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Abstract Quantum cosmology is crucial to understand the
evolution of the early universe. Despite significant progress,
challenges still remain. For example, the role of time in quan-
tum cosmology is unclear. Furthermore, the influence of the
environment on the evolution of the quantum universe is chal-
lenging. In this work, we studied the evolution of the quan-
tum universe non-perturbatively using the closed real-time
path integral. The environments coupled to the quantum uni-
verse being considered are the radiation, the non-relativistic
matter, or the dark matter. We evaluated the influence func-
tional of the massless scalar field coupled with the flat FRW
universe. We studied the evolution of the quantum universe
by setting the initial state of spacetime as a Gaussian wave
packet. In different scenarios, we show that the classical tra-
jectory of the universe is consistent with the quantum evolu-
tion of the wave packet. The coherence, the absolute quantum
fluctuation and the Gibbs entropy all monotonically increase
with time, yet the relative quantum fluctuation decreases with
time. We show that for a given size of the radiation dominated
universe, the lower temperature corresponds to a more quan-
tum universe. We find that the minimal coupling of the free
massless scalar field with the flat FRW spacetime generally
gives rise to the memory characterized via non-Markovian
correlations. Finally, we show that under higher radiation
temperatures, a small universe has a higher chance of a tran-
sition to a bigger universe.

1 Introduction

There are several issues related with gravity that cannot
be solved in the framework of classical general relativity.
This includes the singularity point of black holes, the very
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early times of the universe, and the decoherence of space-
time. Developing a well-defined quantum gravity model is
one of the most important challenges in theoretical physics.
The specific study of quantum gravity is known as quantum
cosmology. Although there are many attempts, a complete
theoretical framework for quantum cosmology is still lack-
ing. One of the main obstacles is the problem of time [1–6].
After quantizing the universe, the super Hamiltonian con-
straint becomes the Wheeler–DeWitt equation [1,2]

Ĥ |�〉 = 0, (1)

where it appears as if there is no time variable. This leads to
difficulty in describing the evolution of any quantum gravita-
tion system, which is the time problem in canonical quantum
gravity [1,4,5]. While these models try to solve this prob-
lem, to the best of our knowledge, none of them have fully
resolved this issue.

In 1995, Brown and Kuchař introduced a dust field as the
time variable [6]. By imposing the canonical time gauge fix-
ing condition, one can transform the Wheeler–DeWitt equa-
tion to the time-dependent Schrödinger equation [7]

i
∂|�〉
∂t

= Ĥ |�〉, (2)

where t represents the coordinate time variable, which is also
the dust field [7]. Throughout this study, we work in natural
units h̄ = c = G = kB = 1 with the signature (+,-,-,-).
Using Eq. (2) allows studying the unitary evolution of the
quantum universe.

In 2009, Amemiya and Koike used Eq. (2) (in the proper
time coordinate) to show that the initial singularity of a flat
FRW universe can be avoided by the quantum effect [8].
Other works (see [9,10] and related references therein) have
shown that the singularity can be avoided in canonical quan-
tum cosmology. In 2015, Maeda used Eq. (2) to study the
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evolution of the quantum universe as driven by a cosmolog-
ical constant [11]. By setting the initial state of the universe
as a Gaussian wave packet, the classical trajectory of the uni-
verse (driven by the dark energy) was shown to be consistent
with the evolution of the wave packet [11].

When the total system degree of freedom is large, it is
difficult to study the evolution of Eq. (2). In general, one can
divide the total system into a subsystem plus the environment
[12,13]. The information of the subsystem can be determined
from the reduced density matrix, which has an evolution that
is dictated by the Liouville–von Neumann equation [12,13]

dρ

dt
= −iTrB[Ĥ , ρtot ], (3)

where ρ and ρtot represent the density matrices of the sub-
system and total system, respectively. The trace is taken over
the environment. Strictly solving Eq. (3) is nearly impossible
for usual situations. If coupling between the system and the
environment is sufficiently weak, and the memory time of the
environment is short enough, Eq. (3) can be approximated as
the Born–Markov quantum master equation [12,13], which
is widely used to study open quantum systems [12,13]. If the
interaction Hamiltonian is not small compared to the Hamil-
tonian of the system and the environment, we cannot use the
perturbation approximation and the quantum master equation
is not suitable. In this case, the non-perturbative approach is
needed.

One of the powerful non-perturbative methods is Feyn-
man’s path integral, which also works well in the perturba-
tive regime [14–16]. In the path integral, the time variable
can be a real or imaginary number, which corresponds to the
Lorentz or Euclidean path integrals, respectively. There is no
oscillation problem for the Euclidean path integral, but this is
not suitable for nonequilibrium cases [17]. For the Euclidean
path integral in quantum gravity, there is also the diver-
gence problem as the Euclidean–Einstein–Hilbert action has
no lower bound [18]. Therefore, the Lorentz path integral
has attracted increasing attention [19–49]. For nonequilib-
rium quantum dynamics, the “trajectory” of the time variable
forms a closed contour [50–53]. Thus, it is usually called the
closed real-time path integral (or Schwinger–Keldysh path
integral).

How the quantum universe evolves when the matter field
is heat radiation or non-relativistic particles remains a chal-
lenge. Although the universe can sometimes be simplified as
homogeneous and isotropic, the degrees of the freedom of the
environment are often infinite (the vibrational modes of the
particles are infinite) [54,55]. One can treat spacetime and
the matter field (radiation or massive particles) as the open
system and the environment, respectively [55]. The evolu-
tion of the reduced density matrix corresponding to quantum
spacetime can be considered based on Eq. (3).

In our universe, there are various of matter fields, such
as the scalar field, the vector field, the Dirac field and so on.
For simplicity, one often studies the evolution of the universe
driven by the scalar field. In this simple case, the whole uni-
verse as an isolated system is composed of the spacetime
(gravitational field) and the scalar field. In this work, we are
interested in the dynamics of the spacetime. Thus we can
trace out the degrees of freedom of the scalar field. Or in
another word, we choose the scalar field as the environment.
If the scalar field is massless and in the thermal state, all
scalar field quanta compose a heat bath. If the scalar parti-
cle is massive, we assume that all massive particles are in
the ground state for simplicity, and the particles compose a
Bose–Einstein condensate. We study the quantum evolution
of homogeneous and isotropic spacetime as driven by heat
radiation and the Bose–Einstein condensate. The interaction
Hamiltonian is not small, and the memory time of the radi-
ation is long (details to come). Thus, the quantum master
equation is not suitable, and we use the closed real-time path
integral to study the model.

In this work, we study the evolution of the quantum space-
time by setting the initial state as a Gaussian wave packet.
We show that in different coordinates, the trajectory of the
wave packet is consistent with the classical evolution of the
universe. We find that whatever the form of the matter field
is, this conclusion is always valid. In different scenarios, the
coherence, the absolute quantum fluctuation and the Gibbs
entropy all monotonically increase with time. Trends in vari-
ations of these quantities are similar to each other. We show
that the relative quantum fluctuation decreases with time.
We find that the higher coherence corresponds to the big-
ger absolute quantum fluctuation. For the radiation domi-
nated universe, the higher initial temperature corresponds to
more rapid variations of these quantities. We show that for
a given size of the radiation dominated universe, the lower
temperature corresponds to a more quantum universe. We
also studied the quantum transition of a flat FRW universe.
If the initial spacetime state is a Gaussian wave packet, the
higher radiation temperature promotes the transition from a
small quantum universe into a bigger one. We find that the
minimal coupling of the free massless scalar field with the
flat FRW spacetime gives rise to non-Markovian dynamics.

2 Problem of time in quantum gravity and quantum
cosmology

In general, Einstein’s theory of gravity is defined by the action
[11,56]

S = 1

16π

∫
dx4√−gR + Sm + S∂M. (4)
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The first term in Eq. (4) represents the Einstein–Hilbert
action, which we denote as Sg . The second term repre-
sents the action of the matter field, and the third term is the
Gibbons–Hawking–York surface contribution. Variations in
this action to the metric provide the Einstein equation. The
surface term does not influence the equation of motion, so
neglecting this term is common practice in quantum cosmol-
ogy [32–37,56–59].

Carrying out the 3+1 decomposition and quantizing space-
time and all matter fields provides [1]

Ĥ |�〉 = 0, (5)

Ĥi |�〉 = 0, (6)

where i = 1, 2, 3. Equation (5) is the Wheeler–DeWitt equa-
tion, which is usually taken as the foundation of quantum
gravity, and Eq. (6) is the diffeomorphism constraint (or
momentum constraint). For the case of a homogeneous and
isotropic universe, the diffeomorphism constraint is trivial
[3,60,61].

The right-hand side of the Wheeler–DeWitt equation is
zero, and the eigenvalue of the Hamiltonian operator is zero.
This leads to difficulty understanding the evolution of the
quantum gravitational system, which is the so-called problem
of time in quantum gravity [1,4,5]. One way to resolve this
problem is to divide the total Hamiltonian operator into two
parts [1,4,5]:

Ĥ |�〉 = P̂t |�〉 + ĥt |�〉 = −i
∂|�〉
∂t

+ ĥ(t)|�〉 = 0, (7)

where t is the global time variable and P̂t represents the
conjugate momentum operator of t . Then, the evolution of
the quantum gravitation system is based on the Schrödinger-
like expression of Eq. (7). However, there are other more
complex issues related to this equation, such as the multiple
choice problem, functional evolution problem, and Hilbert
space problem [4,5].

There have been many attempts to resolve the problem of
time [4,5,7,62,63]. To date, no one has been able to gener-
ally overcome these difficulties completely [4]. Nevertheless,
these difficulties can be bypassed for some simple cases. For
a homogeneous and isotropic universe, the Hamiltonian oper-
ator does not depend on the spacetime coordinate. Therefore,
there is no functional evolution problem. If the influence of
cosmological particle production is relatively small, one can
approximately define a unique vacuum, which can simplify
the definition of the inner product. For the multiple-choice
problem, it is unnatural to suppose that there is a privileged
time coordinate. Thus, there is a possibility that several of
these time coordinates are reasonable. However, strictly spec-
ifying this viewpoint is difficult and beyond the scope of this
work. Usually, one chooses the time coordinate that can sim-
plify the calculations.

Brown and Kuchař showed that the dust field can play
the role of the global time variable t in Eq. (7) [6–8,11].
Introducing a dust field gives the total action as [7,11]

S = Sg+Sm+S∂M − 1

2

∫
dx4√−gρ(gμν∂μT∂νT + 1).

(8)

The last term in Eq. (8) is the action of the dust field. Theρ and
T represent the rest-mass density and dust field, respectively
[7,11]. Using the canonical time gauge fixing condition T =
t [7,64] provides the Hamiltonian constraint [7]:

PT + Hg + Hm = 0, (9)

where PT represents both the Hamiltonian and the momen-
tum of the dust field, Hg represents the Hamiltonian of space-
time corresponding to the Einstein–Hilbert action, and Hm

represents the Hamiltonian of the usual matter field. The total
Hamiltonian is equal to zero, which is the requirement of the
generalized covariance principle [1].

Quantizing PT → P̂T = −i∂t transforms Eq. (9) into the
Wheeler–DeWitt equation [8,11]

(P̂T + Ĥg + Ĥm)|�〉 = 0, (10)

or the Liouville–von Neumann equation [12,13]

dρtot
dt

= −i[Ĥg + Ĥm, ρtot ]. (11)

These two equations are equivalent. If knowledge about the
information of the subsystem is solely important, one can
trace out the environment and obtain Eq. (3).

The philosophy hidden behind Eqs. (10) and (11) is that
the global wave function of the universe (spacetime+matter
field+clock/dust field) appears as static. However, if one only
cares about the information of the subsystem, the evolution
of the state related to the subsystem can be observed. This
perspective is commonly adopted by the open quantum sys-
tem community [12,13]. The total system is in the eigenstate
of the total Hamiltonian operator and is static. However, as
there are interactions between the subsystem and environ-
ment, energy flows in or out of the subsystem, and the sub-
system state usually changes with time.

Generally, the clock in any physical theory has no influ-
ence on the system evolution. The clock is a tool to record
changes in time. However, this is not true for Eqs. (10) and
(11). These clocks correspond to a non-zero Hamiltonian PT .
Thus, they influence the evolution of the universe. One can
eliminate this influence in Eqs. (10) and (11) by constraining
that |PT | � |Hm | (combining with Eq. (9), this constraint is
equivalent to |PT | � |Hg|). This constraint implies that

Tr(ρ Ĥ) → 0, (12)

where, Ĥ = Ĥg + Ĥm . This ensures that the clock does
not influence the evolution of the universe (spacetime+matter
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field). The universe can be seen as an isolated system. For any
isolated system, the Hamiltonian is conserved. Therefore, if
the condition of Eq. (12) is satisfied at the initial time it
will always be satisfied at any time. Noted that when we say
“universe,” from now on, we do not include the clock as the
influence of the clock can be eliminated by the condition of
Eq. (12).

For the flat FRW (k = 0) universe, the metric of spacetime
is [65,66]

ds2 = N2dt2 − a2(t)(dx2 + dy2 + dz2), (13)

where a(t) is the scale factor, N = 1 corresponds to the
proper time coordinate, and N = a(t) corresponds to the
conformal time coordinate. It is easily shown that

√−g =
Na3 and the Ricci scalar is [37]

R = 6(N−2a−2ȧ2 + N−2a−1ä − N−3 Ṅa−1ȧ), (14)

where ȧ = da/dt and Ṅ = dN/dt . Thus the Einstein-
Hilbert action becomes

Sg = − 3

8π

∫
dx4N−1aȧ2 + 3

8π

∫
dx4 d

dt
(N−1a2ȧ).

(15)

The second term on the right hand side of Eq. (15) has
no influence on the dynamics and can be canceled by the
Gibbons–Hawking–York surface term. Then the Lagrangian
of spacetime is [55,60]

Lg = − 3

8π
V0N−1aȧ2. (16)

Here, we introduce the definition V0 ≡ ∫
dx3. The physical

meaning ofV0 is the coordinate volume of the space slice. The
V0 is divergent for the flat FRW universe. This will initially
lead to a difficulty for our model, but we can prove (details
to come) that V0 as a global factor is not important and can
be seen as a global conformal factor. That is, any value of V0

corresponds to the same results.
The conjugate momentum of the canonical variable a is

given as

πa = − 3

4π
V0N−1aȧ. (17)

The Poisson bracket between πa and a is {a, πa} = 1. Then,
the Hamiltonian of the spacetime is given as [55]

Hg = − 2π

3V0
Na−1π2

a . (18)

For the quantization, the conjugate momentum πa becomes
−i∂a . In the conformal time coordinate (N = a), the Hamil-
tonian operator of the spacetime is equivalent to a free particle
with one degree of freedom.

Equation (10) is a first order differential equation about the
time variable. Therefore the definition of the inner product

related to the canonical variable a can be simply taken as
[6,11]:

〈 f | g〉 =
∫

da f ∗(a)g(a). (19)

If there exist certain matters, the integral in Eq. (19) should
also be taken over all the degrees of freedom related to these
matters. And if the matters are certain fields with infinite
degrees of freedom, usually the integral measure related to
these degrees of freedom is complicated [67]. In this work,
the matter is a scalar field which the degrees of freedom are
infinite. It is convenient to work in the second quantization
representation. The inner product corresponding to the scalar
field is given in Eq. (29).

It is reasonable to study the evolution of the quantum uni-
verse based on any one of Eqs. (10), (11), and (3). Husain
and Pawlowski [7] noted that the theory of quantum grav-
ity based on Eq. (10) is complete. If we are not interested
about the information of the environment, Eq. (10) reduces
to Eq. (3). Here, Eq. (3) is the fundamental equation in this
work.

3 Hamiltonian of the scalar field in flat (k = 0) FRW
spacetime

As a simple case, a real scalar field plays the role of the
environment. The second quantization form of the Hamilto-
nian operator of the scalar field in Minkowski spacetime is
well-known. However, in curved spacetime, it is difficult to
find a general form of the Hamiltonian in the second quanti-
zation representation (there could be no general form). The
main obstacle is the equation of motion of the scalar field in
curved spacetime being usually very difficult to solve. For
de-Sitter spacetime, the Hamiltonian operator in the particle
number representation was derived in [68,69]. However, this
is not sufficient to study quantum cosmology as the quantum
FRW universe may not be in the de-Sitter spacetime. We use
a method similar to that in [69] to generalize the form of the
Hamiltonian operator obtained in [68,69].

For convenience, we temporarily mark C(t) = a2(t) and
fix N = a. Then, the FRW metric of Eq. (13) becomes

ds2 = C(t)(dt2 − dx2 − dy2 − dz2). (20)

We consider a real massless scalar field in curved spacetime.
The action is [54]

Sφ = 1

2

∫
dx4√−ggμνφ,μφ,ν, (21)

and the Hamiltonian density is

Hφ = 1

2
C(t)

(
φ̇2 − (∂xφ)2 − (∂yφ)2 − (∂zφ)2). (22)
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The equation of motion of the scalar field is [54,69]

�φ = C−2(t)∂t
(
C(t)∂tφ

)− C−1(t)∇2φ = 0. (23)

We formally denote the solution of the equation of motion as
[69]

φ(x, t) =
∑


k

(
a
k�
k(x, t) + a†


k�
∗

k(x, t)

)
, (24)

where a
k is a complex parameter that does not depend on the
spacetime coordinate. As the space slice for FRW (k = 0)
spacetime is flat, �
k(x, t) can be written as [69]

�
k(x, t) = (2π)−
3
2 C− 1

2 (t) f
k(t)e
i 
k·
x . (25)

Bringing Eqs. (24) and (25) into Eq. (23) gives an expression
in which f
k(t) must be satisfied as

f̈
k(t) +
[

k2 + 1

4

(
Ċ

C

)2

− 1

2

C̈

C

]
f
k(t) = 0. (26)

We first consider this case C(t) ∝ tω, where ω is a
real number. Different values of ω represent various space-
times. The ω = −2 represents the de-Sitter spacetime, while
ω = 2 and ω = 4 represent the radiation and non-relativistic
matter dominated FRW spacetimes, respectively. For these
special cases, ω is an integer. In most cases, ω may be a
non-integer. Bringing C(t) ∝ tω into Eq. (26) and defining
Jk(t) ≡ t−1/2 f
k(t) and z ≡ |
k|t provides the Bessel equation
[69]

J
′′
k(z) + 1

z
J

′
k(z) + (1 − ν2

z2 )Jk(z) = 0, (27)

where ν2 = 1
4 (ω − 1)2 and J

′
k(z) = dJk(z)/dz, with ν not

being an integer. The two kinds of Hankel functions (H(1)
ν (z)

and H(2)
ν (z)) are two linearly independent solutions of the

Bessel expression in Eq. (27). Thus, we have

�
k(x, t) =
√

π

2
(2π)−

3
2 C− 1

2 (t)t
1
2 H(2)

ν (kt)ei

k·
x

≡ gk(t)e
i 
k·
x . (28)

Here, we define the function gk(t).
In Eq. (28), we can replace H(2)

ν (z) by H(1)
ν (z), while

H(1)
ν (z) is related to the Bunch–Davies vacuum [54]. Although

different kinds of Hankel functions correspond to various
vacuums, choosing any one of them can lead to similar forms
of the Hamiltonian operator (second quantization represen-
tation) for the scalar field. Thus, we can arbitrarily choose
H(2)

ν (z), as was done in [69]. In fact, in the next section, we
only consider the simple case where the cosmological par-
ticle production is very small and can be neglected. Thus,
differences in the vacuum are not important.

We have not fixed the value of ω. In [69], Feng studied
the special case of ω = −2 for a massive scalar field. In this
case, Eq. (26) has an additional mass term, which increases

the difficulty of solving the equation for ω = −2. This is why
we consider only the massless scalar field here. Carrying out
the quantization for the scalar field and introducing the inner
product gives [69]

〈 f1| f2〉 ≡ i
∫

dx4C(t)δ(t − t0)
[
f ∗
1 ∇t f2 − (∇t f

∗
1 ) f2

]
.

(29)

This is an integral over the Klein–Gordon current on the
Cauchy surface [69]. One can prove the following property
[69]:

[a
k, a
†

k′ ] = δ3(
k − 
k ′

). (30)

We introduce the following definitions to represent the
Hamiltonian operator in the particle number representation
[69]:

εk(t) ≡ (2π)3C(t)
(
ġk(t)ġ

∗
k (t) + k2gk(t)g

∗
k (t)

)
, (31)

�k(t) ≡ (2π)3C(t)
(
ġ2
k (t) + k2g2

k (t)
)
, (32)

ωk(t) ≡
(

ε2
k (t) − �∗

k(t)�k(t)

) 1
2

, (33)

uk(t) ≡
(εk(t) + ωk(t)

2ωk(t)

) 1
2
, (34)

vk(t) ≡ �∗
k(t)

εk(t) + ωk(t)
uk(t), (35)

A
k(t) ≡ uk(t)a
k + vk(t)a
†
−
k, (36)

A†

k(t) ≡ u∗

k(t)a
†

k + v∗

k (t)a−
k . (37)

The physical meaning of ωk(t) is the frequency (energy) of
the scalar particle in the conformal time coordinate. In gen-
eral, the frequency of the particle on curved spacetime is time-
dependent. The A†


k(t) and A
k(t) represent the creation and
annihilation operators of the scalar particles, respectively.
Equations (36) and (37) are the Bogolyubov transformation
where the Bogolyubov coefficients are uk(t) and vk(t). For
some special cases where �k(t) → 0, the a†


k and a
k also
represent the creation and annihilation operators of the scalar
particles, respectively [68]. However for the general cases, a†


k
( a
k) can not be interpreted as the creation (annihilation) oper-
ator of the scalar particles [68]. For convenience, we often
neglect the operator hat. The reader can easily distinguish
what the c-number and q-number are based on the context.

Using Eqs. (22), (24), (25), and (28)–(37) can transform
the Hamiltonian of the scalar field to

Hφ(t) ≡
∫

dx3Hφ =
∑


k
|
k|(A†


k(t)A
k(t) + Vk(t)
)
, (38)

where

Vk(t) ≡ 1

2

(
uk(t)u

∗
k(t) − vk(t)v

∗
k (t)

)
. (39)
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The A†

k(t)A
k(t) is the particle number operator and Vk(t)

represents the vacuum energy. Equation (38) shows that the
particle number and vacuum energy can change over time,
which may lead to cosmological particle production. The
calculation process for this Hamiltonian operator is complex,
and the main steps are described in Appendix A. For the
special case of ω = −2, a similar derivation can be found in
[69].

We note out that the Hamiltonian in Eq. (38) corresponds
to the metric in Eq. (20). For a more general form of the
FRW metric in Eq. (13), the form of the Hamiltonian in
Eq. (38) is incorrect. If we rescale the coordinate time vari-
able, dt → a

N dt , the metric in Eq. (20) changes into Eq. (13).
In addition, the eigenvalue of the Hamiltonian operator rep-
resents the energy of the matter. In quantum mechanics, the
particle energy is proportional to the frequency, and kμxμ

is an invariant scalar under reparametrization. Thus, rescal-
ing the coordinate time also requires rescaling the frequency
ω
k → N

a ω
k . Therefore, we must also rescale the Hamilto-
nian H → N

a H . This gives

Hφ(t) = N
a

∑

k

|
k|(A†

k(t)A
k(t) + Vk(t)

)
. (40)

This Hamiltonian operator corresponds to the metric in
Eq. (13). The lapse function N(t) can be an arbitrary function
of the time variable t .

When the quantum evolution of the universe is domi-
nated by heat radiation, the vacuum energy of the scalar
field can be neglected. We only consider the simple case
where the cosmological particle production is small and can
be neglected. For a radiation-dominated universe, the zero
point of the effective frequency of the scalar particle is at
the singular point of spacetime. The scalar particle cannot go
across the Stokes line while the universe is expanding. Thus,
even though the spacetime background is not static, scalar
particles are not produced from the vacuum state (see [70]
for more details). Under these approximations, we can define
a unique vacuum, and the particle number operator does not
change over time. Then, the Hamiltonian operator in Eq. (40)
becomes

Hφ = N
a

∑

k

|
k|A†

k A
k . (41)

The physical meaning of each part of the Hamiltonian
operator of Eq. (41) is clear. The A†


k A
k is the particle num-

ber operator related to the momentum 
k. The N
a is the red shift

factor, which may sometimes be a blue shift. However, we
use the red shift as the unified term for simplicity. Equation
(41) shows that the only influence of the FRW (k = 0) space-
time for the scalar particle is a red shift. In particular, N = a
can represent both the Minkowski spacetime and FRW space-
time in conformal time coordinates. When N = a, Eq. (41)

reduces to the Hamiltonian of the scalar field in the flat space-
time when neglecting the vacuum energy.

When deducing the Hamiltonian operator of Eq. (40), we
assume C(t) ∝ tω. This includes infinitely homogeneous
and isotropic spacetimes, but not all. In fact, this form of
C(t) ∝ tω does not include all FRW (k=0) spacetimes. Then,
one may ask if the Hamiltonian of Eq. (41) is correct for any
kinds of FRW (k=0) spacetimes (The cosmological parti-
cle production can be neglected). Our view is that Eq. (41)
should be reasonable for any kind of flat FRW spacetime (The
cosmological particle production can be neglected). Equa-
tion (13) shows that the only possible variation for the FRW
spacetime is expansion or contraction, where the scale fac-
tor a(t) is a unique variable. Neglecting the cosmological
particle production indicates that the only impact for this
kind of variation on the scalar particle is from red shifting.
This can be quantified by the factor N

a , which is the only
difference between the flat FRW spacetime and Minkowski
spacetime. Thus, the Hamiltonian of Eq. (41) should be rea-
sonable in any flat FRW spacetime. Therefore, the form of
Eq. (41) should be suitable to study quantum cosmology. All
our specific examples in this paper support this point.

Taking the continuous limit and replacing the summation
in Eq. (41) with an integral gives

Hφ = N
a

V0

(2π)3

∫
d
k3|
k|A†


k A
k . (42)

If the scalar field plays the role of the environment, the total
Hamiltonian of the universe is

Htot = − 3

8π
V0N−1aȧ2 + N

a

V0

(2π)3

∫
d
k3|
k|A†


k A
k . (43)

Before quantization, Htot = 0 is equivalent to the Friedmann
equation. The V0 is a trivial global factor that can be elim-
inated and does not influence the results. If we rescale the
spacetime coordinate by a global parameter, xμ → x

′
μ =

λxμ, then V0 → V
′
0 = λ3V0. Here, V

′
0 represents the coor-

dinate volume related to the coordinate x
′
μ. The relationship

between λ and V
′
0 is monotonic with a one-to-one correspon-

dence. Thus, V0 can also be seen as a global conformal factor.
Although V0 does not impact any results, we still retain V0 in
our formulas and take it as a finite value to show the global
scaling symmetry (this treatment is often used by different
researchers in quantum cosmology [8,11,60]). It is shown in
Eq. (43) that the interaction Hamiltonian is not small, and no
term can be viewed as small. Therefore, although gravity is
the weakest force, for certain cases, we cannot use the Born–
Markov quantum master equation to describe its dynamics.
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4 Heat radiation dominated evolution of the quantum
universe

In the proper time coordinate (N = 1), the metric of the flat
FRW spacetime is

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2). (44)

From Eqs. (18) and (41), the Hamiltonian operator of the
spacetime and the real scalar field are

Ĥg = −π

3V0

(
1

a
π̂2
a + π̂2

a
1

a

)
, (45)

Ĥφ = 1

a

∑

k

|
k|A†

k A
k . (46)

In Eq. (45), we use symmetrized factor ordering to keep the
Hamiltonian operator as Hermitian.

When the scalar field plays the role of the environment,
Eq. (3) can be written in another equivalent form as [13]

ρ(t) = Trφ
(
U (t, 0)ρtot (0)U †(t, 0)

)
. (47)

Here, we trace out all the degrees of freedom corresponding
to the scalar field. The ρ(t) represents the reduced density
matrix related to spacetime, ρtot (0) represents the initial den-
sity matrix of the total system (spacetime+scalar field), and
U (t, 0) is the time evolution operator [13],

U (t, 0) = Texp

{
−i

∫ t

0
ds
(
Ĥg(s) + Ĥφ(s)

)}
. (48)

The T denotes the chronological time ordering operator.
As U †(t, 0) = U (0, t), the path integral representation of
Eq. (47) is usually called the closed real-time path integral.
In the Schrödinger picture, Ĥg and Ĥφ are time indepen-
dent. The infinitesimal time evolution operator U (δt, 0) can
be written as

U (δt, 0) = exp
{− i(Ĥg + Ĥφ)δt

}
= exp(−i Ĥgδt)exp(−i Ĥφδt) + o(δt2). (49)

Here, we use the first-order Suzuki–Trotter decomposition
[71].

Bringing Eq. (49) into Eq. (47), discretizing the time vari-
able (t → t1, t2, . . . , tN ) and inserting

∫
dan|an〉〈an| = 1 at

each time slice gives

ρ(a+
N , a−

N ) =
∫

da±
0

∫
da±

1 · · ·

×
∫

da±
N−1Trφ

{〈a+
N |e−i Ĥgδt e−i Ĥφδt |a+

N−1〉

×〈a+
N−1|e−i Ĥgδt e−i Ĥφδt |a+

N−2〉 · · ·
×〈a+

0 |ρtot (0)|a−
0 〉〈a−

0 |ei Ĥgδt ei Ĥφδt |a−
1 〉 · · ·

×〈a−
N−1|ei Ĥgδt ei Ĥφδt |a−

N 〉}, (50)

where ρ(a+
N , a−

N ) ≡ 〈a+
N |ρ(tN )|a−

N 〉. Note that we use N to
represent the lapse function and N to represent the number of
the discretized time points. In Eq. (50),

∫
da±

i is the abbre-
viation of

∫
da+

i da
−
i , and we use tN to represent the final

time point. For simplicity, we consider the case where there
is no entanglement between spacetime and the scalar field at
the initial time. Then, the initial state of the total system can
be written as [47–49,55]

ρtot (0) = ρ(0) ⊗ ρφ(0), (51)

where ρ(0) and ρφ(0) represent the density matrix of space-
time and the scalar field at the initial time, respectively.
This condition is used extensively for open quantum sys-
tems [12,13]. If the initial state cannot be written in the form
of Eq. (51), Eq. (47) is difficult to solve for the usual case.

Using the condition of Eq. (51), Eq. (50) can be written in
the more compact form of

ρ(a+
N , a−

N )

=
∫

da±
0

∫
da±

1 · · ·
∫

da±
N−1〈a+

N |e−i Ĥgδt |a+
N−1〉

×〈a+
N−1|e−i Ĥgδt |a+

N−2〉 · · · 〈a+
0 |ρ(0)|a−

0 〉
×〈a−

0 |ei Ĥgδt |a−
1 〉 · · · 〈a−

N−1|ei Ĥgδt |a−
N 〉IrN, (52)

where

IrN ≡ Trφ
{
e−i Ĥφ(a+

N )δt e−i Ĥφ(a+
N−1)δt · · · e−i Ĥφ(a+

1 )δt

×ρφ(0)ei Ĥφ(a−
1 )δt ei Ĥφ(a−

2 )δt · · · ei Ĥφ(a−
N )δt}. (53)

This is the so-called influence functional [40–45,47–49,72–
75], which includes all the influences of the environment
on the system. If there are no interactions between the sys-
tem and the environment, the influence functional is trivially
equal to one.

Recalling that for a particle (one degree of freedom),
〈x |p〉 = 1√

2π
eipx . This indicates that the coordinate and

the momentum cannot be determined simultaneously. Simi-
larly for spacetime, 〈a|πa〉 = 1√

2π
eiπaa . Thus, one can easily

calculate the following matrix elements:

〈a+
n+1|e−i Ĥgδt |a+

n 〉 = exp

{−3iV0a
+
n+1a

+
n (a+

n+1 − a+
n )2

4πδt (a+
n+1 + a+

n )

}

× 1

2π

(
3iV0a

+
n+1a

+
n

δt (a+
n+1 + a+

n )

) 1
2

, (54)

〈a−
n |ei Ĥgδt |a−

n+1〉 = exp

{
3iV0a

−
n+1a

−
n (a−

n+1 − a−
n )2

4πδt (a−
n+1 + a−

n )

}

× 1

2π

(−3iV0a
−
n+1a

−
n

δt (a−
n+1 + a−

n )

) 1
2

. (55)

Noting that for the classical evolution of the FRW universe
dominated by heat radiation, aT does not change with time:
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aT = a0T0 [65,76]. The a0 and T0 represent the scale factor
and temperature of the radiation at the initial time, respec-
tively. Assuming at the initial time, the density matrix of the
scalar field is given as [12]

ρφ(0) =
∏
j

exp

(−k j
α0

A†
k j
Ak j

)(
1 − exp

(−k j
α0

))
, (56)

where α0 is an arbitrary parameter. If spacetime is classical,
α0 = a0T0 (in the proper time coordinate) and the density
matrix of Eq. (56) represents an equilibrium state with tem-
perature T0. For quantum spacetime, the value of the scale
factor can be indefinite. Thus, the temperature of the heat
bath may also be indefinite. The relationship between α0 and
the Hamiltonian of the scalar field is

Trφ
(
aĤφρφ(0)

) = π2

30
V0α

4
0 ≡ χ0. (57)

We introduce a parameter χ0 to simplify our formulas later.
When α0 is equal to zero, the average value of the Hamilto-
nian operator of the scalar field is zero.

Combining Eqs. (46), (53), and (56) gives an influence
functional of

IrN = exp

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V0π
2α3

0

90 ·
[

1 + iα0δt
∑N

n=1(
1
a+
n

− 1
a−
n

)

]3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (58)

The main steps in the derivations of the influence functional
are summarized in Appendix B. This influence functional
contains all the influences of the heat scalar field on quantum
spacetime. When α0 → 0, the influence functional is IrN →
1. This is reasonable as α0 → 0 means that there are no
radiation particles.

If we introduce the universal dynamical map J to the
reduced density matrix such that ρ(t2) = J (t2, t1)ρ(t1)
[73,77], then Eqs. (54), (55), and (58) readily show that
J (t3, t1) = J (t3, t2)J (t2, t1) (t1 ≤ t2 ≤ t3). That is,
the map J does not satisfy the semigroup property. This
indicates that the memory time of the environment is long
and non-Markovian dynamics are presented in the evolution
of the quantum universe.

It is difficult to handle the integral in Eq. (52) based on the
influence functional of Eq. (58). We consider the following
simple situation:
∣∣∣∣∣iα0δt

N∑
n=1

(
1

a+
n

− 1

a−
n

)∣∣∣∣∣ � 1. (59)

Semiclassically, this condition indicates that the temperature
of the radiation is far less than the Planck temperature. In
this case, using (1 + x)3 = 1 + 3x + o(x2) simplifies the
influence functional of Eq. (58) as

IrN = exp

{
V0

90
π2α3

0

[
1 − 3iα0δt

N∑
n=1

(
1

a+
n

− 1

a−
n

)]}
. (60)

Bringing Eqs. (54), (55), and (60) into Eq. (52) allows
writting the elements of the reduced density matrix as

ρ(a+
N , a−

N )

= N

∫
da±

0

∫
da±

1 · · ·

×
∫

da±
N−1〈a+

0 |ρ(0)|a−
0 〉

N∏
n=1

(
3iV0a

+
n−1a

+
n

δt (a+
n−1 + a+

n )

) 1
2

×exp

{
N∑

n=1

[−3iV0a
+
n−1a

+
n (a+

n−1 − a+
n )2

4πδt (a+
n−1 + a+

n )
− iχ0δt

1

a+
n

]}

×
N∏

n=1

(−3iV0a
−
n−1a

−
n

δt (a−
n−1 + a−

n )

) 1
2

×exp

{
N∑

n=1

[
3iV0a

−
n−1a

−
n (a−

n−1 − a−
n )2

4πδt (a−
n−1 + a−

n )
+ iχ0δt

1

a−
n

]}
,

(61)

where, N represents the normalized constant. This may dif-
fer for various equations, but we useN as the unified symbol.
In addition, when δt → 0,

a±
n a

±
n−1

a±
n + a±

n−1

→ a±
n

2
. (62)

Using this equation, Eq. (61) can be simplified as

ρ(a+
N , a−

N ) = N

∫
da±

0

∫
da±

1 · · ·
∫

da±
N−1

×〈a+
0 |ρ(0)|a−

0 〉
N∏

n=1

(
3iV0a+

n

2δt

) 1
2

×
N∏

n=1

(−3iV0a−
n

2δt

) 1
2

· exp{Ir+ + Ir−}, (63)

where,

Ir± ≡
N∑

n=1

[∓3iV0a±
n (a±

n−1 − a±
n )2

8πδt
∓ iχ0δt

1

a±
n

]
. (64)

The Ir+ and Ir− are functions with N -1 variables as Ir± =
Ir±(a±

1 , a±
2 , . . . , a±

N−1). For convenience, we introduced the
abbreviation Ir± to represent Ir+ or Ir− (similarly for a±

n ).
In conventional path integral quantum mechanics (for iso-

lated systems), any path in the phase space has the same
amplitude. Equations (61) and (63) show that in quantum
gravity, the amplitudes of different paths in phase space
may differ. This is distinct from the usual unitary quantum
mechanics. The form of the Hamiltonian operator of Eq. (45)
gives rise to this difference. There is a coupling term between
the scale factor and momentum, which leads to the different
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amplitudes for various paths. Usually (for isolated systems),
if there is no coupling term between the canonical variable
and the conjugate momentum, all paths in the phase space
have the same amplitude. In addition, the forms of the Hamil-
tonian operators in Eqs. (45) and (46) give rise to the energy
flux between the scalar field and spacetime. An interesting
question that goes beyond the scope of this work is whether
there is an explicit relationship between the energy flux and
the different amplitudes for different paths.

Taking the continuous limit (N → ∞ or δt = tN/N →
0), the dimension of the integral in Eq. (63) becomes infinity.
And iIr+ (or −iIr−) becomes the action of the total system.
That is

lim
N→∞ Ir± =

∫ tN

0
dt

[
∓3iV0a±(t)

(
ȧ±(t))2

8π
∓ iχ0

a±(t)

]
.

(65)

Thus, iIr+ or −iIr− is the discretized version of the action
Sg + Sφ . The classical trajectory corresponding to lim

N→∞ Ir±
is

a±
cl (t) =

(
(a±

0 )2 + (
(a±

N )2 − (a±
0 )2) t

tN

) 1
2

. (66)

The steepest descent contour approximation provides [78]
∫ b

a
g(s)ezh(s)ds ≈ i

√
2π

σ z
g(s0)exp(zh(s0) − i

θ0

2
), (67)

where, s0 is the saddle point defined by ∂h(s0)/∂s = 0. The
σ and θ0 are defined by ∂2h(s0)/∂s2 = σeiθ0 . Bringing Eq.
(66) into Eq. (65), and using the steepest descent contour
approximation of Eq. (67), then the continuous limit of Eq.
(63) (δt → 0) becomes

ρ(a+
N , a−

N )

≈ N (a+
Na

−
N )

1
2

∫
da±

0 〈a+
0 |ρ(0)|a−

0 〉exp

{−2iχ0tN
a+
N + a+

0

− 3iV0

16π tN
(a+

N + a+
0 )(a+

N − a+
0 )2 + 2iχ0tN

a−
N + a−

0

− 3iV0

16π tN
(a−

N + a−
0 )(a−

N − a−
0 )2

}
. (68)

It is assumed that the initial reduced density matrix of
spacetime is given as

ρ(a+
0 , a−

0 ) = 1

(πα2)
1
2

exp

{
− i pa(a

+
0 − a−

0 )

− 1

2α2

(
(a+

0 )2 + (a−
0 )2)}, (69)

where ρ(a±
0 , 0) is a Gaussian wave packet. The pa and α

are two arbitrary parameters where pa represents the initial

momentum of spacetime and α measures the initial fluctua-
tions of spacetime. One can show that the initial uncertainty
of the scale factor is equal to α/

√
2. Bringing Eq. (69) into

Eq. (68) and introducing the approximation

1

a±
N + a±

0

≈ 1

a±
N

[
1 − a±

0

a±
N

+ o

((
a±

0

a±
N

)2)]
, (70)

one can complete the integrals in Eq. (68), which gives

ρ(a+
N , a−

N ) = N · (a+
N )

1
2

( 1
2α2 − iξ1a

+
N

) 1
2

· (a−
N )

1
2

( 1
2α2 + iξ1a

−
N

) 1
2

×exp

{
iξ1

[
(a−

N )3 − (a+
N )3]+ 2iχ0tN

×
(

1

a−
N

− 1

a+
N

)
−

(pa − ξ1(a+
N )2 − 2χ0tN

(a+
N )2 )2

1
α4 + 4ξ2

1 (a+
N )2

×
(

1

2α2 + iξ1a
+
N

)
−

(pa − ξ1(a−
N )2 − 2χ0tN

(a−
N )2 )2

1
α4 + 4ξ2

1 (a−
N )2

×
(

1

2α2 − iξ1a
−
N

)}
. (71)

Here,

ξ1 ≡ 3V0

16π tN
. (72)

Equation (71) gives the reduced density matrix of spacetime
at time tN , which can provide all the information about quan-
tum spacetime. The non-diagonal elements of the reduced
density matrix of spacetime contain the information of coher-
ence [79], and the diagonal elements represent the probability
distribution. Denoting ρ(a, tN ) ≡ 〈a|ρ(tN )|a〉 as the diago-
nal element (a+

N = a−
N = a),

ρ(a, tN ) =
N |a| · exp

{−(pa− 2χ0 tN
a2 −ξ1a2)2

1
α2 +4ξ2

1 α2a2

}

(
1
α2 + 4ξ2

1 α2a2

) 1
2

, (73)

where ρ(a, tN ) represents the probability distribution of the
scale factor at time tN . The size of the quantum universe may
be uncertain at any given moment.

Combining Eqs. (45) and (69) gives

Tr(π̂2
aρ(0)) = p2

a + 1

2α2 . (74)

In addition, the condition of Eq. (12) gives the constraint

p2
a + 1

2α2 = 3

2π
V0χ0, (75)

which can reduce one of the independent parameters.
Variations in the probability distribution are shown in

Fig. 1. In this figure, the different colors represent various
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Fig. 1 Variations in the probability distribution of the scale factor. The
horizontal and vertical axes represent the scale factor and time variable,
respectively. The black curve is the classical trajectory of the universe
driven by heat radiation. The parameters are taken as: pa = 10, α = 0.5,
V0 = 200

probabilities. The black curve represents the classical tra-
jectory of the universe as driven by heat radiation (this tra-
jectory can be obtained by solving the classical Friedmann
equation where matter is the heat radiation). One can infer
that as t → ∞, the average value of the scale factor will
approach infinity. The evolution of the wave packet is con-
sistent with the classical trajectory, which is similar to the
case of a free particle. If the free particle is described by a
Gaussian wave packet, the trajectory of the wave packet is
consistent with the classical evolution of the free particle.
Figure 2 is the three-dimensional representation for the evo-
lution of the wave packet. This figure clearly shows that the
wave packet is dispersed with time. Figure 3 shows that the
average value of the scale factor (〈a〉 = Tr(aρ)) increases
with time. Classically, α0 = aT does not change with time;
thus, as the classical universe grows bigger, the temperature
of the radiation decreases. Semi-classically, it is natural to
assume that α0 ∼ Tr(aρ) ·T . Therefore, as the average scale
factor increases, it is reasonable to expect the temperature of
the radiation to decrease.

Coherence is an important feature of quantum systems.
The process of decoherence can be viewed as a decrease in
coherence. The coherence is defined by [79]

Co ≡
∑
i = j

|ρi j | =
∑
i, j

|ρi j | −
∑
i

|ρi i |. (76)

The information of coherence is contained by the non-
diagonal elements of the reduced density matrix. Figure 4a
shows variations in the coherence with time, which mono-
tonic increase over time. Figure 5 shows that the bigger the
universe is (measured by the average value of the scale factor
〈a〉), the bigger the coherence is. This indicates that the small

Fig. 2 Three-dimensional graphic for the evolution of the wave packet.
The parameters are taken as: pa = 10, α = 0.5, V0 = 200

Fig. 3 Variations in the average value of the scale factor (〈a〉). The
horizontal and vertical axes represent the time variable and 〈a〉, respec-
tively. The parameters are taken as: pa = 10, α = 0.5, V0 = 200

quantum universe does not decohere to the classical universe.
Figures 4b and 6 show that variations in the Gibbs entropy
(defined by SG = −∑

i ρi i lnρi i ) and the variance (defined
by �a = √〈a2〉 − 〈a〉2) have similar trends as the coher-
ence. The variance measures the absolute value of the quan-
tum fluctuations. Thus Fig. 6 shows that the absolute quantum
fluctuations monotonically increase with time. However, the
relative quantum fluctuation (defined as �a/〈a〉) decreases
with time, as shown in Fig. 7. Figure 7 shows that the varia-
tion rate of the relative quantum fluctuation at first is fast and
then gradually becomes slow. Figure 8 shows that the larger
absolute quantum fluctuations are associated with the higher
coherence. Smaller relative quantum fluctuations show the
characteristics of the evolution of the Gaussian-like quan-
tum state. For Gaussian distribution, the relative fluctuations
are small since the distribution decays exponentially fast.
This leads to the smaller relative fluctuations. Therefore, one
can use the average or expectation values and the second
order fluctuations to characterize the whole system. On the
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Fig. 4 Variations in the
coherence and Gibbs entropy.
The horizontal axis for these
two figures represents the time
variable. The vertical axis
represents the a coherence and b
Gibbs entropy. The parameters
are taken as: α = 0.5, V0 = 200

Fig. 5 Variations in the coherence versus the average value of the scale
factor 〈a〉. The horizontal and vertical axes represent 〈a〉 and coherence,
respectively. The parameters are taken as: α = 0.5, V0 = 200

Fig. 6 Variations in the variance. The horizontal and vertical axes rep-
resent the time variable and variance, respectively. The parameters are
taken as: α = 0.5, V0 = 200

other hand, if the evolution follows other distributions such
as streched exponential or power law, the tail part of the
distribution can be fatty and the rare fluctuation events can
become important. In such cases, the relative fluctuations are
not small but significant. The average or expectation values
can no longer be representative. The whole statistical distri-
bution is necessary to characterize the system dynamics.

Figures 3, 4a, b and 6 show that when increasing the
parameter pa , variations in these quantities (〈a〉, Co, SG and

Fig. 7 Variations in the relative quantum fluctuation (�a/〈a〉). The
horizontal and vertical axes represent the time variable and �a/〈a〉,
respectively. The parameters are taken as: α = 0.5, V0 = 200

Fig. 8 Variations in the quantum fluctuation versus the coherence. The
horizontal axis represents the coherence. The parameters are taken as:
pa = 10, α = 0.5, V0 = 200

�a) are more rapid. Equation (75) shows that if we increase
the parameter pa (and fixing the parameters α and V0), then
the parameter α0 will be increased. Semiclassically, increas-
ing α0 means increasing the temperature of the initial state
of the universe (χ0 ∼ α0 and α0 ∼ 〈a〉T ). Thus these figures
show that the higher initial universe temperature is related to
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more rapid evolution of these quantities. In addition, Fig. 5
shows that if we fix the average value of the scale factor
and decrease the parameter pa , then the coherence increases.
Thus for a given size of the universe, the lower temperature
corresponds to a more quantum universe.

To sum up, in this section, we studied the evolution of
the heat radiation dominated quantum universe in the proper
time coordinate. The dynamical information of the quantum
spacetime is included in the reduced density matrix. The diag-
onal elements of the reduced density matrix show that the
evolution of the quantum universe described by the wave
packet is consistent with the classical evolution trajectory of
the universe. And the non-diagonal elements of the reduced
density matrix show that the coherence increases with time.
The variations in the Gibbs entropy and the absolute quantum
fluctuation have similar trends as the coherence. This means
that the small quantum universe can grow up to a bigger one,
yet the bigger universe still maintains important quantum
characteristics such as the coherence in our model. In order
to obtain a classical universe from the initial quantum state,
more complicated models are needed.

5 Non-relativistic matter dominated evolution of the
quantum universe

We assume that there are Nm particles with mass m that all
have the same properties. If these particles are spin-0 and
charge-0, they can be viewed as the quanta of a real massive
scalar field. All these particles compose a perfect isentropic
fluid [80]. Its Hamiltonian operator is [80]

Ĥφ = V0NNmm. (77)

We introduce the coordinate volume V0 from the perspective
of quantum field theory [see Eq. (79)]. The factorV0 is needed
to keep the entire system with global scaling symmetry. The
Hamiltonian operator in Eq. (77) can also be interpreted as the
Hamiltonian of a Bose–Einstein condensate. This condensate
is composed of Nm real scalar particles with a rest mass m.
All particles are in the ground state and the kinetic energy
can be neglected.

The Hamiltonian operator in Eq. (77) can also be derived
by assuming that the Hamiltonian operator in Eq. (41) can
be generalized for the case of the massive scalar field. The
Hamiltonian then becomes

Ĥφ = N
∑


k

( |
k|2
a2 + m2

) 1
2

A†

k A
k . (78)

When m → 0, this Hamiltonian operator becomes that of
Eq. (41). For the case N = a, the Hamiltonian operator of
Eq. (78) is consistent with that in [68,69]. In another case
N = 1, Eq. (78) is consistent with the Hamiltonian operator

in [55]. Thus, the form of the Hamiltonian operator of Eq. (78)
should be rational despite the lack of an exact proof. For a
large rest mass, the Hamiltonian operator in Eq. (78) becomes

Ĥφ = Nm
∑


k
A†


k A
k = Nm
V0

(2π)3

∫
d
k3A†


k A
k . (79)

The particle number for non-relativistic particles is usually
conserved. If the particle number is Nm (Nm ∝ ∫

d
k3A†

k A
k)

and all particles are in the ground state, the Hamiltonian
operator of Eq. (79) reduces to the Hamiltonian operator of
Eq. (77).

For the case where the universe is dominated by non-
relativistic matter, the total Hamiltonian operator becomes

Ĥtot = Ĥg + Ĥφ = −π

3V0
N
(

1

a
π̂2
a + π̂2

a
1

a

)
+ V0NNmm.

(80)

Solving Htot = 0 gives the classical evolution trajectory of
the universe. In the proper time coordinate (N = 1), a(t) ∝
t

2
3 [65]. In the conformal time coordinate (N = a),a(t) ∝ t2.

These results strongly indicate the Hamiltonian operator in
Eq. (77) is reasonable.

In the proper time coordinate, the total Hamiltonian oper-
ator is

Ĥtot = Ĥg + Ĥφ = −π

3V0

(
1

a
π̂2
a + π̂2

a
1

a

)
+ V0Nmm. (81)

In Eq. (81), Ĥφ = V0Nmm. Bringing Ĥφ into the definition
of influence functional of Eq. (53), we have

ImN = Trφ
{
e−iV0mNmδt · · · e−iV0mNmδt

×ρφ(0)eiV0mNmδt · · · eiV0mNmδt}. (82)

Here, we use ImN to represent the influence functional in
the case of the non-relativistic particles dominated universe.
Using Tr(ABC) = Tr(CAB) , one can show that the influence
functional is equal to one. Assuming the initial state of the
total system can be written as ρtot (0) = ρ(0)⊗ρφ(0), similar
to Eq. (52), we have

ρ(a+
N , a−

N ) =
∫

da±
0

∫
da±

1 · · ·
∫

da±
N−1〈a+

N |e−i Ĥgδt |a+
N−1〉

×〈a+
N−1|e−i Ĥgδt |a+

N−2〉 · · · 〈a+
0 |ρ(0)|a−

0 〉
×〈a−

0 |ei Ĥgδt |a−
1 〉 · · · 〈a−

N−1|ei Ĥgδt |a−
N 〉, (83)

where 〈a+
n+1|e−i Ĥgδt |a+

n 〉 and 〈a−
n |ei Ĥgδt |a−

n+1〉 are the same
as in Eqs. (54) and (55), respectively. Bringing Eqs. (54) and
(55) into Eq. (83), and using the approximation in Eq. (62)
gives
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ρ(a+
N , a−

N ) = N

∫
da±

0

∫
da±

1 · · ·
∫

da±
N−1

×〈a+
0 |ρ(0)|a−

0 〉
N∏

n=1

√
3iV0a

+
n

2δt

×
N∏

n=1

√
−3iV0a

−
n

2δt
exp{Im+ + Im−}, (84)

where,

Im± ≡
N∑

n=1

[∓3iV0a±
n (a±

n−1 − a±
n )2

8πδt

]
, (85)

If χ0 = 0, Eq. (64) is reduced to Eq. (85). Taking the
continuous limit, iIm+ (or −iIm−) in Eq. (85) provides the
action of spacetime defined by the Hamiltonian of Eq. (45).
That is,

lim
N→∞ Im± =

∫ tN

0
dt

[∓3iV0a±(t)
(
ȧ±(t)

)2

8π

]
. (86)

The classical trajectory corresponding to lim
N→∞ Im± is

a±
cl (t) =

(
(a±

0 )
3
2 + (

(a±
N )

3
2 − (a±

0 )
3
2
) t

tN

) 2
3

. (87)

Expanding limN→∞ Im± in Eq. (86) around the classical
trajectory in Eq. (87), and using the steepest descent contour
approximation of Eq. (67) allows solving the integrals in
Eq. (84) (taking the continuous limit N → ∞) over the
variables (a±

1 , a±
1 , . . . , a±

N−1) to give

ρ(a+
N , a−

N ) = N (a+
Na

−
N )

1
2

∫
da±

0 〈a+
0 |ρ(0)|a−

0 〉

×exp

{
− iV0

6π tN
((a+

N )
3
2 − (a+

0 )
3
2 )2

+ iV0

6π tN
((a−

N )
3
2 − (a−

0 )
3
2 )2

}
. (88)

If there is no entanglement between quantum spacetime
and the non-relativistic particles at the initial time, then
the initial density matrix of the universe can be written as
ρtot (0) = ρ(0) ⊗ ρφ(0). For simplicity, The initial reduced
density matrix ρ(0) is chosen as

ρ(a+
0 , a−

0 ) = (a+
0 )

1
2 (a−

0 )
1
2 exp

{
− i pa

[
(a+

0 )
3
2

−(a−
0 )

3
2
]− 1

2α2

[
(a+

0 )3 + (a−
0 )3]}. (89)

Bringing Eq. (89) into Eq. (88), one can complete the inte-
grals over a±

0 in Eq. (88). This gives

ρ(a+
N , a−

N ) = N · (a+
N )

1
2

( 1
2α2 + iξ2

) 1
2

· (a−
N )

1
2

( 1
2α2 − iξ2

) 1
2

exp

{
iξ2

×[(a−
N )3 − (a+

N )3]− (pa − 2ξ2(a
+
N )

3
2 )2

1
α4 + 4ξ2

2

×
(

1

2α2 − iξ2

)
− (pa − 2ξ2(a

−
N )

3
2 )2

1
α4 + 4ξ2

2

×
(

1

2α2 + iξ2

)}
, (90)

where

ξ2 = V0

6π tN
. (91)

Equation (90) provides the diagonal elements of the reduced
density matrix (a+

N = a−
N = a) as

ρ(a, t) = N |a|( 1
α2 + 4α2ξ2

2

) 1
2

exp

{−(pa − 2ξ2a
3
2 )2

1
α2 + 4α2ξ2

2

}
. (92)

In addition, one noted that the classical trajectory of the non-
relativistic particles dominated universe (in the proper time
coordinate) can also be written as

a(t) = η1
(
t + (a(0))

3
2

η
3
2
1

) 2
3 . (93)

The parameter η1 is

η1 = (6πmNm)
1
3 . (94)

The evolution of the diagonal element of the reduced den-
sity matrix (representing the probability distribution of the
scale factor) are shown in Fig. 9. In this figure, the differ-
ent colors represent the various diagonal elements ρ(a, t)
in Eq. (92). The black curve represents the classical trajec-
tory of the universe driven by non-relativistic matter. Figure 9

Fig. 9 Evolution of the probability distribution of the scale factor. The
horizontal axis represents the scale factor, and the vertical axis repre-
sents the time variable. The black curve is the classical trajectory of the
universe driven by non-relativistic particles. The parameters are taken
as: pa = 5, α = 0.5, V0 = 200, mNm = 3πp2

a/(2V
2
0 )
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Fig. 10 Three-dimensional graphic for the evolution of the wave
packet. The parameters are taken as: pa = 5, α = 0.5, V0 = 200

shows that the classical evolution of the universe is consistent
with the trajectory of the wave packet. As time progresses,
the wave packet evolves to where the scale factor becomes
larger, which indicates that the universe grows. Figure 10
is the three-dimensional plot for the evolution of the wave
packet. This figure shows that the wave packet is dispersed
with time. Noted that the condition (12) can give rise to a
constraint among pa , α and V0mNm . However, it is not very
easy to analytically exactly solve the condition (12) in this
case. Our numerical simulations indicate that this constraint
can be approximately taken as mNm = 3πp2

a/(2V
2
0 ).

Figure 11a shows the variations in the coherence, which
increase with time. Figure 12 shows that a bigger universe
is associated with a bigger coherence. Therefore, the small
quantum universe does not grow up to a classical one. Varia-
tions of the Gibbs entropy and the absolute quantum fluctu-
ation are shown in Figs. 11b and 13, respectively. These two
figures show that both the Gibbs entropy and the absolute
quantum fluctuation increase with time. However, Fig. 14
shows that the relative quantum fluctuation decreases with
time. And the variation rate of the relative quantum fluctu-
ation gradually becomes slower. Figure 15 shows that the
larger absolute quantum fluctuations are associated with the
higher coherence.

Fig. 12 Variations in the coherence versus the average value of the
scale factor 〈a〉. The horizontal and vertical axes represent 〈a〉 and
coherence, respectively. The parameters are taken as: α = 0.5, V0 =
200

Fig. 13 Variations in the variance. The horizontal and vertical axes
represent the time variable and variance, respectively. The parameters
are taken as: α = 0.5, V0 = 200

In the proper time coordinate, we have shown that the
coherence increases with time both in heat radiation and
non-relativistic matter dominated universe. Thus, quantum
spacetime can not evolve to a classical one in this model of
minimally massless scalar field and non-relativistic particles
in flat FRW universe. We introduced some approximations

Fig. 11 Variations in the a
coherence and b Gibbs entropy
as functions of the time variable.
The parameters are taken as:
α = 0.5, V0 = 200
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Fig. 14 Variations in the relative quantum fluctuation. The horizontal
and vertical axes represent the time variable and relative fluctuation,
respectively. The parameters are taken as: α = 0.5, V0 = 200

Fig. 15 Variations in the quantum fluctuation versus the coherence.
The horizontal axis represents the coherence. The parameters are taken
as: pa = 5, α = 0.5, V0 = 200

to obtain this result. One may think that the result will be
different without these approximations. However, we will
show in the next section that in the conformal time coordi-
nate, without any approximation, one still reaches the same
conclusion.

6 Evolution of the reduced density matrix in the
conformal time coordinate

6.1 Heat radiation dominated universe

According to Eqs. (18) and (41), in the conformal time coor-
dinate (N = a), the Hamiltonian operator of spacetime, and
the real massless scalar field are

Ĥg = −2π

3V0
π̂2
a , (95)

Ĥφ =
∑


k
|
k|A†


k A
k . (96)

Assuming that the initial state of the total system can be
written as ρtot (0) = ρ(0) ⊗ ρφ(0), the similarity to Eq. (52)
provides the reduced density matrix as

ρ(a+
N , a−

N ) =
∫

da±
0

∫
da±

1 · · ·
∫

da±
N−1〈a+

N |e−i Ĥgδt |a+
N−1〉

×〈a+
N−1|e−i Ĥgδt |a+

N−2〉 · · · 〈a+
0 |ρ(0)|a−

0 〉
×〈a−

0 |ei Ĥgδt |a−
1 〉 · · · 〈a−

N−1|ei Ĥgδt |a−
N 〉. (97)

We assume that the initial state of spacetime is a Gaussian
wave packet described by Eq. (69). Then, bringing Eq. (69)
into Eq. (97) and integrating over a±

0 , a±
1 , . . . , a±

N−1 (taking
δt → 0) gives

ρ(a+
N , a−

N ) = 1

(
16π3t2N
9V 2

0 α2 + πα2)
1
2

exp

{−3iV0

8π tN

[
(a+

N )2 − (a−
N )2]}

×exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(
pa − 3V0a

+
N

4π tN

)2(
1

2α2 − 3iV0
8π tN

)

1
α4 + 9V 2

0
16π2t2N

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

×exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(
pa − 3V0a

−
N

4π tN

)2(
1

2α2 + 3iV0
8π tN

)

1
α4 + 9V 2

0
16π2t2N

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (98)

The diagonal element of the reduced density matrix is then
(a+

N = a−
N = a)

ρ(a, tN ) = 1
(

16π3t2N
9V 2

0 α2 + πα2

) 1
2

· exp

⎧⎪⎨
⎪⎩

−(a − 4πpatN
3V0

)2

α2 + 16π2t2N
9V 2

0 α2

⎫⎪⎬
⎪⎭ .

(99)

It is worthwhile to point out that in the derivation process of
the reduced density matrix (98), we do not introduce any
approximation. The reduced density matrix (98) is exact.
Replacing the scale factor in (98) by the space coordinate,
one can obtain the density matrix corresponding to a free
particle with one degree of freedom. Thus all the features of
the quantum spacetime in the conformal time coordinate is
similar to a free particle.

As the Hamiltonian of the scalar field in the conformal
time coordinate is conserved, we denote it by 〈Hφ〉. The con-
dition (12) gives

Tr(ρπ̂2
a ) = p2

a + 1

2α2 = 3V0

2π
〈Hφ〉. (100)
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Fig. 16 Evolution of the probability distribution of the scale factor.
The horizontal axis represents the scale factor, and the vertical axis
represents the time variable. The black curve is the classical trajectory
of the universe. The parameters are taken as: pa = 1, α = 1, V0 = π

Thus, the parameters pa , α, V0 and 〈Hφ〉 are not independent.
The evolution of the diagonal element of the reduced density
matrix is shown in Fig. 16.

In Fig. 16, different colors represent different values of
the diagonal elements in (99). The black line represents the
classical trajectory of the universe. The evolution of the
wave packet is consistent with the classical trajectory of
the universe. Figure 16 clearly shows that the peak values
decreases with time. This shows that the absolute quantum
fluctuation becomes more and more important. This figure
indicates that the universe grows to become bigger as time
goes by. Figure 17a shows that the coherence monotoni-
cally increases with time. Figure 18 shows that the bigger
the universe is, the bigger the coherence is. Thus in the con-
formal time coordinate, the heat radiation dominated quan-
tum universe also does not decohere to a classical universe.
Figures 17b and 19 show that the Gibbs entropy and the
absolute quantum fluctuation also increase with time. Noted
that Eq. (99) is the Gaussian distribution. Thus the analytic
expressions for the average value of the scale factor and the
absolute quantum fluctuation are 〈a〉 = 4πpatN/3V0 and

Fig. 18 Variations in the coherence versus the average value of the
scale factor 〈a〉. The horizontal and vertical axes represent 〈a〉 and
coherence, respectively. The parameters are taken as: α = 1, V0 = π

�a = (α2/2 + 8π2t2
N/9V 2

0 α2)1/2, respectively. Both 〈a〉
and �a monotonically increase with time. In addition, simi-
lar analysis with those in Sect. 4 show that in the conformal
time coordinate, the higher initial temperature also corre-
sponds to more rapid variations in these quantities (〈a〉, Co,
SG and �a). And for a given size of the universe, the lower
temperature corresponds to a more quantum universe. Fig-
ure 20 shows that the relative quantum fluctuation monoton-
ically decreases with time. In the conformal time coordinate,
the analytic expression of the relative quantum fluctuation
is �a/〈a〉 = (1/(2p2

aα
2) + 9V 2

0 α2/(32π2 p2
at

2
N ))1/2. Fig-

ure 21 shows that the larger absolute quantum fluctuations
are associated with the higher coherence. Comparing these
results with those in Sect. 4, we can see that all conclusions
in the conformal time coordinate are consistent with those in
the proper time coordinate.

In [81], Ashtekar and other researchers introduced the
non-commutativity to measure the quantum nature of a sys-
tem. The fading of the non-commutativity characteristics the
process of the decoherence. Working in the conformal time
coordinate and assuming that the matter is the radiation field,
they found that the non-commutativity increases with time.
The larger the universe, the larger the non-commutativity is
[81,82]. This is consistent with our results.

Fig. 17 Variations in the a
coherence and b Gibbs entropy
as functions of the time variable.
The parameters are taken as:
α = 1, V0 = π
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Fig. 19 Variations in the variance. The horizontal and vertical axes
represent the time variable and variance, respectively. The parameters
are taken as: α = 1, V0 = π

Fig. 20 Variations in the relative quantum fluctuation. The horizontal
and vertical axes represent the time variable and relative fluctuation,
respectively. The parameters are taken as: α = 1, V0 = π

Fig. 21 Variations in the quantum fluctuation versus the coherence.
The horizontal axis represents the coherence. The parameters are taken
as: pa = 1, α = 1, V0 = π

6.2 Non-relativistic particles dominated universe

In the conformal time coordinate, the Hamiltonian operator
of spacetime and non-relativistic matter are

Ĥg = − 2π

3V0
π̂2
a ,

Ĥφ = aV0Nmm.

(101)

Observing the Hamiltonian operator in Eq. (101), it is similar
to a charged particle in an uniform electrostatic field. This
is also an exactly solvable model [14]. Assuming that the
initial density matrix of the total system can be written as
ρtot (0) = ρ(0) ⊗ ρφ(0), similar to Eq. (52), the evolution of
the reduced density matrix is

ρ(a+
N , a−

N ) =
∫

da±
0

∫
da±

1 · · ·
∫

da±
N−1〈a+

N |e−i Ĥgδt |a+
N−1〉

×〈a+
N−1|e−i Ĥgδt |a+

N−2〉 · · ·
×〈a+

0 |ρ(0)|a−
0 〉〈a−

0 |ei Ĥgδt |a−
1 〉 · · ·

×〈a−
N−1|ei Ĥgδt |a−

N 〉 · ImN, (102)

where

ImN ≡ Trφ
{
e−i Ĥφ(a+

N )δt · · · e−i Ĥφ(a+
1 )δt

×ρφ(0)ei Ĥφ(a−
1 )δt · · · ei Ĥφ(a−

N )δt} (103)

is the influence functional. All particles are assumed to be in
the ground state (kinetic energy is zero). Bringing the Hamil-
tonian operator Ĥφ of Eq. (101) into Eq. (103) gives the
influence functional as

ImN = Trφ

{
exp[−iδtmV0Nm

N∑
n=1

(a+
n − a−

n )]ρφ(0)
}

= exp

{
− iδtmV0Nm

N∑
n=1

(a+
n − a−

n )

}
. (104)

We assume that the initial state of spacetime is a Gaussian
wave packet as

ρ(a+
0 , a−

0 ) = 1

(πα2)
1
2

exp

{
− i pa(a

+
0 − a−

0 )

− 1

2α2

(
(a+

0 − A0)
2 + (a−

0 − A0)
2)}, (105)

Bringing Eqs. (104) and (105) into Eq. (102) completes the
integrals over these variables (a±

0 , a±
1 , . . . , a±

N−1) (taking
δt → 0) to finally obtain
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Fig. 22 Variations in the probability distribution of the scale factor.
The horizontal and vertical axes represent the scale factor and time
variable, respectively. The black curve shows the evolution for the clas-
sical trajectory of the universe. The parameters are taken as: α = 1,
V0 = 1, A0 = 1, mNm = 10

ρ(a+
N , a−

N ) = 1
(

16π3t2N
9V 2

0 α2 + πα2

) 1
2

·exp

{−3iV0

8π tN

[
(a+

N )2 − (a−
N )2]

+
(

3i A0

4π tN
− i

2
mNmtN

)
V0(a

+
N − a−

N )

}

×exp

⎧⎪⎨
⎪⎩

−(pa − 3V0a
+
N

4π tN
+ 3V0 A0

4π tN
+ 1

2mV0NmtN )2( 1
2α2 − 3iV0

8π tN
)

1
α4 + 9V 2

0
16π2t2N

⎫⎪⎬
⎪⎭

×exp

⎧⎪⎨
⎪⎩

−(pa − 3V0a
−
N

4π tN
+ 3V0 A0

4π tN
+ 1

2mV0NmtN )2( 1
2α2 + 3iV0

8π tN
)

1
α4 + 9V 2

0
16π2t2N

⎫⎪⎬
⎪⎭ .

(106)

In the derivation process of the reduced density matrix (106),
we do not introduce any approximation. Then the diagonal
element of the reduced density matrix becomes (a+

N = a−
N =

a)

ρ(a, tN ) =
exp

⎧⎨
⎩

−(a− 4πpa tN
3V0

− 2
3 πmNmt2N−A0)2

α2+ 16π2 t2N
9V 2

0 α2

⎫⎬
⎭

(
16π3t2N
9V 2

0 α2 + πα2

) 1
2

. (107)

The condition of Eq. (12) gives rise to the following con-
straint

p2
a + 1

2α2 = 3m

2π
A0NmV

2
0 . (108)

Variations in the diagonal element are shown in Fig. 22. From
this figure, we can see that the classical trajectory is consistent
with the evolution of the wave packet. Figure 23 shows that
the coherence and the Gibbs entropy monotonically increase
with time. Figure 24 shows that the bigger the universe is,
the bigger the coherence is. Therefore in the conformal time
coordinate, the non-relativistic particles dominated quantum
universe also can not decohere to a classical universe. From
Eq. (107), one can obtain the absolute quantum fluctuation
as �a = (α2/2 + 8π2t2

N/9V 2
0 α2)1/2. Thus the trend of the

variations in the absolute quantum fluctuation are the same
with that in Fig 19. However, Fig. 25 shows that the rela-
tive quantum fluctuation monotonically decreases with time.
And the variation rate of the relative quantum fluctuation
gradually becomes slower. Figure 26 shows that the larger
absolute quantum fluctuations are associated with the higher
coherence.

To sum up, we have studied the evolution of the heat radi-
ation or the non-relativistic particle dominated universe both
in the proper time coordinate and in the conformal time coor-
dinate. In different cases, the classical trajectory of the uni-
verse is consistent with the evolution of the wave packet. The
coherence increases with time, thus the quantum universe can
not decohere to a classical one. Comparing Figs. 4, 6, 11, 13,
17, 19 and 23, we find that in different cases, the variations
of the absolute quantum fluctuation and the Gibbs entropy

Fig. 23 Variations in the a
coherence and b Gibbs entropy
as functions of the time variable.
The parameters are taken as:
V0 = 1, A0 = 1, mNm = 10
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Fig. 24 Variations in the coherence versus the average value of the
scale factor 〈a〉. The parameters are taken as: V0 = 1, A0 = 1, mNm =
10

Fig. 25 Variations in the relative quantum fluctuation. The horizontal
and vertical axes represent the time variable and relative fluctuation,
respectively. The parameters are taken as: V0 = 1, A0 = 1, mNm = 10

Fig. 26 Variations in the quantum fluctuation versus the coherence.
The horizontal axis represents the coherence. The parameters are taken
as: α = 1, V0 = 1, A0 = 1, mNm = 10

have the similar trend with the variations of the coherence.
This is the characteristic of the evolution of the Gaussian-
like quantum state. All these quantities are monotonically
increase with time in different scenarios. In the conformal
time coordinate, we have not introduced any approximation.
Thus the results in conformal time coordinate are exact.

7 Dark energy dominated evolution of the quantum
universe

We have not yet quite understood the nature of the dark
energy. One way to describe the dark energy is the cosmo-
logical constant. The action of the dark energy can be char-
acterized by [11]

S� = − 1

8π

∫
dx4√−g�, (109)

where � represents the cosmological constant. In this work,
we constrain that � > 0. If the metric of the flat FRW space-
time is defined by (13), then the Hamiltonian of the dark
energy is given by

H� = �

8π
V0Na3. (110)

Again, the total Hamiltonian Htot = Hg +H� has the global
scaling symmetry. The coordinate volume V0 can be viewed
as a global scaling factor. Thus the actual value of V0 is not
important.

The dark energy is a specific type of (or a class of) matter,
one can represent it by the cosmological constant. The only
possible observable degree of freedom of the total system
considered here is the scale factor.

In the proper time coordinate or the conformal time coor-
dinate, it is not convenient to study the evolution of the
dark energy dominated quantum universe by the way of the
path integral. One often uses the gauge condition N = 1/a
[32,37], then the metric (13) becomes

ds2 = 1

a2 dt
2 − a2(dx2 + dy2 + dz2). (111)

Introducing q = a2, then the metric (111) becomes [32,37]

ds2 = 1

q
dt2 − q(dx2 + dy2 + dz2). (112)

The Hamiltonian of the spacetime and the dark energy are
then given as

Hg = − 3V0

32π
q̇2 = − 8π

3V0
π2
q , (113)

H� = V0�

8π
q. (114)

In Eq. (113), πq represents the conjugate momentum of the
canonical variable q,

πq = − 3V0

16π
q̇. (115)

Observing the Hamiltonian operator (113) and (114), the
whole system is similar to the case (101) discussed in the
Sect. 6.2. We can use the same method as the Sect. 6.2 to
solve it. Assuming that the initial state of the spacetime is
given by
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ρ(q+
0 , q−

0 ) = 1

(πα2)
1
2

exp

{
− i pq(q

+
0 − q−

0 )

− 1

2α2

(
(q+

0 − Q0)
2 + (q−

0 − Q0)
2)}, (116)

where Q0 = Tr(qρ(0)) represents the average value of the
scale factor q at the initial time. According to (114), Q0

being equal to zero means that the Hamiltonian of the dark
energy is zero. In order to ensure the Hamiltonian of the dark
energy to be non-zero, we set Q0 as a finite positive value.
The condition (12) gives rise to

8π

3V0

(
p2
q + 1

2α2

)
= �

8π
V0Q0. (117)

Noted that q ≥ 0, or equivalently to say, when q ≤ 0,
all elements of the density matrix are equal to zero at
any time. We can choose the parameters to ensure that
〈q+

N |ρ(tN )|q−
N 〉 = 0 while q ≤ 0. In this case, the condi-

tion q ≥ 0 is not important thus can be neglected. Then
q can take values from −∞ to +∞. This can simplify our
analysis. Using the same method as in the Sect. 6.2, one can
obtain

ρ(q+
N , q−

N ) = N · exp

{
3iV0

32π tN

[
(q−

N )2 − (q+
N )2]

+
(

3i Q0

16π tN
− i�tN

16π

)
V0(q

+
N − q−

N )

}

·exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(
pq − 3V0q

+
N

16π tN
+ 3V0Q0

16π tN
+ V0�tN

16π

)2(
1

2α2 − 3iV0
32π tN

)

1
α4 + 9V 2

0
162π2t2N

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

·exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(
pq − 3V0q

−
N

16π tN
+ 3V0Q0

16π tN
+ V0�tN

16π

)2(
1

2α2 + 3iV0
32π tN

)

1
α4 + 9V 2

0
162π2t2N

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(118)

The diagonal element is (q+
N = q−

N = q)

ρ(q, tN ) =
exp

{−(q− 16πpq tN
3V0

− �
3 t

2
N−Q0)2

α2+ 162π2 t2N
9V 2

0 α2

}

(
162π3t2N
9V 2

0 α2 + πα2

) 1
2

. (119)

The evolution of the probability distribution is shown in
Fig. 27. In this figure, different colors represent different
values of the probabilities. The black curve represents the
classical evolution trajectory of the universe driven by the
dark energy. Figure 27 shows that the classical trajectory
of the universe is consistent with the evolution of the wave
packet. We point out that although the range of the horizontal
axis of Fig. 27 is from − 2 to 8, we can see from Fig. 27 that

Fig. 27 Variations in the probability distribution of the scale factor.
The horizontal and vertical axes represent the scale factor (q) and time
variable, respectively. The black curve shows the evolution for the clas-
sical trajectory of the universe. The parameters are taken as: α = 0.5,
V0 = 40, Q0 = 1, � = 5

ρ(q, t) = 0 when q < 0. Thus Fig. 27 is consistent with
the condition q ≥ 0. Figure 28 shows the variation of the
coherence and the Gibbs entropy. From this figure, we can
see that the coherence monotonically increases with time.
Figure 29 shows that the bigger the universe is, the bigger
the coherence is. The absolute quantum fluctuation still is
�a = (α2/2 + 8π2t2

N/9V 2
0 α2)1/2. It increases with time.

Thus the variation of the Gibbs entropy and the absolute
quantum fluctuation has the similar trend with the variation
of the coherence. Figure 30 shows that the relative quantum
fluctuation decreases with time. Figure 31 shows that the
larger absolute quantum fluctuations are associated with the
higher coherence.

In [11], Maeda used the Schrödinger equation (2) to study
the evolution of the quantum universe as driven by a cos-
mological constant. Maeda shown that the classical trajec-
tory of the universe is consistent with the evolution of the
wave packet. Thus a small quantum universe can evolve to a
bigger one. This is consistent with our results. Both results
show that the cosmological constant does not give rise to the
decoherence of the universe. We point out that if the matter
field has infinity degrees of freedom, it is difficult to solve
the Schrödinger equation (2). Thus the method in [11] is not
suitable to study the quantum evolution of the heat radiation
dominated universe. However, the method presented in this
work can deal with more complicated scenarios.

8 Quantum transition of the flat FRW universe

Many studies have considered quantum tunneling in a com-
pact (k = 1) universe [32–35,83–88]; yet, these results can
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Fig. 28 Variations in the a
coherence and b Gibbs entropy
as functions of the time variable.
The parameters are taken as:
V0 = 40, Q0 = 1, � = 5

Fig. 29 Variations in the coherence versus the average value of the
scale factor 〈q〉. The parameters are taken as: V0 = 40, Q0 = 1, � = 5

Fig. 30 Variations in the relative quantum fluctuation. The horizontal
and vertical axes represent the time variable and relative fluctuation,
respectively. The parameters are taken as: V0 = 40, Q0 = 1, � = 5

be controversial. Different methods can give various results.
For example, the results from the Euclidean path integral
can differ from those from the Lorentzian path integral.

Fig. 31 Variations in the quantum fluctuation versus the coherence.
The horizontal axis represents the coherence. The parameters are taken
as: α = 0.5, V0 = 40, Q0 = 1, � = 5

The Lorentzian path integral quantum cosmology gives var-
ious results under differing conditions [32,36] (for example,
selecting different integral domains related to the lapse func-
tion).

Recently, researchers have realized that the Euclidean path
integral may miss some important information [17,32,37].
Thus, we use the closed real-time path integral to study quan-
tum transitions of the universe. We fix the lapse function
using the gauge condition (such as N = 1). Therefore, the
lapse function as a Lagrangian multiplier is not an integral
variable (ADM quantization [89]). Such a treatment is often
used in quantum cosmology [8,11,83–85,90,91].

One can study the transition probability of the quantum
universe by setting the initial state as a wave packet. For a
heat radiation dominated universe, assuming the initial state
is described by Eq. (69), the transition probability of the
universe from the initial state to the final state |a, tN = 1〉
(without loss of generality, we fixed tN = 1) is
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Fig. 32 Variations in the transition probability. The horizontal axis rep-
resents the parameter α0, and the vertical axis represents the scale factor
a. The different colors represent various transition probabilities, and the
green curve represents the average of the scale factor. The parameters
are fixed as pa = 1 and V0 = 50

ρ(a, α0) = N
|a|

(
1

10V
2
0 α4

0 − 2p2
a + 9V 2

0 a
2

32
5 π2V 2

0 α4
0−128π2 p2

a

) 1
2

×exp

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
(
pa − π2V0α4

0
15a2 − 3V0a2

16π

)2

1
10V

2
0 α4

0 − 2p2
a + 9V 2

0 a
2

32
5 π2V 2

0 α4
0−128π2 p2

a

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(120)

Substituting Eqs. (72) and (75) into Eq. (73) and setting
tN = 1 in (73) transforms Eq. (73) into Eq. (120).

Equations (120) can be diagrammatically presented by
Fig. 32. In this figure, the different colors represent various
transition probabilities, and the green curve represents the

average of the scale factor a in time tN = 1. Our discussions
in Sect. 4, indicate that α0 ∼ T0 (initial temperature of heat
bath). Thus, Fig. 32 shows the influence of the temperature
on the transition probability. As α0 increases, the average
value of the scale factor (denoted by 〈a〉tN=1) monotonically
increases. This indicates that under higher temperatures, a
small quantum universe has a higher chance of a transition
to a bigger universe. Figure 32 shows that 〈a〉tN=1 ∝ α0.
Recalling that in the classical FRW (k = 0 and N = 1)
universe, the relation between the scale factor and α0 is
a(t) = (32π3/90)1/4α0

√
t , thus a(t = 1) ∝ α0. There-

fore, the conclusion obtained from Fig. 32 is consistent with
the classical result.

We introduce the function G(u, α0) ≡ ∫∞
u ρ(a, α0)da

based on Eq. (120). The G(u, α0) represents the total transi-
tion probability of the universe to a big universe from the ini-
tial state of Eq. (69). It is difficult to obtain an analytic form of
G(u, α0). Thus, the numerical calculation results ofG(u, α0)

are shown in Fig. 33(a), which shows that G(u, α0) → 1
as α0 increases. Therefore, as the initial temperature of the
radiation increases, the transition probability of the universe
from the initial state of Eq. (69) to a bigger universe increases.
When α0 is enough high, G(u, α0) → 1.

In [92], Linde studied the thermal scalar field induced
tunneling of the quantum universe. He showed that the tun-
neling probability is P(φ) ≈ N · exp{−6.34φ/(T

√
λ)}

[92]. The φ and T represent the scalar field and temper-
ature, respectively, and λ is the coefficient of the φ4 term
in the Lagrangian of the scalar field. Similarly, we define
K (φc, T ) ≡ ∫∞

φc
P(φ)dφ. The meaning of the function

K (φc, T ) is the total probability to create a universe with
φ ≥ φc. The φc is a real positive number and can be arbitrar-
ily fixed without loss of generality. One can easily prove

Fig. 33 The left figure represents the total probability of the universe
with a scale factor a ≥ u, where the horizontal axis is the parameter
α0 and the vertical axis represents the total probability of the universe
with a ≥ u. The parameters are fixed as pa = 1 and V0 = 50. The right

figure represents the total probability to create a universe with φ ≥ φc,
where the horizontal axis is the temperature and the vertical axis is the
function K (φc, T ). The coefficient λ is fixed as λ = 1
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that K (φc, T ) = N · exp{−6.34φc/(T
√

λ)}. As shown
in Fig. 33b, K (φc, T ) increases (up to the upper limit 1)
with temperature T . This indicates that a greater temperature
increases the chances of creating an universe. Our results are
consistent with those obtained by Linde to a certain extent.

In this section we showed that as the radiation temperature
increases, it is easier for a small universe to have a transition
to a bigger one. We note that the probability of Eq. (120) may
not be simply viewed as the chance of the universe tunneling
from “nothing.” This is also different from the meaning of
the Hartle–Hawking wave function. Equation (120) corre-
sponds to the evolution of the initial wave packet in Eq. (69).
This represents a spacetime structure with the fluctuations of
the scale factor give by α. That is, the current results give
the transition probability from a small and highly fluctuating
spacetime to a larger universe with a definite scale factor.

9 Conclusions and discussions

In this work, we non-perturbatively studied the evolution of
the quantum universe through the closed real-time path inte-
gral. The basic equation of this work is the Liouville–von
Neumann expression in Eq. (3). The time variable t in Eqs. (3)
and (10) can be interpreted as the dust field. By introducing
the dust field as the clock, Brown and Kuchař transformed
the Wheeler–DeWitt equation into the form of Schrödinger’s
equation [6,7]. This model may help resolve the problem of
time in quantum gravity and quantum cosmology. The aver-
age value of the Hamiltonian operator for the dust field is
usually not equal to zero. This means that the clock can influ-
ence the evolution of the universe. However, in any formal
physical theory, the clock does have not any influence on the
evolution of the related system. We introduce the condition
of Eq. (12) to eliminate the influence of the clock. The phys-
ical meaning of the condition in Eq. (12) is the average value
of the Hamiltonian operator of the clock is set to zero. In this
work, the impact of this condition on the evolution of the
quantum universe is not strong. There are several parameters
in our model, and the effect of the condition in Eq. (12) is to
eliminate one of the independent parameters.

We derived the Hamiltonian operator for the massless real
scalar field in the flat FRW spacetime. Our method is sim-
ilar to that in [69]. However, the derivation in [69] is only
correct in the de-Sitter spacetime. Our derivation is exact for
more general situations. We proved the form of the Hamilto-
nian operator of Eq. (41) in some special FRW spacetimes.
We used some rationales to infer that the Hamiltonian oper-
ator of Eq. (41) should be reasonable in any kind of FRW
(k = 0) spacetime. Thus, Eq. (41) can be used to study the
quantum universe. In the Hamiltonian operator of Eq. (41),
we neglected the cosmological particle production and the
vacuum energy. For some extremal situations where the cos-

mological particle production is important, the operator of
Eq. (41) is not valid.

For the flat FRW universe, there is a divergence problem
as space is not compact. This divergence can be attributed
to the coordinate volume V0. We illustrate that the coordi-
nate volume can be viewed as a global conformal factor that
can be eliminated from all equations. Thus, the value of the
coordinate volume V0 does not influence the results, and the
divergence problem related to the coordinate volume can be
solved. However, to clearly show that the total system has a
global scaling symmetry, we still retain V0 in our formulas.

Based on Eq. (3), by setting the initial state of spacetime
as a Gaussian wave packet, we studied the evolution of the
universe in the cases where the environments are heat radi-
ation, non-relativistic matter and dark energy, respectively.
Regardless of the matter form, we find that the average value
〈a〉 of the scale factor increases with time in both the proper
time coordinate and the conformal time coordinate. The evo-
lution for the quantum universe described by the wave packet
is always consistent with the classical evolution trajectory of
the universe described by the scale factor. This indicates that
the universe can grow from the initial state. We also find
that the coherence, the absolute quantum fluctuation and the
Gibbs entropy all increase with time. However, the relative
quantum fluctuation decreases with time. Smaller relative
quantum fluctuations show the characteristics of the evolu-
tion of the Gaussian-like quantum state. For Gaussian dis-
tribution, the relative fluctuations are small since the distri-
bution decays exponentially fast. This leads to the smaller
relative fluctuations. Therefore, one can use the average or
expectation values and the second order fluctuations to char-
acterize the whole system. On the other hand, if the evolution
follows other distributions such as streched exponential or
power law, the tail part of the distribution can be fatty and
the rare fluctuation events can become important. In such
cases, the relative fluctuations are not small but significant.
The average or expectation values can no longer be repre-
sentative. The whole statistical distribution is necessary to
characterize the system dynamics.

We show that the larger absolute quantum fluctuations are
associated with the higher coherence. The variations in the
absolute quantum fluctuation and the Gibbs entropy are con-
sistent with the variations in the coherence. The coherence
increases with time which indicates that the bigger universe
still maintains important quantum natures in our model. For
the radiation dominated universe, the higher initial tempera-
ture corresponds to more rapid variations of these quantities.
We show that for a given size of the radiation dominated uni-
verse, the lower temperature corresponds to a more quantum
universe. In the proper time coordinate, in order to obtain
these results, we introduced certain approximations. How-
ever, in the conformal time coordinate, without any approxi-
mation, we obtained the same results. Therefore, our results
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are reasonably reliable. If we think that the spacetime of
the observed universe today is classical and quantum in the
very early times, then our work shows that more complicated
models maybe needed to describe the decoherence process.

We also studied the transition of the quantum universe in
the case where the initial state of the spacetime is a Gaussian
wave packet. We find that as the temperature of the bath
increases, the transition probability of the universe to a bigger
one increases.

In addition, for any massless field (no self-interaction)
minimally coupled to the flat FRW spacetime, it appears rea-
sonable to think that the Hamiltonian operator of the field
has a similar structure to Eq. (41). That is, the Hamiltonian
should be equal to the red shift factor times the sum of all
quanta energies (neglecting the vacuum energy and cosmo-
logical particle production. For the scalar field, the summa-
tion is carried out to the momentum. And for other fields,
the summation should also include all the internal degrees of
freedom. ). Then, using the same method with that in Sect. 4,
one can show that in the proper time coordinate any mass-
less field minimally coupled to the flat FRW spacetime can
generally lead to non-Markovian dynamics.
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Appendix A: Derivation for Hamiltonian operator in
Eq. (38)

According to the definition of the function gk(t) (Eq. (28)),
one easily obtains

ġ∗
k (t)gk(t) − ġk(t)g

∗
k (t)

= (2π)−3 · π

4
C−1(t)t

{
H(2)

ν (kt)∂tH
(2)∗
ν (kt)

−H(2)∗
ν (kt)∂tH

(2)
ν (kt)

}
, (A1)

where ν is a real number. Substituting the Wronskian deter-
minant of

z
{

H(2)
ν (z)∂zH

(2)∗
ν (z) − H(2)∗

ν (z)∂zH
(2)
ν (z)

}
= 4i

π
(A2)

into Eq. (A1) gives

ġ∗
k (t)gk(t) − ġk(t)g

∗
k (t) = i(2π)−3C−1(t). (A3)

Substituting Eqs. (24) and (28) into Eq. (22) provides

Hφ = 1

2
C(t)

∑

k

∑

k′

{
a
ka 
k′ ġk(t)ġk′(t)ei


k·
x ei 
k′·
x

+a†

k a

†

k′ ġ

∗
k (t)ġ

∗
k′(t)e−i 
k·
x e−i 
k′·
x

+a
ka
†

k′ ġk(t)ġ

∗
k′(t)ei


k·
xe−i 
k′·
x

+a†

k a 
k′ ġ

∗
k (t)ġk′(t)e−i 
k·
x ei 
k′·
x

−a
ka 
k′(
k · 
k′)gk(t)gk′(t)ei

k·
xei 
k′·
x

−a†

k a

†

k′(
k · 
k′)g∗

k (t)g
∗
k′(t)e−i 
k·
xe−i 
k′·
x

+a
ka
†

k′(
k · 
k′)gk(t)g∗

k′(t)ei

k·
xe−i 
k′·
x

+a†

k a 
k′(
k · 
k′)g∗

k (t)gk′(t)e−i 
k·
xei 
k′·
x}. (A4)

Thus, the Hamiltonian operator is

Hφ(t) =
∫

dx3Hφ

= 1

2
(2π)3C(t)

∑

k

{
a
ka−
k

[(
ġk(t)

)2 + 
k2(gk(t))2]

+a†

k a

†
−
k
[(
ġ∗
k (t)

)2 + 
k2(g∗
k (t)

)2]

+a†

k a
k

[
ġk(t)ġ

∗
k (t) + 
k2gk(t)g

∗
k (t)

]

+a
ka
†

k
[
ġk(t)ġ

∗
k (t) + 
k2gk(t)g

∗
k (t)

]}
(A5)

Introducing the definitions for εk(t), �k(t), and ωk(t) (see
Eqs. (31)–(33)) gives the Hamiltonian operator of Eq. (A5)
as

Hφ(t) = 1

2

∑

k

{
εk(t)(a

†

k a
k + a
ka

†

k ) + �k(t)a
ka−
k

+�∗
k(t)a

†
−
ka

†

k
}
. (A6)

Starting from the definition of Eq. (33), we have

ω2
k (t) = ε2

k (t) − �∗
k(t)�k(t)

= −(2π)6C2(t)
k2(ġ∗
k (t)gk(t) − ġk(t)g

∗
k (t)

)2

= 
k2. (A7)
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Using these definitions uk(t), vk(t), A
k(t), and A†

k(t)

(see Eqs. (34)–(37)), and combined with Eq. (A7) gives the
Hamiltonian operator of Eq. (A6) in a more compact form
[69]

Hφ(t) = 1

2

∑

k

|
k|{A†

k(t)A
k(t) + A
k(t)A

†

k(t)

}
. (A8)

In addition, one can prove that [69]

[
A 
k1

(t1), A
†

k2
(t2)

] = (
uk1(t1)u

∗
k1

(t2) − vk1(t1)v
∗
k1

(t2)
)

×δ3( 
k1 − 
k2). (A9)

Substituting Eqs. (A9) into (A8) provides the Hamiltonian
operator of Eq. (38).

Appendix B: Derivation for the influence functional IrN

The influence functional of Eq. (53) can be written as

IrN = Trφ

{
exp

{
iδt

N∑
n=1

[
Ĥφ(a−

n )

−Ĥφ(a+
n )
]}

ρφ(0)

}
. (B1)

Substituting Eqs. (53) and (56) into Eq. (B1) allows writting
the influence functional of Eq. (B1) as

IrN = Trφ

{
exp

[
iδt

N∑
n=1

∑

k

|
k|A†

k A
k

(
1

a−
n

− 1

a+
n

)]

×
∏
j

exp

(−k j
α0

A†
k j
Ak j

)(
1 − exp

(−k j
α0

))}
. (B2)

Thus,

IrN = Trφ

{
Nφ

∏

k

exp

{[
− 1

α0

−iδt
N∑

n=1

(
1

a+
n

− 1

a−
n

)]
|
k|A†


k A
k
}}

. (B3)

Here,

Nφ ≡
∏

k

(1 − e
− 
k

α0 ) (B4)

is a parameter that is independent with the variables (a±
0 ,

a±
1 , · · ·, a±

N ). therefore, it does not impact the properties of
the reduced density matrix of Eq. (52) and can be absorbed
into the normalization constant N .

In the particle number representation, the influence func-
tional can be written as

IrN =
∑

n1,...,nk ,...

∏

k

exp

{[
− 1

α0

−iδt
N∑

n=1

(
1

a+
n

− 1

a−
n

)]
|
k|nk

}

=
∏

k

1

1 − exp

{[
− 1

α0
− iδt

∑N
n=1

(
1
a+
n

− 1
a−
n

)]
|
k|
} .

(B5)

Here, nk represents the particle number with momentum 
k.
Equation (B5) gives

ln IrN = −
∑


k
ln

{
1 − exp

{[
− 1

α0

−iδt
N∑

n=1

(
1

a+
n

− 1

a−
n

)]
|
k|
}}

. (B6)

Taking the continuous limit and integrating over the momen-
tum 
k indicates

ln IrN = − V0

(2π)3 ·
∫

d
k3 ln

{
1 − exp

{[
− 1

α0

−iδt
N∑

n=1

(
1

a+
n

− 1

a−
n

)]
|
k|
}}

= V0

90
π2α3

0 · 1(
1 + iα0δt

∑N
n=1

(
1
a+
n

− 1
a−
n

))3 .

(B7)

Thus, one can easily obtain the influence functional in
Eq. (58).
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