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Abstract We study the clustering of galaxies in general-
ized uncertainty principle (GUP) modified Newtonian poten-
tial. We compute the corrected N -particle partition function
which leads to the modified equations of state. The GUP
corrected clustering parameter is compared with the origi-
nal clustering parameter. An investigation of the distribution
function for the system of galaxies is also made. Moreover,
we analyze the effect of GUP on the two-point correlation
function of the system. In order to find the optimal value of
the clustering parameter we perform data analysis and com-
pare our model with the data.

1 Introduction

Messier and Herschel were the first to discover the clustering
tendency of nebulae and prepared the first catalogs of the dis-
covered objects. In the nineteenth and twentieth century, large
samples of galaxies were cataloged. In 1920, Hubble proved
that the spiral and elliptical nebulae are galaxies like Milky
Way located at a large distance [1]. Study of the velocities
of galaxies in their respective clusters led to the conclusion
of the presence of larger gravitating mass than the total visi-
ble mass by a factor of ∼ 200−400 [2]. This confirmed the
presence of extra invisible matter in the system of galaxy.

The quest towards understanding the formation of galaxy
clusters and their evolution is at the center of modern
day astronomy. Large scale structure formation has been
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studied extensively on both theoretical and observational
grounds. Multi-wavelength observations of galaxy clus-
ters have illustrated all main components like intracluster
light (ICL, present due to the stars in the galaxy), intra-
cluster medium (ICM, due to hot gas within the cluster)
and the famous Sunyaev–Zel’dovich effect. Micro-wave,
mid-infrared and near-infrared wavelengths trace cool gas,
obscured cold objects and stellar contents, respectively. The
multi-wavelength observations of Abell in 1689 (Z = 0.18)
is shown in the Fig. 1. The presence of dark matter (DM)
is inferred via gravitational lensing in Abell 1689 [3]. Other
probes for the inference of DM include gravitational waves,
[4] and rotational curves of galaxies [5].

Theoretical studies of cluster formation have also evolved
into a vibrant and mature scientific discipline. Theoretical
models of Galaxy clusters have brought forth most impor-
tant processes that are responsible for the various observed
properties of the clusters along with their subsequent evo-
lution. This theoretical development has given clusters the
importance of being used as cosmological probes [6]. The
current view about the structure formation is the hierarchical
sequence of mergers and accretion of small scale systems by
the gravitational field of visible matter and DM. A simple
model by Kaiser, known as self similar model, predicts clus-
ter properties that are close to observations [7]. Recently,
theoretical models employing modified gravity have been
employed to predict various aspects of cluster formation [8].
These modified theories include f (R) theory and multidi-
mensional braneworld-modified gravity. These theories pro-
vide alternative explanation to dark energy. In f (R) grav-
ity models, a general function of the Ricci Scalar is intro-
duced in the Einstein–Hilbert action which in turn results
into cosmic acceleration [9]. Similar results are expected in
the brane world-modified gravity models. Galaxy cluster-
ing under modified Newtonian potential, motivated by string
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Fig. 1 The image shows combined X-ray/optical of cluster Abell 1689
at z = 0.18. Galaxies in the optical band, colored yellow, are Hubble
space telescope observations. The long arcs are due to the gravitational
lensing of background galaxies due to the gravitating matter in the
cluster. The X-ray emission of the gas (at T 1011 K) is shown in the
purple haze. (Credit:X-ray: NASA/CXC/MIT; Optical: NASA/STScI)

theory and cosmological constant have also been studied
[10,11]. Similarly, the effect of various other modified grav-
ity laws on the clustering of galaxies has been studied exten-
sively [12–21].

There are also various theories for cosmological many-
body distribution function from thermodynamic point of
view. The connection between thermodynamics and gravity
first appeared in the works of Bekenstein [22], Hawking [23]
and Unruh [24]. Later Jacobson [25] extended this connec-
tion to link thermodynamics and general relativity, where
in Einstein equation appeared as an equation of state. In
Ref. [25], this equation is derived from the proportionality of
horizon area and entropy along with the relation, δQ = TdS,
connecting energy flux δQ and Unruh temperature. Recently,
Padmanabhan has discussed the thermodynamic properties
of horizons in detail [26].

Recently, Verlinde proposed entropic origin of gravity
[27]. The author of [27] argued that in deriving gravity the
central notion is the information associated with matter and
its location measured via entropy. The displacement of mat-
ter leads to a change in entropy that in turn leads to a reac-
tion force which then, under certain reasonable assumptions,
takes the form of gravity. This work attempted to established
thermodynamics as a basic principle. In Ref. [27], Gravita-
tional law, Einstein’s equations, Poisson’s equation and the
equipartition law of energy have found an entropic origin.
Following Verlinde’s approach, there is possibility to con-
sider the entropic force in order to derive the correction to
the Newton’s force law between two bodies with GUP cor-
rection [28,29].

The structure of the paper is as follows. In Sect. 2, we
calculate the gravitational partition function under the GUP
corrected gravitational potential. Once the partition function
is known, it is a matter of calculation to derive various ther-
modynamical equations of state. In Sect. 3, we calculate

GUP corrected free energy, entropy, internal energy, pres-
sure and chemical potential. By considering the system in
quasi-equilibrium as grand canonical ensemble, we estimate
general distribution function for gravitating system in Sect. 4.
The effect of GUP correction on power-law of two-point
function is discussed in Sect. 5. We make final remarks in
Sect. 7.

2 Interaction of galaxies under GUP modified potential

In this section, we study the GUP corrected partition function
describing galactic clustering.

2.1 GUP modified gravitational potential

In Verlinde’s entropic gravity framework, the Newton’s force
law of gravitation can be derived based on a quantum
mechanical and thermodynamical set-up. Upon considering
GUP contribution and first law of thermodynamics, we write
the modified gravity force law as [28]

FGU P = −GM2

R2
2[1 + η − 2β(2 + η)]

η(1 + η)
(
−4β + 1 + η + 4β ln

[
2
√

β
1+η

]) , (1)

where M is the mass of each galaxy, R is the radial distance,
η = √

1 − 4G/R2 and β = G/R2. Here, both the velocity
of light (c) and Heisenberg constant (h̄) are set unit. In the
large distance limit, R � L p = √

G (Planck length) and
therefore β = G/R2 � 1. Thus, expanding expression (1)
to the first-order of β [28,29]

FGUP = −GM2

R2

[
1 + 2

L2
p

R2

]
. (2)

From the standard definition of gravitational potential � =
− ∫

FdR and Eq. (2), the GUP modified potential reads

�GU P = −GM2

R

[
1 + 2L2

p

3R2

]
= −GM2

R

[
1 + 2

3
β

]
. (3)

With this GUP modified potential, we are able to derive the
thermodynamics of the galaxy’s cluster along with the dis-
tribution function.

2.2 Gravitational partition function

In this section, we calculate the many-body gravitational par-
tition function, for a system of galaxies, treated as point par-
ticles, under the modified Newton’s law. This is because the
statistical mechanics of an N -body system is based primarily
on the partition function. Here, we assume that the system of
galaxies made of large ensemble of cells, each of radius R,
volume V and average density N̄ as galaxies are distributed
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homogeneously over large regions. We let the total number
of galaxies and their total energy vary among the cells.

For an N -body system of galaxies each having mass M
and the system temperature T , the general partition function
(grand canonical) is written as [30]:

ZN (T, V ) = 1

N !
(

2πMT

�2

)3N/2

QN (T, V ) , (4)

where, QN (T, V ), is the configuration part and is given by

QN (T, V ) =
∫

· · ·
∫ ∏

1≤i< j≤N

(1 + fi j )d
3N R. (5)

Here, two-point function, fi j , is defined as

fi j = exp

(
−�GU P

T

)
− 1, (6)

which vanishes in the absence of interactions and in the pres-
ence of interactions it takes non-zero value. From the expres-
sion (3), it is evident that for point-mass galaxies the poten-
tial and, therefore, Hamiltonian of the system diverges. This
gives an ill-defined partition function. In order to avoid this
discrepancy, we consider the extended nature of galaxies (i.e.
galaxies with halos) and introduce a softening parameter ε

which takes a value ranging 0.01 ≤ ε ≤ 0.05. The confirma-
tion about each galaxy having a finite size is incorporated in
the potential of the form 1/

√
R2 + ε2 to the first order [31].

However, at small scales, the density would decrease as R−2,
which possibly represents a spherical isothermal halo.

In this consideration, the expression of potential (3) takes
following form:

�GU P = − GM2

(R2 + ε2)1/2

[
1 + 2L2

P

3(R2 + ε2)

]
. (7)

From expression (5), we evaluate the configuration integral
for the system of single galaxy i.e. N = 1 as follows:

Q1(T, V ) = V . (8)

For the system of two galaxies i.e. N = 2, the configuration
integral is calculated by

Q2(T, V ) = 4πV
∫ [

1 + GM2

T

(
1

(R2 + ε2)1/2

+ 2L2
P

3(R2 + ε2)3/2

)]
R2dR. (9)

Here we used the fact that effect of long range mean grav-
itational field is balanced by the expansion of the universe.
Upon performing the integration, the above integral yields

Q2(T, V )

= V 2

⎡
⎢⎢⎣1 + 3

2

GM2

RT

⎛
⎜⎜⎝

√
1 + ε2

R2 + ε2

R2 log
ε/R[

1 +
√

1 + ε2

R2

]

− 4β

3

⎛
⎜⎜⎝

1√
1 + ε2

R2

− 1

ε
+ log

ε/R[
1 +

√
1 + ε2

R2

]

⎞
⎟⎟⎠

⎞
⎟⎟⎠

⎤
⎥⎥⎦ . (10)

Under dimensionless scale invariance, we can write

GM2

RT
≈ GM2

N̄ 1/3T
−→ (GM2)3

N̄ T 3
. (11)

Using Eq. (11), Eq. (10) can be written in a compact form as

Q2(T, V ) = V 2 [1 + x (β1 + β2)] , (12)

where

x = 3

2

(GM2)3V

NT 3 , (13)

β1 =
√

1 + ε2

R2 + ε2

R2 log
ε/R[

1 +
√

1 + ε2

R2

] , (14)

β2 = −4β

3

⎛
⎜⎜⎝

1√
1 + ε2

R2

− 1

ε
+ log

ε/R[
1 +

√
1 + ε2

R2

]

⎞
⎟⎟⎠ . (15)

Following the similar procedure, the configuration integral
for the system of N -galaxies can be written as

QN (T, V ) = V N [1 + x (β1 + β2)]
N−1 . (16)

Using Eqs. (4) and (16), the partition function for our system
of N gravitationally interacting galaxies is

ZN (T, V ) = 1

N !
(

2πMT

�2

)3N/2

V N [1 + x (β1 + β2)]
N−1 . (17)

This partition function includes the uncorrected parameter,
β1, and the GUP corrected parameter, β2.

3 Thermodynamics of gravitating system

Knowing the gravitational partition function, various ther-
modynamics quantities of the system of galaxies can be
calculated. The most important among these are Helmholtz
free energy, entropy, internal energy, pressure and chemical
potential. The general distribution function can also be cal-
culated from the general partition function to know the effect
of GUP correction to the distribution of the system galaxies.
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3.1 Helmholtz free energy

The Helmholtz free energy for the GUP corrected poten-
tial, utilizing standard definition F = −T ln Zn(T, V ) (with
Boltzmann constant kB = 1), can be written for the system
of galaxies as

F = −T ln

[
1

N !
(

2πMT

�2

)3N/2

V N [1 + x (β1 + β2)]
N−1

]
. (18)

Since the value of N is very large, so this can further simpli-
fied using Stirling’s approximation to

F = NT

(
ln

N

V
T−3/2

)
− NT

−NT ln [1 + x (β1 + β2)] − 3

2
NT ln

(
2πM

�2

)
. (19)

Here, N − 1 ≈ N is used in view of large N .

3.2 Entropy

Once the expression for Helmholtz free energy is known,
other thermodynamic quantities like entropy can be easily
derived from it. The entropy is related to the free energy via
the relation S = − (

∂F
∂T

)
N ,V . Therefore, the entropy of the

system is derived from the Helmholtz free energy (19) as

S = N ln

(
V

N
T 3/2

)
+ N ln[1 + x (β1 + β2)]

−3N
x (β1 + β2)

1 + x (β1 + β2)
+ 5

2
N

+3

2
N ln

2πM

�2 . (20)

One can easily see the GUP correction to the entropy embed-
ded in parameter β2.

3.3 Internal energy

Utilizing the relations for free energy and entropy given in
Eqs. (19) and (20), respectively, the GUP corrected internal
energy for the system of galaxies can be derived using the
relation, U = F + T S, as

U = 3

2
NT

[
1 − 2

x (β1 + β2)

1 + x (β1 + β2)

]
. (21)

3.4 Pressure

The pressure is related to Helmholtz free energy via the rela-
tion P = − (

∂F
∂V

)
N ,T , which involves first derivative of free

energy with respect to volume V keeping particle number
(N ) and temperature (T ) static. Therefore, the pressure for

the system of galaxies with GUP modified potential reads

P = NT

V

[
1 − x (β1 + β2)

1 + x (β1 + β2)

]
. (22)

The expression of pressure is quite standard as can been seen
in [30]. The GUP modification is exhibited in β2.

3.5 Chemical potential

The chemical potential (μ) of the system of galaxies can be
calculated using the standard relation μ = (

∂F
∂N

)
T,V for the

given F in Eq. (19) as following:

μ = T

(
ln

N

V
T−3/2

)
+ T ln

[
1 − x (β1 + β2)

1 + x (β1 + β2)

]

−T
x (β1 + β2)

1 + x (β1 + β2)
− 3

2
T ln

(
2πM

�2

)
. (23)

Here, in the second term of RHS, we have used simplification

−T ln [1 + x(β1 + β2)] = T ln

[
1 − x(β1 + β2)

1 + x(β1 + β2)

]
.

On the comparison of the equations of state, derived uti-
lizing the GUP corrected potential, to their standard form
[30], the effect of the correction on the clustering parameter
BGUP is seen, while the basic structure of the equations is
preserved. The GUP modified clustering parameter is given
by

BGUP = x (β1 + β2)

1 + x (β1 + β2)
. (24)

In the limit of vanishing GUP, i.e. β2 → 0, the GUP modi-
fied parameter, BGUP , matches with the original clustering
parameter defined as [30]

b = xβ1

1 + xβ1
. (25)

The clustering parameter is important as it takes care of the
clustering tendency of the system of gravitationally bound
galaxies. The GUP modified clustering parameter in terms
of original parameter is given by

BGUP = b + (1 − b) xβ2

1 + (1 − b) xβ2
. (26)

In the limit b → 0, the clustering effect vanishes and the
galaxies behave as a system of free particles.

4 GUP corrected distribution function

The probability distribution function F(N ), which repre-
sents void distribution as well as counts of particle number
(galaxies) in cells, wherein both particles (galaxies) as well
as energy is exchanged between the system and surround-
ings, can be calculated utilizing grand canonical ensemble.
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In this section, we analyse the effect of GUP correction in the
gravitational potential on the distribution function. The grand
canonical partition function (a weighted sum of all canonical
partition functions) is given by

ZG(T, V, z) =
∞∑
N=0

e
Nμ
T ZN (T, V ), (27)

where z is the activity of the system defined by z = exp(
μ
T ).

Now, the probability of finding N -galaxies in a cell of
volume V of grand canonical ensemble can be estimated by
the following relation:

F(N ) =
∑

i e
Nμ
T e

Ui
T

ZG(T, V, z)
= e

Nμ
T ZN (T, V )

ZG(T, V, z)
. (28)

The partition function in grand canonical ensemble for the
gravitating system under GUP modified Newton’s potential
is calculated by

log ZG = N̄ (1 − BGUP ), (29)

here, N̄ refers to the average number of galaxies as system
follows grand canonical ensemble.

Using Eqs. (17), (28) and (29), the GUP modified distri-
bution function for the system of galaxies is given as

F(N ) = N̄

N ! (1 − BGUP )[N̄ (1 − BGUP )

+N BGUP ]N−1e−N BGUP−N̄ (1−BGU P ). (30)

Remarkably, the basic structure of the distribution function
is same to that derived originally by Ahmad et al. [30] and
Saslaw and Hamilton [32]. The only difference to the original
one is the GUP modified clustering parameter. In order to
see the effect of GUP on the distribution function, we plot
Fig. 2. From the plot, we confirm that as long as the value of
correction parameter increases the maximum (peak) value of
F(N ) decreases without changing the basic structure of the
curve.

5 GUP effects on power-law for two-point correlation
function

In this section, we study the effect of GUP correction to
the power law of the two-point correlation function. Pee-
ble’s assumption about the power-law form of the correla-
tion function [33] has been confirmed via N -body computer
simulations [34] as well as analytically in [35]. In order to
see the effect of the correction on the correlation function ξ2,
we write the clustering parameter in the form [35]

BGUP = GM2 N̄

6T

∫

V

[
1

(R2 + ε2)1/2

Fig. 2 Behaviour of the distribution function F(N ) as a function of
particle number N . Red, blue and green curves represent three different
values for the correction parameter β2. Red curve is for β2 = 0 (i.e. no
GUP correction), blue for β2 = 0.5, and green for β2 = 1

+ 2L2
P

3(R2 + ε2)3/2

]
ξ2(N̄ , R, T )dV, (31)

= 2πGM2 N̄

3T

∫ [
1

(R2 + ε2)1/2

+ 2L2
P R

2

3(R2 + ε2)3/2

]
ξ2(N̄ , R, T )dR, (32)

where N̄ = N/V is the number density.
Differentiating (31) with respect to V and using ∂V

∂ N̄
=

− V
N̄

, the expression (31) yields

N̄

V

∂

∂ N̄
BGU P = BGU P

V

−GM2 N̄

6T

[
1

(R2 + ε2)1/2 + 2L2
P

3(R2 + ε2)3/2

]
ξ2(N̄ , R, T ).

(33)

This above equation upon further simplification gives the
following GUP modified two-point function:

ξ2 = 9T B2
GU P

GM2 N̄

[
2πR3

(R2+ε2)1/2 + 4πR3L2
P

3(R2+ε2)3/2

] . (34)

In the limit of point-mass galaxies, the above relation reduces
to

ξ2 = 9T B2
GU P

GM2ρ̄
(

2πR2 + 4πβR2

3

) ,

= 9T B2
GU P

2πGM2ρ̄R2

(
1 − 2

3
β

)
. (35)
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Fig. 3 The plots show the probability distribution function of galaxy clusters in red-shift bins and radius bins. The dotted lines represent the
observational data points whereas the solid lines represent the theoretical model considered here

The extra term in the power-law is due to the GUP correction
to the Newtonian potential. In the limit of vanishing GUP
parameter β, one can recover power-law of Newtonian grav-
ity.

6 Data

Here we test our model with the data available through Sloan
Digital Sky Survey (SDSS-III). The data is available in the
data release 12 (DR12). All the necessary data (RA, DEC, z,
N etc) is present in the catalog [36] for 132,684 clusters of
galaxies in the redshift ranges of 0.05 < z < 0.65. Here we
have divide the data in three radius bins (measured in Mpc),
0.40 < R < 0.75, 0.75 < R < 1.10, 1.10 < R < 1.45
and six redshift bins, 0.05 < z < 0.15, 0.15 < z < 0.25,
0.25 < z < 0.35, 0.35 < z < 0.45, 0.45 < z < 0.55 and
0.55 < z < 0.65.

Using the Scipy.optimize.curve_fit API of SciPy python
Library we calculated the optimized value of the clustering
parameter BGUP . From the plots (Figs. 3 and 4) it can been
seen that the fit is accurate in many redshift bins but in the
redshift bins 0.45 < z < 0.55 and 0.55 < z < 0.65 within
the radius bin 0.40 < R < 0.75. In Fig. 3e, f, the model does
not fit properly to the data. The reason could be incomplete
sampling of the catalog at low radius and high red-shift range
(Tables 1, 2).

Once the optimal value of the clustering parameter is
obtained, the value of β2, the GUP correction term, can
be easily determined after fixing the values of β1 and x in
Eq. (24). Setting the value of β1 and x to unity, the value of
β2 in terms of BGUP can be written as;

β2 = 2BGUP − 1

1 − BGUP
. (36)

The variation of clustering parameter BGUP with the correc-
tion term β2 can be visualized in the Fig. 5.
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Fig. 4 The plots show the probability distribution function of galaxy clusters in red-shift bins and radius bins. The dotted lines represent the
observational data points whereas the solid lines represent the theoretical model considered here

Table 1 The table shows different parameters such as number of clusters Ncl , number of galaxies NG , mean number of galaxies per cluster N̄ and
the value of the clustering parameter BGUP in various radius and red-shift bins

z 0.40 < R < 0.75 (in Mpc) 0.75 < R < 1.10 (in Mpc) 1.10 < R < 1.45 (in Mpc)
NG Ncl N̄ BGU P NG Ncl N̄ BGU P NG Ncl N̄ BGU P

[0.05, 0.15] 79 1612 20.40 0.30 4734 78006 16.48 0.30 1532 24456 15.96 0.30

[0.15, 0.25] 349 7528 21.57 0.33 17129 290938 16.19.99 0.33 4401 67875 15.42 0.33

[0.25, 0.35] 398 8101 20.35 0.40 22952 358700 15.42 0.40 4855 71237 14.67 0.40

[0.35, 0.45] 547 10191 18.63 0.43 28628 426915 14.91 0.43 5171 75047 14.52 0.43

[0.45, 0.55] 201 3370 16.77 0.45 20941 272703 13.02 0.45 3381 43129 12.76 0.45

[0.55, 0.65] 48 641 13.35 0.36 10196 118052 11.57 0.36 1165 18963 11.46 0.36

7 Conclusion

In Ref. [29], the possibility to apply GUP corrected (entropic)
force to the Hubble horizon is discussed. In fact, a non-zero
GUP correction to the thermodynamic force is obtained in the
context of cosmology. This corrected entropic force gives a
corrected Newton’s law of gravity. In this work, we presented
a study of clustering of galaxies under the GUP modified

Newton’s law. It is observed that the corrected Newtonian
potential modify the clustering parameter, which reflects the
effect of correction on the clustering. We calculated the grand
canonical partition function for the system of gravitationally
interacting galaxies. The grand partition function was used to
calculate the various GUP corrected thermodynamic quanti-
ties like Helmholtz free energy, entropy, pressure, and chem-
ical potential. The GUP corrected general distribution func-
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Table 2 The table shows various values of β2 for different values of
clustering parameter BGUP

Clustering parameter (BGUP ) Correction parameter(β2)

0.30 −0.82

0.33 −0.83

0.40 −0.87

0.43 −0.89

0.45 −0.92

0.36 −0.84

Fig. 5 The variation of correction term β2 with clustering parameter
BGUP

tion and the power-law for the two-point correlation function
are also calculated. A comparison of the equations of state
with their standard form [30] is made and has been found
that the equations of state follows the same structure to the
original one except of the clustering parameter. We also ana-
lyzed the data and compared it with the model to get the
optimal value of the clustering parameter BGUP . We could
see the model fits the data except in a few redshift ranges
e.g., 0.45 < z < 0.55 for the radius range 0.40 < R < 1.10.
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or the data will not be deposited. [Authors’ comment: Data is already
available in Ref. [36].]
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