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Abstract From a geometric point of view, we show that
the unitary symmetries U(1) and SU(2) stem fundamen-
tally from Schwarzschild and Reissner–Nordström worm-
hole geometry through spacetime complexification. Then,
we develop quantum tunneling which makes these worm-
holes traversable for particles. Finally, this leads to wormhole
thermodynamics.

“As Above So Below”
THOTH

1 Introduction

Einsiten–Rose wormhole was introduced to understand the
geometric meaning of mass and charge of the elementary par-
ticles in Ref. [1] and then was developed by many authors
[2–10]. The geometric description of physical concepts was a
cornerstone of several approaches to quantum gravity. These
approaches includes noncommutative geometry [11], string
theory [12], loop quantum gravity [13] and twistor theory
[14]. In this article, we focus our attention on a fundamen-
tal question: is there conceptual connection between uni-
tary symmetries and wormhole geometry? We argue that
it is possible to find the unitary symmetries such as U(1)

and SU(2), symmetries from Schwarzschild and Reissner–
Nordström wormhole geometry through spacetime complex-
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ification if a new Euclidean metric on a complex Hermitian
manifold is provided manifold is provided. This motivated
us to compute quantum tunneling, which indicates that these
wormholes could be traversable for particles. Finally, this
allows us to introduce wormhole thermodynamics which is
consistent with black hole thermodynamics [15,16].

The article is organized as follows. We start with the
Schwarzschild wormhole geometry in Sect. 2 and we con-
nect its complex geodesics with U(1) and SU(2) symme-
tries by using spacetime complexification. We also provide a
new Euclidean metric on a Hermitian complex manifold. In
Sect. 3, the massless exotic Reissner–Nordström wormhole
geometry is also connected with the same unitary symme-
tries and a discussion about the classical Reissner–Nordström
wormhole geometry and the SU(3) symmetry is addressed.
Quantum tunneling for particles is studied in Sect. 4 and lead
to wormhole thermodynamics. Finally, concluding remarks
are given in Sect. 5.

2 Schwarzschild wormhole geometry

It is historically known that Einstein and Rosen (ER) intro-
duced the ER bridge, or wormhole idea, to resolve the par-
ticle problem in General Relativity (GR) [1]. The ER bridge
contrives a geometric meaning of particle properties in the
spacetime such as mass and charge, where mass and charge
are nothing but bridges in the spacetime. The ER bridge idea
can be summarized as follows. The Schwarzschild metric is
given by

ds2 = −
(

1 − 2M

r

)−1

dr2 − r2
(

dθ2 + sin2 θdφ2
)
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+
(

1 − 2M

r

)
dt2, (1)

where M > 0. It has both the physical singularity existing at
r = 0, that cannot be removed, and the coordinate singularity
at r = 2M that can be removed by choosing another coor-
dinate system. Einstein and Rosen suggested a coordinate
system which resolves the coordinate singularity at r = 2M
by choosing the following transformation

u2 = r − 2M, (2)

leading to 4u2du2 = dr2. In the new coordinate system, one
obtains for ds2 the expression

ds2 = −4(u2 + 2M)du2 − (u2 + 2M)2

×(dθ2 + sin2 θdφ2) + u2

u2 + 2M
dt2. (3)

One may notice in this coordinate system that u will be
real value for r > 2M and will be imaginary for r < 2M . As
u varies from −∞ to ∞, one finds r varies from +∞ to 2M
and then from 2M to +∞. In that sense, the 4-dimensional
spacetime can be described by two congruent sheets that are
connected by a hyperplane at r = 2M , and that hyperplane is
the so-called “bridge”. Thus, Einstein and Rosen interpreted
the mass as a bridge in the spacetime.

This draws our attention to look closely at the case when
r < 2M and consequently the variable “u” would have imag-
inary values in this region. The geodesics in the u-coordinate
system will experience two different kinds in two different
regions. In region r > 2M , it would follow real trajectory,
and it follows imaginary trajectory in the region r < 2M .
But as we cannot “stitch” a real space and a complex space
together, we prefer to complexify the whole spacetime. It
might be enticing to impose real spatial indices to formu-
late complex geodesics as the spatial coordinate u is what
motivates to consider spacetime complexification, but the
more wise choice is to cook one complex dimension from
spatiotemporal dimensions and the other complex dimen-
sion from the leftover spatial dimensions. Also, we classify
the geodesics based on real and imaginary parts in the two
sheets of the wormhole. This is crucial to develop a more
consistent theory of gravity for the following reasons:

• The manifold in GR is chosen to be Riemannian mani-
fold [17] which is connected and guarantee the general
covariance and continuous coordinate transformations in
the Riemannian manifold. But a basic question emerges:
To what does the region r < 2M develop under diffeo-
morphisms? The answer should include that there must
be a geometric structure, by covarience principle, that
corresponds to the region in wormhole geometry.

• The physical singularity at r = 0 is irremovable by
coordinate transformation in GR [18], which implies the
importance of studying the region connected with r = 0

even in the coordinates that give wormholes, as it is likely
to have a correspondence in wormhole geometry.

• In wormhole geometry, the u value becomes imaginary
for r < 2M . Imaginary value in physics plays crucial
rule in building unitary symmetries. We are interested to
understand the effect of this imaginary region in worm-
hole geometry knowing that the role of complex numbers
in QM is recognized as to be a central one [19].

In order to complexify a spacetimeN , or to think ofN →
R

4 as M → C
2, we introduce complex manifold M of two

complex dimensions ζ and η. We consider a point p ∈ M
so that p = (ζ, η) defines the complex coordinates in some
local chart

ζ = ζ1 + iζ2, (4a)

η = η1 + iη2, (4b)

where the complex coordinates induce the parameter space of
the real parameters (ζ1, η1, ζ2, η2) on M. In that sense, the
full geodesic in Schwarzschild wormhole geometry would
read

λ1(ζ1, η1, ζ2, η2) = λ1(ζ1, η1) ∈ R, (5a)

λ2(ζ1, η1, ζ2, η2) = λ2(ζ2, η2) ∈ R, (5b)

such that gμν becomes Hermitian. We will come to the impor-
tance of this in a little bit. But for now, we study the effect
of the elements of a group G, as linear operators, on a com-
plex manifold and the coordinate transformations related to
G. Such operations define a set of homomorphisms from G
to the general linear group GL(n,C), and such homomor-
phisms to the general linear group defines an n-dimensional
matrix representation. The matrix representation is useful
when it works on any manifold chart, i.e. without fixing the
manifold’s basis. In that sense, a matrix representations of
G is a realization of G elements as matrices affecting an n-
dimensional complex space of column vectors. Additionally,
the change of the manifold’s basis results in conjugation of
the matrix representation of G. Furthermore, a matrix repre-
sentation on a manifold and a group operation on a manifold
are two equivalent concepts. The later defines the group orbits
and group stabilizers. It is interesting to study groups of Lie
isometries and their symmetries of manifolds which the G
elements act transitively on. We define the isotropy group
as G p = {g ∈ G, gp = p}, p ∈ M, and the orbit of G
through p by Gp = {gp, g ∈ G} � G/G p}. And an orbit
becomes a stabilizer if G ≡ G p at p ∈ M.

The transformations (2)–(4) show that a matrix gμν should
belong to the general linear group GL(4,R) := {T ∈
M4(R) : det T �= 0}, where M4(R) is the space of all
real 4 × 4 matrices. We can exploit the bijective relation
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GL(n,C) ↔ GL(2n,R) to complexify the spacetime. With-
out loss of generality we try n = 2 such that the last rela-
tion means Z 	→ T := RZ on the elementary level for the
complex matrix Z ∈ M2(C). This means the 2 × 2 complex
matrices Z can be characterized as 4×4 real matrices T such
that they preserve the action of the linear complex structure
J : M → M on the metric and the manifold. The complex
structure is characterized by J 2 = −I for a manifold M
upon which Z acts. It is worth noting that the action of J
on M complexifies the tangent bundle TMC and introduces
the conjugate tangent bundle too.

So to complexify the spacetime, we need to construct
the conjugate group T † H T := SU(2) ∩ M, where H is
a 2 × 2 Hermitian complex form of gμν = hμν + ikμν , i.e.
gμν = gμν , and SU (2) is the special unitary subgroup. This
guarantees the invariance of the Hermitian form

〈T ζ, T η〉 = 〈ζ, η〉 = ζ1ζ2 − η1η2. (6)

We know that some Z ∈ GL(2,C) can be defined as
the special linear subgroup SL(2,C) := {T ∈ GL(2,C) :
det T = 1}. Moreover, there exists another subgroup known
as the unitary subgroup U(2) := {T ∈ GL(2,C) :
T † I(1,1)T = I(1,1)}, where T † is the conjugate transpose of
T and I(1,1) = diag(1,−1) as in the previously mentioned
Hermitian form. Finally, the compact Lie special unitary sub-
group is defined as SU(2) := U (2) ∩ SL(2,C). The impor-
tance of unitary subgroups stems from the textbook fact that
every finite subgroup of GL(2,C) is conjugate to a subgroup
of U(2), and the proof is based on the GL-invariance, that is,
the unitary representation preserves the length of any vector
belonging to M. If we restrict H subgroup to be the diag-
onal matrices in SU(2) ⊂ M2(C), the cosets T † H would
partition the manifold associated with SU(2). We will see
the importance of this when we reach the process of Hopf
fibration.

Now, a Lie topological group G, including SU(2), acts
continuously on M by a set of homeomorphisms � : G ×
M → M; (g, p) → �p(g) = gp. This action is called
proper for any compact group. That is, any proper map inside
	 : G × M → M × M; (g, p) → 	(g)(p) = (gp, p)

should have a compact inverse. Since the isotropy group
SU(2)p is compact, then its representation χp : SU(2)p →
GL(2, TpMC) is continuous, where χp ∈ Isp(g) the lin-
ear isotropy of the group element g. Such representation
sends the group elements g into their diffeomorphic actions
dg ∈ Diff(M) on M, where dg := √

ds2 is the linear
isotropy of the group element Isp(g) associated with the
invariant distance or the manifold metric [20].

A manifoldM is biholomorphically equivalent toCwhen
the holomorphic automorphisms Aut(M) of the manifold
are isomorphic to Aut(C). Then, the action of SU(2) identi-
fies the rotationally symmetric complex manifolds [21]. We
are interested in the case when the SU(2)-orbit of p is the

orthogonal group Op. In this case and with the help of the
conjugation of vectors by the complex structure, TpMC can
be split into V ⊕ iV for any V ∈ TpMC [22]. Therefore,
Op becomes real hypersurface orbits of M.

For the sake of convenience, it is suggested to represent
SU(2) action in terms of the coordinate charts at every point
like Eq. (4). Now, the function ϕ : C2 → M2(C) defined by

ϕ(z1, z2) =
(

z1 −z2

z2 z1

)
, (7)

verifies ϕ(S3) = SU(2), see for instance [23, Example 16.9];
and the details of finding the equivariant maps, that relates
q ∈ S3 to p ∈ Op of M, and CR-diffeomorphism structure
of S3 is in Ref. [21]. The equivariant diffeomorphism f :
S3 → Op, f (g(p)) = g( f (p)) establishes the correspon-
dence between the parameters (ζ1, η1, ζ2, η2) of the point
p ∈ M and the unitary action of SU(2) on q = (zi , z2) ∈ S3

endowed from the fact that every unitary representation on a
Hermitian vector space V is a direct sum of the irreducible
representations of the group. This is crucial for finding the
group orbit, or congruence classes, containing the conju-
gate subgroups of SU(2). It is known that setting one of
the zi = 0 will define the other z j to be the longitude of
SU(2) corresponding to the conjugate class T † H T , where
H ⊂ SU(2). The equivariant diffeomorphism relates any
Hermitian H as a metric gμν to a diagonalizeble matrix H
on S3 using ϕ(z1, z2), and h can be written as

H′ = T †HT =
(

ξ 0
0 ξ

)
, (8)

where for any wormhole sheet we define ξ = κ + iλ and
zi = αi + iβi , i = 1, 2 such that

TH′T † =
(

z1 −z2

z2 z1

)(
ξ 0
0 ξ

) (
z1 z2

−z2 z1

)

=
⎛
⎝z1z1ξ + z2z2ξ z1z2ξ − z1z2ξ

z1z2ξ − z1z2ξ z1z1ξ + z2z2ξ

⎞
⎠ . (9)

So, if we want to return back to the R4 space, and for any
ξ , the last transformation ushers us to define the real vector
x := (x1, x2, x3, x4) as

x1 = κ, (10)

x2 = (α2
1 + β2

1 − α2
2 − β2

2 )λ, (11)

x3 = 2(α1β2 + α2β1)λ, (12)

x4 = 2(α1α2 − β1β2)λ. (13)

This means the complex geodesics on the sheet 1 and
sheet 2 are endowed with a SU(2) symmetry, which is guar-
anteed by the conjugacy T † H T that defines all longitudes of
SU(2). Also, it may introduce a connection between external
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geometry and internal symmetry, it may show us a geomet-
ric origin/meaning for the unitary symmetry in physics.1 As
we can notice, SU(2) symmetry for geodesics is local sym-
metry because the parameters (α1, β1, α2, β2) depend on the
position on wormhole. So, if the coordinates ζ and η render
geodesics

λ1 = ϑ1(α2, β2), (14)

λ2 = ϑ2(α2, β2), (15)

where ϑ1 and ϑ2 are continuous functions in xi , and α2
1 +

β2
1 = 1, then SU(2) symmetry reduces to U(1). In that sense,

SU(2) introduces local symmetry of complex vectors on the
two sheets of wormholes, and U(1) symmetry introduces a
local symmetry of the complex vector on the same sheet.

It is worth noting that S3 is diffeomorphic with SU(2) [24,
p. 127]. Moreover, S3 can be seen as a fiber bundle following
the diagram

S1 −→ S3 π−−→ S2, (16)

with the Hopf fibration plotted in Fig. 1 and used in physics
in [25,26] and for wormholes in [27].

Now, we are ready to complexify the wormhole metric.
First, we rearrange Eq. (3) such that it becomes

ds2 = +
[(

1 − 2M

r(ζ )

)
dt2 − (u2 + 2M)2 sin2 θdφ2

]

−
[
4(u2 + 2M)du2 + (u2 + 2M)2dθ2

]
. (17)

Since we adopt the parameter u(r) as in Eq. (2), we also
define the complex parameter ζ , its squared length, and any
infinitesimal change in it as

ζ = 1

2
(u2 + 2M)eiθ , (18)

ζ ζ = (u2 + 2M)2

4
= r2(u)

4
, (19)

dζ = 1

u2 + 2M
uζdu + iζdθ. (20)

Equation (20) gives

dζdζ = u2du2 + 1

4
(u2 + 2M)2dθ2, (21)

or

4(dζdζ +2Mdu2)=4(u2+2M)du2+(u2+2M)2dθ2 . (22)

Meanwhile Eq. (19) yields

(ζdζ + ζdζ )2 = u2(u2 + 2M)2du2

=
(

2
√

ζ ζ − 2M

)
4(ζ ζ )du2, (23)

1 For a GL(2n,R) of V or a Lorentz transformation on the flat
Minkowski spacetime in particular, the group can be determined
uniquely by its action on the null vectors that correspond to S2.

Fig. 1 Hopf fibration of S3 (see https://philogb.github.io/page/hopf/)

or

du2 = (ζdζ + ζdζ )2

4(ζ ζ )
(

2
√

ζ ζ − 2M
) . (24)

Substitute the last result in the LHS of Eq. (22) to get

4

⎡
⎣dζdζ + M

(ζdζ + ζdζ )2

2(ζ ζ )
(

2
√

ζ ζ − 2M
)
⎤
⎦

= 4(u2 + 2M)du2 + (u2 + 2M)2dθ2. (25)

In addition, the stereographic projection of r(x, y, z) on
the complex plane of ζ(κ, λ) with x

κ
= y

λ
= 1 − z gives [28]

sin2 θ = 4ζ ζ(
1 + ζ ζ

)2 . (26)

Furthermore, set

η = t + i Mφ, (27)

such that

dt2 = 1

4
(dη + dη)2, (28)

dφ2 = 1

4M2 (dη − dη)2. (29)

Finally, we substitute Eq. (25,26,28,29) to get

ds2 =
(

1 − M√
ζ ζ

)
(dη + dη)2

−4
(ζ ζ )2

M2
(
1 + ζ ζ

)2 (dη − dη)2

−4

[
dζdζ + M

(ζdζ + ζdζ )2

2(ζ ζ )(2
√

ζ ζ − 2M)

]
, (30)

which is not yet a manifestly Hermitian metric despite being
a general 2-dimensional metric of such complex manifold.
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In order to make the metric (17) Hermitian, we need to
consider the following coordinate redefinition

dũ = 2(u2 + 2M)

u
du, (31)

or

ũ =
∫ u

−2M

2(u2 + 2M)

u
du = u2 − 4M2 + 4M ln

(
− u

2M

)

= u2 − 4M2 + 4M ln
( u

2M

)
+ iπ, (32)

where u2 − 4M2 + 4M ln
( u

2M

) ∈ R. Then, the metric (17)
becomes

ds2 = −
[

u2(ũ)

u2(ũ) + 2M
(dt2 − dũ2)

+(u2(ũ) + 2M)2d�2
]
, (33)

which is not Hermitian yet as ũ ∈ C. However, eũ ∈ R

indeed. In order to improve the previous metric into a Hermi-
tian, we use the following Rindler-like coordinates together
with Wick rotation and the complex coordinates

X = eũ cosh t, (34a)

T = eũ sinh t, T → iT, (34b)

η = X + iT, (34c)

dθ2 + sin2 θdφ2 = dζdζ(
1 + 1

4ζ ζ
)2 , (34d)

such that the relevant metric becomes

ds2 = h(η + η)dηdη + k(η + η)
dζdζ(

1 + 1
4ζ ζ

)2 , (35)

which is an Euclidean metric of the corresponding 2-
dimensional Hermitian complex manifold for arbitrary real
valued functions h(η+η) and k(η+η), see [29, pages 44-45]
for more details. There are many other ways to render a Her-
mitian metric. Whether the metric is real or Hermitian, the
process of complexification visualizes how Schwarzschild
wormholes behave in the realm of complex geometry. This
is an important result as it could help studying the wavefunc-
tion of wormholes upon analyzing the geometry as a Quantum
Field Theory (QFT) in complex curved spacetime [30].

Remark 1. Consider the de Sitter-Schwarzschild metric

ds2 = −
(

1 − 2M

r
− �

3
r2

)−1

dr2

−r2
(

dθ2 + sin2 θdφ2
)

+
(

1 − 2M

r
− �

3
r2

)
dt2,

(36)

where � > 0. By using the results about depressed cubic
equations given for instance in [31], the polynomial f (r) =
−�

3 r3 + r −2M has three real roots if and only if � < 1
9M2 .

If � > 1
9M2 then f (r) has one real root and two complex

conjugate roots. In wormhole geometry, real horizon means
the possibility to measure beyond it and complex horizon
means the impossibility to measure beyond it.

3 Reissner–Nordström wormhole geometry

In order to understand the geometric origin of the charge,
Einstein and Rosen [1] investigated the following exotic
Reissner–Nordström metric

ds2 = −
(

1 − 2M

r
− Q2

r2

)−1

dr2

−r2
(

dθ2 + sin2 θ dφ2
)

+
(

1 − 2M

r
− Q2

r2

)
dt2,

(37)

where M > 0 and Q > 0 for exotic matter with negative
energy density. Consider the following transformation

u2 = r2 − 2Mr − Q2, (38)

it leads to u2du2 = (r − M)2dr2. In the new u coordinate
system, one obtains for ds2 the expression

ds2 = − r2

(r − M)2 du2 −
(

u2 + 2Mr + Q2
)

×
(

dθ2 + sin2 θ dφ2
)

+ u2

u2 + 2Mr + Q2 dt2. (39)

We have (r − M)2 = u2 + M2 + Q2. Consider the con-
tinuous and positive function u 	→ f̃ (u) defined by

r =
√

u2 + M2 + Q2 + M := f̃ (u), (40)

and one obtains for ds2 the expression

ds2 = − f̃ (u)2

u2 + M2 + Q2 du2 −
(

u2 + 2M f̃ (u) + Q2
)

×
(

dθ2 + sin2 θ dφ2
)

+ u2

u2 + 2M f̃ (u) + Q2
dt2.

(41)

We find the coordinate u vanishes at the event horizons
when r1 = M − √

M2 + Q2 and r2 = M + √
M2 + Q2. In

the u coordinate, the bridge at r = r2 verifies r1 < 0 < M <

r2. The metric (41) is defined properly until r = M and the
singularity at r = r2 is removed. So, we obtain two regions
for the first sheet:

• u has imaginary value when r varies from 0 to r2;

123
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• u has real value from 0 to +∞ when when r varies from
r2 to +∞.

Similarly, we have two regions for the other sheet. When
0 < r < M , the function f̃ (u) in the metric (41) must
be replaced by −√

u2 + M2 + Q2 + M . As in [1] and for
sake of simplicity, we consider that M = 0. In that case, the
metric (41) reduces to

ds2 = −du2 − (u2 + Q2)(dθ2 + sin2 θdφ2)

+ u2

u2 + Q2 dt2. (42)

It is possible to obtain a metric very similar to (35) by using
similar calculations, except that h and k become functions in
Q and not in M . Calculations are left to the reader.

Remark 2. First, let us consider the classical Reissner–
Nordström metric

ds2 = −
(

1 − 2M

r
+ Q2

r2

)−1

dr2 − r2

×
(

dθ2 + sin2 θ dφ2
)

+
(

1 − 2M

r
+ Q2

r2

)
dt2,

(43)

where M > 0 and Q > 0. We choose that

M > Q > 0. (44)

Consider the following transformation

u2 = r2 − 2Mr + Q2, (45)

which gives u2du2 = (r−M)2dr2. In the new “u” coordinate
system, one obtains for ds2 the expression

ds2 = − r2

(r − M)2 du2 −
(

u2 + 2Mr − Q2
)

×
(

dθ2 + sin2 θ dφ2
)

+ u2

u2 + 2Mr − Q2 dt2. (46)

We have (r − M)2 = u2 + M2 − Q2. For r > M and by
using condition (44) we obtain

r =
√

u2 + M2 − Q2 + M := g̃(u), (47)

with u 	→ g̃(u) continuous and positive. In the new coordi-
nate system, one obtains for ds2 the expression

ds2 = − g̃(u)2

u2 + M2 − Q2 du2 −
(

u2 + 2Mg̃(u) − Q2
)

×
(

dθ2 + sin2 θ dφ2
)

+ u2

u2 + 2Mg̃(u) − Q2 dt2.

(48)

We find the coordinate u vanishes at the event horizons
when r1 = M − √

M2 − Q2 and r2 = M + √
M2 − Q2. In

the u coordinate, the bridge at r = r2 verifies 0 < r1 < M <

r2. The metric (48) is defined until r = M and the singularity
at r = r2 is removed. So, we obtain three regions for the first
sheet:

• u has real value from Q2 to 0 when r varies from 0 to r1;
• u has imaginary value when r varies from r1 to r2;
• u has real value from 0 to +∞ when when r varies from

r2 to +∞.

We also have three regions for the other sheet. When
0 < r < M , the function g̃(u) must be replaced by
−√

u2 + M2 − Q2 + M in the metric (48). The situation
is therefore different from those presented previously and
additional studies will be necessary.

Then, we know that SU (3) follows the diagram

SU (2) −→ SU (3)
π−−→ S5, (49)

where π is the projection, see for instance [32, Proposi-
tion 13.11]. The special unitary group SU(3) is the non-
trivial SU(2)-bundle over S5, see for instance [33, Sec-
tion 3]. Moreover, S5 is diffeomorphic with SU(3)/ SU(2)

[24, p. 127]. However, the way of building an Euclidean met-
ric on a complex Hermitian manifold involving the SU(3)

symmetry is an open problem. Let us also notice that if
M2 ≤ Q2 then the polynomial P(r) = r2 − 2M + Q2

is always positive and the change of variable u cannot pro-
vide unitary symmetries. Contrary to the Schwarzschild and
exotic Reissner–Nordström wormhole geometry, the clas-
sical Reissner–Nordström wormhole geometry implies the
mass-charge Condition (44) which is also used to avoid naked
singularities [34, Section 12.6].

4 Quantum tunneling and wormhole thermodynamics

Discovering unitary symmetries in wormhole geometry
motivates us to explore the quantum properties of worm-
holes. Being traversable for a wormhole is a challenge, see for
instance [8,9]. Wormholes are generally non-traversable for
classical matter [6] but they can be modified to be traversable
by removing event horizons, see [35–38] for Schwarzschild-
like wormholes and [39,40] for Reissner–Nordström-like
wormholes. We know that particles are subject to quan-
tum tunneling which makes Schwarzschild and Reissner–
Nordström wormholes traversable for particles while keep-
ing event horizons. A similar idea has been used since the
seminal works of Bekenstein in [15] and Hawking in [16] for
studying the black hole radiation. In this section, we develop
quantum tunneling and wormhole thermodynamics by com-
puting the Hawking temperature.
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4.1 Schwarzschild wormhole case

First, we point out and observe an interesting fact about the
radial null curves in the wormhole metric (3) by setting ds2 =
dθ = dφ = 0, yielding

du

dt
= ± u

2(u2 + 2M)
. (50)

The above quantity defines the “coordinate speed of light”
for the wormhole metric and as we can see there is a horizon
with a coordinate location u = 0 yielding

du

dt

∣∣∣∣
u=0

−→ 0. (51)

The presence of the horizon implies that due to the quan-
tum tunneling of particles from “another universe” to our uni-
verse can lead to the Hawking radiation and thus detection of
particles by the distant observer located in our universe. We
can study the tunneling of different massless or massive spin
particles, in the present work, we can study the tunneling of
vector particles. The motion of a massive vector particle of
mass m, described by the vector field 	μ, might be studied
by the Proca equation (PE) in curved spacetime, which reads
[41]

∇μ∇[μ	ν] − m2

h̄2 	ν = 1√−g
∂μ

[√−g∂ [μ	ν]]

−m2

h̄2 	ν = 0, (52)

where from the metric (3) we find the determinant
√−g =

2(u2 + 2M)2 sin θu2, and

∇[μ	ν] = 1

2
(∇μ	ν − ∇ν	μ) := 	μν. (53)

The corresponding action is

S = −
∫

d4x
√

g

(
1

2
	μν	

μν + m2

h̄2 	μ	μ

)
. (54)

Then in any curvilinear coordinates, and using the Bianchi–
Ricci identity ∇[λ	μν] = 0, we get the true version of
Eq. (52) as a QFT in curved spacetime equations of motion

∇ν∇[ν	μ] − R ν
μ 	ν − m2

h̄2 	μ = 0, (55a)

∇λ∇λ	μν + C κλ
μν 	κλ −

(R
3

+ m2

h̄2

)
	μν = 0. (55b)

Taking the flat limit gμν → ημν changes the essence of the
last two equations to become Lorentz invariant.

Solving tunneling equations exactly is quite hard. So, we
apply the WKB approximation method

	ν = Cν(t, u, θ, φ)e

(
i
h̄ (S0(t,u,θ,φ)+h̄ S1(t,u,θ,φ)+...)

)
. (56)

Taking into the consideration the symmetries of the met-
ric (3) given by three corresponding Killing vectors (∂/∂t )

μ,
∂/∂φ)μ we may choose the following ansatz for the action

S0(t, u, θ, φ, ψ) = Et + R(r, θ) − jφ, (57)

in which E is the energy of the particle, and j and l denotes
the angular momentum of the particle corresponding to the
angles φ and ψ , respectively. If we keep only the leading
order of h̄ we find a set of four differential equations. From
this set of five equations we can construct a 4 × 4 matrix ℵ,
which satisfies the following matrix equation

ℵ(C1, C2, C3, C4)
T = 0. (58)

We solve for the radial part to get the following integral

R± = ±
∫ 2

√
E2 − u2

u2+2M

[
m2 + �(u)

]
F(u)

du, (59)

where

�(u) = (∂θ R)2

(u2 + 2M)2 + j2

(u2 + 2M)2 sin2 θ
, (60)

and

F(u) = u

u2 + 2M
= F ′(u)|u=0(u − uh) + . . . (61)

Now, there is a singularity in the above integral when uh =
0, meaning that F → 0. So in order to find the Hawking
temperature, we now make use of the equation

lim
ε→0

Im
1

u − uh ± iε
= δ(u − uh) (62)

where uh = 0. In this way we find

ImR± = ± 2Eπ

F ′(u)|u=0
. (63)

Using p±
u = ±∂u R±, for the total tunneling rate gives

� = exp

(
− 1

h̄
Im

∮
pudr

)

= exp

[
− 1

h̄
Im

(∫
p+

u du −
∫

p−
u du

)]

= exp

(
− 4Eπ

h̄F ′(u)|u=0

)
. (64)

It is interesting that, for the black hole case, there is a
temporal part contribution due to the connection of the inte-
rior region and the exterior region of the black hole. In the
wormhole case, we don’t have such a contribution. We can
finally obtain the Hawking temperature for the wormhole by
using the Boltzmann factor � = exp(−E/T ), and setting h̄
to unity, so that it results with

T = F ′(u)|u=0

4π
= 1

8π M
. (65)

123



1170 Page 8 of 9 Eur. Phys. J. C (2022) 82 :1170

This is interesting result as it shows that the Hawking
temperature for the Schwarzschild wormhole coincides with
the Schwarzschild black hole temperature. We can verify the
above result for the Hawking temperature using a topolog-
ical method based on the Gauss–Bonnet theorem reported
in Refs. [42,43]. Let us rewrite the metric (3) in a form of
2-dimensional Euclidean spacetime given by

ds2 = 4(u2 + 2M)du2 + u2

u2 + 2M
dτ 2. (66)

The Hawking temperature can be found from [42]

T = h̄c

4πχkB

∑
j≤χ

∫
uh

√
g R du. (67)

Applying this equation for the wormhole metric (66) we
find first the Ricci scalar

R = 4M

(u2 + 2M)3 , (68)

and
√

g = 2u. Setting h̄ = c = kB = 1, using the fact that
the Euler characteristic of Euclidean geometry is χ = 1 at
the wormhole horizon uh = 0, we solve the integral (67) and
obtain

T = 1

4π

∫ ∞

0

4M

(u2 + 2M)3 2 u du = 1

8π M
. (69)

which coincides with the Hawking temperature (65) obtained
via tunneling.

4.2 Reissner–Nordström wormhole case

Here we shall consider a tunneling from massless RN worm-
hole geometry by using metric (42). For the radial null curve
by setting ds2 = dθ = dφ = 0, we obtain

du

dt
= ± u√

u2 + Q2
, (70)

and therefore we see that u = 0 plays the role of the horizon
since du/dt → 0 provided that u = 0. This indicates that
there could be a quantum tunneling associated to the horizon.
To find the Hawking temperature we can apply the WKB
approximation given by Eq. (56) along with the action (57).
Consequently, it can be constructed a 4 × 4 matrix

M(D1, D2, D3, D4)
T = 0, (71)

where, for the radial part to get the following integral

R± = ±
∫ √

E2 − u2

Q2+u2

[
m2 + ξ(u)

]
G(u)

du, (72)

with

ξ(u) = (∂θ R)2

(Q2 + u2)2 − j2

sin2 θ(Q2 + u2)2
, (73)

and

G(u) = u√
Q2 + u2

= G′(u)|u=0(u − uh) + . . . (74)

Now, there is a singularity in the above integral when
uh = 0, meaning that G → 0. In order to find the Hawk-
ing temperature, at uh = 0, we consider

ImR± = ± Eπ

G′(u)|u=0
. (75)

Using p±
u = ±∂u R±, for the total tunneling rate gives

� = exp

(
− 2Eπ

h̄G′(u)|u=0

)
. (76)

Boltzmann factor � = exp(−E/T ) leads to define the
temperature as

T = G′(u)|u=0

2π
= 1

2π Q
. (77)

Let’s now derive the Hawking temperature using a topo-
logical method based on the Gauss–Bonnet theorem. To
do so, we need to rewrite the metric (42) in a form of 2-
dimensional Euclidean spacetime given by

ds2 = du2 + u2

u2 + Q2 dτ 2. (78)

For the Ricci scalar, we obtain

R = 6Q2

(Q2 + u2)2 , (79)

and
√

g = u(u2+Q2)−1/2. At the wormhole horizon uh = 0,
we obtain

T = 1

4π

∫ ∞

0

6 u Q2

(Q2 + u2)5/2
du = 1

2π Q
, (80)

which coincides with the Hawking temperature (77) obtained
via tunneling.

5 Concluding remarks

We closely looked at Schwarzschild and Reissner–Nordström
wormhole geometry and obtained the unitary symmetries
U(1) and SU(2) by using spacetime complexification; the
study brings that attention to the possibility that worm-
holes could illustrate the relation between unitary sym-
metries and spacetime geometry. Additionally, we devel-
oped wormhole thermodynamics for Schwarzschild and
Reissner–Nordström wormholes through quantum tunnel-
ing. The results are consistent with those of Hawking and
Bekeinstein for black hole thermodynamics. It implies that
particles can cross these wormholes. This could be related
to the ER=EPR conjecture [44] and to the new experimental
findings obtained from studying traversable wormholes/EPR
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pair entanglement within quantum computing regimes [45].
We hope to report on these important results in the future.
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