, when their mass spectrum
and decay properties are carefully scrutinized [134], it can be
seen that their substructure show deviations from pure quark–
antiquark combinations. This observation then triggers the
question of whether the physics of scalars below and above
1 GeV are correlated, and if so, can a mixing among differ-
ent quark–antiquark and four-quark components (as well as
mixing of these components with glue in the case of isosin-
glet states) can account for some of the unusual properties of
these scalar mesons. This calls for a global treatment of all
scalar states below 2 GeV within a single framework. This
global study has been the platform of the framework devel-
oped in [135] (and references therein) upon which the present
work is built.

In the global picture of Ref. [135], a generalized linear
sigma model (GLSM) which is formulated in terms of two
scalar nonets and two pseudoscalar nonets (a two- and a
four-quark nonet) is developed and the underlying mixings
among the scalars and among pseudoscalars is studied. The
framework employs chiral fields which allow a straightfor-
ward development of a general chiral invariant Lagrangian as
well as a piece that, while preserves chiral symmetry, breaks
U(1)A in a manner that mocks up the axial anomaly of QCD.
In addition, terms that resemble quark mass terms and explic-
itly break chiral symmetry are added. Spontaneous chiral
symmetry breaking is then invoked when isosinglet quark–
antiquarks and four-quarks develop nonzero vacuum expec-
tation values. The chiral invariant part of the Lagrangian (as
well as the part that breaks the chiral symmetry) can contain
a large (or, in principle, an infinite) number of terms. There-
fore, for the model to be practical, an approximation scheme
needs to be defined that allows, according to a cogent crite-
rion, limiting these terms at a given order, with the hope that
the predictions can then be systematically improved at higher
orders. The criterion introduced in [135] is that the terms in
the Lagrangian be evaluated according to their total number
of quark and antiquark lines and that to consider terms with a
large number of lines to be less important compared to those
with fewer lines. This approximation scheme, allows a semi-
quantitative organization of the Lagrangian. At the order
where only terms of at most eight quark and antiquark lines
are retained, the Lagrangian parameters were all determined
in [135] by various fits to low-energy data. Consequently, at
this order a detailed analysis of two- and four-quark com-
ponents of both scalars (as well as pseudoscalars) were also
accomplished in the work of [135] and it was observed that,

while scalar mesons below 2 GeV are distinctively mixed,
light scalars below 1 GeV are mostly of two quark-two anti-
quark nature while those above 1 GeV are closer to quark–
antiquarks (in the same setting, the light pseudoscalars below
1 GeV emerge dominantly of quark–antiquark structure, as
expected from established phenomenology).

Within the same set of parameters at this order, several
predictions of the model were studied in follow up works,
including the prediction of ππ scattering amplitude in [136].
In that work, K-matrix method was used for unitarization of
the scattering amplitude up to about 1 GeV. The poles of
the unitarized scattering amplitude were determined which
in turn give the mass and the decay width of the isosinglet
scalars. In this approach the first pole has the characteristics
of f0(500) with mass and width:

m[ f0(500)] = 477 ± 8 MeV,

�[ f0(500)] = 398 ± 107 MeV. (1)

in agreement with PDG [145]:

m[ f0(500)] = 400−550 MeV (PDG)

�[ f0(500)] = 400−700 MeV (PDG) (2)

The main advantage of the K-matrix unitarization method
is that it does not introduce any additional parameters and
therefore provides a simple way of estimating the final-state
interactions of the pions in ππ scattering.

In the same order of the model, the I = 1/2, J = 0, πK
scattering amplitude was studied in [146] and a close agree-
ment with experiment was observed up to about 1 GeV. Since
all the parameters of the generalized linear sigma model of
Ref. [135] have been previously fixed in this leading order,
the analysis of the πK scattering was another prediction of
the model and provided further test of the mixing patterns
predicted in [135]. In the work of [146], the predictions of
the model for the poles of the K-matrix unitarized scattering
amplitude were also determined. The mass and decay width
of the first pole found in [146], correspond to K ∗

0 (800) (or
kappa meson) with

m[K ∗
0 (800)] = 670−770 MeV,

�[K ∗
0 (800)] = 640−750 MeV. (3)

is consistent with the averaged values reported by PDG [145]:

m[K ∗
0 (800)] = 682 ± 29 MeV (PDG)

�[K ∗
0 (800)] = 547 ± 24 MeV (PDG) (4)

In addition to the model predictions for the ππ and πK
scattering amplitudes, the decayη′ → ηππ has been recently
investigated in [137] within the same leading order of the
model discussed above. It is found that the prediction for
the partial decay width that includes the effect of the final-
state interaction of pions agrees with the experiment up to
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about 1%, and that the model is able to give a reasonable pre-
diction of the energy dependencies of the normalized decay
amplitude squared. This further promotes the prediction of
the model for the underlying mixing of two- and four-quark
components of the scalar mesons.

In this work, we apply the generalized linear sigma model
of Ref. [135] (in the leading order with the same set of param-
eters used in the ππ and πK scatterings as well as η′ → ηππ

decay, discussed above) to study πη scattering in which the
a0(980) is probed. This will complete the probe of the scalar
meson nonet below 1 GeV within this mixing model. Unlike
ππ and πK scatterings, there is still a lack of experimen-
tal data on πη scattering. Nevertheless, this process has been
studied by many investigators using different approaches and
from different perspectives, such as computation of πη scat-
tering amplitude at the next-to-leading order of chiral pertur-
bation theory [147,148]; nonlinear chiral Lagrangian study
of πη scattering and its pertinence to the light scalar meson
nonet [138]; effects of vacuum fluctuations of quark con-
densates probed in πη scattering [149]; the π0η rescattering
effects in γ γ → π0η data of Belle Collaboration and prob-
ing the tetraquark nature of a0(980) in this analysis [150];
form factor computation of isotriplet scalar currents from
S-wave πη scattering phase shift [151]; probe of isotriplet
scalars in coupled channel πη, K K̄ , πη′ analysis in lattice
QCD [152]; chiral study of the a0(980) resonance and πη

scattering phase shifts in unitarized chiral perturbation the-
ory [153]; and the S-wave πη scattering and the properties
of a0 resonances from photon–photon scattering [154].

Section 2 provides the basic set up and notation followed
by the prediction of the single nonet SU(3) linear sigma
model (SNLSM) for the πη scattering amplitude in Sect. 3.
The generalized linear sigma model is reviewed in Sect. 4
and its predictions for the πη scattering amplitude are given
in Sect. 5 together with a comparison with the single nonet
results as well as the results obtained by other investigators.
Section 6 gives a summary of the results and the conclusions
as well as directions for future studies.

2 Basic set up and notation

Motivated by large Nc approximation to QCD, we only con-
sider the contribution of tree diagrams to the scattering ampli-
tude. The generic tree-level Feynman diagrams for this scat-
tering are displayed in Fig. 1. These include a four-point inter-
action diagram (contact diagram) together with diagrams rep-
resenting the contributions of the isovector and isosinglet
scalar mesons. In the single (double) nonet model there are
two (four) isosinglet scalars and one (two) isotriplet scalars
contributing to these diagrams.

There are no vector meson exchanges in πη scattering at
tree level. The tree level invariant amplitude (I = 1 projec-

Fig. 1 Tree-level Feynman diagrams representing the πη scattering.
The parameters i = 1 · · · n f and j = 1 · · · na , where n f and na repre-
sent the number of isosinglet and isotriplet scalars respectively, which
in the single (double) nonet model are equal to two (four) and one (two)

tion) is

A(s, t, u) = −γ (4)
πη +

n f∑

i=1

2
√

2 γ fiππγ fiηη

m2
fi

− t

+
na∑

j=1

γ 2
a jπη

[
1

m2
a j

− s
+ 1

m2
a j

− u

]
, (5)

where in the single (double) nonet model n f is two (four)
and na is one (two), and the coupling constants are defined
as

− L = 1

4
γ (4)
πη ηη π · π + γ fiππ√

2
fiπ · π

+γ fiηη fiηη + γa jπηaj · πη + · · · . (6)

The “bare” J = 0 partial wave amplitude (s-wave) is
obtained from

T I B
0 = ρ(s)

2

∫ 1

−1
d cos θ P0(cos θ)AI (s, t, u), (7)

with ρ(s) = q/(8π
√

(s)), where q is the center of mass
momentum

q = 1

2
√
s

√
(s − (mπ + mη)2)(s − (mπ − mη)2). (8)

Performing the partial wave projection we find the “bare”
I = 1, J = 0 amplitude

T 1 B
0 = q(s)

16π
√
s

⎡

⎣ − 2γ (4)
πη +

na∑

j=1

γ 2
a jπη

×
(

1

2q2 ln

(
(Bη) j + 1

(Bη) j − 1

)
+ 2

m2
a j

− s

)

+
n f∑

i=1

√
2

q2 γ fiηηγ fiππ ln

(
1 + 4q2

m2
fi

)]
, (9)

where (Bη) j is defined as

(Bη) j = 1

2q2

[
m2

a j
− m2

π − m2
η
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+2
√

(m2
π + q2)(m2

η + q2)
]
. (10)

Here s, t and u are the usual Mandelstam variables

t = −2q2(1 − cos θ),

u = m2
η + m2

π − 2
√

(m2
π + q2)(m2

η + q2) − 2q2 cos θ,

(11)

where θ is the scattering angle. In this work, Eq. (9) is our
reference equation for the scattering amplitude.

As in the case of ππ and πK scatterings, we use K-matrix
unitarization method to unitarize the πη scattering ampli-
tude:

T 1
0 = T 1 B

0

1 − iT 1 B
0

. (12)

This is what we take as our physical amplitude and will com-
pare with the experimental data. The physical masses (m̃ j )
and physical decay widths (�̃ j ) are determined from the poles
in the unitarized amplitude (as before, j = 1 · · · na). Solving
for the roots (z j ) of the denominator of (12)

1 − iT 1B
0 = 0 ⇒ z j = m̃2

j − i m̃ j �̃ j . (13)

In general, some of the poles may not be physical (for exam-
ple, being below the threshold).

3 πη scattering in single nonet linear sigma model

For the purpose of comparison with the generalized linear
sigma model predictions for πη scattering, in this section
we give the prediction of the single nonet three flavor linear
sigma model for this scattering [139]. Using the 3 × 3 chiral
field

M = S + iφ, (14)

where S = S† and φ = φ† representing scalar and pseu-
doscalar chiral nonets, respectively. Under chiral transfor-
mation of the left-handed and right-handed quark fields,
qL → ULqL , qR → URqR , and consequently:

M → ULMU †
R . (15)

The Lagrangian density takes the general form

L = −1

2
Tr

(
∂μM∂μM

†
)

− V0 (M) − VSB , (16)

where the potential V0 is in general a function of SU(3)L ×
SU(3)R × U(1)V invariants

I1 = Tr(MM†), I2 = Tr(MM†MM†),

I3 = Tr
(
(MM†)3), I4 = 6(det M + det M†). (17)

Among these invariants, I4 is the only one that is not invariant
under U(1)A. The minimum symmetry breaker VSB is:

VSB = −2(A1S
1
1 + A2S

2
2 + A3S

3
3), (18)

The vacuum expectation values are:

〈Sba 〉 = αaδ
b
a . (19)

The decay constants can be derived in terms of these param-
eters

Fπ = α1 + α2, FK = α1 + α3, (20)

where in the isospin invariant limit

A1 = A2, α1 = α2. (21)

The stable point of the potential is found from
〈

∂V

∂Saa

〉
= 0. (22)

The quantity

V4 ≡
〈
∂V0

∂ I4

〉
. (23)

contributes to the η′ mass. We can determine the free parame-
ters A1 , A3 , α1 , α3 and V4 using the following experimental
inputs:

mπ = 137 MeV, mK = 495 MeV,

mη = 547 MeV, mη′ = 958 MeV,

Fπ = 131 MeV. (24)

In this framework, chiral symmetry, the choice of symmetry
breakers as well as the U(1)A anomaly determine the pseu-
doscalar masses, whereas not all scalar masses are predicted
[139]. With the parameters determined in [139], the I = 1,
J = 0, πη scattering amplitude can be calculated using
(9). The coupling constants are computed from the “generat-
ing equations” that express the symmetry of the Lagrangian
(16)1:

γ (4)
πη =

∑

a,b

〈
∂4V

∂φ2
1∂φ1

2∂φa
a∂φb

b

〉

0

(Rφ)a2(Rφ)b2,

γ fiηη = 1

2

∑

a

〈
∂3V

∂Saa ∂φb
b∂φc

c

〉

0

(Rs)
a
i+1(Rφ)b2(Rφ)c2,

γ fiππ = 1√
2

∑

a

〈
∂3V

∂Saa ∂φ2
1∂φ1

2

〉

0

(Rs)
a
i+1,

γa0πη =
∑

a

〈
∂3V

∂S2
1∂φa

a∂φ1
2

〉

0

(Rφ)a2, (25)

1 A computational algorithm for this calculation is given in [140].
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Fig. 2 Prediction of the single nonet linear sigma model (SNLSM) for
the real part of T 1

0 . The zero of this function (square) is at the location
of “bare” isovector scalar mass

where the “bare” couplings and the rotation matrices (Rs

and Rφ) are given in Appendix A. Here f1 = σ and f2 =
f0(980).

Using the inputs (24) together with the results of the best
fit to ππ scattering amplitude of Ref. [139], the bare I = 1,
J = 0, πη scattering amplitude is computed from Eq. (9) and
K-matrix unitarized according to (12). The real part of the T 1

0
is plotted in Fig. 2. The amplitude vanishes around 1.1 GeV
which, in this model, is the location of the bare mass of the
isovector scalar meson and is much larger than the mass of
a0(980). Also, the decay width of this isotriplet state to πη

comes out around 0.381 GeV [139] which is much larger
than the decay width of a0(980). Using (13), the pole of the
K-matrix unitarized scattering amplitude gives the physical
mass and decay width of this state [139]:

m̃a = 1.013 GeV

�̃a = 0.241 GeV (26)

which are closer to the properties of a0(980), but still are
not within the experimental ranges [145]. This clearly shows
the shortcoming of the single nonet model, which, as we
will see, can be remedied by allowing the lowest and the
next-to-lowest scalar meson nonets to mix. The individual
contributions to the real part of the amplitude are plotted in
Fig. 3. The figure shows that, below 1 GeV, the individual
contributions balance the large four-point contribution, but
above 1 GeV [that here lacks the contribution of a0(1450)]
this is not the case which further highlights the importance
of a0(1450) and chiral mixing.

The modulus of T 1
0 is plotted in Fig. 4 and compared with

the work of Ashasov and Shestakov for this quantity obtained
from Belle data for γ γ → π0η [150] process. Up to about
1 GeV, our result agrees better with “variant 2” of Ref. [150]
(at least in mathematical form) in comparison with the large
disagreements of the two variants of that reference. Above
1 GeV, the effect of a0(1450) kicks in but this state is absent

Fig. 3 Individual contributions to the πη scattering in the single nonet
model. Up to about 1 GeV, the large contribution of the 4-point term
and the contributions of scalar mesons are partially balanced

Fig. 4 Comparing the prediction of the single nonet linear sigma model
(SNLSM) for the modulus of T 1

0 with the prediction of Ref. [150], where
up to about 1 GeV, a qualitative agreement with “variant 2” is seen

here in the single nonet approach, hence as seen in the figure,
expectedly, there is no agreement with either variants. We
will see later that when the chiral nonet mixing within the
generalized linear sigma model is considered, in which the
underlying mixing of a0(980) and a0(1450) is naturally built
in, the (qualitative) agreement with the “variant 2” of Ref.
[150] extends to about 1.5 GeV, accentuating the importance
of chiral nonet mixing model as the centerpiece of the present
work.

The absence of chiral mixing is also manifested in the
phase shift

sin(2δ Il ) = 2ReT l
I

| 1 + 2iT I
l | , (27)

which can be compared with other model predictions. The
prediction for the l = 0 phase shift in the single nonet linear
sigma model is plotted in Fig. 5 which shows a qualitative
agreement with other approaches such as the chiral unitary
approach [147,155], the “variant 2” of Ref. [150] and the
nonlinear chiral Lagrangian of Ref. [138] up to about 1 GeV.
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Fig. 5 Phase shift computed from the K-matrix unitarized s-wave
amplitude of πη → πη scattering in SNLSM is compared with the
predictions by Bernard et al. [147], Oller et al. [155], Black et al. [138]
and Achasov et al. [150]. A qualitative agreement is seen up to about
1 GeV

Here we have ignored the inelastic effects which seems rea-
sonable up to roughly about 1 GeV, but the effects of inelastic
channels, namely πη → K K̄ and πη → πη′ are expected
to become important above 1 GeV.

In the linear sigma model the scalar and pseudoscalars
fields (as well as, when relevant, other spin multiplets) are
explicitly kept in the Lagrangian as opposed to be integrated
out. In studies of Goldstone boson scatterings the amplitudes
are studied in the resonance region (away from threshold)
with direct inclusion of resonances over a broad range of
energy roughly up to 1 or 1.5 GeV. In order to be able to
compare with the leading order of ChPT, one has to zoom in
near the threshold by taking the scalar masses to infinity (see
Appendix C). In order to roughly compare with higher orders
of ChPT, one can examine the 1/m2

i corrections (mi being the
scalar masses). An example of this type of comparison (for
the case of pi pi scattering) is given in [112]. Although the
linear sigma model is not expected to be very accurate near
the threshold region and is designed to cover a larger energy
range, nevertheless it is still useful to check its accuracy (or its
lack thereof) near the threshold. For this purpose, we compute
the scattering lengths which probe the low-energy dynamics,
and compare them with the results of other models. It is
common to define the scattering lengths by an expansion
near the threshold of the form

t I B0 =
√
s

2

(
aI

0 + q2

m2
π

bI0 + q4

m4
π

cI0 + · · ·
)

,

for q → 0, s → (mπ + mη)
2, (28)

where the lower case bare amplitude is

t I B0 =
√
s

2q
T I B

0 = 1

32π

∫ 1

−1
d cos θ P0(cos θ)AI (s, t, u).

(29)

Therefore

T I B
0 = q

(
aI

0 + q2

m2
π

bI0 + q4

m4
π

cI0 + · · ·
)

,

for q → 0, s → (mπ + mη)
2. (30)

In the units of (pion scattering wavelength)2l+1, the S-wave
scattering lengths are

aI
0 = mπ lim

q→0

2√
s
t I B0 = mπ lim

q→0

1

q
T I B

0 ,

bI0 = m3
π

2! lim
q→0

2√
s

∂2t I B0

∂q2 = m3
π

2! lim
q→0

1

q

∂2T I B
0

∂q2 ,

cI0 = m5
π

4! lim
q→0

2√
s

∂4t I B0

∂q4 = m5
π

4! lim
q→0

1

q

∂4T I B
0

∂q4 . (31)

The effect of K-matrix unitarization on the scattering lengths
can be obtained by substitution of (30) into (12)

Re(T I
0 ) = q

(
ã I

0 + q2

m2
π

b̃I0 + q4

m4
π

c̃ I0 + · · ·
)

=
q

(
aI

0 + bI0
m2

π
q2 + cI0

m4
π
q4 + · · ·

)

1 + q2

(
aI

0 + bI0
m2

π
q2 + cI0

m4
π
q4 + · · ·

)2 . (32)

Therefore

ã I
0 = aI

0 ,

b̃I0 = bI0 − (aI
0 )3m2

π ,

c̃ I0 = cI0 − 3 (aI
0 )2bI0 m

2
π . (33)

The predictions of the SNLSM for the s-wave scattering
lengths of I = 1, πη scattering are given in the first row
of Table 1 and compared with those of the generalized lin-
ear sigma model [135] (second row – will be discussed in
Sect. 4); Op4 chiral perturbation theory results [147] (third
row); estimates extracted from the work of [138] within
a nonlinear chiral Lagrangian (fourth row); non-relativistic
effective field theory [156] (fifth row); estimates obtained at
Op4 in [156] with low-energy constants taken from [157]
and [158] respectively (sixth and seventh rows); estmiates of
Ref. [150] using Belle Collaboration data (eighth and ninth
rows); and the work of [151] that models a two-channel uni-
tarity that matches Op4 chiral expansion (last row). A close
agreement of SNLSM predictions with the estimates of [151]
and [156], and a qualitative agreement with other works is
evident.
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Table 1 The s-wave scattering lengths of I = 1, πη scattering in
SNLSM (first row), GLSM (second row), Op4 ChPT [147] (third row);
nonlinear chiral Lagrangian of Ref. [138] (fourth row); non-relativistic
effective field theory [156] (fifth row); estimates obtained at Op4 in

[156] with low-energy constants taken from [157] and [158] respec-
tively (sixth and seventh rows); estimates of Ref. [150] using Belle data
(eighth and ninth rows); and two-channel unitarity model of [151] (last
two rows)

a1
0 b1

0 c1
0

This work, SNLSM (Sect. 3) 1.63 × 10−2 1.59 × 10−2 2.86 × 10−3

This work, GLSM (Sect. 4) (2.6−4.0) × 10−2 (2.4−4.4) × 10−2 (1.6−5.2) × 10−3

Bernard et al. [147] 7.3 × 10−3 – –

Extracted from Black et al. [138] 3.1 × 10−2 1.8 × 10−2 0.85 × 10−3

Kubis et al. [156] (−0.2 ± 7.7) × 10−3 – –

(1.57 ± 2.39) × 10−2 (9.9 ± 22.9) × 10−3 –

(0.98 ± 1.58) × 10−2 (0.4 ± 18.8) × 10−3 –

Achasov et al. [150] 0.98 × 10−2 (variant 1) – –

0.66 × 10−2 (variant 2) – –

Albaladejo et al. [151] 0.67 × 10−2 (large L4, L6) −15.0 × 10−3 (large L4, L6) –

1.62 × 10−2 (small L4, L6) 10.6 × 10−3 (small L4, L6) –

4 Brief review of the generalized linear sigma model

The model is constructed in terms of 3×3 matrix chiral nonet
fields:

M = S + iφ, M ′ = S′ + iφ′, (34)

where M and M ′ transform in the same way under chiral
SU(3) transformations

M → UL M U †
R,

M ′ → UL M ′ U †
R, (35)

but transform differently under U(1)A transformation prop-
erties

M → e2iν M,

M ′ → e−4iν M ′. (36)

M and M ′ respectively represent the quark–antiquark and
the two-quark two-antiquark chiral nonets. In this frame-
work the type of the four-quark content of M ′ is not deter-
mined and therefore we consider it to be a linear combi-
nation of diquark–antidiquark and molecular structure. The
way that the model distinguishes two-quark from four-quark
is through the U(1)A transformation (36).

We can write down the Lagrangian density

L = −1

2
Tr

(
∂μM∂μM

†
)

− 1

2
Tr

(
∂μM

′∂μM
′†)

−V0
(
M, M ′) − VSB, (37)

where V0(M, M ′) is constructed out of SU(3)L× SU(3)R

but not necessarily U(1)A) invariants. Clearly, there are many
such terms, even when we consider the renormalizable poten-
tial. However, for practical purposes, we define an approxi-
mation strategy that limits the number of terms at each level of

calculation. In [141] an evaluation of Lagrangian was exam-
ined in terms of the number of the quarks and antiquarks in
each term. The leading order corresponds to eight or fewer
quark and antiquark lines:

V0 = −c2 Tr(MM†) + ca4 Tr(MM†MM†)

+d2 Tr(M ′M ′†) + ea3(εabcε
de f Ma

d M
b
e M

′c
f + H.c.)

+c3

[
γ1ln

(
detM

detM†

)
+ (1 − γ1)ln

Tr(MM ′†)
Tr(M ′M†)

]2

.

(38)

With the exception of the last two terms (which generate
the axial anomaly) all other terms are invariant under U(1)A.
Terms that violate OZI rule are not included. The symmetry
breaking consistent with the QCD mass term is:

VSB = −2 Tr(A S), (39)

where A = diag(A1, A2, A3) and the diagonal elements are
proportional to the light quark current masses. The model
allows for both quark–antiquark as well as the four-quark
condensates: αa = 〈Saa 〉 and βa = 〈S′a

a〉, respectively. In the
limit of isospin symmetry A1 = A2 and:

α1 = α2 
= α3, β1 = β2 
= β3. (40)

The “minimum” conditions are:
〈
∂V0

∂S

〉
+

〈
∂VSB

∂S

〉
= 0,

〈
∂V0

∂S′

〉
= 0. (41)

The parameter space of the model in this order contains
the six coupling constants in Eq. (38), the two quark mass
parameters (A1 = A2, A3) and the four condensates (α1 =
α2, α3, β1 = β2, β3). These twelve parameters reduce to
eight when we use the four minimum equations. Then we
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input the following five experimental inputs:

m[a0(980)] = 980 ± 20 MeV,

m[a0(1450)] = 1474 ± 19 MeV,

m[π(1300)] = 1300 ± 100 MeV,

mπ = 137 MeV,

Fπ = 131 MeV. (42)

reducing the unknown parameters to three. Note that
m[π(1300)] has a large uncertainty which in turn will be
reflected in our model predictions. The sixth input is the light
“quark mass ratio” A3/A1 which is varied over its range and
reduces the unknown parameters to two. We expect that the
model should not predict the pole mass a0(980) too different
from its Lagrangian mass and we will test this in Sect. 5.

The remaining two parameters (c3 and γ1) only affect
the isosinglet pseudoscalars (whose properties also depend
on the ten parameters discussed above). However, there are
several choices for determination of these two parameters
depending on how the four isosinglet pseudoscalars predicted
in this model are matched to many experimental candidates
below 2 GeV. The two lightest predicted by the model (η1

and η2) are identified with η(547) and η′(958) with masses:

mexp.[η(547)] = 547.853 ± 0.024 MeV,

mexp.[η′(958)] = 957.78 ± 0.06 MeV. (43)

For the two heavier ones (η3 and η4), there are six ways that
they can be identified with the four experimental candidates
above 1 GeV: η(1295), η(1405), η(1475), and η(1760) with
masses,

mexp.[η(1295)] = 1294 ± 4 MeV,

mexp.[η(1405)] = 1409.8 ± 2.4 MeV,

mexp.[η(1475)] = 1476 ± 4 MeV,

mexp.[η(1760)] = 1756 ± 9 MeV. (44)

This led to six scenarios considered in detail in [135]. The two
experimental inputs for determination of the two parameters
c3 and γ1 are taken to be the trace and the determinant of the
isosinglet pseudoscalar 4 × 4 square mass matrix (M2

η ), i.e.

Tr
(
M2

η

)
= Tr

(
M2

η

)

exp
,

det
(
M2

η

)
= det

(
M2

η

)

exp
. (45)

Moreover, for each of the six scenarios, γ1 is found from
a quadratic equation, and as a result, there are altogether
twelve possibilities for determination of γ1 and c3. Since
only Tr and det of experimental masses are imposed for each
of these twelve possibilities, the resulting γ1 and c3 do not
necessarily recover the exact individual experimental masses,
therefore the best overall agreement between the predicted
masses (for each of the twelve possibilities) were examined

in [135]. Quantitatively, the goodness of each solution was
measured by the smallness of the following quantity:

χsl =
4∑

k=1

∣∣mtheo.
sl (ηk) − mexp.

s (ηk)
∣∣

mexp.
s (ηk)

, (46)

in which s corresponds to the scenario (i.e. s = 1 · · · 6) and l
corresponds to the solution number (i.e. l = I, II). The quan-
tity χsl × 100 gives the overall percent discrepancy between
our theoretical prediction and experiment. For the six scenar-
ios and the two solutions for each scenario, χsl was analyzed
in Ref. [135]. For the third scenario (corresponding to iden-
tification of η3 and η4 with experimental candidates η(1295)

and η(1760)) and solution I the best agreement with the mass
spectrum of the eta system was obtained (i.e. χ3I was the
smallest). Disfavoring η(1405) and η(1475) as the η3 and η4

is consistent with speculations that these two state are pseu-
doscalar glueballs [143]. Furthermore, all six scenarios were
examined in the analysis of η′ → ηππ decay in [137] and
it was found that the best overall result (both for the partial
decay width of η′ → ηππ as well as the energy dependence
of its squared decay amplitude) is obtained for scenario “3I”
consistent with the analysis of Ref. [135]. In this work, we
use the result of “3I” scenario.

Given these inputs there are a very large number of predic-
tions. At the level of the quadratic terms in the Lagrangian,
we predict all the remaining masses and decay constants as
well as the angles describing the mixing between each of
(π, π ′), (K , K ′), (a0, a′

0), (κ, κ ′) multiplets and each of the
4×4 isosinglet mixing matrices (each formally described by
six angles).

Consequently, all twelve parameters of the model (at the
present order of approximation) are evaluated by the method
discussed above using four minimum equations and eight
experimental inputs. The uncertainties of the experimental
inputs result in uncertainties on the twelve model parameters
which in turn result in uncertainties on physical quantities
that are computed in this model. In the work of Ref. [135] all
rotation matrices describing the underlying mixing among
two- and four-quark components for each spin and isospin
states are computed. Tables 2 and 3 give the outcome of the
computations for masses and quark contents of both pseu-
doscalars and scalars below and above 1 GeV. For the study
of πη scattering, we need the following rotation matrices:
[

π+(137)

π+(1300)

]
= R−1

π

[
φ2

1

φ′2
1

]
,

[
a+

0 (980)

a+
0 (1450)

]
= L−1

a

[
S2

1

S′2
1

]
,

⎡

⎢⎢⎣

f1
f2
f3
f4

⎤

⎥⎥⎦ = L−1
0

⎡

⎢⎢⎣

fa
fb
fc
fd

⎤

⎥⎥⎦ ,

⎡

⎢⎢⎣

η1

η2

η3

η4

⎤

⎥⎥⎦ = R−1
0

⎡

⎢⎢⎣

ηa
ηb
ηc
ηd

⎤

⎥⎥⎦ , (47)

where R−1
π and L−1

a are the rotation matrices for I = 1 pseu-
doscalars and scalars respectively; fi , i = 1 · · · 4 are four of
the physical isosinglet scalars below 2 GeV (in this model f1
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Table 2 Mass and four-quark percentage of the pseudoscalar mesons
below and above 1 GeV predicted by the leading order of the GLSM
[135]. In first column the masses in the square brackets are inputs and
other values are model predictions. The corresponding experimental
values reported in PDG [145] are displayed in the second column (for
the mass of pion and kaon the average of their charged and neutral
masses are extracted from PDG); the last column gives the estimate of
the four-quark content of these states. The model predictions have a
range of variation that stem from two of the model inputs with large
uncertainties (m[π(1300)] = 1.22–1.38 GeV and A3/A1 = 27–30).
Each predicted quantity in columns one and three is the average of that
quantity over its range of variation and its uncertainty is one standard
deviation around the average. All displayed masses are in MeV. The
predicted properties of states above 1 GeV are expected to improve by
inclusion of higher order terms in the potential as well as the scalar and
pseudoscalar glueballs

State Mass (MeV) Experiment Four-quark
percentage

π(137) [137] 137.2734 ± 0.0005 14 ± 1

π(1300) [1220–1380] 1300 ± 100 86 ± 1

K (496) 502 ± 9 495.64 ± 0.02 12 ± 2

K (1460) 1275 ± 48 − 87 ± 2

η(547) 542 ± 7 547.862 ± 0.017 9 ± 2

η′(958) 972 ± 20 957.78 ± 0.06 17 ± 3

η(1295) 1293 ± 41 1294 ± 4 78 ± 6

η(1760) 1749 ± 22 1751 ± 15 96 ± 1

and f2 are clearly identified with f0(500) and f0(980) and
the two heavier states resemble two of the heavier isosinglet
scalars above 1 GeV); and

fa = S1
1 + S2

2√
2

∝ nn̄,

fb = S3
3 ∝ ss̄,

fc = S′1
1 + S′2

2√
2

∝ nsn̄s̄,

fd = S′3
3 ∝ nnn̄n̄, (48)

where the non-strange (n) and strange (s) quark content for
each basis state has been listed at the end of each line above.

Similarly, ηi , i = 1 · · · 4 are four of the physical isosinglet
pseudoscalars below 2 GeV (where η1 and η2 are identified
with η(547) and η′(958) and the two heavier states are iden-
tified with two of the heavier isosinglet pseudoscalars above
1 GeV), and

ηa = φ1
1 + φ2

2√
2

∝ nn̄,

ηb = φ3
3 ∝ ss̄,

ηc = φ′1
1 + φ′2

2√
2

∝ nsn̄s̄,

ηd = φ′3
3 ∝ nnn̄n̄. (49)

Table 3 Mass and four-quark percentage of the scalar mesons below
and above 1 GeV predicted by the leading order of the GLSM [135].
The first column gives the Lagrangian mass (with the exception of those
in the square brackets which are taken as inputs, all other values are
model predictions). The second column provides the physical mass
extracted from the poles of the relevant K-matrix unitarized scattering
amplitudes; the third column provides the corresponding experimental
values reported in PDG [145]; and the last column gives the estimate
of the four-quark content of these states. The model predictions have
a range of variation that stem from two of the model inputs with large
uncertainties (m[π(1300)] = 1.22–1.38 GeV and A3/A1 = 27–30).
Each predicted quantity in columns one, two and four is the average
of that quantity over its range of variation and its uncertainty is one
standard deviation. All displayed masses are in MeV. The predicted
properties of states above 1 GeV are expected to improve by inclusion
of higher order terms as well as the scalar and pseudoscalar glueballs

State Mass Physical mass Experiment Four-quark
percentage

a0(980) [980] 985 ± 5 980 ± 20 59 ± 11

a0(1450) [1474] 1083 ± 33 1474 ± 19 40 ± 11

K ∗
0 (800) 1113 ± 32 748 ± 9 682 ± 29 81 ± 8

K ∗
0 (1430) 1570 ± 30 1118 ± 37 1425 ± 50 19 ± 8

f0(500) 659 ± 30 477 ± 3 400–550 48 ± 6

f0(980) 1145 ± 41 1065 ± 33 990 ± 20 89 ± 5

f0(1370) 1507 ± 6 1157 ± 34 1200–1500 45 ± 4

f0(1710) 1713 ± 33 1691 ± 25 1704 ± 12 17 ± 7

5 Generalized linear sigma model prediction of πη

scattering amplitude

Using the potential defined in Eq. (38), we compute the Feyn-
man diagrams of Fig. 1 which include a four-point contact
term, contribution of two isotriplet scalars in the s- and u-
channels, as well as contribution of four isosinglet scalars
in the t-channel. This leads to computing the coupling con-
stants in our reference equation for the amplitude [Eq. (9)]
as follows:

γ (4)
πη =

∑

A,B,M,N

〈
∂4V

∂(φ2
1)A∂(φ1

2)B∂ηM∂ηN

〉

(Rπ )A1(Rπ )B1(R0)M1(R0)N1,

γ fiππ = 1√
2

∑

A,B,K

〈
∂3V

∂(φ2
1)A∂(φ1

2)B∂ fK

〉

(Rπ )A1(Rπ )B1(L0)Ki ,

γ fiηη = 1

2

∑

K ,M,N

〈
∂3V

∂ fK ∂ηM∂ηN

〉
(L0)Ki (R0)M1(R0)N1,

γa jπη =
∑

A,B,M

〈
∂3V

∂(S2
1 )A∂(φ1

2)B∂ηM

〉

(La)Aj (Rπ )B1(R0)M1. (50)
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where A and B can take values of 1 and 2 (with 1 referring to
nonet M and 2 referring to nonet M ′) and K is a placeholder
for a,b,c and d that represent the four bases in Eq. (48) and M
and N are placeholders for a,b,c and d that represent the four
bases in Eq. (49). L0, La , R0 and Rπ are the rotation matrices
defined in previous section. The bare coupling constants are
all given in Appendix B. Consistency of these couplings are
checked in Appendix C by recovering the current algebra
result for the πη scattering.

5.1 The scattering amplitude and phase shift

We start with the real part of the partial wave scattering
amplitude and compare the bare amplitude (9) with its K-
matrix unitarized amplitude for a typical input of the model
parameters. Illustrated in Fig. 6 is the bare amplitude (left),
given for direct comparison side by side to its K-matrix uni-
tarized amplitude (right). The zeros in the unitarized ampli-
tude stem from two sources in the bare amplitude: The poles
and the zeros in the bare amplitude (respectively shown with
squares and circles in Fig. 6). For several values of A3/A1

and m[π(1300)], the real part of the amplitudes are shown
in Fig. 7. The individual contributions to the bare amplitude
are shown in Fig. 8.

The real part of the amplitude was also computed in the
work of Ref. [138] within a nonlinear chiral Lagrangian
model with explicit inclusion of intermediate resonances.
The real part of the scattering amplitude found in this work
within GLSM (for the specific choice of m[π(1300)] =
1.38 GeV and A3/A1 = 30) is compared with the pre-
diction of [138] in Fig. 9 (top left). Also shown (top right)
is the effect of variation of m[π(1300)] and A3/A1 on the
prediction of GLSM with circles and error bars being the
prediction averages and one standard deviation around the
averages respectively. Up to 1 GeV, the variations mildly
overlap with the work of [138], but above 1 GeV only
their functional form is similar. Also shown are compar-
isons of this result (for specific inputs: A3/A1 = 30 and
m[π(1300)] = 1.22, 1.3, 1.38 GeV) with those of [151]
in next-to leading order in ChPT (middle left) and the two-
channel unitarity amplitude (middle right). Within the uncer-
tainties of both GLSM and the two models of Ref. [151]
there are some limited qualitative overlaps. However, com-
paratively, the GLSM results are in a better agreement with
the two-channel unitarity model of [151], and clearly less
consistent with the large L4 and L6 ChPT (compared to
the small L4 and L6 scenario) which is also less favored
according to the work of Ref. [151]. Quantitatively,2 the

2 As a quantitative measure of the disagreement between two functions
f1(x) and f2(x), we define

�(x) =
| f1(x)− f2(x)|

2
| f1(x)|+| f2(x)|

2

× 100 = | f1(x) − f2(x)|
| f1(x)| + | f2(x)| × 100, (51)

mean disagreements between GLSM predictions with inputs
m [π (1300)] = 1.22, 1.3, and 1.38 GeV, and the predictions
of ChPT [151] respectively are (see footnote): 19%, 30%
and 41% (with their small L4 and L6); 97%, 97% and 98%
(with their large L4, L6). Similar comparisons with the uni-
tary model of [151] respectively give: 22%, 21% and 27%
(with their δ12 = 180o) and 26%, 27% and 38% (with their
δ12 = 100o). Therefore, our predictions are in general more
consistent with the unitary model of [151] than their ChPT
driven results. The uncertainties around the central value of
m[π(1300)] mass for the real part of J = 0, I = 1 scatter-
ing amplitude average around 17%, while this is 66% for the
predictions of ChPT [151] and 16% for their prediction of
unitary approach [151]. The effects of combined variations
of m[π(1300)] and A3/A1 (in ranges 1.22–1.38 GeV, and
27–30, respectively) are given in the last two sub-figures of
Fig. 9 (with circles and error bars being the averages and
standard deviations, respectively), and show that effectively
such coupled variations do not add additional uncertainties
to the GLSM predictions.

Similarly, the behavior of the imaginary part of the K-
matrix unitarized amplitude can be traced to the structure
of the bare amplitude. In this case, the poles and zeros in
the bare amplitude force the imaginary part of the unitarized
amplitude to respectively become 1 and 0. As a result, the
modulus of the K-matrix unitarized amplitude also becomes
1 and 0 at the location of poles and zeros in the bare ampli-
tude. We recognize that this behavior is partly enforced by
the K-matrix unitarization method, which at first seems quite
arbitrary, and in principle may or may not fetch any nontriv-
ial physics. However, in practice the simple K-matrix uni-
tarization has had reasonable success (at least up to about 1
GeV) for the cases of ππ and πK scatterings studied in Refs.
[136] and [146]. For the present case of πη scattering, due to
lack of experimental data, is not immediately clear whether
the K-matrix still gives a good description. Comparison of
GLSM (with specific choice ofm[π(1300)] = 1.38 GeV and
A3/A1 = 30) with the work of Achasov and Shestakov [150]
displayed in Fig. 10 (left) only shows a similarity in mathe-
matical form with their “variant 2” result (dashed-line), i.e.
both raise to a maximum, then both fall to a local minimum
and then again both rise to their global maximum. We see that
with the inclusion of chiral mixing, which naturally brings
into the picture the heavier a0(1450), the functional similar-
ity with “variant 2” of Ref. [150] extends above 1 GeV (as
we saw in the single nonet case in Fig. 4, this similarity was

This gives a measure of the percent disagreement between the two func-
tions (compared to their average). The absolute values in the denomi-
nator avoids division by zero. The mean disagreement is:

�̄ = 1

x2 − x1

∫ x2

x1

�(x) dx . (52)
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Fig. 6 Real part of the I = 1, J = 0, πη scattering amplitude computed in GLSM. The bare amplitude (left) contains zeros (circles) and poles
(squares) at which the unitarized amplitude (right) also vanishes

Fig. 7 Real part of the unitarized πη scattering amplitude computed in GLSM for A3/A1 = 27 (left) and A3/A1 = 30 (right) for three different
choices of m[π(1300)] (with scenario 3I discussed in Sect. 4)

Fig. 8 Individual contributions to real part of the unitarized πη scattering amplitude for A3/A1 = 30 and m[π(1300)] = 1.38 GeV. (Note that
the contributions are plotted into two figures to avoid overcrowding and to be able to show contributions that are of considerable size difference)

limited to below 1 GeV). Also shown in Fig. 10 (left), is a
comparison with the prediction of Ref. [138] within a non-
linear chiral Lagrangian model. The effects of simultaneous
variations of m[π(1300)] and A3/A1 (in ranges [1.22 GeV,
1.38 GeV] and [27, 30], respectively) are given in Fig. 10

(right), which show a reasonable overlap with Ref. [138]
up to about 0.9 GeV. For further comparison, Fig. 11 (left)
gives the πη phase shift predicted in this work together with
those predicted by [138,147,150,155] with an overall quali-
tative agreement. The sensitivity to variation of m[π(1300)]
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Fig. 9 The real part of the predicted K-matrix unitarized πη scattering
amplitude computed in GLSM (for a typical value of m[π(1300)] and
A3/A1) is compared with single nonet linear sigma model (SNLSM)
and the nonlinear sigma model (NLSM) of Ref. [138] (top left). In the
top right figure, the averages (dots) and standard deviations (error bars)
of the prediction of GLSM resulted from variation of m[π(1300)] and
A3/A1 show much less sensitivity below 1 GeV. Up to about 1 GeV,
the results qualitatively agree, however above 1 GeV the GLSM and
NLSM only have a similar functional behavior (increasing to a maxi-

mum and decaying with energy), while the SNLSM lacks any structure
and flattens to a constant value. Also shown are comparisons with pre-
dictions of Ref. [151] using the next-to leading order of ChPT (middle
left) and two-channel unitary amplitudes (middle right), where limited
qualitative agreements with the latter can be seen. The effects of cou-
pled variations of m[π(1300)] and A3/A1 (in ranges 1.22–1.38 GeV
and 27–30, respectively) are plotted in the bottom two Figs. and com-
pared with those of [151]. These coupled variations do not appreciably
add to the uncertainties depicted in the middle two figures

is shown in the middle and right figures. The overall disagree-
ment defined by Eq. (52) among different phase shift predic-
tions of [138,147,150,155] up to around 1 GeV is about
75%; among the phase shift predictions of [138,150,155] up
to around 1.2 GeV is about 51%; and among the phase shift
predictions of [138,150] is about 33%. To estimate the phase

shift uncertainty in GLSM below 1 GeV, we have looked at
the distribution of δ1

0, its mean and its standard deviation at
any given energy

√
s (note that in GLSM there is some sen-

sitivity to m[π(1300)] as well as to A3/A1). The uncertainty
reaches to about 12 degrees or about 10% of our predicted
phase shift at 1 GeV. Mean disagreement of GLSM with the
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Fig. 10 Comparing the prediction of the GLSM (left) for the modu-
lus of T 1

0 with the predictions by Achasov et al. [150] and by Black
et al. [138]. The behavior of “variant 2” of [150] (dashed curve) is
qualitatively closer to that of GLSM (with inputs A3/A1 = 30 and
m[π(1300)] = 1.38 GeV). The right figure gives the averages (dots)

and standard deviations (error bars) of the prediction of GLSM (resulted
from variation of m[π(1300)] [1.22 GeV, 1.38 GeV] and A3/A1 [27,
30]) showing that, as expected, the model uncertainty grows above
1 GeV

Fig. 11 Left figure shows phase shift computed (with the specific
inputs A3/A1 = 30 and m[π(1300)] = 1.38 GeV) from the K-matrix
unitarized s-wave πη → πη scattering amplitude in GLSM and com-
pared with predictions by Bernard et al. [147], Oller et al. [155], Black
et al. [138] and Achasov et al. [150]. The averaged predictions of GLSM
(circles) together with uncertainties stemming from variations of A3/A1

[27, 30] and and m[π(1300)] [1.22 GeV, 1.38 GeV] estimated by one
standard deviation around the averages (error bars) are compared with
predictions by other works (middle and right figures). A reasonable
qualitative agreement up to about 1 GeV, particularly with the work of
[138], is evident

results of [151] is about 20%, while the mean disagreements
among different phase shift predictions given by different
investigators range from 33% to 75%. Our uncertainty is
not larger than the disagreement on the phase shift by other
investigators [138,147,150,155].

5.2 The scattering lengths

Similar to the discussion of scattering lengths in Sect. 3, here
we compute these quantities within the GLSM and try to see
whether there is any noticeable improvement compared to
the single nonet predictions. The dependency of the results
on A3/A1 and m[π(1300)] are shown in Fig. 12 and numer-
ical values are given in Table 1 and compared with chiral
perturbation theory prediction. As also noted in Sect. 3, the
effect of unitarization on these quantities is negligible (also

see [142]). Even though this computation is rather out of
GLSM league, nevertheless it maybe understandable why
other models have a better overall agreement with SNLSM
than with GLSM. In the latter case, the model aims to reach
a wider energy range (by inclusion of chiral mixing with the
next to lowest lying scalar and pseudoscalar nonets) and the
price it pays is to loose further accuracy near the threshold.

5.3 The physical poles

As stated in Sect. 1, in the case of ππ scattering [136] the first
pole in the K-matrix unitarized scattering amplitude clearly
captured the properties of light and broad sigma and the sec-
ond pole resembled the f0(980). Similarly, in the case of
πK scattering [146] the first pole of the K-matrix unitarized
amplitude was quite consistent with the properties of light
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Fig. 12 The J = 0, I = 1, elastic πη scattering lengths in GLSM for different values of A3/A1 and m[π(1300)]

Fig. 13 Contour plot of function F (sr , si ) [defined in (55)]. The point
at which F = 0 represents the first physical isovector scalar meson pole
and provides the properties of the a0(980)

and broad kappa meson. In the present work too, we find the
pole positions in the complex plane of the analytically con-
tinued expression for T 1

0 . We examine these physical pole
positions by solving for the complex roots of the denomina-
tor of the K-matrix unitarized amplitude Eq. (12):

D(s) = 1 − i T 1B
0 = 0, (53)

with T 1B
0 given by Eq. (9). We search for solutions, s( j) =

s( j)
r + is( j)

i = m̃2
j − i m̃ j �̃ j of this equation, where m̃ j and

�̃ j are interpreted as the mass and decay width of the j-th
physical resonance. A first natural attempt would be to try to
simultaneously solve the two equations:

ReD (sr , si ) = 0,

ImD (sr , si ) = 0, (54)

for si and sr , however, this approach turns out to be
rather tedious to be implemented. A more efficient numerical
approach, that was first pointed out in [136], is to consider
the positive function

F (sr , si ) = |Re (D(sr , si ))| + |Im (D(sr , si ))| , (55)

which allows determination of poles by searching for the
zeros of this function. To illustrate the methodology, Fig. 13
shows the contour plot of F(sr , si ) over the complex s-
plane for the specific choice of m[π(1300)] = 1.3 GeV and
A3/A1 = 30. Also the function F(sr , si ) is plotted over
the complex plane around the first pole in Fig. 14. Clearly,
the search of parameter space leads to two solutions for the
pole positions which in turn result in the physical masses and
decay widths for the two isotriplets that the model predicts
[to be identified with a0(980) and a0(1450)]. We then zoom
in on each pole and study the uncertainties.

The first pole leads to the prediction of mass and decay
width of the lighter isotriplet scalar as displayed in Fig. 15
versus m[π(1300)] for several values of A3/A1 (which are
the main two experimental inputs in our model with largest
uncertainties). We recall that one of our experimental inputs
is the a0(980) mass (m[a0(980)] = 980 ± 20 MeV) which is
inputed for the bare mass (or Lagrangian mass) of the lighter
isovector state in our GLSM. Since a0(980) is a narrow state,
its interference with background in πη scattering is expected
to be small, and as a result, the shifts in its mass and width due
to the unitarization should be negligible compared to similar
effects in ππ and πK scatterings where broad states σ and
κ are detected. Figure 15 shows that this is indeed the case
and the properties of the first pole is clearly consistent with
those of a0(980). While πη is the dominant decay channel
of a0(980), we expect

�̃a0(980) ≥ �[a0(980) → πη]. (56)

This further limits the range of variation of m[π(1300)] to
1.3–1.38 GeV3 and in turn limits the predictions for the mass

3 In addition, we can interpret the difference between the total decay
width and partial decay width to πη as a rough estimate of the partial
decay width to K K̄ :

�[a0(980) → K K̄ ] ≈ �̃a0(980) − �[a0(980) → πη].
and together with the condition (56) thereby estimate

�
[
a0(980) → K K̄

]

� [a0(980) → πη]
= 0.105 ± 0.056,

which a value of 0.183 ± 0.024 reported by PDG [145].
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Fig. 14 3D plot of function F (sr , si ) [defined in (55)] over complex plane (left), together with its projections onto F − sr plane (middle) and
F − si plane (right). The point at which F touches down represents the first physical isovector scalar meson pole and provides the properties of the
a0(980)

Fig. 15 Predicted physical mass (left) and decay width (middle) of the
a0(980) resulted from the first pole position in the unitarized πη elastic
scattering amplitude are compared with the corresponding experimental

ranges (shaded) reported by PDG [145]. The total decay width is almost
identical to the partial decay width to πη (right), which is consistent
with the known fact that πη is the dominant decay channel of a0(980)

and decay width of a0(980) from those displayed in Fig. 15 to
those displayed in Fig. 16 (left) together with their histograms
(right).

As a result, the final predictions for the mass and decay
width of a0(980) in this work (average ± STD) are:

m[a0(980)] = 984 ± 6 MeV,

�[a0(980)] = 108 ± 30 MeV, (57)

to be compared with PDG values [145]:

m[a0(980)] = 980 ± 20 MeV (PDG),

�[a0(980)] = 50 → 100 MeV (PDG). (58)

This observation in turn persuades the appropriateness of the
simple K-matrix method employed here. The detection of
a0(980) completes the lightest nonet of scalar mesons below
1 GeV predicted in the present order of the GLSM (the cases
of σ and κ were presented in Refs. [136] and [146]). This
further reinforces the importance of the chiral mixing that
underlies the properties of the scalar mesons according to
which scalars below and above 1 GeV have considerable

underlying mixings with those below 1 GeV being domi-
nantly of four-quark nature and those above 1 GeV being
closer to quark–antiquark states.

Although in this work we have studied the elastic πη scat-
tering in which a complete detection of the a0(1450) is not
expected to be possible, nevertheless, here we take a closer
look at the second pole and try to see if it bears a resem-
blance to the a0(1450). Extracting the mass and decay width
from the second pole and including the effects of the uncer-
tainties of the experimental inputs used to determine GLSM
parameters, the results are given in Fig. 17 and show a large
decrease in both mass and decay width of the second (heav-
ier) isotriplet scalar state predicted by the GLSM. Again we
recall that in this case too, the experimental mass of a0(1450)

was inputed for the bare mass of the heavier isovector state
in our GLSM [see (42)], but now we see that the unitariza-
tion lowers it considerably below the experimental mass of
a0(1450). The effect of unitarization on the decay width is
shown in the same figure, but in this case the unitarization
considerably improves the decay width, i.e. compared to the
bare decay width (computed before the unitarization) that

123



1133 Page 16 of 26 Eur. Phys. J. C (2022) 82 :1133

Fig. 16 The mass (top left) and decay width (bottom left) of the light-
est isotriplet scalar state predicted in GLSM over the allowed range of
m[π(1300)] limited by condition (56). The computed physical mass

and decay width given in the left figures are organized into histograms
in the right figures representing the distribution of these quantities due
to the variation of both A3/A1 as well as m[π(1300)]

Fig. 17 Physical mass (left) and decay width (middle) of the second
isovector scalar meson extracted from the second pole of the unitarized
πη elastic scattering amplitude are compared with the corresponding
experimental ranges (shaded) for a0(1450) reported by PDG [145].
While unitarity corrections drop the mass of a0(1450) below its exper-

imental range, they considerably improve the prediction of its decay
width from an unphysical range (right) to a range that can get close
to the experimental bound (middle, shaded). Inclusion of non-elastic
channels are expected to improve the predictions

was unphysically large (see Fig. 17), the unitarization has
improved the physical decay width and brought it to a com-
parable order of magnitude of the experimental decay width
for the a0(1450) which is 265 ± 13 GeV [145]. Overall, in
the elastic channel we can only partially probe the a0(1450).
For a complete probe of this state a full three coupled chan-

nel analysis is needed in which K K̄ and πη′ channels are
also included. However, as far as our objective of exploring
the quark substructure of the scalars below and above 1 GeV
within the present order of GLSM is concerned, the elastic
channel provides enough insight since in this model the quark
substructure of a0(980) and a0(1450) are reciprocal of each
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other and probing the a0(980) in the elastic channel (which
is a good approximation despite suffering from some inelas-
ticities near the K K̄ threshold) allows probing its substruc-
ture (an admixture of quark–antiquark and four-quark with
the latter having an edge) which implies, within the context
of GLSM, that a0(1450) is also an admixture of two- and
four-quark combinations and that its quark–antiquark com-
ponent is favored. The properties of the physical masses and
decay widths presented in this section are further analyzed
in Appendix D in which a pole expansion of the K-matrix
unitarized scattering amplitude is given.

6 Summary and conclusions

The global study of scalar mesons below 2 GeV and their
underlying two- and four-quark mixing patterns has been
the paramount motivation for this work. The framework for
this global study was previously developed in [135] in which
an approximation scheme for limiting the (potentially very
large) number of terms in the potential is defined in terms of
the number of underlying quark and antiquark fields. When
retaining terms in the potential with no more than eight quark
and antiquark lines, the model parameters are found by fits to
mass spectrum of several scalar and pseudoscalar states, pion
decay constant and the ratio of strange to non-strange quark
masses. Once these parameters are determined the model in
turn provides the admixtures of the two- and four-quark com-
ponents for each of the members of its two scalar nonets (as
well as its two pseudoscalar nonets). The model shows a sig-
nificant mixing among these components and favors larger
four-quark components for the scalars below 1 GeV and
larger two quark components for the scalars above 1 GeV
(and a reverse situation for pseudoscalars below and above
1 GeV). These predictions, while consistent with other inves-
tigations in the literature, need to be further tested and their
robustness examined. For this purpose, the model predictions
for other low-energy processes (that have not been used in
the determination of the model parameters), have to be eval-
uated. A delicate and important effect that can measure the
effectiveness of the model is its predictions for the final-state
interactions of Goldstone bosons. Several prior works within
the GLSM of Ref. [135] have examined the model predic-
tions for the final-state interactions in ππ and πK scatterings
and η′ → ηππ decay. In studies of ππ scattering the model
agrees well with the experimental data up to about 1 GeV
and predicts [136] a broad and light sigma meson consistent
with the PDG values. Similarly, in a recent work [146], the
model predictions for the πK scattering amplitude showed
a good prediction of the data as well as prediction of a light
and broad kappa meson consistent with the PDG values. The
model also well predicts the experimental data on η′ → ηππ

decay [137] in which the effects of the final-state interaction
of pions are known to be important (see Sect. 1).

In order to complete the probe of scalar mesons in Gold-
stone boson interactions, in this work we applied the same
order of the GLSM (with the same parameters fixed in [135])
to predict the properties of a0(980) probed in πη scatter-
ing. Lack of experimental data does not allow testing the
model predictions for the scattering amplitude but the results
showed a qualitative agreement with the recent work of
Achasov and Shestakov in which they had examined the
the π0η rescattering effects in γ γ → π0η data of Belle
Collaboration [150]. More importantly, when the πη scat-
tering amplitude was unitarized by K-matrix method and
its poles were computed, it was shown that the lowest pole
corresponds to an isovector scalar state with mass 984 ±
6 MeV and decay width 108 ± 30 MeV, which is clearly
in close agreement with the properties of a0(980) given by
PDG [145]. The effects of the final-state interactions in the
elastic πη channel is not significant. Therefore, the GLSM
provides a fairly coherent picture for the Goldstone boson
interactions below 1 GeV in which the properties of the low-
est scalar meson nonet is probed. In this picture, the lowest
lying scalar meson nonet is dominantly of four-quark type.

The properties of the second isovector scalar meson in this
model (to be identified with the a0(1450)) was also studied
in this work within the elastic πη channel. It was shown
that while K-matrix unitarization results is improving the
overall properties of this second pole, its identification with
the a0(1450) requires the inelastic effects due to the opening
of the K K̄ and πη′ channels.

Although the results presented in this work were for the
elastic case, we have also done a preliminary studies of
the inelastic channels K K̄ and πη′ and their effects on the
πη scattering amplitude, phase shift and the properties of
a0(1450) which lies in the inelastic region. The full details
are beyond the scope of this paper and will be presented in
a follow up work. As a comparison with our elastic results,
here we give the S-wave phase shift in two coupled channel
analysis of πη and K K̄ as well as a three coupled channel
analysis of πη, K K̄ and πη′. In Fig. 18 we see the effect
of the inelastic channels on the S-wave πη scattering phase
shift compared with our elastic result, and with other pre-
dictions [138,147,150,155]. It can be seen that inclusion of
the inelastic channels brings the phase shift closer to the pre-
dictions of [138,150,155] above 1.1 GeV. We find that this
effect is driven by the K K̄ channel, and that the inclusion
of the πη′ channel improves the properties of a0(980) and
a0(1450). Moreover, we have also examined the effect of
the Flatté parameterization [159] on the K-matrix unitarized
scattering amplitude by analytically continuing the center of
mass momentum to the unphysical region below the thresh-
old. This results in Fig. 19 in which we see that the prediction
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Fig. 18 The effect of the inelastic channels on the S-waveπη scattering
phase shift is compared with the phase shift computed in the elastic
channel (with the specific inputs A3/A1 = 30 and m[π(1300)] =
1.38 GeV), as well as with the predictions by Bernard et al. [147], Oller
et al. [155], Black et al. [138] and Achasov et al. [150]. Including the
inelastic channels moves the phase shift closer to the predictions of
[138,150,155] above 1.1 GeV

Fig. 19 The prediction of the model for the S-wave πη phase shift
using the Flatté parameterization (with the specific inputs A3/A1 = 30
and m[π(1300)] = 1.38 GeV), is compared with predictions of [138,
147,150,155]. Below the K K̄ threshold, the Flatté parameterization
moves the phase shift closer to the predictions of other models

of the model for the S-wave πη scattering phase shift gets
closer to the predictions of [138,147,150,155].

There are several directions for future studies. A full 3×3
coupled channel scattering analysis of πη, K K̄ and πη′ will
further improve the probe of a0(1450). Also it is important
to examine the effects of terms beyond the present order
of GLSM. Our preliminary study shows that these effects
are not too significant but are likely to improve the overall
predictions. It is also relevant to study the effects of glueballs
in this framework (see [160–163] for some of the prior works)
and particularly probe the mixing of pseudoscalar glueball

with the eta system and determine what roles such mixings
may play in πη scattering.
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Appendix A: Coupling constants in the single-nonet
model

The rotation matrices are

⎡

⎣
π0

η

η′

⎤

⎦= Rφ(θp)

⎡

⎣
φ1

1
φ2

2
φ3

3

⎤

⎦=

⎡

⎢⎢⎣

1√
2

− 1√
2

0
ap√

2

ap√
2

−bp
bp√

2

bp√
2

ap

⎤

⎥⎥⎦

⎡

⎣
φ1

1
φ2

2
φ3

3

⎤

⎦ ,

(A1)

with ap = (cosθp − √
2sinθp)/

√
3, bp = (sinθp +√

2cosθp)/
√

3 and θp is the pseudoscalar (octet-singlet) mix-
ing angle. Similarly,

⎡

⎣
a0

0
σ

f0

⎤

⎦= Rs(θs)

⎡

⎣
S1

1
S2

2
S3

3

⎤

⎦=
⎡

⎢⎣

1√
2

− 1√
2

0
as√

2
as√

2
−bs

bs√
2

bs√
2

as

⎤

⎥⎦

⎡

⎣
S1

1
S2

2
S3

3

⎤

⎦ ,

(A2)

with as = (cosθs − √
2sinθs)/

√
3, bs = (sinθs +√

2cosθs)/
√

3 and θs is the scalar (octet-singlet) mixing
angle. The coupling constants are:

γa0πη =
√

2

Fπ

ap
(
m2

BARE(a0) − m2
η

)
,

γσππ = 1

Fπ

as
(
m2

BARE(σ ) − m2
π

)
,

γ f0ππ = 1

Fπ

bs
(
m2

BARE( f0) − m2
π

)
,
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γσηη = as

2
√

2
X − bs

2
Y,

γ f0ηη = bs

2
√

2
X + as

2
Y, (A3)

where

X =
(
ap√

2

)2 2

Fπ

[
2a2

s m
2
BARE(σ ) + 2b2

s m
2
BARE( f0)

−m2
π − a2

pm
2
η − b2

pm
2
η′ − 12(2FK − Fπ )V4

]

+bp
2 2

2FK − Fπ

×
[
−√

2asbs
(
m2

BARE(σ ) − m2
BARE( f0)

)
− 12FπV4

]

+ 48√
2
apbpV4, (A4)

Y =
(
ap√

2

)2 2

Fπ

[
− √

2asbs
(
m2

BARE(σ ) − m2
BARE( f0)

)

−24FπV4

]

+b2
p

2

2FK − Fπ

[
b2
s m

2
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s m
2
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2
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2
f0

]
, (A5)

and

γ (4)
πη = 4

Fπ

[
as√

2
γσηη + bs√

2
γ f0ηη

+ a2
p

Fπ

(
m2

BARE(a0) − mη
2
) ]

. (A6)

Appendix B:“Bare” three- and four-point coupling
constants

〈
∂3V

∂ fa∂(φ2
1)1∂(φ1

2)1

〉
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2ca4α1, (B1)
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3β3
3 − 8c3β

2
1 (−1 + γ 2

1 )
)]

, (B18)
〈

∂3V

∂ fa∂ηb∂ηb

〉

= − 16
√

2c3β1β3 (−1 + γ1) (α3β3 + 2α1β1γ1)

α3 (2α1β1 + α3β3) 3 , (B19)
〈

∂3V

∂ fa∂ηb∂ηc

〉
= −4

(2α1β1 + α3β3) 3

×
[

8ea3α3
1β3

1 + 12ea3α2
1α3β

2
1 β3 + α3β

2
3

(
ea3α2

3β3 + 2c3 (−1 + γ1)
)

+ 2α1β1β3

(
3ea3α2

3β3 + 2c3(1 − 3γ1 + 2γ 2
1 )

)]
, (B20)

〈
∂3V

∂ fa∂ηb∂ηd

〉

=
8
√

2c3β1 (−1 + γ1)
(

− α3β3 (−2 + γ1) + 2α1β1γ1

)

(2α1β1 + α3β3) 3 , (B21)
〈

∂3V

∂ fa∂ηc∂ηc

〉
= − 16

√
2c3α1α3β3 (−1 + γ1)

2

(2α1β1 + α3β3) 3 , (B22)
〈

∂3V

∂ fa∂ηc∂ηd

〉

= − 8c3α3 (−2α1β1 + α3β3) (−1 + γ1)
2

(2α1β1 + α3β3) 3 , (B23)
〈

∂3V

∂ fa∂ηd∂ηd

〉
= 16

√
2c3α

2
3β1 (−1 + γ1)

2

(2α1β1 + α3β3) 3 , (B24)
〈

∂3V

∂ fb∂ηa∂ηa

〉

= −
32c3β1β3 (−1 + γ1)

(
α3β3γ1 + α1β1 (1 + γ1)

)

α1 (2α1β1 + α3β3) 3 , (B25)
〈

∂3V

∂ fb∂ηa∂ηb

〉
= 1

α1α
2
3 (2α1β1 + α3β3) 3

×
[

8
√

2c3

(
α3

3β3
3 γ1 + 4α3

1β3
1 γ1 (1 + γ1)

+ 6α2
1α3β

2
1 β3γ1 (1 + γ1) + 2α1α

2
3β1β

2
3 (1 + 2γ 2

1 )
)]

, (B26)
〈

∂3V

∂ fb∂ηa∂ηc

〉
= −4

(2α1β1 + α3β3) 3

×
[

8ea3α3
1β3

1 + 12ea3α2
1α3β

2
1 β3 + 2α1β1β3

×
(

3ea3α2
3β3 − 4c3 (−1 + γ1)

)

+α3β
2
3

(
ea3α2

3β3 − 4c3 (−1 + γ1) γ1

)]
, (B27)

〈
∂3V

∂ fb∂ηa∂ηd

〉

= −
8
√

2c3β1 (−1 + γ1)
(

2α1β1 (1 + γ1) + α3β3 (−1 + 3γ1)
)

(2α1β1 + α3β3) 3 ,

(B28)
〈

∂3V

∂ fb∂ηb∂ηb

〉

= 8

α3
3 (2α1β1 + α3β3) 3

×
[
α3

3

(
2c3 + ca4α4

3

)
β3

3 + 6α1α
2
3β1β

2
3

(
ca4α4

3 + 2c3γ1
)

+ 8α3
1β3

1

(
ca4α4

3 + 2c3γ
2
1

) + 4α2
1α3β

2
1 β3

(
3ca4α4

3 + 2c3γ1(1 + 2γ1)
)]

, (B29)
〈

∂3V

∂ fb∂ηb∂ηc

〉

= 16
√

2c3α1 (−1 + γ1)
(
α2

3β2
3 + 2α2

1β2
1 γ1 + 3α1α3β1β3γ1

)

α2
3 (2α1β1 + α3β3) 3

,

(B30)
〈

∂3V

∂ fb∂ηb∂ηd

〉

=
8c3β3 (−1 + γ1)

(
α3β3 + 2α1β1 (−1 + 2γ1)

)

(2α1β1 + α3β3) 3 , (B31)
〈

∂3V

∂ fb∂ηc∂ηc

〉
= 32c3α

2
1β3 (−1 + γ1)

2

(2α1β1 + α3β3) 3 , (B32)
〈

∂3V

∂ fb∂ηc∂ηd

〉

= − 8
√

2c3α1 (2α1β1 − α3β3) (−1 + γ1)
2

(2α1β1 + α3β3) 3 , (B33)
〈

∂3V

∂ fb∂ηd∂ηd

〉
= − 32c3α1α3β1 (−1 + γ1)

2

(2α1β1 + α3β3) 3 , (B34)
〈

∂3V

∂ fc∂ηa∂ηa

〉

=
16

√
2c3α3β3 (−1 + γ1)

(
α3β3γ1 + α1β1 (1 + γ1)

)

α1 (2α1β1 + α3β3) 3 , (B35)
〈

∂3V

∂ fc∂ηa∂ηb

〉

= −
4
(

8ea3α3
1βc3 (−1 + γ1)

)
+ α3β

2
3

(
ea3α2

3β3 + 2c3(1 − 3γ1 + 2γ 2
1 )

)

(2α1β1 + α3β3) 3 ,

(B36)
〈

∂3V

∂ fc∂ηa∂ηc

〉

=
8
√

2c3α1 (−1 + γ1)
(

2α1β1(1 + γ1) + α3β3 (−1 + 3γ1)
)

(2α1β1 + α3β3) 3 , (B37)
〈

∂3V

∂ fc∂ηa∂ηd

〉

=
8c3α3 (−1 + γ1)

(
2α1β1 (1 + γ1) + α3β3 (−1 + 3γ1)

)

(2α1β1 + α3β3) 3 , (B38)
〈

∂3V

∂ fc∂ηb∂ηb

〉

= − 16
√

2c3α1β3 (−1 + γ1) (α3β3 + 2α1β1γ1)

α3 (2α1β1 + α3β3) 3 , (B39)
〈

∂3V

∂ fc∂ηb∂ηc

〉
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=
16c3α

2
1 (−1 + γ1)

(
− α3β3 (−2 + γ1) + 2α1β1γ1

)

α3 (2α1β1 + α3β3) 3 , (B40)
〈

∂3V

∂ fc∂ηb∂ηd

〉

=
8
√

2c3α1 (−1 + γ1)
(

− α3β3 (−2 + γ1) + 2α1β1γ1

)

(2α1β1 + α3β3) 3 , (B41)
〈

∂3V

∂ fc∂ηc∂ηc

〉
= 32

√
2c3α

3
1 (−1 + γ1)

2

(2α1β1 + α3β3) 3 , (B42)
〈

∂3V

∂ fc∂ηc∂ηd

〉
= 32c3α

2
1α3 (−1 + γ1)

2

(2α1β1 + α3β3) 3 , (B43)
〈

∂3V

∂ fc∂ηd∂ηd

〉
= 16

√
2c3α1α

2
3 (−1 + γ1)

2

(2α1β1 + α3β3) 3 , (B44)
〈

∂3V

∂ fd∂ηa∂ηa

〉
= −4

α1 (2α1β1 + α3β3) 3

×
[(

8ea3α4
1β3

1 + 12ea3α3
1α3β

2
1 β3 + 6ea3α2

1α2
3β1β

2
3

+8c3α
2
3β1β3 (−1 + γ1) γ1 + α1α3

(
ea3α2

3β3
3

8c3β
2
1 (−1 + γ 2

1 )
))]

, (B45)
〈

∂3V

∂ fd∂ηa∂ηb

〉

=
8
√

2c3β1 (−1 + γ1)
(

2α1β1 + α3β3 (−1 + 2γ1)
)

(2α1β1 + α3β3) 3 , (B46)
〈

∂3V

∂ fd∂ηa∂ηc

〉

= 16c3α3 (−1 + γ1) (2α1β1 + α3β3γ1)

(2α1β1 + α3β3) 3 , (B47)
〈

∂3V

∂ fd∂ηa∂ηd

〉

= 8
√

2c3α
2
3 (−1 + γ1) (2α1β1 + α3β3γ1)

α1 (2α1β1 + α3β3) 3 , (B48)
〈

∂3V

∂ fd∂ηb∂ηb

〉

= 32c3α1β1 (−1 + γ1) (α3β3 + 2α1β1γ1)

α3 (2α1β1 + α3β3) 3 , (B49)
〈

∂3V

∂ fd∂ηb∂ηc

〉

=
8
√

2c3α1 (−1 + γ1)
(
α3β3 + 2α1β1 (−1 + 2γ1)

)

(2α1β1 + α3β3) 3 , (B50)
〈

∂3V

∂ fd∂ηb∂ηd

〉

=
8c3α3 (−1 + γ1)

(
α3β3 + 2α1β1 (−1 + 2γ1)

)

(2α1β1 + α3β3) 3 , (B51)
〈

∂3V

∂ fd∂ηc∂ηc

〉
= 32c3α

2
1α3 (−1 + γ1)

2

(2α1β1 + α3β3) 3 , (B52)
〈

∂3V

∂ fd∂ηc∂ηd

〉
= 16

√
2c3α1α

2
3 (−1 + γ1)

2

(2α1β1 + α3β3) 3 , (B53)
〈

∂3V

∂ fd∂ηd∂ηd

〉
= 16c3α

3
3 (−1 + γ1)

2

(2α1β1 + α3β3) 3 , (B54)
〈

∂4V

∂ηa∂ηa∂(φ2
1 )1∂(φ1

2 )1

〉

=
4
(

6ca4α5
1β1 + 3ca4α4

1α3β3 + 8c3α3β3γ
2
1 + 8c3α1β1γ1 (1 + γ1)

)

α4
1 (2α1β1 + α3β3)

,

(B55)

〈
∂4V

∂ηa∂ηa∂(φ2
1 )1∂(φ1

2 )2

〉

=
〈

∂4V

∂ηa∂ηa∂(φ2
1 )2∂(φ1

2 )1

〉

= −
32c3β1 (−1 + γ1)

(
α3β3γ1 + α1β1 (1 + γ1)

)

α1 (2α1β1 + α3β3) 3 , (B56)
〈

∂4V

∂ηa∂ηb∂(φ2
1 )1∂(φ1

2 )1

〉

= 8
√

2c3γ1 (α3β3 + 2α1β1γ1)

α3
1α3 (2α1β1 + α3β3)

, (B57)
〈

∂4V

∂ηa∂ηb∂(φ2
1 )1∂(φ1

2 )2

〉

=
〈

∂4V

∂ηa∂ηb∂(φ2
1 )2∂(φ1

2 )1

〉

=
−8

√
2c3 (−1 + γ1)

(
2α2

1β2
1 γ1 + α2

3β2
3 γ1 + α1α3β1β3 (2 + γ1)

)

α1α3 (2α1β1 + α3β3) 3 ,

(B58)
〈

∂4V

∂ηa∂ηc∂(φ2
1 )1∂(φ1

2 )1

〉
= 16c3 (−1 + γ1) γ1

α2
1 (2α1β1 + α3β3)

, (B59)
〈

∂4V

∂ηa∂ηc∂(φ2
1 )1∂(φ1

2 )2

〉

=
〈

∂4V

∂ηa∂ηc∂(φ2
1 )2∂(φ1

2 )1

〉

= 16c3 (−1 + γ1) (2α1β1 + α3β3γ1)

(2α1β1 + α3β3) 3 , (B60)
〈

∂4V

∂ηa∂ηd∂(φ2
1 )1∂(φ1

2 )1

〉

= 8
√

2c3α3 (−1 + γ1) γ1

α3
1 (2α1β1 + α3β3)

, (B61)
〈

∂4V

∂ηa∂ηd∂(φ2
1 )1∂(φ1

2 )2

〉

=
〈

∂4V

∂ηa∂ηd∂(φ2
1 )2∂(φ1

2 )1

〉

= 8
√

2c3α3 (−1 + γ1) (2α1β1 + α3β3γ1)

α1 (2α1β1 + α3β3) 3 , (B62)
〈

∂4V

∂ηb∂ηb∂(φ2
1 )1∂(φ1

2 )2

〉

=
〈

∂4V

∂ηb∂ηb∂(φ2
1 )2∂(φ1

2 )1

〉

= − 16c3β3 (−1 + γ1) (α3β3 + 2α1β1γ1)

α3 (2α1β1 + α3β3) 3 , (B63)
〈

∂4V

∂ηb∂ηc∂(φ2
1 )1∂(φ1

2 )2

〉

=
〈

∂4V

∂ηb∂ηb∂(φ2
1 )2∂(φ1

2 )1

〉

=
8
√

2c3α1 (−1 + γ1)
(

− α3β3 (−2 + γ1) + 2α1β1γ1

)

α3 (2α1β1 + α3β3) 3 , (B64)
〈

∂4V

∂ηb∂ηd∂(φ2
1 )1∂(φ1

2 )2

〉

=
〈

∂4V

∂ηb∂ηd∂(φ2
1 )2∂(φ1

2 )1

〉
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=
8c3 (−1 + γ1)

(
− α3β3 (−2 + γ1) + 2α1β1γ1

)

(2α1β1 + α3β3) 3 , (B65)
〈

∂4V

∂ηc∂ηc∂(φ2
1 )1∂(φ1

2 )2

〉

=
〈

∂4V

∂ηc∂ηc∂(φ2
1 )2∂(φ1

2 )1

〉

= 32c3α
2
1 (−1 + γ1)

2

(2α1β1 + α3β3) 3 , (B66)
〈

∂4V

∂ηc∂ηd∂(φ2
1 )1∂(φ1

2 )2

〉

=
〈

∂4V

∂ηc∂ηd∂(φ2
1 )2∂(φ1

2 )1

〉

= 16
√

2c3α1α3 (−1 + γ1)
2

(2α1β1 + α3β3) 3 , (B67)
〈

∂4V

∂ηd∂ηd∂(φ2
1 )1∂(φ1

2 )2

〉

=
〈

∂4V

∂ηd∂ηd∂(φ2
1 )2∂(φ1

2 )1

〉

= 16c3α
2
3 (−1 + γ1)

2

(2α1β1 + α3β3) 3 . (B68)

Appendix C: Recovering current algebra limit

As a consistency check, we recover the current algebra result
for this scattering from GLSM. To decouple the four-quarks
the limit of d2, ea3 → 0 and γ1 → 1 is imposed:

m2
π = −2c2 + 4ca4α2

1
C.L .−→ 0,

m2
f1 = m2

a = −2c2 + 12ca4α2
1,

m2
f2 = −2c2 + 12ca4α2

3,

m2
K = −2c2 + 4ca4(α2

1 − α1α3 + α2
3)

C.L .−→ 0,

m2
κ = −2c2 + 4ca4(α2

1 + α1α3 + α2
3),

Fπ = 2α1,

m2
η + m2

η
′ = −4c2 − 16c3

α2
1

+ 4ca4α2
1

−8c3

α2
3

+ 4ca4α2
3

C.L .−→ −16c3

α2
1

− 8c3

α2
3

.

(C1)

As expected, in the chiral limit (C.L .) mπ and mK vanish.
The five model parameters are then found to be

α1 = Fπ

2
,

α3 = Fπ

√√√√m2
f1

+ 2m2
f2

− 3m2
π

12(m2
f1

− m2
π )

C.L .−→ Fπ

√√√√m2
f1

+ 2m2
f2

12m2
f1

,

c2 = 1

4
(m2

f1 − 3m2
π )

C.L .−→ 1

4
m2

f1 ,

c3 = −

F2
π (m2

f1
+ 2m2

f2
− 3m2

π )(
m2

f1
− m2

f2
+ 3(m2

η + m2
η′ − 2m2

π )
)

96(5m2
f1

+ 4m2
f2

− 9m2
π )

C.L .−→ −

F2
π (m2

f1
+ 2m2

f2
)(

m2
f1

− m2
f2

+ 3(− 16c3
α2

1
− 8c3

α2
3
)
)

96(5m2
f1

+ 4m2
f2
)

,

ca4 = m2
f1

− m2
π

2F2
π

C.L .−→ m2
f1

2F2
π

. (C2)

Also note that:

m2
κ = 3

2
(m2

f1 − m2
π ) + 1

2
(−m2

f1 + 3m2
π )

C.L .−→ m2
f1

(C3)

In the limit that the scalar masses are very heavy, they decou-
ple and we expect to recover the current algebra, i.e. in the
limit m f1 = m f2 = ma = mκ = m → ∞, we have:

lim
m→∞ α3 = Fπ

2
,

lim
m→∞ c2 = m2

4
,

lim
m→∞ c3 = −1

96
F2

π (m2
η + m2

η′ − 2m2
π ),

lim
m→∞ ca4 = m2

2F2
π

. (C4)

The scalar-pseudoscalar-pseudoscalar vertices (in the limit
of d2, ea3 → 0 and γ1 → 1) become:

γ (4)
πη = 12 ca4 cos2 φ + 32 c3 cos2 φ

α4
1

− 8
√

2 sin(2φ)

α3
1α3

,

γ f1ππ = 4ca4α1,

γ f2ππ = 0,

γa0πη = 8
√

2 c3 cos φ

α3
1

+ 4
√

2 ca4α1 cos φ − 8 c3 sin φ

α2
1α3

,

γ f1ηη = 8
√

2 c3 cos2 φ

α3
1

+ 2
√

2 ca4α1 cos2 φ − 4 c3 sin(2φ)

α2
1α3

γ f2ηη = 8 c3 sin2 φ

α3
3

+ 4 ca4α3 sin2 φ − 4
√

2 c3 sin(2φ)

α1α
2
3

,

(C5)

where φ is the strange-non-strange mixing angle, cos φ =
(cos θp − √

2 sin θp)/
√

6. Equation (C5) together with (C4)
yield

γ (4)
πη = 1

3F2
π

[
4
√

2
(
m2

η + m2
η′ − 2m2

π

)
sin(2φ)

+2
(

9m2 − 8(m2
η + m2

η′) + 7m2
π

)
cos2 φ

]

× C.L .−→ 6m2

F2
π

cos2 φ,
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γ f1ππ = m2 − m2
π

F2
π

C.L .−→ m2

F2
π

,

γ f2ππ = 0,

γa0πη = 1

3Fπ

[ (
m2

η + m2
η′ − 2m2

π

)

×
(

− 2
√

2 cos φ + 2 sin φ
)

+ 3
√

2
(
m2 − m2

π

)
cos φ

]

× C.L .−→
√

2m2

Fπ

cos φ,

γ f1ηη = 1

6Fπ

[
2
(
m2

η + m2
η′ − 2m2

π

)
sin(2φ)

+
(√

2(3m2 − 4(m2
η + m2

η′) + 5m2
π

)
cos2 φ

]

C.L .−→
√

2m2

2Fπ

cos2 φ,

γ f2ηη = 1

3Fπ

[√
2
(
m2

η + m2
η′ − 2m2

π

)
sin(2φ)

+
(

3m2 − 2(m2
η + m2

η′) + m2
π

)
sin2 φ

]

C.L .−→ m2

Fπ

sin2 φ, (C6)

The dependence of the four-point amplitude on scalar
mass is

M4p = ξ0 + ξ1m
2. (C7)

The contribution of the isosinglet scalars is of the form

M fi = 2
√

2 γ fiππγ fiηη × (propagator), (C8)

with

2
√

2 γ fiππγ fiηη = ρ0 + ρ1m
2 + ρ2m

4,

propagator = 1

m2 + x
� 1

m2 − x

m4 + O
(

1

m6

)
. (C9)

Thus

lim
m→∞ M fi = ρ1 − xρ2 + ρ2m

2. (C10)

Similarly for the a0 contribution

Ma0 = γ 2
a0πη

[
1

m2 + y1
+ 1

m2 + y2

]
, (C11)

with

γ 2
a0πη = δ0 + δ1m

2 + δ2m
4,

1

m2 + yi
� 1

m2 − yi
m4 + O

(
1

m6

)
. (C12)

Thus

lim
m→∞ Ma0 = 2 δ1 −

∑

i

yiδ2 + 2 δ2m
2. (C13)

Taking everything into account we expect:

lim
m→∞ Mtotal = MC.A. (C14)

which results in two sum rules:

ξ0 + ρ1 − xρ2 + 2 δ1 −
∑

i

yiδ2 = MC.A.,

ξ1 + ρ2 + 2 δ2 = 0. (C15)

The second sum-rule is identically satisfied. The first one is:

MC.A. = 1

3F2
π

(
2

(
2m2

η − 4m2
η′ + 5m2

π

)
cos2 φ

+2
√

2
(
m2

η + m2
η′ − 2m2

π

)
sin(2φ)

)
. (C16)

Since in the decoupling limit

2m2
π → m2

η + m2
η

′ , (C17)

then

MC.A. =
2

(
2m2

η − 4m2
η′ + 5m2

π

)

3F2
π

cos2 φ → 2m2
π

F2
π

cos2 φ,

(C18)

in agreement with the last term in Eq. (2.1) of [138].

Appendix D: Pole expansion

We highlight an interesting property of the unitarization
methodology applied in this work (the same observation was
also made in the unitarization of ππ [136] and πK [146]
scatterings). Organizing the bare amplitude in terms of the
poles and a remaining background

T 1B
0 = Tα +

na∑

j=1

T j
β

m2
a j

− s
= ρ(s)

2

⎡

⎣T ′
α +

na∑

j=1

T ′ j
β

m2
a j

− s

⎤

⎦ ,

(D1)

where

T ′
α = −2γ (4)

πη + 1

2q2

na∑

j=1

γ 2
a jπη ln

(
(Bη) j + 1

(Bη) j − 1

)

+
√

2

q2

n f∑

i=1

γ fiηηγ fiππ ln

(
1 + 4q2

m2
fi

)
, (D2)

T ′ j
β = 2γ 2

a jπη. (D3)

we can show that the K-matrix unitarized amplitude has a
similar mathematical structure (in the complex plane) and
can be written as a sum of complex poles and a constant
complex background

T 1
0 = T 1B

0

1 − iT 1B
0

≈ T̃α +
na∑

j=1

T̃ j
β

m̃2
a j

− s − i m̃a j �̃a j
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Fig. 20 Close agreement of the K-matrix unitarized I = 1, J = 0, πη scattering amplitude with the expansion (D4) for A3/A1 = 30 and
m[π(1300)] = 1.3 GeV

Fig. 21 Comparison of m̃a j �̃a j (dot-dashed line) with
∣∣∣ ρ(s)

2 T̃
′ j
β

∣∣∣
s=m̃2

a j
−i m̃a j �̃a j

(solid line)

≈ ρ(s)

2

⎡

⎣T̃ ′
α +

na∑

j=1

T̃ ′ j
β

m̃2
a j

− s − i m̃a j �̃a j

⎤

⎦ (D4)

which shows that the functional form of the K-matrix unita-
rized amplitude resembles the bare amplitude in which the
bare masses are replaced by the physical poles in the complex
s-plane. The real part of the I = 1, J = 0 scattering ampli-
tude obtained from the expansion (D4) is verified numerically
in Fig. 20.

Moreover, the bare decay width and mass of a0’s satisfy

maj �a j = ρ(s)

2
T

′ j
β

∣∣∣∣
s=m2

a j

(D5)

which is again in parallel with the physical decay width and
mass of a0’s

m̃a j �̃a j ≈
∣∣∣T̃ j

β

∣∣∣ ≈
∣∣∣∣
ρ(s)

2
T̃

′ j
β

∣∣∣∣
s=m̃2

a j
−i m̃a j �̃a j

(D6)

This relationship is numerically tested for A3/A1 = 30 over
the range of m[π(1300)] in Fig. 21.
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