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Abstract We discuss how the perturbative particle
paradigm fails in certain background with space-like sin-
gularity but asymptotically flat which should admit a S-
matrix. The Feynman approach relies on the interaction pic-
ture. This approach means that we can interpret interactions
as exchanges of particles. Particles are the modes of the
quadratic part of the Lagrangian. In certain backgrounds
with space-like singularity the interaction Hamiltonian is
well defined but the perturbative expansion of the evolution
operator through the singularity and the perturbative S matrix
do not exist. On the other hand, relying on minisuperspace
approximation we argue that the non perturbative evolution
operator does exist. The complete breakdown of the perturba-
tive expansion explains why the perturbative computations in
the covariant formalism in string theory in temporal orbifold
fail, at least at the tree level.

1 Introduction

While this paper is mostly on QFT and its behavior on sin-
gular spacetimes describing some models of Big Crunch/Big
Bang its reason has roots in string theory. String theory, as a
promising candidate for a theory of quantum gravity, is sup-
posed to provide a satisfactory description of Big Bang/Big
Crunch type singularities, or at least a S matrix in asymptot-
ically flat spaces.

We want therefore to construct and study stringy toy mod-
els capable of reproducing a space-like (or null) singularity
which appears in space at a specific value of the time coor-
dinate and then disappears.

The easiest way to do so is by generating singularities
by quotienting Minkowski with a discrete group with fixed
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points, i.e. orbifolding Minkowski. In this way it is possible
to produce both space-like singularities and supersymmetric
null singularities [1–15] (see also [16–18] for some reviews).
Another possible way which is a generalization of the previ-
ous orbifolds with null singularity is consider gravitational
shock wave backgrounds [19–30].

It happens that in these orbifolds the four tachyon closed
string amplitude diverges in some kinematical ranges, more
explicitly for the Null Shift Orbifold (which may be made
supersymmetric and has a null singularity) we have

A(closed)
4T ∼

∫
q∼∞

dq

|q|q
4−α′p2⊥ t , (1.1)

so the amplitude diverges for α′p2⊥ t < 4 where p⊥ t is the
orbifold transverse momentum in t channel. Until recently
this pathological behavior has been interpreted in the liter-
ature as “the result of a large gravitational backreaction of
the incoming matter into the singularity due to the exchange
of a single graviton”. This is not very promising for a theory
which should tame quantum gravity.

What has gone unnoticed is that if we perform an analo-
gous computation for the four point open string function we
find

A(open)
4T ∼

∫
q∼∞

dq

|q|q
1−α′p2⊥ t tr ({T1, T2}{T3, T4}) , (1.2)

which is also divergent when for α′ p2⊥ t < 1 [31,32]. This
casts doubts on the backreaction as main explanation since
we are dealing with open string at tree level. This is fur-
ther strengthened by the fact that three point amplitudes with
massive states may diverge [31] when appropriate polariza-
tions are chosen. For example for the three point function of
two tachyons and the first level massive state we find for an
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appropriate massive string polarization

A(open)
T T M ∼

∫
u∼0

du

|u|5/2
tr ({T1, T2}T3) . (1.3)

In [31] this was interpreted as a non existence of the underly-
ing effective theory. We now revisit this assertion and argue
that the effective theory does exist but the usual approach
based on the perturbative expansion in the interaction pic-
ture completely breaks down.

In this paper we consider what happens when we use per-
turbation theory in a time dependent background with a space
singularity. It is somewhat obvious that we do not expect to
find a well behaved perturbation theory because of the sin-
gularity. One could expect some kind of pathology like the
series being asymptotics. We find a much worse behavior: a
complete breakdown of perturbation theory, i.e. perturbation
theory does not exist. Let us be more precise. We consider as
unperturbed theory the free, non interacting QFT in the given
singular time dependent background and then add interac-
tions. We then use the usual interaction picture approach.
This approach when used perturbatively naturally leads to
Feynman diagrams and a nice particle interpretation of inter-
actions. In the backgrounds we consider all of this suffers
from a complete breakdown. There is no perturbative expan-
sion in the usual sense. This prompts the question whether it
is perturbation theory which fails or it is the very interacting
theory which does not exists. To answer this question we con-
sider the minisuperspace approach, i.e. the consider the QFT
reduced to the spacially homogeneous configurations (see
[33] for review). In this limit the theory reduces to Quantum
Mechanics. We then show that these models do exist. One
could wonder whether this reduction is a big limitations and
the answer is no since it has been shown [14,31] that the trou-
bles in perturbation theory stem from these configurations.
The main difference with the work from the 80s and 90s is
that we are interested in going through the singularity and
not giving the boundary conditions at the Big Bang.

This result stresses the importance of treating some sectors
as exactly as possible in order to get a perturbation theory for
the remaining sectors. Nevertheless it is noteworthy that from
our analysis the original Krasner background, which is also
a string background admits a good perturbation theory.

Even so we are left with the unanswered question whether
it is really consistent to treat QFT on a given singular back-
ground without considering the backreaction. It is somewhat
likely that the gravitational background and the matter should
evolve together, especially in a background which has space
singularities. Given the results of this paper it could be suf-
ficient to consider the minisuperspace approximation to get
a reasonable approximation. In any case this route is fraught
with subtleties like the “problem of time” (see [34] for a
review).

The paper is organized as follows.

In Sect. 2 we discuss the background of interest, the gen-
eralized Kasner metrics (of which the Boost Orbifold is a
very special case) and the simplest interacting field theory,
i.e. the scalar field and its minisuperspace approximation.

In Sect. 3 we discuss the simplest example where the
perturbative interaction picture breaks completely down: the
time dependent harmonic oscillator with �2(t) = ω2 + k

t2

(for reasons we are going to explain k ≤ 1
4 so that �2 may

become negative). While this model is natural since it cor-
responds to, for example, de Sitter modes in conformal time
the splitting we perform between the unperturbed Hamilto-
nian and the perturbative part is somewhat artificial but it is
chosen in order to get the simplest example as possible.

In Sect. 4 we consider the interacting theory and we show
that generically the perturbation theory of the interacting
minisuperspace model does not exist. We then study the min-
isuperspace model non perturbatively and show that it does
exist. The model exhibits two different behaviors: either it
is dominated by the combination of kinetic and interaction
terms or it is dominated by the time dependent harmonic
oscillator (in the appopriate variable) term alone.

Finally in Sect. 5 we discuss what this means for the diver-
gences in string theory. In nuce string theory is well, at least
at tree level but the non Hamiltonian perturbation theory has
troubles. Moreover we point out that the usual approach to
orbifolds used in string theory is not on very sound basis
when temporal orbifolds are considered since the orbifold
generators are dynamical generators, except for Null Shift
Orbifold in light-cone gauge.

2 The background

Our starting point is to consider a class of backgrounds which
have a space-like singularity and on these backgrounds write
down the simplest interacting scalar theory.

Previous results from the analysis of issues in open string
amplitudes in these backgrounds [14,31] hint toward the fact
the all troubles derive from special field configurations to
which we restrict. In particular this means that we restrict
these theories to space independent but time dependent fields
in the space-like singularity case.

More precisely this paper we are going to consider the
following family of backgrounds.

2.1 Kasner-like metrics

The metric we consider is a generalization of the original
Kasner metric and reads

ds2 = −dt2 +
D−1∑
i=1

|t |2p(i) R2
(i)(dx

i )2, 0 ≤ xi < 2π, (2.1)
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where we consider t ∈ R and not only t > 0 and therefore we
have written |t | since p(i) ∈ R. We have also considered the
xi to be compact in order to get a well defined minisuperspace
approximation of the scalar field as in Eq. (2.3).

The original Kasner metric corresponds to the case where∑
i p(i) =∑ p(i)

2 = 1 and space is not compact. It requires
that at least one p(i) is negative when at least two p(i) are
different from zero and corresponds to an empty space-time.
Another special case is when only p(1) = 1 and corresponds
to Milne space.

All these metrics have a singularity at t = 0 which is
the target of our investigation. They have generically also a
singularity for |t | → ∞ when some p is negative. When all
p are positive the metric requires repulsive matter.

For generic p(i), i.e. not the original Kasner metric this
metric is not a consistent string background1 since Ric 	= 0.

2.2 Interacting scalar models

It is the immediate to write down the action for an interacting
real scalar field as

S =
∫

dt
∏
i

dxi
∏
i

R(i)|t |
∑

i p(i)

×
[

1

2
φ̇2 − 1

2

∑
i

1

R2
(i)|t |2p(i)

(∂iφ)2

− 1

2
m2φ2 − 1

n
gnφ

n
]
, n ∈ 4, 6, . . .. (2.2)

According to the analysis of string theory on Boost Orb-
ifold [14,31] the problems for this theory derive from the
field configurations where the field depends on time only.
Restricting to this configuration we get the quantum mechan-
ical model

S =
∏
i

(2πR(i))

∫
dt |t |2A

[
1

2
φ̇2 − 1

2
m2φ2 − 1

n
gnφ

n
]
,

(2.3)

where we have defined 2A = ∑
i p(i) for compactness. We

consider only the case where A > 0.

1 We can choose as vielbein Et = dt , Ei = R(i)|t |p(i)dxi , then from
dEa = ωa

. bE
b we get the only non vanishing spin connection ωi

. t =
ωt

. i = −p(i)
|t |p(i)

t dxi . Finally the only non vanishing components of

the Riemann form Ra
. b = dωa

. b − ωa
. cω

c
. b are Rt

. i = − p(i)(p(i)−1)

t2
Et Ei

and Ri
. j = − p(i) p( j)

t2
Ei E j . Then Rictt =

∑
i p(i)(p(i)−1)

t2
and Rici j =

δi j
1
t2
p(i)(1 −∑l p(l)).

3 The simplest example of failure of the perturbative
expansion in interaction picture: the time dependent
harmonic oscillator

In this section we would like to discuss how the usual pertur-
bative expansion in interaction picture may completely break
down when the interaction Hamiltonian has time singulari-
ties. This may happen despite the complete model is well
defined.

In particular the model we want to consider is

LR = |t |2A
(

1

2
ẏ2 − 1

2
ω2y2

)
, (3.1)

which corresponds to the non interacting scalar on Kasner
metrics. Two special cases are A = 0 and A = 1

2 and both
correspond to the flat space but in Minkowski and Milne
(Boost orbifold) coordinates. Upon a change of coordinates
as

x = |t |Ay, (3.2)

we get

LB = 1

2
ẋ2 − 1

2

(
ω2 + k

t2

)
x2 + d

dt

(
1

2

A

t
x2
)

,

k = A(1 − A) ∈
(

−∞,
1

4

)
(3.3)

The total derivative is uninfluential at the classical level while
at the quantum it implies a relative time dependent phase
for the wave function in the two coordinate systems see Eq.
(3.30).

Notice that when k is negative (A > 1 or A < 0) the
potential is unbounded from below but despite this the full
model is well defined. That this may happen is not a surprise
since the hydrogen atom exists and has an unbounded poten-
tial. On the other side in the flat space A = 0, 1

2 the potential
is always bounded from below. In particular the A = 1

2 case
is the Milne space which is a subset of Minkowski space
and even so the model has a singular potential when there is
only one space dimension otherwise it is the original Krasner
solution.

This model emerges besides the obvious case of the non
interacting scalar in Kasner-like metrics mentioned above
also in the following cases :

1. The particle or the string in a certain pp-wave background
in Brinkmann coordinates that is described by the metric

ds2
B = −2du dv +

D−2∑
I=1

AI (AI − 1)(x I )2 1

u2 du
2

+
D−2∑
I=1

(dx I )2. (3.4)
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Notice however that a purely gravitational string back-
ground, i.e. with trivial dilaton and Kalb–Ramond, must
be a Ricci flat background so we need to impose∑

I AI (AI −1) = 0 if we want a consistent model propa-
gating in this background. The particle action in light-cone
gauge u = τ reads

SLC =
∫

dτ

[
−1

e
v̇ +

D−2∑
I=1

(−1

e
(ẋ I )2 + −1

e

AI (AI − 1)

τ 2 (x I )2
)]

.

(3.5)

Since e is constant on shell, any x I has the action (3.3)
with ω2 = 0. The case with ω2 	= 0 is recovered when
string is considered. In facts the previous x I are the string
zero modes and the string non zero modes x In have ω2 ∝
n2.

2. The modes of the scalar field in de Sitter universe in con-
formal time. If we consider the FLRW metric

ds2 = dt2 − a2(t)
D−1∑
i=1

(dxi )2

= a2(η)

(
dη2 −

D−1∑
i=1

(dxi )2

)
, (3.6)

with dη = 1
a(t)dt . For de Sitter we have adS(t) = eHt so

that adS(η) = − 1
Hη

with −∞ < η < 0−. The real scalar
action is then

SFLRW =
∫

dt dD−1x a(t)D
[

1

2
(φ̇)2

−1

2
a(t)−2(∂iφ)2 − 1

2
m2φ2

]

=
∫

dη dD−1x

[
1

2
(χ̇)2 − 1

2
(∂iχ)2

− 1

2

(
m2a2 − D − 2

2

a′′(η)

a(η)

− (D − 2)(D − 4)

4

(
a′(η)

a(η)

)2
)

χ2
]
, (3.7)

where we defined φ(t, x) = a1− D
2 (η)χ(η, xi ) and

a′(η) = da(η)
dη

. Performing the Fourier transform w.r.t.
to the space coordinates we get

SFLRW =
∫

dη dD−1k

[
1

2
|χ̃ ′(η, k)|2

− 1

2

(
k2
i + m2a2 − D − 2

2

a′′(η)

a(η)

− (D − 2)(D − 4)

4

(
a′(η)

a(η)

)2
)

|χ̃(η, k)|
]
,

(3.8)

which in de Sitter space becomes

SdS =
∫

dη dD−1k

[
1

2
|χ̃ ′(η, k)|2

−1

2

(
k2
i + m2

H2

1

η2 − D(D − 2)

4

1

η2

)
|χ̃ (η, k)|

]
,

(3.9)

which shows that the modes again have action (3.3) but
with η < 0 so the model we consider is a kind of cyclic
de Sitter.

3. The particle in Vaidya metric with linear mass.

3.1 Failure of the perturbative expansion of the evolution
operator in the interaction picture

Let us now consider the Hamiltonian corresponding to (3.3)
as the sum of the usual harmonic oscillator and a quadratic
time dependent interaction term. The splitting we perform
between the unperturbed Hamiltonian and the perturbative
part is somewhat artificial but it is chosen in order to get the
simplest example as possible and then discuss the issues in
the simplest context.

Explicitly in Schroedinger picture we have

HS(t) = HS0(t) + HS1(t)

HS0(t) = p2
S

2
+ 1

2
ω2x2

S, HS1(t) = k

t2 x
2
S . (3.10)

Obviously the perturbation Hamiltonian is dominant for
small t and therefore one can expect that perturbation the-
ory be asymptotic as it happens in Stark effect. However we
find a complete breakdown of perturbation theory and not an
asymptotic series.

The interaction picture is obtained from Schroedinger
equation

i
∂

∂t
|ψS(t, t0)〉 = HS(t)|ψS(t, t0)〉, (3.11)

by defining

|ψI (t, t0)〉 = U0S(t0, t)|ψS(t, t0)〉, U0S(t0, t)

= T e−i
∫ t0
t dt ′H0S(t ′), (3.12)

where U0S is the evolution operator for the “free” Hamilto-
nian H0S . The new state |ψI (t, t0)〉 then evolves as

i
∂

∂t
|ψI (t, t0)〉 = HI (t, t0)|ψI (t, t0)〉,
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HI (t, t0) = U0S(t0, t)H1S(t)U0S(t, t0). (3.13)

The Schroedinger equation in interaction picture has then
formal and perturbative solution

|ψI (t, t0)〉 = T e
−i
∫ t
t0
dt ′HI (t ′,t0)|ψI (t0, t0)〉

=
(

1 − i
∫ t

t0
dt ′HI (t

′, t0) + . . .

)
|ψI (t0, t0)〉. (3.14)

If we apply this formalism to our specific case we obtain the
interaction Hamiltonian

HI (t, t0) = − k

4ωt2

(
e2iω(t−t0)a†2

S

+e−2iω(t−t0)a2
S − a†

SaS − aSa
†
S

)
, (3.15)

where we have as usual

aS = pS − iωxS√
2ω

, [a†
S, aS] = 1,

U0S(t, t0) = e−iω(a†
SaS+ 1

2 )(t−t0). (3.16)

We can then build a basis for the Hilbert space {|n〉}n∈N as

aS|0〉 = 0, |n〉 = a†n
S√
n! |0〉. (3.17)

It is then immediate to see that the first order in pertur-
bative expansion for the evolution operator from a negative
t0 < 0 time to a positive time t1 > 0 is infinite. Explic-
itly, if we evolve perturbatively from |ψI (t0, t0)〉 = |n〉 to
|ψI (t1, t0)〉 and we try to expand |ψI (t1, t0)〉 on the basis
{|m〉} we have

〈m|
∫ t1

t0
dt ′HI (t

′, t0)|n〉

= − k

4ω
δm,n(2m + 1)

∫ t1

t0
dt

1

t2

− k

4ω
δm,n+2

√
m(m − 1)

∫ t1

t0
dt

e2iω(t−t0)

t2

− k

4ω
δm,n−2

√
(m + 2)(m + 1)

∫ t1

t0
dt

e−2iω(t−t0)

t2 .

(3.18)

This shows that not only the amplitude is divergent but that
we cannot expand |ψI (t1, t0)〉 on the Hilbert basis moreover
the divergence cannot be reabsorbed into a c-number shift of
the Hamiltonian since all coefficients depend on the states.
For later use we notice that to this order of perturbation we
have

〈m|
∫ t1

t0
dt ′HI (t

′, t0)|n〉 =
∫ t1

t0
〈mS(t

′, t0)|H1S(t
′)|nS(t ′, t0)〉,

(3.19)

i.e. we can actually use the Schroedinger states and Hamilto-
nian without actually computing the corresponding objects
in the interaction picture.

3.2 The complete theory is well defined: the HB case

Given the previous failure of the perturbative expansion one
can wonder whether the theory exists across the singularity.
The answer as we show is affirmative. The same problem
has been considered before in [9–12,22–25,28,35] but our
point of view is slightly different since this is not the final
research target of this paper but we want anyhow to show
that we can traverse the singularity and then use this solution
for the interacting models.

Even if we are actually interested in adding quartic and
higher interactions to LR we will perform the analysis for
LB since it looks more familiar and then map it to LR using
a time dependent unitary transformation.

The time dependent harmonic oscillator

i∂tψ(x, t) = −1

2
∂2
xψ(x, t) + 1

2

(
ω2 + k

t2

)
ψ(x, t), (3.20)

can be solved exactly using complex classical solutions with
a well defined normalization. We review the derivation for
completeness in Appendix 1 where we give also more details
which are not relevant for the present discussion. The main
result is then that the generating function of a possible com-
plete set2 of wave functions is

∞∑
n=0

zn√
n!ψn{t0}(x, t, t0)

= 4

√
1

2π

1√X (t)
ei

1
2
Ẋ (t)
X (t) x

2+ 1
X (t) xz− 1

2
X∗(t)
X (t) z2

, (3.21)

where we have introduced the complex classical solution
X (t) and its normalization condition

Ẍ (t) + �2(t)X (t) = 0,

X ∗Ẋ − XẊ ∗ = i. (3.22)

We can now solve perturbatively the classical equations of
motion around t = 0.

An issue which arises is the continuation across the singu-
larity but the normalization condition required for the quan-
tum model and “continuity” fix it (see also [36] for the case
A = 1

2 ).

2 Different sets are associated with different instantaneous vacua and
are obtained by different χ which still satisfies the due equations.
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Let us start considering the asymptotic behavior for t →
0+ as X ∼ ta with t > 0. It is immediate to find the equation

a2 − a + k = 0 ⇐⇒ a ∈ {A, 1 − A}, (3.23)

so that the leading behavior is

X (t) = c0(ωt)A(1 + O(t2)) + c1(ωt)1−A(1 + O(t2)), t > 0.

(3.24)

The normalization condition then implies

− (2A − 1)ω|c1|2�
(
c0

c1

)
= −1

2
. (3.25)

Let us consider the case A > 1
2 > 1−A since A < 1

2 < 1−A
is obtained by swapping A ↔ 1 − A. Then the previous
condition implies that the wave functions are normalizable
since (t > 0)

ψ0(x, t) ∼ 1√|ωt |1−A
e
i 1

2

(
1−A
t +(2A−1)ω

c0
c1

|ωt |2(A−1)
)
x2

⇐⇒ |ψ0(x, t)|2 ∼ 1

|ωt |1−A
e
−(2A−1)ω�

(
c0
c1

)
|ωt |2(A−1)x2

.

(3.26)

As discussed in appendix around Eq. (A.27) this is not by
chance: the normalization condition on X always implies
the normalizability of the wave functions.

Let us exam the solution for t < 0. One would be tempted
to write exactly the same Eq. 3.24 with the substitution t →
−t . However this would lead to a different normalization
condition (3.25). The difference being an overall sign in the
left hand side of the normalization equation, i.e. + 1

2 in stead
of − 1

2 . Therefore the proper asymptotic behavior valid for
all t is either

X (t) = c0|ωt |A(1 + O(t2)) + c1ωt |ωt |−A(1 + O(t2)),

or

X (t)

= c0ωt |ωt |A−1(1 + O(t2)) + c1|ωt |1−A(1 + O(t2)).

(3.27)

Since this is a classical solution we may expect that the tra-
jectory is continuous then for A > 1 comparing t |t |−A and
|t |1−A we realize that only the latter is continuous. Hence the
true solution is (3.27). Because of this the previous expression
for the wave function (3.26) where we took care of distin-
guish between t and |t | is valid for all t values.

As discussed in Appendix 1 the previous choice can also be
obtained regularizing the time dependent pulsation �2(t) =
ω2 + k

t2
.

It is also possible and instructive to use the WKB expan-
sion. We write ψ(x, t) = ei S(x,t) so that we have to solve the
equation

∂t S(x, t) + 1

2
(∂x S(x, t))2 + 1

2

(
ω2 + k

t2

)
− i

1

2
∂2
x S(x, t) = 0.

(3.28)

This is done in Appendix 1.
Notice that (3.26) has two completely different behaviors

as t → 0.

|ψ0(x, t)|2 ∼t→0

{
0 A > 1
∞ A < 1

. (3.29)

This can be understood considering the classical trajectory
which behaves as x ∼ |t |min(A,1−A). For A > 1 it diverges
but the direction depends on the initial ẋ which quantum
mechanically cannot be fixed therefore the quantum state is
spread over all the possible values of x . This is shown in Fig.
1a, b. Notice that the classical trajectory (not the complex one
used in computing the quantum wave function) is not well
defined through t = 0 since we can require the continuity
of the trajectory but it is difficult if not impossible to relate
the velocity before and after the singularity. On the contrary
the quantum theory is well defined since we can find a well
defined basis of wave functions.

Differently for A < 1 the classical solution has a fixed
point x(0) = 0 and therefore the wave function is a δ(x).
This is shown in Fig. 2a, b.

Finally notice that the wildly oscillating phase in (3.26)
is not an issue as hypothesized in [9–12], on the contrary as
shown in [31] it is a virtue since it helps the convergence of
the integrals in the distributional sense (see also [37]).

3.3 Relation between LR and LB non interacting models

While at the classical level the two models are related as
described before by a simple change of coordinates and a
boundary term, at the quantum level we have

ψB(x, t) = |t |− 1
2 Aei

1
2 A

x2
t ψR(y = |t |−Ax, t). (3.30)

This can be obtained in two different ways. Both start from
the Hamiltonians

HR = p2
y

2|t |2A + 1

2
ω2|t |2Ay2

HB = p2

2
+ 1

2

(
ω2 + k

t2

)
x2. (3.31)
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Fig. 1 Classical motion for LB with A > 1 has two possible asymptotic behaviors

Fig. 2 Classical motion for LB with A < 1 has only one possible asymptotic behavior

The first method is a sequence of transformations on the
Schroedinger equation. We first change variables from

{
x = |t |Ay
t̃ = t

⇒
{

∂
∂t = ∂

∂ t̃
+ Ax

t̃
∂
∂x

∂
∂y = |t̃ |A ∂

∂x
. (3.32)

Then the HR Schroedinger equation becomes

i
∂

∂ t̃
ψ̂(x, t̃) =

(
−1

2
∂2
x + 1

2
ω2x2 − i

Ax

t̃
∂x

)
ψ̂(x, t̃), (3.33)

with ψR(y, t) = ψ̂(x, t̃). However this equation is not a
Schrodinger equation since the would be Hamiltonian is not
Hermitian because of the term −i Ax

t̃
∂x . To get an Hermitian

Hamiltonian we redefine ψ̂(x, t̃) = |t̃ | 1
2 AψI (x, t̃). Notice

that the factor |t̃ | 1
2 A is the factor one could expect from the

measure due to the change x = |t |Ay. We get then the inter-
mediate Schroedinger equation

i
∂

∂ t̃
ψI (x, t̃) =

[
1

2

(
−i∂x + Ax

t̃

)2
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+1

2

(
ω2 − A2

2t̃2

)
x2
]

ψI (x, t̃), (3.34)

with ψR(y, t) = |t̃ | 1
2 AψI (x, t̃). Finally we make a further

redefinition as ψI (x, t̃) = e
−i 1

2
A2

t̃2
x2

ψB(x, t̃) in order to have
a canonical kinetic term. We finally get the desired result

i
∂

∂ t̃
ψB(x, t̃) =

[
−1

2
∂2
x + 1

2

(
ω2 + A − A2

2t̃2

)
x2
]

ψB(x, t̃), (3.35)

where the relation between ψR and ψB is the one given above
in (3.30).

The second method is operatorial. The first step is to use
a unitary transformation which implements

{
x = |t |A y = U †

R→I y UR→I

p = py
|t |A = U †

R→I py UR→I
⇒ UR→I = ei ln(|t |A) 1

2 {y,py } = |t | 1
2 A|t |i Aypy .

(3.36)

We then get the intermediate Hamiltonian3

HI = U †
R→I HR UR→I + iU̇ †

R→I UR→I

= 1

2

(
py − A

t
y

)2

+ 1

2

(
ω2 − A2

t2

)
y2. (3.37)

With a further unitary transformation

{
y = U †

I→B y UI→B

py − A
t y = U †

I→B py UI→B
⇒ UI→B = e−i 1

2
A
t y

2
,

(3.38)

used to make the kinetic term canonical we finally get the
desired result. Explicitly

HB = U †
I→B HI UI→B + iU̇ †

I→B UI→B

= 1

2
p2
y + 1

2

(
ω2 + A − A2

t2

)
y2, (3.39)

so that

|ψB(t)〉 = U †
I→BU

†
R→I |ψR(t)〉, (3.40)

which again reproduces (3.30).

3 The term iU̇† U is obtained from the Schroedinger equation as fol-
lows. Set |ψI (t)〉 = U†(t)|ψR(t)〉 then from i∂t |ψR(t)〉 = HR |ψR(t)〉
we get i∂t |ψI (t)〉 = HI |ψI (t)〉 with HI = U† HR U + iU̇† U .

3.4 Explicit mapping of the quantum HB solutions to HR

solutions

Using the explicit mapping in (3.30) we can write the gener-
ating function for a complete set of solutions for HR as

∞∑
n=0

zn√
n!ψR n{t0}(y, t, t0)

= 4

√
1

2π

1√XR(t)
e
i 1

2
ẊR (t)
XR (t) x

2+ 1
XR (t) xz− 1

2
X∗
R (t)

XR (t) z
2

, (3.41)

where we have introduced the complex classical solution
XR(t) = |t |−AX (t) in analogy to y = |t |−Ax . Its e.o.m and
normalization condition follow from the X ones and read

|t |−2A d

dt

(
|t |2AẊR(t)

)
+ ω2XR(t) = 0,

X ∗
RẊR − XRẊ ∗

R = i |t |−2A. (3.42)

In particular the “ground state” behaves as

ψR 0(y, t) ∼|t | 1
2 (A−1)e

i 1
2

(
(1−A)sgn(t)|t |2A−1+(2A−1)

c0
c1

ω2A−1|t |2(2A−1)
)
y2

⇐⇒ |ψR 0(y, t)|2 ∼ |t |2A−1e
−(2A−1)ω�

( c0
c1

)
ω2A−1|t |2(2A−1) y2

.

(3.43)

The wave functions always vanish for t → 0 while still being
normalizable because the classical particle is diffused on the
entire y axis since y ∼ |t |−2A. This diverges but the direction
depends on the initial ẏ which quantum mechanically cannot
be fixed.

4 Interacting quantum and classical mechanical models

We can now pass to exam what happens when we add inter-
actions to the Kasner metrics. The corresponding quantum
mechanical models are

LR = |t |2A
(

1

2
ẏ2 − 1

2
ω2y2 − g

n
yn
)

, g > 0, n ∈ {4, 6, . . . },
(4.1)

which become in x coordinate

LB = 1

2
ẋ2 − 1

2

(
ω2 + k

t2

)
x2 − g

n

1

|t |A(n−2)
xn . (4.2)

These models show a strange time dependence in the interac-
tion term which can be explained by noticing that the change
from y to x in quantum mechanical models cannot be imple-
mented on the metric.

The B models suggest that the interaction is dominant for
small ωt . This is not evident in R models and it is not always
true.
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Table 1 Summary of results for the interacting models (n even, n ≥ 4)

A Perturbatively is ok? Dominating terms in L

2A > n+2
n−2 NO ż2 − gnzn (bounded)

n+1
n−1 < 2A < n+2

n−2 NO ż2 + 1
t2
z2 (unbounded)

n+2
n < 2A < n+1

n−1 YES ż2 + 1
t2
z2 (unbounded)

0 < 2A < n+2
n YES ż2 − 1

t2
z2 (bounded)

Using the results from the previous section on the behav-
ior of the wave function at t = 0 we can now see that the
perturbative expansion of the evolution matrix in interaction
picture does not exist. Since B models are unitarily equiv-
alent to R models as explicitly shown in (3.40) the results
we get for B models are valid for R models. Explicitly for B
models we get

∫
dt ′〈ψB(t ′)|HB S1(t

′)|ψB(t ′)〉

∼
∫

dt ′ 1

|t |A(n−2)

∫
dx xn |t ′|−αe−|t ′|−2αx2

∼
∫

dt ′ 1

|t ′|A(n−2)

(
1

|t ′|−2α

) n
2

, (4.3)

which has an unavoidable divergence for A > 1 and −α =
A−1 > 0. More precisely the integral is divergent for 2A >
n+1
n−1 . Anticipating the results (discussed below Eq. (4.10)
for the classical case and around Eq. (4.21) for the quantum
case) this means that when the behavior is dominated by the
interaction, i.e. 2A > n+2

n−2 the integral is divergent. This
integral may also be divergent when the theory is dominated
by the unbounded time dependent harmonic oscillator (in the
appropriate variable), i.e. n+1

n−1 < 2A < n+2
n−2 (see Eq. (4.16)

and Eq. (4.24)). The results are summarized in Table 1. It is
noteworthy that the original Krasner background, which is
also a string background admits a good perturbation theory
since 2A = 1.

4.1 The classical motion

The classical e.o.m for the R models reads

|t |−2A d

dt

(
|t |2A dy

dt

)
+ ω2y + gyn−1 = 0. (4.4)

This equation is very close to the Emden-Fowler equation

d

dt

(
tμ

dy

dt

)
+ tν ym = 0. (4.5)

This equation is treated in [38] with the result that (with the
appropriate range of the parameters μ, ν which can be easily
obtained from our treatment) the solution exhibits an oscil-
lating behavior with maxima and minima diverging with a

power law. Instead of the analysis presented there we intro-
duce a different approach which is simpler and clearer based
on the action. We apply immediately this approach to the R
models whose action is

SR =
∫
I
dt |t |2A

(
1

2
ẏ2 − 1

2
ω2y2 − g

n
yn
)

, (4.6)

where I is the integration interval. We look for a change of
variables as

t = sgn(t̃)|t̃ |β, y = |t̃ |αz, (4.7)

so that the kinetic term and the interaction term zn have coef-
ficients independent of the new time t̃ . Explicitly we get

SR =
∫
Ĩ
d t̃
{1

2

1

β
|t̃ |(2A−1)β+2α+1

(
dz

dt̃
− α

t̃
z

)2

− 1

2
βω2|t̃ |(2A+1)β+2α−1z2 − β

g

n
|t̃ |(2A+1)β+nα−1zn

}
,

(4.8)

where Ĩ is the image of the interval I . We can now require a
time independent kinetic and zn term imposing

(2A − 1)β + 2α + 1 = 0, (2A + 1)β + nα − 1 = 0,

(4.9)

which can be solved as

α = 4A

2(n − 2)A − (n + 2)
, β = − n + 2

2(n − 2)A − (n + 2)
,

(4.10)

and get

SR =
∫
Ĩ
d t̃
{1

2

1

β

(
dz

dt̃
− α

t̃
z

)2

− β
1

2
ω2|t̃ |(2−n)αz2 − β

1

n
gzn
}
.

(4.11)

The previous action can be recast in a more standard form
by integrating by part the term proportional to dz

dt̃
z = 1

2
dz2

dt̃
to get

SR = + 1

2

α

β

1

t̃
z2
∣∣∣∣
Ĩ

+
∫
Ĩ
d t̃

{
1

2

1

β

(
dz

dt̃

)2
+
[ 1

2

α (α + 1)

β
− β

1

2
ω2 1

|t̃ |(n−2)α

]
z2 − β

g

n
zn
}

.

(4.12)

If α > 0 > β, i.e. 2A > n+2
n−2 the interval around the

singularity t = 0 I = [−ε1,+ε2] is mapped into an interval
around |t̃ | = ∞ as Ĩ = [−∞,− 1

ε1
] ∪ [ 1

ε2
,+∞] then the

z2 terms are subdominant since |t̃ |(2A−1)β+2α+1 = 1
t̃2

and

|t̃ |(2A+1)β+2α−1 = 1
|t̃ |(n−2)α . Moreover the boundary term is

finite.
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Under the previous choice of α, β we can approximate the
action SR for the I around the singularity simply as4

SR ∼
∫
Ĩ
d t̃

{
1

2

1

β

(
dz

dt̃

)2

− β
g

n
zn
}

. (4.13)

Hence the trajectory z(t̃) is simply oscillating with period

1

2
P = 1√

2|β|Ez

(
nEz

|β|g
) 1

n
∫ +1

−1
dζ

1√
1 − ζ n

, (4.14)

where Ez is the system energy.
Despite this nice feature the crossing of the singularity

is not very well defined at the classical level since t = 0±
is mapped to t̃ = ±∞ and there the particle is spread over

the interval [−
(
nEz
|β|g
) 1

n
,
(
nEz
|β|g
) 1

n ] in z coordinate and it is

not obvious how to match the position at t̃ = +∞ with the
position at t̃ = −∞. This is shown in Fig. 3a, b for t → 0−,
i.e. for t̃ → −∞. And in a smoother case in Fig. 4a, b.

For the case α < 0 < β, i.e. 0 < 2A < n+2
n−2 the behavior

of the classical motion is dictated by

SR ∼
∫ −|ε̃2|
−|ε̃1|

dt̃
1

β

{
1

2

(
dz

dt̃

)2
+ 1

2
α(α + 1)

1

|t̃ |2 z
2

}

∼
∫ −|ε̃2|
−|ε̃1|

dt̃
1

β

{
1

2

(
dz

dt̃

)2
+ 1

2

4A(2nA − (n + 2))

(2(n − 2)A − (n + 2))2
1

|t̃ |2 z
2

}
,

(4.15)

because the boundary term does not contribute to the e.o.m
we find again a time dependent harmonic oscillator as in Eq.
(3.3) but with Aef f (where kef f = −α(1 + α) = Aef f (1 −
Aef f ), i.e. Aef f = −α) which is always real, explicitly
⎧⎨
⎩

kef f > 1
4 Aef f ∈ C not possible

0 < kef f < 1
4 0 ≤ Aef f ≤ 1 2A < n+2

n
ke f f < 0 Aef f > 1 n+2

n < 2A < n+2
n−2

, (4.16)

As usual numerics can be tricky and give the wrong impres-
sion: compare the Fig. 5a, b with the same solution extended
closer to the origin given in Fig. 6a, b. Both for t → 0−, i.e.
for t̃ → 0−

4.2 The quantum interacting models exist

We can now exam the question of what happens to the quan-
tum model. We treat only the wave function approach because
it is more intuitive.

Despite the fact the classical motion is not very well
defined the quantum system seems to be perfectly fine and
generically better behaved than the non interacting one. The
last sentence means that we can write a normalizable wave

4 The fact that β < 0 is compensated by the orientation of Ĩ .

function which generically vanishes at t = 0 but at slower
rate that the non interacting, i.e. time dependent quadratic R
theory. The adverb generically refers to the fact that there is
a “small” range of parameters where system behavior can
be mapped to a time dependent harmonic oscillator with
unbounded potential.

Another point to stress is that we have found a possible
continuation through the singularity it may be that there are
other possibilities as in the free case [36].

In order to show that we start with Schroedinger equation
for R model

i∂tψ(y, t) =
[
−1

2

1

|t |2A ∂2
y + |t |2A

(
1

2
ω2y2 + g

n
yn
)]

ψ(y, t),

(4.17)

and following the previous section on the classical motion
we perform the same change of variables as in the classic
case (4.7)

{
t̃ = sgn(t)|t | 1

β

z = |t |− α
β y

⇒
{

∂
∂t = |t̃ |−β+1

β

(
∂
∂ t̃

− αz
t̃

∂
∂x

)
∂
∂y = |t̃ |−α ∂

∂z

,

(4.18)

along with settingψ(y, t) = |t̃ |− 1
2 αψ̃(z, t̃). The choice of the

t̃ power is made considering the invariance of the probabil-
ity density |ψ(y, t)|2dy = |ψ̃(z, t̃)|2dz. The Schroedinger
equation then becomes

i
1

β

∂

∂ t̃
ψ̃(z, t̃) = − 1

2
|t̃ |−(2A−1)β−2α−1 ∂2

∂z2 ψ̃(z, t̃)

+ g

n
|t̃ |(2A+1)β+nα−1znψ̃(z, t̃)

+ 1

2
ω2|t̃ |(2A+1)β+2α−1z2ψ̃(z, t̃)

+ i
α

2β

1

t̃

(
z

∂

∂z
+ ∂

∂z
z

)
ψ̃(z, t̃). (4.19)

If we require the kinetic and zn terms be time independent
we get exactly the same solution for α, β as in the classical
case (4.10) and the Schroedinger equation becomes

i
1

β

∂

∂ t̃
ψ̃(z, t̃) = − 1

2

∂2

∂z2 ψ̃(z, t̃)

+ g

n
znψ̃(z, t̃) + 1

2
ω2 1

|t̃ |(n−2)α
z2ψ̃(z, t̃)

+ i
α

2β

1

t̃

(
z

∂

∂z
+ ∂

∂z
z

)
ψ̃(z, t̃), (4.20)

which is exactly the Schroedinger equation associated with
Eq. (4.11).
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Fig. 3 Classical motion with α > 0

Fig. 4 Another classical motion with α > 0 with a smoother behavior
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Fig. 5 Classical motion with α < 0 with a too short integration range to show the expected behavior

Fig. 6 Classical motion with α < 0 with a proper integration range to show the expected behavior
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If α > 0 > β the zn term is dominating for t̃ → ±∞
(t → 0±) as in the classical motion then we get a complete
set of wave functions as

ψk (y, t) ∼t→0 |t |
∣∣∣ α

2β

∣∣∣
exp

⎛
⎝−i Ekβ

sgn(t)

|t |
∣∣∣ 1
β

∣∣∣

⎞
⎠ ψ̃k (z = |t |

∣∣∣ αβ
∣∣∣
y), (4.21)

where Ek it the k-th energy eigenvalue of the effective Hamil-
tonian Hef f = 1

2 p
2
z + 1

n gz
n and effective time te f f = β t̃ .

The wave functions are normalizable and vanish for t → 0
allowing for a nice and “smooth” crossing of the singularity.
The vanishing of the wave function can be again interpreted
as the fact that the classical particle is spread over all the

possible values of y. Since
∣∣∣ α

2β

∣∣∣ = 2A
n+2 the wave functions

vanish (generically) slower than the non interacting case and
this can be interpreted as the fact that interactions has a better
behavior than the non interacting case. Better means that
classical interacting particle goes to infinity slower than the
free one.

The other case is β > 0 > α as in the classical motion.
In this case the y kinetic term is dominating for t̃ → 0±
(t → 0±). In fact in this limit the Schroedinger equation is

i
1

β

∂

∂ t̃
ψ̃(z, t̃) ∼ − 1

2

∂2

∂z2 ψ̃(z, t̃) + i
α

2β

1

t̃

(
z

∂

∂z
+ ∂

∂z
z

)
ψ̃(z, t̃).

(4.22)

Redefining ψ̃(z, t̃) = ei
1
2

α
β

z2

t̃ �(z, t̃) we get

i
1

β

∂

∂ t̃
�(z, t̃) ∼ − 1

2

∂2

∂z2 �(z, t̃) − 1

2

α(α + 1)

(β t̃)2
z2�(z, t̃),

(4.23)

which is the Schroedinger equation derived from (4.12) and
can be seen as a time dependent harmonic oscillator with
�2

e f f = −α(1+α)

t2e f f
(so that Aef f = −α as in the classical

case) and te f f = β t̃ and therefore it exists as a theory. In
particular we get the leading behavior for the “ground state”

ψ(y, t) = |t̃ |− 1
2 αei

1
2

α
β

z2

t̃ �(z, t̃)

∼ |t |− 2α+1
β exp

{
1

2
i

(
2α + 1

β

sgn(t)

|t | 2α+1
β

− 2α + 1

|β|2α+1

b0

b1
|t |−2 2α+1

β

)
y2
}

, (4.24)

where b0 = c0ω
Aef f and b1 = c1ω

1−Aef f , i.e. we have reab-
sorbed the ω dependence in (3.27) into the coefficients which
must therefore satisfy an equation corresponding to (3.25)
without ω. Finally notice that 2α+1

β
= − 2nA−(n+2)

n+2 so that

when perturbation theory breaks down, i.e. when 2A > n+2
n−2

(α < −1) the wave function vanishes when t → 0 and
the potential is unbounded. Notice that the wave function
vanishes when t → 0 in a wider range of A values, i.e.
2A > n+2

n (α < − 1
2 ) but not all of them implies a pertur-

bation theory breakdown because the potential is bounded
(−1 < α < − 1

2 ). See Table 1 for a summary of the behav-
iors.

5 Implications for string theory on temporal orbifolds

All the previous discussion is for the generic Kasner metrics
of which the Boost Orbifold is a peculiar case. For the Boost
Orbifold where A = 1

2 the QFTs considered do not suffer
from any breakdown and this is apparently a puzzle because
the string on Boost Orbifold has a divergence. The solution
of this apparent puzzle is that divergences appear in QFT
when higher derivatives interaction terms (induced by mas-
sive string states [31]) or non linear sigma model interactions
are included.

The reason we did not discuss the quantum mechanical
models associated with these QFTs is that either they suffer
from Ostrogradskii instability or they are not renormalizable.
In any case this is not a limitation since it is easy seen that
we suffer of the same issues as the models discussed.

We have then a clear explanation of the origin of the diver-
gences in four point amplitudes as a breakdown of the pertur-
bative expansion. These divergences are also present in three
point amplitudes with massive states, i.e. in the lowest order
of perturbation theory. The fact that we need to consider the
full theory was also partially guessed in [11].

In the full interacting open string at tree level this does not
necessarily mean that gravitational backreaction is not going
to play any role. In facts in the open string case when solved
the issues at tree level it may be well reappear to one loop open
string amplitudes. This is however not at all obvious since the
previous argument on perturbation theory breakdown applies
to closed string as well so the resolution of the issues at
the sphere level with three or four punctures could suggest
the resolution at the annulus level, i.e. the sphere with two
punctures.

Another point worth mentioning is that we have discussed
the Boost Orbifold only and not the Null Shift Orbifold. The
reason in this case is technical. While for the Boost Orbifold
and its generalization the Kasner metric we can reduce the
QFT to a quantum mechanical model in the Null Shift Orb-
ifold we can only reduce to a 2d QFT since we need keeping
both x±. Nevertheless we expect the same mechanism to be
in action for this case too.

An important point which is worth stressing is that diver-
gences are present in Lagrangian approach, i.e. in the covari-
ant one where the time is integrated over but there is no diver-
gence in the light-cone formalism which is Hamiltonian and
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where the time is not integrated [39]. This is is the same as
the previous quantum mechanical models: the Hamiltonian
exists but the perturbation theory does not. Finally notice that
this can be shown explicitly for the Null Shift Orbifold which
is easily quantized on the light-cone [39]. This observation
explains also why the matrix model with light like dilatonic
profile [40] and the matrix model for the Null Shift Orbifold
[41,42] is well defined.

Since the problem is essentially Lagrangian this is also an
issue for Witten string field theory and in general for all the
covariant formulations.

So we are left with the issue on how treat this divergences.
One possibility is to use the Hamiltonian formalism, for
example the light-cone when available. Even if these back-
grounds do not possess Poincaré symmetry and the light-cone
formalism is well adapted (it is possible to use the light-cone
formalism also in other less obvious cases [43]) one could
desire to have a covariant formulation in this case too then a
possible approach is [14]. Another possibility is to regularize
the theory in some way, for example non commutativity can
do the job [44].

Finally let us mention that the way of performing the
orbifold projection in the temporal orbifold cases used in
literature are not on very sound basis since the generators
used to write the orbifold projector are dynamical and they
change when interactions are switched on. The only clear cut
case where this is not the case is the Null Shift Orbifold in
light-cone quantization. If we were to use the proper interact-
ing generators there could also be some cancellations which
could give raise to finite amplitudes.

6 Conclusions

First of all let us discuss what the previous computations
imply for QFT and then shortly for string theory since we
have discussed string theory in the previous section.

The first and most important point is that interactions
can drastically change the fate of the fields under a Big
Crunch/Big Bang.

Secondly what happens seems to depend on the details of
the interaction, in the models we studied the power of the
interaction φn and the value of 2A = ∑

i p(i). For certain
ranges there is no breakdown, in particular Iit is noteworthy
that the original Krasner background, which is also a string
background admits a good perturbation.

Thirdly the breakdown of the perturbation theory is a
breakdown of Feynman diagram approach, i.e. of the concept
of particle. Obviously this happens because of the spacetime
region around the singularity and excluding this region, i.e.
before and after it the perturbation theory is well defined.
Nevertheless this result rises the question of how to treat the
S matrix in these backgrounds, in facts the theory exists and

spaces are asymptotically flat so we could expect to be able
to define some kind of S matrix. Nevertheless it seems that
the usual constraints from unitarity must be revisited since
near the singularity the concept of particle breaks down.

Finally the previous results seem to point to the importance
of minisuperspace approach and pose the question how to
extend it to string theory.

For the string theory the main result is that, at least, at
the tree level string theory is well for these backgrounds.
Whether divergences from backreaction appear at loop level
is by now unknown also because we have to find a good way
of treating the tree level.
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A Time dependent harmonic oscillator

We will follows essentially Tseytlin et at [45] which refers to
[46] but we will be careful in distinguish between Heisenberg
and Schrodinger representation and this should make things
more clear. For a newer point of view on the problem see also
[47].

As usual we define operators in Heisenberg picture as

OH (t, t0) = U †
S (t, t0)OS(t)US(t, t0), (A.1)

so that we get Hamiltonian in Heisenberg pictureas (m > 0)

HH (t, t0) = 1

2m
p2
H (t, t0) + 1

2
m�2(t)x2

H (t, t0), (A.2)

where in our case

�2(t) =
(

ω2 + A(1 − A)

t2

)
=
(

ω2 + k

t2

)
. (A.3)

We then get the e.o.m

ẋH (t, t0) = 1

m
pH (t, t0),

ṗH (t, t0) = − m�2(t)xH (t, t0), (A.4)
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with boundary conditions

xH (t0, t0) = xS, pH (t0, t0) = pS . (A.5)

They imply the second order ODEs

ẍH + �2xH = d

dt

(
1

�2 pH

)
+ pH = 0. (A.6)

A.1 Constant Heisenberg creator operator

We now define the operatorsAH (t, t0) using the matrixM(t)
as

AH (t, t0) = M(t)ZH (t, t0)

=
(
AH (t, t0)
A†
H (t, t0)

)
= i

( −Ẋ (t) 1
mX (t)

+Ẋ ∗(t) − 1
mX ∗(t)

)(
xH (t, t0)
pH (t, t0)

)
,

(A.7)

whereX (t) is a complex solution5 of the classical e.o.m with
given normalization6

Ẍ (t) + �2(t)X (t) = 0,

X ∗Ẋ − XẊ ∗ = 2iW (�X ,�X ) = im. (A.8)

Notice that the previous conditions do not fix completely
the solution. To fix it we need to choose an instantaneous
vacuum, see Appendix 1.

The previous operators satisfy the relations7

[
AH (t, t0), A†

H (t, t0)
]

= 1,

d AH (t, t0)

dt
≡
(

∂A(t, t0)

∂t

)
H

+ i [HH (t, t0), AH (t, t0)] = 0,

(A.9)

i.e. the canonical commutation relation and the time inde-
pendence relation.

For later use we note that the inverse of M(t) is

M−1(t) =
( 1

mX ∗(t) 1
mX (t)

+Ẋ ∗(t) Ẋ (t)

)
. (A.10)

5 As we discuss in Appendix 1 there is a one parameter family of
solutions.
6 Remember that given a second order ODE ÿ + a(t)ẏ + b(t) = 0 the
Wronskian associated with two solutions f (t) and g(t) is W ( f, g) =
f ġ − ḟ g and it obeys the ODE Ẇ + aW = 0 therefore W =
c exp

(− ∫ dta(t)
)

with c a constant. In our case a(t) = 0 and the
Wronskian is a constant.
7 Notice that ∂AH (t,t0)

∂t ≡
(

∂A(t,t0)
∂t

)
H

= U†
S

∂AS(t,t0)
∂t US . This means

that the only reasonable way of computing d AH (t,t0)
dt is to express AH

in terms of operators whose Schroedinger pictureare time independent.

A.2 Comparing with the usual harmonic oscillator 1

The general solution for the X equation for the usual har-
monic oscillator is

X (t) = X+eiωt + X−e−iωt , (A.11)

then we can compute the constraint

XẊ ∗ − X ∗Ẋ = −im

= 2iω
(
|X−|2 − |X+|2

)
, (A.12)

from which we get the solution

X+ =
√

m

2ω
eiω(t−t0), X− = 0. (A.13)

Notice that the constraint fixes X± up to a phase that we have
chosen so that the time invariant Heisenberg operator

AH (t, t0) =
√

m

2ω
eiω(t−t0)

(
−iωxH (t, t0) + 1

m
pH (t, t0)

)
,

(A.14)

matches the corresponding Schroedinger operator for t = t0.

A.3 Hilbert space

We want to construct the Hilbert space of states to be used in
Heisenberg formalism, i.e. we want states that do no depend
on time.

We notice that acting withUS on the AH defining equation
we get

AH (t, t0) = M(t)ZH (t, t0) �⇒ AS(t) = M(t)ZS, (A.15)

but because of the boundary conditionson ZH we can also
write

AH (t0, t0) = M(t0)ZH (t0, t0) = M(t0)ZS = AS(t0),

(A.16)

then because AH is constant we get the basic result

AH (t, t0) ≡ U †
S (t, t0)AS(t)US(t, t0)

= AH (t0, t0) = AS(t0). (A.17)

Now we can introduce the “vacuum” at time t0 as

AS(t0)|0{t0}〉 = 0, (A.18)

and build a basis for the Hilbert space which is characterized
by time t0 as

HBt0 =
{
|n{t0}〉 = 1√

n! A
†n
S (t0)|0{t0}〉

}
. (A.19)
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A.4 Time evolution of basis elements and wave functions 1

Given any element of the previous basis we can identify it as
a Schroedinger state as

|n{t0}; t0, t0〉S = |n{t0}〉, (A.20)

and compute its time evolution as follows.
Let us start with the “vacuum”, and write

AS(t0)|0{t0}; t0, t0〉S = U †
S (t, t0)AS(t)US(t, t0)|0{t0}; t0, t0〉S

= U †
S (t, t0)AS(t)|0{t0}; t, t0〉S = 0,(A.21)

hence we can determine the time evolution of the t0 vacuum
state as

AS(t)|0{t0}; t, t0〉S = 0, (A.22)

from which follows its wave function up to a time dependent
normalization(

−Ẋ (t)x − i

m
X (t)∂x

)
ψ0{t0}(x, t, t0)

= 0 �⇒ ψ0{t0}(x, t, t0) = N (t)ei
m
2

Ẋ (t)
X (t) x

2
. (A.23)

The normalization can be fixed using the Schroedinger equa-
tion as

i∂tψ0{t0}(x, t, t0) =
[
i
Ṅ
N − m

2

d

dt

(
Ẋ
X

)]
ψ0{t0}(x, t, t0)

= HS(t)ψ0{t0}(x, t, t0) =
⎧⎨
⎩− 1

2m

⎡
⎣im Ẋ

X − m2

(
Ẋ
X

)2

x2

⎤
⎦

+ 1

2
m�2x2

}
ψ0{t0}(x, t, t0), (A.24)

and using X e.o.m to get

N (t) = C√X (t)
, (A.25)

with C a constant which can be fixed requiring the normal-
ization of ψ0{t0}(x, t, t0) as

(ψ0{t0}(x, t, t0), ψ0{t0}(x, t, t0)) = |C |2
|X |

√√√√ π

m�
(
Ẋ
X
)

= |C |2
√

2π

m2 = 1, (A.26)

where we have used X normalization and e.o.mto write

�
(
Ẋ
X

)
= � (ẊX ∗)

|X |2 = m

2|X |2 , (A.27)

where it is interesting to notice that the chosen X normal-
ization allows for the convergence of the integral. Finally we

can write the normalized wave function as

ψ0{t0}(x, t, t0) = 4

√
m2

2π

1√X (t)
ei

m
2

Ẋ (t)
X (t) x

2
. (A.28)

A.5 Comparing with the usual harmonic oscillator 2

Using the results from the previous section and Ẋ
X = iω we

get the harmonic oscillator ground state wave function

ψ0{t0}(x, t, t0) = 4

√
mω

π
e−i 1

2 ω(t−t0)e−m
2 ωx2

. (A.29)

A.6 Time evolution of basis elements and wave functions 2

To deal with excited states is better to use a generating func-
tion and therefore we define

|z{t0}; t, t0)S =
∞∑
n=0

zn√
n! |n{t0}; t, t0〉S

= ezA
†
S(t)|0{t0}; t, t0〉S, (A.30)

then we evaluate

〈x |z{t0}; t, t0)S = 〈x |US (t, t0)|z{t0}) =
∞∑
n=0

zn√
n! ψn{t0}(x, t, t0)

= 〈x |eizẊ∗(t)xS e−i z 1
m X∗(t)pS e−i 1

2 z∗ 1
m Ẋ∗(t)X∗(t)|0{t0}; t, t0〉S

= eizẊ
∗(t)x−i 1

2 z∗ 1
m Ẋ∗(t)X∗(t)〈x |e−z 1

m X∗(t)∂x |0{t0}; t, t0〉S

= 4

√
m2

2π

1√X (t)
e
i m2

Ẋ (t)
X (t) x

2+ m
X (t) xz− 1

2
X∗(t)
X (t) z2

, (A.31)

upon the use of the X normalization condition. It can also be
checked that the previous equation satisfy the Schroedinger
equation

i∂t 〈x |z{t0}; t, t0)S =
(

− 1

2m
∂2
x + 1

2
m�2(t)x2

)
〈x |z{t0}; t, t0)S .

(A.32)

A.7 Overlaps

Since we want to check that overlaps are well defined we
need computing 〈n{t0}||l{t0}; t, t0〉S but it is actually simpler
to compute

S(z{t0}; t0, t0||w{t0}; t, t0)S = (z{t0}|US(t, t0)|w{t0})
=

∞∑
n,l=0

z∗n√
n!

wl

√
l! 〈n{t0}||l{t0}; t, t0〉S, (A.33)

since |n{t0}〉 = |n{t0}; t0, t0〉S . Performing the explicit x inte-
gral we get
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S(z{t0}; t0, t0||w{t0}; t, t0)S

=
√

−im

Ẋ ∗(t0)X (t) − Ẋ (t)X ∗(t0)
e

−im
Ẋ∗(t0)X (t)−Ẋ (t)X∗(t0)

[√ X (t)
X∗(t0)

z∗+
√X∗(t0)

X (t) w

]2

− 1
2

X (t0)

X∗(t0)
z∗2− 1

2
X∗(t)
X (t) w2

. (A.34)

A.8 Evolution operator in x space

For the same reason as before, i.e. to check the finitness of the
regularized string theory we need the kernel or the evolution
operator in x space. We perform the computation using the
generating function as follows

〈x2, t2|x1, t1〉 = 〈x2|US(t2, t1)|x1〉

=
∞∑
n=0

ψn{t0}(x2, t2, t0)ψ∗
n{t0}(x1, t1, t0)

=
∫

d2z

π
e−|z|2 〈x2|z{t0}; t2, t0)S S(z{t0}; t1, t0|x1〉,

(A.35)

where the d2z integral is normalized as
∫ d2z

π
e−|z|2 = 1.

We get

〈x2, t2|x1, t1〉 =
√

−im2

4π� (X (t2)X ∗(t1))

× e
im2

4�(X (t2)X∗(t1))

[X (t1)

X (t2)
x2

2 + X ∗(t2)
X ∗(t1)

x2
1 − 2x1x2

]

+ i
m

2

[ Ẋ (t2)

X (t2)
x2

2 − Ẋ ∗(t1)
X ∗(t1)

x2
1

]
. (A.36)

A.9 Comparing with the usual harmonic oscillator 3

Using the explicit solution for the harmonic oscillator we get

� (X (t2)X ∗(t1)
) = m

2ω
sin ω(t2 − t1),

X (t1)

X (t2)

= e−iω(t2−t1), (A.37)

then the x2
2 coefficient becomes

im2

4� (X (t2)X ∗(t1))
X (t1)

X (t2)
+ i

m

2

Ẋ (t2)

X (t2)

= imω

2 sin ω(t2 − t1)

×
[
e−iω(t2−t1) + i sin ω(t2 − t1)

]

= imω

2

cos ω(t2 − t1)

sin ω(t2 − t1)
, (A.38)

as it should.

B Complex classical solution for LB

We want to solve the equations (3.22). One possibility is to
use the WKB approach, i.e. the adiabatic vacuum approach
[48] and write

X (x) = m

2W (t)
ei
∫
dt ′W (t ′),

W 2(t) = �2(t) + δ1(t) + δ2(t)

�2(t)
+ O

(
�−4

)
, (B.1)

but this approach singles out � as a whole while for our
purposes we are more interested in singling out ω.

B.1 Perturbative solution for X in the small |ωt | limit

We want to solve the classical equation with normalization
condition given in (3.22) which we repeat here without set-
ting m = 1

Ẍ (t) + �2(t)X (t) = 0,

X ∗Ẋ − XẊ ∗ = im. (B.2)

Actually we are interested in the perturbative solution around
t = 0. This is a second order linear equation and therefore it
has two independent solutions. For our purpose it is sufficient
to consider the following leading order expansion

X (t) =
{
c0(ωt)A(1 + O(t2)) + c1(ωt)1−A(1 + O(t2)) t > 0
c̄0(−ωt)A(1 + O(t2)) + c̄1(−ωt)1−A(1 + O(t2)) t < 0

.

(B.3)

We allow for different coefficients for t > 0 and t < 0
because of the singularity in the differential equation. The
normalization condition then implies

− (2A − 1)ω|c1|2�
(
c0

c1

)
= +(2A − 1)ω|c̄1|2�

(
c̄0

c̄1

)

= −1

2
m. (B.4)

The issue to solve is the continuation through the singularity
t = 0. Since we deal with a classical solution we can expect
that it must be as smooth as possible. For A > 1 (for 0 < A <

1 both independent solutions vanish for t = 0 and therefore
we take the solution for A > 1 as the the solution for this
range) the term |t |1−A is divergent but it is the best we can do

123



1153 Page 18 of 21 Eur. Phys. J. C (2022) 82 :1153

to get a continuous trajectory. This suggests to set c1 = c̄1

and therefore c0 = −c̄0 as consequence of the normalization
condition. Notice that the discontinuity in the coefficient c0

does not make X discontinuous, only Ẍ is discontinuous.
We are therefore led to

X (t) = c0ωt |ωt |A−1(1 + O(t2)) + c1|ωt |1−A(1 + O(t2)).

(B.5)

The general solution of the normalization condition (B.4)
reads

c0 =
√

m

2(2A − 1)ω

eiα

λ
ei

π
4 ,

c1 =
√

m

2(2A − 1)ω
eiαλ e−i π

4 , α, λ ∈ R, (B.6)

where α is a trivial overall phase while λ parameterizes dif-
ferent solutions. Explicitly we can write the normalized com-
plex classical solution as

X (t) =
√

m

2(2A − 1)ω
eiα
(
λe−i π

4 |t |1−A

+e+i π
4

λ
sgn(t) |t |A

)
(1 + O(t2)), (B.7)

so that

Ẋ
X ∼ 1 − A

t
+ (2A − 1)

c0

c1
ω|ωt |2(A−1)

= 1 − A

t
+ (2A − 1)

1

λ2 ω|ωt |2(A−1). (B.8)

To understand the role of λ we can compute

|ψ0(x, t)|2 ∼ 1

|ωt |1−A
e− ω2A−1

λ2 |t |2(A−1)x2
, (B.9)

from which we see that λ parameterizes the instantaneous
vacuum, in fact for small ωt0 such that �(t0)2 > 0 we can
compare with the usual harmonic function probability den-
sity |ψ0(h.o)(x, t)| ∼ e−m�(t0)x2

.

B.2 Continuation through t = 0 using a regularized
equation

In the previous section we have given a plausible argument
on how to continue the solution across the t = 0 singularity
based on the continuity. We can make this argument more
rigorous by looking to the solution with a regularized �2(t).
This argument is more rigorous if one is willing to accept
that it is meaningful to regularize �2(t) as

�2(t) =
{

ω2 + k
t2

|t | > ε

ω2 + k
ε2 |t | < ε

. (B.10)

We choose �2(ε) = ω2 + k
ε2 < 0, i.e. we take A > 1 so that

|�(ε)| =
√|k|

ε
− 1

2

ω2

√|k|ε + O(ε3). (B.11)

Obviously we are not adding anything really new to the
previous argument since we are making �2(t) finite and con-
tinuous and therefore the solution will be finite and continu-
ous across the singularity and therefore unique. It is anyhow
interesting to see how the discontinuity in the c1 coefficient
arises.

The general solution for |t | < ε is

X (t) = ce cosh(|�(ε)|t) + co sinh(|�(ε)|t), (B.12)

so that the normalization condition (B.4) reads

�(c∗
oce) = −1

2

m

|�(ε)| , (B.13)

whose general solution is

ce =
√

m

2|�(ε)|ρe
iβ e−i π

4 , co =
√

m

2|�(ε)|
eiβ

ρ
e+i π

4 .

(B.14)

We can now match the solution at t = ε. Since the solution for
t = ε+ diverges as X (ε+) ∼ ε1−A we have either ρ → ∞
or ρ → 0. In the former case we need α = β and get

ρ ∼ λ 4
√|k|ε 1

2 −A

cosh
√|k| , (B.15)

and the solution is essentially even since the odd part is sup-
pressed while in the latter case we need α = β + 1

2π and
get

ρ ∼ λ 4
√|k|ε 1

2 −A

sinh
√|k| , (B.16)

and the solution is essentially odd.
Letting A → 1+, i.e. |k| → 0 such that |k|

ε2 is kept constant

and bigger than ω2 we get the usual harmonic oscillator with
..... Then only in the even case ρ has a finite limit while in
the odd case ρ ∼ ε.

CWKB analysis of e.o.m for LB

We want to use the WKB approach to determine the behavior
for t → 0. We set ψ(x, t) = ei S(x,t) so that we want to solve
the equation

∂t S(x, t) + 1

2
(∂x S(x, t))2 + 1

2

(
ω2 + k

t2

)
x2 − i

1

2
∂2
x S(x, t) = 0.

(C.1)

In the limit t → 0 we can try to write
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S(x, t) = θ(t)ta(+)s(+)0(x)(1 + o(1))

+θ(−t)(−t)a(−)s(−)0(x)(1 + o(1)) (C.2)

and fix a(±). In principle wee could simply write ta for t ∈ R

since S ∈ C but this would introduce cuts in the solution and
therefore we should discuss which sheet we should use. We
prefer to have a well defined leading order.

Notice that we allow for a discontinuity in S at t = 0
since pxψ(x, t) = ∂x Sψ(x, t) and the momentum can be
discontinuous due to the infinite force.

At the leading order in t we get

a
|t |a
t

s0(x) + 1

2
|t |2a(s′

0(x))
2 + 1

2

k

t2 x
2 − i

1

2
|t |as′′

0 (x) ∼ 0,

(C.3)

where we have dropped the subscript (±) since the equation
is the same for both cases. There is a unique solution which
requires a = −1. Then we are left with

(s′
0(x))

2 − 2sgn(t)s0(x) + k = 0. (C.4)

This is a special case of Chrystal’s equation.8 The most sin-
gular and easiest solution is

s0±(x) = 1

2
α±x2, α± = sgn(t)α ∈ {A, 1 − A}. (C.5)

Since there are two solutions for sgn(t)α it is still possible
that s(+)0(x) differs from s(−)0(x) but it turns out that they
are the same since in order to avoid singularities at x = 0
for t 	= 0 in S. The same constraint implies that we need
choosing the smallest α.

We can therefore simply write the leading order as

S(x, t) = 1

t
s0(x) + . . . , s0(x) = 1

2
αx2, α ∈ {A, 1 − A}.

(C.6)

So one could think of setting up an expansion like S =
1
t s0(x)+s1(x)+ts2(x)+O(t2). This is possible but does not
give the right answer. The equation is non linear and therefore
we cannot add solutions hence we must check whether there
exist subdominant expansions. Let us therefore write

S(x, t) = 1

t
s0(x)(1 + O(t)) + tαbs[1]

0(x)(1 + O(t)),

(C.7)

8 Chrystal’s equation reads

ẏ2 + At ẏ + By + Cx2 = 0.

The general solution is

x
(z − a)a/(a−b)

(z − b)b/(a−b)
= k, 4By = (A2 − 4C − z2)x2,

and a, b = ±
[
B +√(2A + B)2 − 16C

]
/2.

and try to fix b. We do not require the subdominant solution
to be regular for t = 0 but we require α�(b) > −1 so that
the added term is actually subdominant. The equation for
s[1]

0(x) turns out to be

s′
0s

[1]′
0 + αbs[1]

0 = 0, (C.8)

which has solution

s[1]
0(x) = c[1]

0|x |−b, (C.9)

since we do not want singularities in x we need �b < 0
which then implies α < 1

|�b| or equivalently A > 1 − 1
|�b| .

Finally we can set up the perturbative expansion as

S(x, t) = 1

t
s0(x) + s1(x) + ts2(x) + O(t2)

+ log(|t |)ŝ1

+ |t |αbs[1]
0(x) + |t |αbts[1]

(+)1(x) + O(tαb+2)

+ |t |2αbs[2]
0(x) + |t |2αbts[2]

1(x) + O(t2αb+2)

+ . . . , (C.10)

where we added a further logarithmic contribution with con-
stant coefficient ŝ1 = ( 1

2 i + δ)α which is necessary for the
absence of singularities in x = 0 from s1 and added dou-
ble infinite series with power |t |nαb since as soon as we add
|t |αb we get a term with power |t |2αb from (∂x S)2. In the
case of non integer power we need paying attention to the
definitions of s[n]

m in order to get equations which do not
depend on the sign of t therefore we write |t |nbtm . Finally
notice that if we assume this expansion we need not only
α�(b) > −1 but α�(b) > − 1

n so that all added terms are
subdominant. This means that α�(b) > 0 which together
�b < 0 implies α < 0 or A > 1. There is however a way
out from this constraint which allows A < 1. The term |t |2αb

from (∂x S)2 can be canceled from a term |t |2αb+1 from ∂t S.
If we start this way we see that we need terms |t |nαb+n−1

only. In this case we need to impose nα�b + n − 1 > −1
and nα�b + n − 1 > (n − 1)α�b + (n − 1) − 1 in order
to get a series of subdominant terms. All constraints can be
solved by α�b > −1 so that α < 1

|�b| .
We now get the equations

|t |αb/t : 2s′
0s

[1]′
0 + 2αbs[1]

0 = 0

|t |2αb/t : 2s′
0s

[2]′
0 + 4αbs[2]

0 = 0

t−1 : 2s′
0s

′
1 − is′′

0 + 2ŝ1 = 0

|t |αb : 2s′
0s

[1]′
1 + 2(αb + 1)s[1]

2 − is[1]′′
0 + 2s′

1s
[1]′

0+ = 0

|t |2αb : 2s′
0s

[2]′
1 + 2(2αb + 1)s[2]

1 − is[2]′′
0 + 2s′

1s
[2]′

0 + (s[1]′
0)

2 = 0

t0 : 2s′
0s

′
2 + 2s2 − is′′

1 + (s′
1)

2 + ω2x2 = 0. (C.11)

The solution for s[1]
0 and s[2]

0 read

s[1]
0(x) = αc[1]

0|x |−b, s[2]
0(x) = αc[2]

0|x |−2b, (C.12)
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from which one can easily guess the solution for all s[n]
0. In

particular it is possible to set s[2]
0(x) = 0 for having A < 1

too.
The solution for s1, s[1]

1 and s[2]
1 read

s1(x) = αc1 − δlog|x |,

s[1]
1(x) = αbc[1]

0(2δ − ib − 2i)

2(2α − 1)
|x |−b−2 + αc[1]

1|x |−b− 1
α

s[2]
1(x) = αb[c[2]

0(4δ − 4ib − 4i) + αbc[1]2
0]

2(2α − 1)
|x |−2b−2

+ αc[2]
1|x |−2b− 1

α . (C.13)

Finally we get also

s2(x) = − ω2

2(2α + 1)
x2 + δ(δ − i)

2(2α + 1)

1

x2 + αc2|x |− 1
α .

(C.14)

Assembling all pieces in order to discuss the constraints on
the constants we get

S(x, t) = 1

t

[
1

2
αx2

]
+ log |t |

[
α(

i

2
+ δ)

]
+ [−δ log |x |]

+ t

[
− ω2

2(2α + 1)
x2 + δ(δ − i)

2(2α + 1)

1

x2 − αc2|x |− 1
α

]

+ |t |αb
[
αc[1]

0|x |−b
]

+ |t |αbt
[

αbc[1]
0(2δ − ib − 2i)

2(2α − 1)
|x |−b−2

+αc[1]
1|x |−b− 1

α

]

+ |t |2αb
[
αc[2]

0|x |−2b
]

+ |t |2αbt

[
αb[c[2]

0(4δ − 4ib − 4i) + αbc[1]2
0]

2(2α − 1)

× |x |−2b−2 + αc[2]
1|x |−2b− 1

α

]
(C.15)

The absence of singularities in x = 0 in the O(1) term
implies δ = 0. This is also compatible with the absence of
singularities in x = 0 in the O(t) term.

As discussed below the normalizability of the wave func-
tion requires c[1]

0 	= 0. Then the |t |αb|x |−b−2 term implies
b ≤ −2. From the true solution we know that we have
to choose b = −2 and the series expansion of the form
|t |nαb+n−1. Why it is so it is not clear at this point.

Let us discuss the normalizability. When A > 1 and there-
fore α = 1 − A < 0 we get

ψ(x, t) = N |t | 1
2 (A−1)e

i

[
− A−1

4
1
t x

2+t ω2
2(A−1)

x2
]
e−i(A−1)c[1]

0 |t |A−1x+ 1
2 c[1]2

0 |t |2(A−1)x2
.

(C.16)

As long as we take �(c[1]2
0) < 0 (which implies c[1]

0 	= 0)
this expression is consistent since the normalization N is a
constant and independent on x and t as it follows from

∫ ∞
−∞

dx |ψ(x, t)|2

=
∫ ∞
−∞

dx |N |2|t |(A−1)e2�(c[1]2
0)|t |2(A−1)x2−2(A−1)�(c[1]

0)|t |(A−1)x

= |N |2
√

1

−2�(c[1]2
0)
e
(1−A)2 (�c[1]

0)2

−2�(c[1]2
0) . (C.17)

The physical meaning of the vanishing of the wave function
for t = 0 is that the particle is diffused uniformly on the
entire real axis x .
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