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Abstract Measurements of angular correlations in nuclear
beta decay are important tests of the Standard Model (SM).
Among those, the so-called D correlation parameter occu-
pies a particular place because it is odd under time reversal,
and because the experimental sensitivity is at the 10−4 level,
with plans of further improvement in the near future. Using
effective field theory (EFT) techniques, we reassess its poten-
tial to discover or constrain new physics beyond the SM. We
provide a comprehensive classification of CP-violating EFT
scenarios which generate a shift of the D parameter away
from the SM prediction. We show that, in each scenario, a
shift larger than 10−5 is in serious tension with the existing
experimental data, where bounds coming from electric dipole
moments and LHC observables play a decisive role. The ten-
sion can only be avoided by fine tuning of the parameters in
the UV completion of the EFT. We illustrate this using exam-
ples of leptoquark UV completions. Finally, we comment on
the possibility to probe CP-conserving new physics via the
D parameter.
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1 Introduction

CP violation is an essential ingredient in the fundamen-
tal theory of particles and interactions. It is present in the
Standard Model (SM) in the guise of an invariant phase of
the Cabibbo–Kobayashi–Maskawa (CKM) matrix. Matter–
antimatter asymmetry in the universe strongly hints at the
existence of additional sources of CP violation from beyond
the Standard Model (BSM). On the theory side, our expe-
rience with quantum field theory so far suggests that CP-
violating phases in the interaction Lagrangian are generic. If
that is also the case in the theory underlying the SM, then
we expect to eventually observe deviations from the SM
predictions in a host of CP-violating observables. In fact,
several CP-violating observables, such as e.g. the electric
dipole moment (EDM) of the neutron or the kaon mass mix-
ing, are potentially sensitive to new physics at enormously
high scales, orders of magnitude beyond the direct reach
of the Large Hadron Collider (LHC). This fact makes such
CP-violating observables a likely place where new physics
will be first discovered. Conversely, non-observation of non-
standard source of CP violation so far provides stringent con-
straints on virtually every BSM scenario.

In this paper our focus is on CP violation in nuclear beta
decay. Consider the process N → N ′e−ν̄e (β− decay) or
N → N ′e+νe (β+ decay), where N and N ′ the parent
and daughter nuclei. At the leading (zero-th) order in expan-
sion in 1/mN , after summing over beta particle and daugh-
ter nucleus polarizations, the differential distribution of the
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decay products takes the most general form [1]

d�

dEed�ed�ν

∼ 1 + b
me

Ee
+ a

ke · kν

EeEν

+ A
J · ke
J Ee

+ B
J · kν

J Eν

+ ĉ
J (J + 1) − 3(J · j)2

J (J + 1)

(ke · kν) − 3(ke · j)(kν · j)
3EeEν

+ D
J · (ke × kν)

J EeEν

, (1.1)

where me is the electron mass, J is the polarization vector of
the parent nucleus and J is its spin, j is the unit vector in the
polarization direction, and ke, kν , Ee, Eν are the 3-momenta
and the energies of the beta particle and of the neutrino. The
correlation coefficients b, a, A, B, and ĉ are T -even and, with
the exception of the Fierz term b, they receive O(1) contri-
butions in the SM at the leading order, that is at O(α0

EM) and
at O(1/m0

N ) in the non-relativistic expansion in the inverse
nucleon mass mN . The highlighted correlation coefficient D
is on the other hand T -odd (because both spin and momenta
are T-odd), and is zero in the SM at the leading order. The
leading SM contributions arise from an interference between
one-loop Coulomb corrections and the subleadingO(1/m1

N )

contributions to the amplitude [2]. Due to the double suppres-
sion by αZN ′ and me/mN , the SM contribution is predicted
to be small, |DSM| � 10−4, and in fact has not been observed
experimentally yet in any beta transition. This is just as good,
as it leaves a lot of room to spot non-standard contributions
to D. In particular, CP violation in the fundamental theory
underlying the SM could leave an imprint in the form of com-
plex phases of Wilson coefficients in the EFT for beta decay.
Such complex phases would contribute to D at the leading
order, potentially inducing DBSM of comparable magnitude
to |DSM|.

The current experimental situation regarding the D param-
eter is summarized in Table 1. So far this correlation coef-
ficient was measured in neutron and 19Ne beta decay with
the uncertainty of order 10−4. The experimental sensitivity
is going to be improved in the near future [3]. The ongoing
experiment MORA at JYFL will provide a proof-of-principle
measurement in 23Mg decay at the 5 × 10−4 level. Subse-
quently, measurements at the DESIR facility at GANIL are
expected to improve the sensitivity to an 4 × 10−5) level.

Even better sensitivity should be achieved for 39Ca decay,
provided a beam with a large enough yield can be produced.

Motivated by this imminent progress, in this paper we
reassess the potential of D measurements to discover or con-
strain physics beyond the SM [4–7]. In Sect. 2 we present a
model-independent analysis employing techniques of effec-
tive field theory (EFT). From the low-energy perspective, the
D parameter probes certain combinations of the Wilson coef-
ficients in the EFT at the nucleon scale. At this level, D pro-
vides unique information that is currently unavailable from
other probes, in particular about imaginary parts of the Wil-
son coefficients. Furthermore, we connect the nucleon level
EFT to more fundamental EFTs at higher energies, below and
above the electroweak scale. The latter EFTs are commonly
employed in the particle physics literature, and the mapping
between their operators and many specific BSM models is
well known. We classify the CP-violating EFT scenarios
according to which operator is responsible for generating
the shift �D of the D parameter away from the SM predic-
tion. Then we show that, in each scenario, |�D| � 10−5 is
in serious tension with the existing experimental data, most
often with EDMs, but sometimes also with pion decay and/or
LHC searches. This tension can only be avoided by fine tun-
ing of the parameters in the UV completion of the EFTs.
In Sect. 3 the discussion is illustrated in concrete BSM set-
tings involving leptoquarks. We demonstrate how each EFT
scenario leading to �D can be realized by integrating out
leptoquarks with CP-violating couplings to the first gener-
ation of the SM fermions. Then we take into account the
constraints on such leptoquark models from a host of low-
and high-energy experimental probes, including the direct
and indirect searches at the LHC. We determine the maximal
value of |�D| allowed by existing experimental constraints
without fine-tuning. The results confirm the earlier EFT esti-
mates, for 23Mg we find |�D| � 8 × 10−6 in the best case
scenario.

In Sect. 4 we try another approach. We point out that
the D parameter can also probe completely CP-conserving
BSM scenarios. In the presence of non-standard scalar and
tensor currents in the nucleon-level EFT, leading order con-
tributions to beta decay interfere with the electromagnetic
Coulomb corrections. This effect contributes to the D param-

Table 1 The current experimental measurements and future experi-
mental sensitivity for the D-parameter for various beta transitions. We
also show the central values of the proportionality constant κD in the

theoretical relation in Eq. (2.8) (the errors are small and are not relevant
for the present study)

Parent J r κD Dexp �Dfuture

n 1/2
√

3 0.88 −1.2(2.0) × 10−4 [11] –
19Ne 1/2 −1.26 −1.04 0.0001(6) –
23Mg 3/2 −0.44 −1.30 – 3.8 × 10−5 [3]
39Ca 3/2 0.52 1.42 – 10−5 [12]
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eter even when all the EFT Wilson coefficients are real [8].
From this perspective, the D parameter becomes another pre-
cision probe of CP-conserving scalar and tensor currents, on
par with more familiar probes in superallowed 0+ → 0+,
neutron, and mirror beta decays (see [9] for a review). At
the moment, the constraints extracted from D are sill infe-
rior, however improving the sensitivity to the O(10−5) level
will allow one to improve the existing per-mille level bounds
obtained in the global analysis in Ref. [10].

2 EFT analysis

2.1 Nucleon-level EFT

Beta transitions can be described [13] in the framework of
the pionless EFT [14]. The Lagrangian is organized in a non-
relativistic expansion in ∇/mN :

Lπ/EFT ⊃ L(0) + L(1) + O(∇2/m2
N ) + h.c., (2.1)

where ∇ denotes spatial derivatives and L(n) refers to
O(∇n/mn

N ) terms. We will focus on the leading order term
L(0). At this order, the pionless EFT approach to beta decay
is equivalent to taking a non-relativistic limit of the famous
Lee–Yang Lagrangian written down 70 years ago in Ref. [15].
The leading Lagrangian contains the following interactions
relevant for beta decay:1

L(0) ⊃ − (ψ†
pψn)

[
C+
V ēσ̄

0ν + C−
V e

cσ 0ν̄c

+ C+
S e

cν + C−
S ēν̄

c
]

+ (ψ†
pσ

kψn)

[
C+

A ēσ̄
kν + C−

A e
cσ k ν̄c

+ C+
T e

cσ 0σ̄ kν + C−
T ēσ̄

kσ 0ν̄c
]
. (2.2)

The nucleon degrees of freedom are described by non-
relativistic quantum fields ψN ,a , N = p, n, a = 1, 2.
Compared to the Lee–Yang Lagrangian [15], the relativistic
nucleon bilinears ( p̄γ μn, p̄γ μγ5n, p̄n, p̄γ5n, p̄σμνn) are
replaced in Eq. (2.2) by their non-relativistic limits, which
reduce to just two structures (ψ†

pψn , ψ
†
pσ

kψn). Note that,
in the process, the pseudoscalar interactions, present in [15],
drop out because they areO(∇/mN ) and thus belong toL(1).

1 For A > 1 nuclei one may expect further corrections from two-body
currents. However the anatomy of direct matching of quark-level EFT
nuclear form factors together with CVC relation [16–18] indicate that
the presented picture and the arising conclusions would not become
significantly altered by including these corrections.

We work in the isospin limit where the proton and the neu-
tron have the common mass mN . For the lepton fields we
use the relativistic 2-component spinor notation, following
the conventions of Ref. [19]. The sigma matrices are defined
as σμ = (1, σ ), σ̄ μ = (1,−σ ), and σ = (σ 1, σ 2, σ 3) is a
3-vector of the usual Pauli matrices. In this language, ψ and
ψ̄c correspond to the left- and right-handed components of a
spin-1/2 Dirac fermion. The connection to the 4-component

notation in the chiral representation is  =
(

ψα

ψ̄c β̇

)
, ̄ =

(
ψcα

ψ̄β̇

)
, γ μ =

(
0 σμ

σ̄μ 0

)
. To ease the comparison with other

works let us note that the corresponding identities involving
Lorentz tensor structures made out of fermion bilinears can
be trivially recovered from

ψ̄1ψ̄
c
2 = ̄1L2R ψ̄1σ̄

μψ2 = ̄1Lγ μ2L

ψ̄1σ̄
μνψ̄c

2 = ̄1L�μν2R,

ψc
1ψ2 = ̄1R2L

ψc
1σμψ̄c

2 = ̄1Rγ μ2R

ψc
1σμνψ2 = ̄1R�μν2L , (2.3)

and taking into account that the same identities hold when
simultaneously changing any (barred or not) ψi ↔ ψc

i and
i L ↔ C

i R ; and/or ψc
j ↔ ψ j and  j R ↔ C

j L , where

C
L(R) ≡ C̄T

L(R). We have defined �μν = i
2 [γ μ, γ ν],

σμν ≡ i
2 (σμσ̄ ν − σνσ̄μ) and σ̄ μν ≡ i

2 (σ̄ μσ ν − σ̄ νσμ).
The neutrinos are treated as massless and we allow for

the possibility of right-handed neutrinos contributing to beta
decay. For the Wilson coefficients we use the conventions
of Ref. [10], where C+

X (C−
X ) parametrize interactions of

left-handed (right-handed) neutrinos. Our conventions are
simply related to the commonly used CX and C ′

X variables
introduced by Lee and Yang [15]: CX = (C+

X + C−
X )/2,

C ′
X = (C+

X − C−
X )/2. The situation where the right-handed

neutrino is absent from the low-energy EFT (e.g. because
it has a large Majorana mass) can be described by setting
C−
X = 0 for all X .
The different correlations entering Eq. (1.1) as a function

of the couplings of the Lagrangian of Eq. (2.2) were originally
obtained, up to electromagnetic corrections, in Ref. [1]. For
the same spin of the parent and daughter nuclei, J = J ′, the
corresponding D correlation is
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D = −2r

√
J

J + 1

Im

{
C+
V C̄

+
A − C+

S C̄
+
T + C−

V C̄
−
A − C−

S C̄
−
T

}

|C+
V |2 + |C+

S |2 + |C−
V |2 + |C−

S |2 + r2
[|C+

A |2 + |C+
T |2 + |C−

A |2 + |C−
T |2] . (2.4)

Here r is the ratio of the Gamow–Teller and Fermi matrix
elements. For the neutron decay r = √

3, while for nuclei
with the mass number A > 1 it can be extracted from exper-
imental data. Note that in the absence of electromagnetism
the D parameter is non-zero only if at least some of the Wil-
son coefficients have distinct complex phases. Notice also
that, as originally shown in Ref. [8], Coulomb corrections to
the formula in Eq. (2.4) can induce a non-zero D even for
real Wilson coefficients. The Coulomb corrections and their
impact on the prospects of detecting a non-zero D will be
discussed later in Sect. 4.

2.2 Quark-level EFT

At a more fundamental level, nuclear beta decays probe
charged-current interactions between the first generation of
quarks and leptons. We consider an EFT for these degrees
of freedom valid between the scales of ∼ 2 GeV and the
electroweak scale ∼ mW . We will refer to this EFT as the
νWEFT. The leading order effective interactions contributing
to beta decay can be described by the following relativistic
Lagrangian:

LνWEFT ⊃ −2Vud
v2

{
(1 + εL) (ēσ̄μν)(ūσ̄ μd)

+ ε̃L(ecσμν̄c)(ūσ̄ μd)

+ εR(ēσ̄μν)(ucσμd̄c) + ε̃R(ecσμν̄c)(ucσμd̄c)

+ 1

2
(ecν)

[
(εS + εP )ucd + (εS − εP )ūd̄c

]

+ 1

2
(ēν̄c)

[
(ε̃S + ε̃P )ucd + (ε̃S − ε̃P )ūd̄c

]

+1

4
εT (ecσμνν)(ucσμνd) + 1

4
ε̃T (ēσ̄μν ν̄

c)(ūσ̄ μν d̄c)

}

+ h.c. (2.5)

whereu andd are the up quark, down quark,Vud is an element
of the unitary CKM matrix, and v ≈ 246.22 GeV is related
by GF = (

√
2v2)−1 to the Fermi constant GF measured

in muon decay. The Wilson coefficients εX and ε̃X , X =
L , R, S, P, T , parametrize non-SM effects, and εX = ε̃X =
0 in the SM limit.

At tree level, the map between the Wilson coefficients in
Eq. (2.2) and in Eq. (2.5) is given by [9]

C+
V =Vud

v2 gV
(
1 + εL + εR

)
, C−

V = Vud
v2 gV

(
ε̃L + ε̃R

)
,

C+
A = − Vud

v2 gA
(
1 + εL − εR

)
, C−

A = Vud
v2 gA

(
ε̃L − ε̃R

)
,

C+
T =Vud

v2 gT εT , C−
T = Vud

v2 gT ε̃T ,

C+
S =Vud

v2 gSεS, C−
S = Vud

v2 gS ε̃S . (2.6)

Here, gV,A,S,T are non-perturbative parameters referred to
as the vector, axial, scalar, and tensor charges of the nucleon.
For the vector charge, gV = 1 up to (negligible) quadratic
corrections in isospin-symmetry breaking [20]. The remain-
ing charges are not known from symmetry considerations
alone and must be fixed from experimental data or by lat-
tice calculations. In this work we will use the FLAG’21
values: gA = 1.246(28) [21–24], gS = 1.022(100), and
gT = 0.989(34) [21,22].

Using this map, we can translate Eq. (2.4) into the quark-
level Wilson coefficients:

D ≈ 4rgV gA
g2
V + r2g2

A

√
J

J + 1
Im

[
εR(1 + ε∗

L)

+ gSgT
2gV gA

(εSε
∗
T + ε̃S ε̃

∗
T ) − ε̃R ε̃∗

L

]
, (2.7)

where we neglected the new physics corrections originating
from the denominator of Eq. (2.4), but we kept the linear
and quadratic effects in Wilson coefficients coming from the
numerator. We can recast the above in the semi-numerical
form as

D ≈ κD Im
[
εR(1 + ε∗

L) + 0.4(εSε
∗
T + ε̃S ε̃

∗
T ) − ε̃R ε̃∗

L ],

κD ≡ 4rgV gA
g2
V + r2g2

A

√
J

J + 1
. (2.8)

This is the master equation for the D parameter that we will
use extensively in the following. The values of the propor-
tionality constant κD for selected beta transitions are dis-
played in Table 1. At the linear level, the D parameter only
probes CP violation entering via the so-called right-handed
currents, that is the effective weak interactions between left-
handed leptons and right-handed quarks. At the quadratic
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level, other non-standard currents are probed as well, in par-
ticular the scalar and tensor currents involving the left- and
right-handed neutrinos.

2.3 EFT above the electroweak scale

We move to discussing the effective theory above the elec-
troweak scale that, under very broad assumptions, UV-
completes the νWEFT, which is often referred to as the
νSMEFT [25,26]. It has the gauge symmetry SU (3) ×
SU (2) × U (1) and the degrees of freedom are those of the
SM plus three generations of right-handed neutrinos which
are gauge singlets. The Lagrangian consists of all indepen-
dent gauge invariant operators made of these fields organized
in the expansion in powers of 1/�, according to the canoni-
cal dimensions of the operators. We will discuss dimension-6
and dimension-8 operators that can induce the (tilde) εX Wil-
son coefficients in the Lagrangian Eq. (2.5) below the elec-
troweak scale. We will be interested in generating εX entering
the master equation (2.8), leading to a non-zero value of the
D-parameter. The master equation contains four distinct con-
tributions in the square bracket, and we will discuss in turn
how to generate the corresponding Wilson coefficients.

Scenario I. We start with operators generating εR below the
electroweak scale. One possible source is the dimension-6
operator

LνSMEFT ⊃ iCφud H̃
†DμH(ucσμd̄c) + h.c., (2.9)

where H is the SM Higgs doublet field, and H̃a = εabH∗
b

(in our conventions the Higgs VEV is given by 〈HT 〉 =
(0, v)/

√
2 with v ≈ 246 GeV). This operator induces a cou-

pling of theW boson to the right-handed up and down quarks:

LνSMEFT ⊃ gL√
2
W+

μ

[
ν̄σ̄ μe + Vud ūσ̄ μd

+v2

2
Cφudu

cσμd̄c
]

+ h.c. (2.10)

Integrating out the W boson at tree level, below the elec-
troweak scale one finds the 4-fermion interaction (ēσ̄μν)

(ucσμd̄c) from Eq. (2.5) with the Wilson coefficient

εR = v2

2Vud
Cφud . (2.11)

Consequently, in this scenario the D parameter depends on
the νSMEFT Wilson coefficients as

D ≈ κD

2
Im

[
v2Cφud

]
. (2.12)

Therefore one way to induce the D parameter is to generate
the operators in Eq. (2.9) with a complex Wilson coefficient
Cφud in the EFT above the electroweak scale. This option
may seem promising because the D-parameter appears at
O(�−2), and then it can be sizable even if the BSM scale �

is relatively large. Moreover, the Wilson coefficient Cφud is
induced by several well-motivated BSM models, in partic-
ular by the left-right symmetric models [27]. However, this
scenario faces one phenomenological problem [5], which can
already be seen at the EFT level. The problem stems from
the fact that, together with εR , another 4-fermion operator is
generated below the electroweak scale:

LνSMEFT ⊃ −C1LR(d̄σ̄μu)(ucσμd̄c) + h.c. (2.13)

with C1LR = VudCφud . Thus the magnitude and phase of
C1LR is perfectly correlated with that of εR , which is at the
origin of the D parameter. On the other hand, the imagi-
nary part of C1LR is strongly constrained by nuclear EDMs.
Formally the strongest constraint comes from the measure-
ment of EDM in mercury, but the relation between d199Hg
and ImC1LR suffers from large theoretical uncertainties. To
be conservative, here we will use the slightly weaker but
theoretically more robust constraint from the neutron EDM
measurement. Using [28]

dn = (22 ± 14) v2 ImC1LR × 10−22e cm (2.14)

and the current best measurement dn = (0.0 ± 1.1) ×
10−26e cm [29] we get the following 95% CL constraint2

at μ = 2 GeV

v2|ImC1LR | � 1 × 10−5. (2.15)

All in all, in this scenario we can relate the D parameter to
the strongly constrained imaginary part of C1LR :

|D| ≈ 5 × 10−6 v2|ImC1LR |
10−5

× κD. (2.16)

This implies that |D| < 10−5 generically, which is below
the experimental sensitivity in the near future. A larger D
parameter can be achieved if one allows for some fine-tuning
between different contributions to dn . For example, one can
arrange for a partial cancellation between the contributions
proportional to Im C1LR and those proportional to the QCD
θ parameter [7].

Another option is to generate εR from the dimension-8
operator

LνSMEFT ⊃ C8(l̄ H σ̄μHl̃)(ucσμd̄c), (2.17)

where l = (ν, e) is the 1st generation lepton doublet, and
l̃a ≡ εablb. Once the Higgs field acquires VEV, it generates
the (ēσ̄μν)(ūcσμd̄c) operator from Eq. (2.5) with the Wilson
coefficient

εR = v4C8

4Vud
. (2.18)

2 Using the information from nuclear EDMs Ref. [7] quotes a slightly
stronger constraint v2|ImC1LR | ≤ 3 × 10−6.
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The D parameter depends on the dimension-8 νSMEFT Wil-
son coefficient as

D ≈ κD

4
Im

[
v4C8

]
. (2.19)

The advantage of generating εR via the dimension-8 operator
in Eq. (2.17) is that the 4-quark operator in Eq. (2.13) is not
generated at tree level. It is however generated at one loop
in the EFT, and it is quadratically divergent. The divergence
means that the associated contribution to the EDM is not
calculable within the EFT.3 Instead, the result depends on
the UV completion. Nevertheless, one can estimate

C1LR ∼ �2

4π2C8, (2.20)

where � is the mass scale of the BSM particles that gen-
erate the operator in Eq. (2.17) and regularize the quadratic
divergence. The D parameter can then be estimated as

D ∼ κD10−4
(

v2Im [C1LR]
10−5

)
v2

�2 . (2.21)

A D parameter of order 10−4 can be obtained, but only when
the BSM particles are near the electroweak scale. Therefore,
in this scenario it is vital to discuss experimental constraints
on the possible UV completions, as the new particles may be
within the reach of the LHC. We will discuss this issue later
in this paper in the context of leptoquark UV completions.
As soon as the new particles are far above the TeV scale, the
operator in Eq. (2.19) again leads to the D parameter being
suppressed to a currently unobservable level.

Scenario II. We move now to the situation where the D
parameter is generated via the Im [εSε∗

T ] term in Eq. (2.8),
that is via the scalar and tensor interactions with left-handed
neutrinos. The following operators in the νSMEFT induce
these Wilson coefficients below the electroweak scale:

LνSMEFT ⊃ C (1)
lequε

ab(l̄a ē
c)(q̄bū

c)

+C (3)
lequε

ab(l̄a σ̄
μν ēc)(q̄bσ̄μν ū

c)

+Cledq(l̄a ē
c)(dcqa) + h.c. (2.22)

Above q is the 1st generation quark doublet field. We work
in the down-type basis here q = (V ∗

udu + V ∗
cdc + V ∗

td t, d).
Matching this at tree level to the νWEFT Lagrangian in
Eq. (2.5) we get

εS = − v2

2Vud

[
C (1)∗
lequ + VudC

∗
ledq

]
,

3 Technically within the EFT these contributions are absent in MS-like
schemes, which preserves the dimensional counting beyond tree level.
But then one generically expects that the very same UV interaction
that induces the D = 8 contribution at tree level will also induce the
problematic D = 6 one at one-loop level when matching with the EFT.

εP = − v2

2Vud

[
C (1)∗
lequ − VudC

∗
ledq

]
,

εT = − 2v2

Vud
C (3)∗
lequ . (2.23)

The contribution to the D parameter is then

D ≈ −0.4κDv4Im

{[
C (1)
lequ + VudCledq

]
C (3)∗
lequ

}
. (2.24)

In order to generate the D parameter in this scenario one needs
to induce the tensor Wilson coefficient C (3)

lequ simultaneously

with and with a different phase than C (1)
lequ and/or Cledq . As

we will discuss later on, this is possible e.g. in leptoquark
models. However, this scenario faces a disastrous problem
already at the EFT level.

The point is that the operators in Eq. (2.22), in addition to
the charged currents contributing to beta decays, also induce
the neutral current interactions:

LνWEFT ⊃ −C (1)
lequVud(ēē

c)(ūūc)

−C (3)
lequVud(ēσ̄

μν ēc)(ūσ̄μν ū
c)

+Cledq(ēē
c)(dcd) + h.c. (2.25)

An imaginary part in any of the Wilson coefficients would
induce EDMs in electron, nucleons, nuclei and atoms, which
are very strongly constrained by current bounds. Using the
theoretical expressions from Refs. [30–32], the EDM mea-
surement using the ThO molecule [33] we find the constraints

v2|ImC (1)
lequ | � 1 × 10−10, v2|ImC (3)

lequ | � 5 × 10−11,

v2|ImCledq | � 1 × 10−10, (2.26)

at 95% CL. This constrains the imaginary parts of εS and εT
to O(10−10) level. Since the real parts are constrained at the
C(10−3) level [10], one concludes that in this scenario

|D| � 10−13. (2.27)

It is safe to state that, in this scenario, BSM contributions to
the D parameter will never be experimentally observed.

Scenario III. New limiting factors arise when the D param-
eter is generated via the scalar and tensor interactions involv-
ing right-handed neutrinos, cf. the third term in Eq. (2.8). The
νSMEFT operators relevant for this scenario are

LνSMEFT ⊃ C (1)
lνqdε

ab(l̄a ν̄
c)(q̄bd̄

c)

+C (3)
lνqdε

ab(l̄a σ̄
μν ν̄c)(q̄bσ̄μν d̄

c)

+Clνuq(l̄a ν̄
c)(ucqa) + h.c. (2.28)

Matching this to the quark-level Lagrangian in Eq. (2.5) we
get

ε̃S = v2

2Vud

[
VudC

(1)
lνqd − Clνuq

]
,

123



Eur. Phys. J. C (2022) 82 :1134 Page 7 of 21 1134

ε̃P = − v2

2Vud

[
VudC

(1)
lνqd + Clνuq

]
,

ε̃T = 2v2C (3)
lνqd , (2.29)

and the D-parameter expressed by νSMEFT Wilson coeffi-
cients reads

D ≈ 0.4κDv4Im

{[
VudC

(1)
lνqd − Clνuq

]
C (3)∗
lνqd

}
. (2.30)

The main problem is that, as can be seen from Eq. (2.29), in
this scenario ε̃P is generated together with ε̃S and with the
same order of magnitude. The former is strongly constrained
by pion decay due to the chiral enhancement of the pseu-
doscalar contribution by the large factor m2

π/me(mu +md).
The measurement �(π→eν)

�(π→μν)
= 1.2327(23)×10−4 [11] trans-

lates to |ε̃P | < 1.0 × 10−5 at 95% CL. This leads to the sup-
pression of the D parameter by the factor of O(10−5), unless
ε̃S ∼ ε̃P is avoided via fine-tuning or savvy model building.

Another set of constraints arises due to the neutral currents
predicted by Eq. (2.28):

LνSMEFT ⊃ C (1)
lνqd(ν̄ν̄c)(d̄d̄c)

+VudClνuq(ν̄ν̄c)(ucu)

+C (3)
lνqd(ν̄σ̄ μν ν̄c)(d̄σ̄μν d̄

c) + h.c. (2.31)

The first two terms above contribute to neutrino masses after
QCD phase transition. Naturalness then dictates�3

QCD(C (1)
lνqd+

VudClνuq) � 0.1 eV, unless there exists some mechanism
ensuring cancellation of this contribution against that from
the usual Yukawa coupling of the neutrinos. This translates
to |ε̃S| � 10−3. The last term induces the neutrino mag-
netic moment μν ∼ �1ReC (3)

lνqd , where �1 ∼ 10 MeV

[31]. Given the experimental constraint μν � 3 × 10−11μB

[34,35], where μB is the Bohr magneton, one obtains
Re ε̃T � 0.1. Similar constraint, |ε̃T | � 0.1, can be obtained
from the global fit to nuclear beta decay [10].

All in all, the D parameter in this scenario can be written
as

D ∼ 10−6κDIm

[(
ε̃T

10−1

)(
ε̃S

10−5

)]
, (2.32)

and thus |D| � 10−6 in the absence of fine-tuning. Pushing D
to the observable level requires a similar level of fine-tuning
as in scenario I where it appears through εR .

Scenario IV. We finish our EFT exploration by discussing a
set-up where the D parameter is generated via the last term in
Eq. (2.8) proportional to Im [ε̃L ε̃∗

R] Consider the following
dimension-6 νSMEFT operators:

LνSMEFT ⊃ Ceνud(e
cσμν̄c)(ucσμd̄

c)

+iCφeνDμH
† H̃(ecσμν̄c) + h.c. (2.33)

The first term maps directly to ε̃R . The second induces, after
electroweak symmetry breaking, the non-standard W boson
interactions right-handed leptons:

LνSMEFT ⊃ − gv2

2
√

2
C∗

φeνW
+
μ (νcσμēc) + h.c. (2.34)

Integrating out the W boson one obtains

LνWEFT ⊃ − g2

2m2
W

∣∣Vud(ūσ̄μd) − v2

2
C∗

φeν(ν
cσμēc)

∣∣2

→ VudCφeν(ūσ̄μd)(ecσμν̄c) + h.c. (2.35)

At the end of the day, the tree-level matching between the
operators in Eq. (2.33) and the νSMEFT Wilson coefficients
reads

ε̃L = − v2

2
Cφeν,

ε̃R = − v2

2Vud
Ceνud . (2.36)

In this scenario, the D-parameter expressed by νSMEFT Wil-
son coefficients reads

D ≈ −κD
v4

4
Im

[
CeνudC

∗
φeν

]
, (2.37)

which is once again O(�−4). An important difference with
the other scenario with right-handed neutrinos is that the
constraints on ε̃L and ε̃R , or on their νSMEFT counterparts
Cφeν and Ceνud are much milder. In particular, the LEP-2
constraint on W decay Br(W → eν) = 0.1071(16) [36]
translates to |ε̃L | ≤ 0.14 at 95% CL. On the other hand, ε̃R
can be constrained �+MET searches at the LHC, like the one
performed recently by the CMS collaboration [37]. Although
the CMS analysis does not consider the 4-fermion operator in
Eq. (2.33), we can get an idea about the order of magnitude of
the constraint by reinterpreting their limit on sequential W ′:
mW ′ � 5.4 TeV in the eν decay channel. Integrating out the
sequential W ′ leads to the 4-fermion operator (ūσ̄ μd)(ēσ̄μν)

corresponding to εL = m2
W

m2
W ′

, thus |εL | ≤ 0.015. Since the

operator (ecσμν̄c)(ucσμd̄c), unlike the one above, does not
interfere with the SM amplitudes, we do not expect it to be
more strongly constrained, hence |ε̃R | � O(0.01) is a reason-
able estimate. All in all |ε̃L ||ε̃R| ∼ 10−3 is consistent with the
existing bounds. However, once again there are stronger con-
straints on the imaginary part of ε̃L ε̃∗

R due to EDMs. When
both operators in Eq. (2.33) are present simultaneously, the 4-
quark operators in Eq. (2.13) is generated at one loop. While
the relevant diagram is quadratically divergent, and thus the
contribution to EDM is not calculable within the EFT, one
can estimate

C1LR ∼ �2

4π2CeνudC
∗
φeν . (2.38)
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Much as in scenario I, the phase of this operator is correlated
with the one responsible for the D parameter, which can be
written as

D ∼ κD10−4
(

v2Im [C1LR]
10−5

)
v2

�2 . (2.39)

Therefore |D| can be O(10−4) only if new physics is at
the electroweak scale, and is suppressed when � � v. A
word of caution is that this conclusion is based on the naive
dimensional estimate in Eq. (2.38), and should be verified
for specific UV completions in which the EDM contribution
is actually calculable.

We close this discussion by mentioning one more possi-
bility for realizing this scenario. The WEFT parameter ε̃L
can be generated from the dimension-8 operator

LνSMEFT ⊃ C̃8(e
cσμν̄c)(q̄ H̃ σ̄μH

†q), (2.40)

instead from the dimension-6 operator in Eq. (2.33) propor-
tional to Cφeν . This leads to

ε̃L = −v4C̃8

4Vud
, (2.41)

and the D parameter reads

D ≈ −κD
v6

8
Im

[
CeνudC̃

∗
8

]
. (2.42)

This isO(�−6), therefore it is even more strongly suppressed
than in other scenarios. The reason we consider this option
is that Cφeν cannot be generated from models with only
leptoquarks and right-handed neutrinos as BSM particles,
whereas C̃8 can. We will consider one such leptoquark model
in Sect. 3. At the EFT level, the dangerous C1LR Wilson
coefficient is still generated with the quadratically divergent
coefficient: C1LR ∼ v2�2

4π2 CeνudC̃∗
8 . Consequently, the cor-

relation between the D parameter and the 1-loop-generated
C1LR remains the same as in Eq. (2.39).

2.4 Summary of EFT analysis

To wrap up our EFT discussion, working within the νSMEFT
extension of the SM, we have classified the scenarios leading
to BSM contributions to the D parameter. A concise sum-
mary is given in Table 2, where we list the νSMEFT opera-
tors above the electroweak scale and the νWEFT parameters
below the electroweak scale that define each scenario. We
also give the maximum magnitude of the BSM D parameter
in each scenario, based on purely EFT arguments.

We have identified three interesting scenarios where the
D parameter may be at the currently observable level of
O(10−4) without conflicting other experimental data and
without fine-tuned cancellations between different EFT Wil-
son coefficients:

1. Scenario Ib, where the D parameter is generated via
the Im εR term in Eq. (2.8), and εR descends from
the dimension-8 operator (l̄ H σ̄μHl̃)(ucσμd̄c) in the
νSMEFT.

2. Scenario IVa, where the D parameter is generated
via the Im [ε̃R ε̃∗

L ] term in Eq. (2.8), and ε̃X descend
from the dimension-6 operators (ecσμν̄c)(ucσμd̄c) and
H†DμH†(ecσμν̄c) in the νSMEFT.

3. Scenario IVb, similar to the above, except that the
dimension-6 operator H†DμH†(ecσμν̄c) is replaced by
the dimension-8 one (ecσμν̄c)(q̄ H†σμH†q).

In these scenarios, the D parameter of order 10−4 is gener-
ically consistent with other experimental bounds, assuming
that the new BSM particles have masses close to the elec-
troweak scale. Of course, the corollary is that those models
that generate D ∼ O(10−4 − 10−5) will eventually face
constraints from direct searches at the LHC, which have to
be studied for each concrete UV completion separately. It
should be stressed that the maximum D estimates in these
scenarios rely on dimensional estimates of loop contributions
to EDMs that are quadratically divergent, and thus not calcu-

Table 2 Classification of EFT scenarios for generating BSM contri-
butions to the D parameter. We list the νWEFT parameters below the
electroweak scale and the νSMEFT operators above the electroweak
scale that define each scenario. We also give the order in the νSMEFT

EFT expansion parameter � at which the D parameter appears. Finally,
we give an estimate of the maximum magnitude of the BSM D param-
eter in each scenario based on purely EFT and naturalness arguments

Scenario νWEFT νSMEFT order D max |D|
Ia εR HDμHucσμd̄c �−2 O(10−6)

Ib εR (l̄ H σ̄μHl)(ucσμd̄c) �−4 O(10−4) v2

�2

II εS , εT (l̄σ̄μν ēc)(q̄σ̄ μν ūc),(l̄ ēc)(q̄ ūc),(l̄ ēc)(dcq) �−4 O(10−14)

III ε̃S , ε̃T (l̄σ̄ μν ν̄c)(q̄σ̄μν d̄c),(l̄ ν̄c)(q̄ d̄c),(l̄ ν̄c)(ucq) �−4 O(10−6)

IVa ε̃L , ε̃R H†DμH†ecσμν̄c,(ecσμν̄c)(ucσμd̄c) �−4 O(10−4) v2

�2

IVb ε̃L , ε̃R ecσμν̄cq̄H†σμH†q,(ecσμν̄c)(ucσμd̄c) �−6 O(10−4) v2

�2

123
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lable within the EFT. They should be verified for specific UV
completions in which EDMs are calculable. We will discuss
later on how our estimates compare to one-loop calculations
in leptoquark models.

Two more scenarios can lead to an O(10−4) D parameter
at the cost of a percent-level fine tuning:

1. Scenario Ia, where the D parameter is generated via
the Im εR term in Eq. (2.8), and εR descends from the
dimension-6 operator H̃†DμH(ucσμd̄c).

2. Scenario III, where the D parameter is generated
via the Im [ε̃T ε̃∗

S] term in Eq. (2.8), and ε̃X descend
from the scalar dimension-6 operators (l̄ν̄c)(q̄d̄c) and/or
(l̄ν̄c)(ucq) together with the tensor one (l̄σ̄ μν ν̄c)(q̄σ̄μν d̄c).

Finally, in Scenario II, where the D parameter is generated
via the Im [εT ε∗

S] term in Eq. (2.8), an enormous fine-tuning
would be needed to push the D parameter to observable lev-
els.

In the next section we will discuss which of these scenarios
can arise in the BSM models with leptoquarks.

3 D parameter in CP-violating models with leptoquarks

The general interactions of leptoquarks with the SM matter
are summarized in Appendix A. In this section we discuss
concrete BSM model containing one or two relatively light
leptoquarks contributing to the D parameter. We will deter-
mine how large can the D parameter be taking into account
the existing constraints from high- and low-energy experi-
ments (see e.g. [38–40]).

3.1 S1–R2

We consider a model with two scalar leptoquarks S1 and R2

in the standard nomenclature reviewed in Appendix A. Their
possible Yukawa interactions with the SM fermions are sum-
marized in Eq. (A.1). For the sake of this subsection we set
the S1 coupling to right-handed neutrinos to zero, ySdν = 0,
as it is not relevant for the D parameter calculation when R̃2

is absent. The parameter space is therefore characterized by
four complex Yukawa couplings defined in Eq. (A.2): ySue,
ySql , yRqe, yRul , and two masses MS1 and MR2 . This model
is a realization of the scenario II where the D parameter
is generated through the C (1),(3)

lequ (ν)SMEFT Wilson coeffi-
cients. Using the matching in Eq. (A.4) the D parameter is
expressed by the BSM parameters as

D ≈ 0.05κD
v4

MS2
1
M2

R2

Im
[
ySql ȳSue yRqe ȳRul

]
. (3.1)

Clearly, all the four Yukawa couplings have to be non-zero
to generate the D parameter, and at least one of them should
have an imaginary part. However, such imaginary parts are
prohibitively constrained by EDMs, as discussed around
Eq. (2.26). The imaginary parts of the leptoquark Yukawa
couplings are constrained by EDM measurements in the ThO
molecule as

∣∣∣∣Im [ySue ȳSql ] v2

M2
S1

+ Im [yRqe ȳRul ] v2

M2
R2

∣∣∣∣ �2 × 10−10,

∣∣∣∣Im [ySue ȳSql ] v2

M2
S1

− Im [yRqe ȳRul ] v2

M2
R2

∣∣∣∣ �4 × 10−10.

(3.2)

Assuming for example that the imaginary part resides in the

S1 interactions, we have |D| � 10−11κD
yRqe yRulv2

M2
R2

. Further-

more, the masses and Yukawa’s of R2 are subject to con-

straints from the LHC pp → e+e− process,
yRqe yRulv2

M2
R2

�

10−3. We conclude that |D| � 10−14 in the S1–R2 model,
which is of course is too small to ever be observed.

Models with the U1–S1, U1–R2, V2–S1, or V2–R2 lepto-
quark pair can also lead to scenario II, with exactly the same
problem due to the EDMs.

3.2 S1-R̃2

We move to a model with two scalar leptoquarks: S1 and R̃2.
Their quantum numbers are given in Table 3, and their possi-
ble Yukawa interactions with the SM fermions are collected
in Eq. (A.2). In this model contributions to the D parameter
will enter via interactions with right-handed neutrinos, there-
fore this time we assume ySdν is non-zero. On the other hand,
we set ySue = 0, as this coupling is not relevant for the discus-
sion of the D parameter in this model (and only would make
precision constraints more stringent). The parameter space is
characterized by four complex Yukawa couplings defined in
Eq. (A.2): ySdν , ySql , yRqν , yRdl , and two masses MS1 and
MR̃2

. This model is a realization of the scenario III where

the D parameter is generated through the C (1),(3)
lνqd νSMEFT

Wilson coefficients. Using the matching in Eq. (A.4) the D
parameter is expressed by the BSM parameters as

D ≈ 0.05κD
v4

M2
S1
M2

R̃2

Im
[
ySdν ȳSql ȳRqν yRdl

]
. (3.3)

The magnitude of Yukawa couplings entering this formula
are constrained by precision measurements of CP conserving
quantities, notably by pion decay. Indeed, in this model the
dangerous Wilson coefficient ε̃P is generated in the WEFT
below the electroweak scale. At tree level and ignoring the
(nearly identical for ε̃S and ε̃P ) running effects in Eq. (2.5)
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one finds

ε̃P = −v2

4

[
ySdν ȳSql
M2

S1

+ yRqν ȳRdl
M2

R̃2

]
. (3.4)

Thus,

|D| � 0.2|κD||ε̃P |Min

[
|ySdν ySql | v2

M2
S1

, |yRqν yRdl | v2

M2
R̃2

]
.

(3.5)

The pion decay bound |ε̃P | < 1.0×10−5 implies |D| < 10−5

for order one Yukawa couplings and leptoquark masses at
the electroweak scale. In this model there are no free param-
eters that could be used to fine-tune away the pion decay
constraints on the D parameter: if ε̃P is fine-tuned to van-
ish, so does the D parameter. Taking into account the LHC
constraints, the leptoquark contributions to the D parame-
ter are further suppressed. The constraints from the pp →
e+e− Drell–Yan process imply

|ySql |2v2

M2
S1

,
v2|yRdl |2

M2
R̃2

� 10−3.

While the constraints from the pp → e+ν are weaker,
|ySdν |2v2

M2
S1

,
v2|yRqν |2

M2
R̃2

� 10−1, overall |D| � 10−7. This is too

small to be observable in any foreseeable future.
Models with the U1–S1, U1–R̃2, Ṽ2–S1, or Ṽ2–R̃2 lepto-

quark pair can also lead to scenario III. They have very similar
properties as the S1–R̃2 model, and only differ by order one
factors regarding the constraints. In models with at least three
leptoquarks, for example U1–S1–R̃2, there exists a possibil-
ity to fine tune away the contributions to ε̃P and somewhat
alleviate the problem of the pion decay constraints.

3.3 R2–R̃2

We turn to the model with one R2 and R̃2, which was already
discussed in Refs. [4,5], and leads to scenario Ib in the
nomenclature of Table 2. In order to generate the D parame-
ter we need the Yukawa couplings yRul and yRdl in Eq. (A.2)
(and also the quartic mixing in Eq. (A.5)) to be non-zero. On
the other hand, in this subsection we set yRqe = yRqν = 0
for simplicity. The D parameter is given by

D ≈ − κDv4

8M2
R2
M2

R̃2

Im
[
λRR yRul ȳRdl

]
. (3.6)

We will assume that the phase of λRR yRul ȳRdl is maximal.
In this case, the possibility of generating a large D param-
eter becomes severely constrained when combining exist-
ing experimental constraints. We begin with EDMs. In this
model, the 4-quark operator in Eq. (2.13) is generated by
leptoquark loops [5] with the same phase as the one entering
the D parameter. Unlike in the EFT calculation discussed in
Sect. 2, the loop is finite and therefore calculable without

ambiguities, since the model is renormalizable. For lepto-
quark masses sufficiently larger than the electroweak scale
one finds [5]

Im C1LR ≈ Im
[
λRR yRul ȳRdl

] log(M2
R2

/M2
R̃2

)

16π2(M2
R2

− M2
R̃2

)
. (3.7)

This is always a good approximation for leptoquarks sat-
isfying the direct search constraints (see below). Note that
limx→y log(x/y)/(x − y) = 1/y. We can rewrite the D
parameter as

D ≈ −2π2κDIm C1LR

v4(M2
R2

− M2
R̃2

)

M2
R2
M2

R̃2
log(M2

R2
/M2

R̃2
)
. (3.8)

The most favorable situation for the D parameter corresponds
to the limit M2

R̃2
= M2

R2
≡ M2

LQ. We thus have at the inequal-

ity

|D| � 2 × 10−4|κD|v
2|Im C1LR |

10−5

v2

M2
LQ

. (3.9)

The LHC constraints from leptoquark pair production lead-
ing to the qqll final state [41] imply MR2,R̃2

� 1.4 TeV [42],
independently to a large extent of the value of the Yukawa
couplings. Thus v2/M2

LQ � 3 × 10−2 and we arrive at the
bound

|D| � 6 × 10−6|κD|, (3.10)

in the entire phenomenologically allowed parameter space
of the R2–R̃2 model. For a given Yukawa coupling, further
constraints can be derived using the leptoquark contributions
to the Drell–Yan process pp → e+e−. Here we will work
in the limit where MR2,R̃2

� 1 TeV such that the Drell–
Yan process can be accurately described within SMEFT. As
shown in Eqs. (A.9) and (A.10), integrating out the lepto-
quarks generates the effective 4-fermion operators

LνSMEFT ⊃ −|yRul |2
2M2

R2

(l̄σ̄ μl)(ucσμūc)

− |yRdl |2
2M2

R̃2

(l̄σ̄ μl)(dcσμd̄c), (3.11)

which contribute to pp → e+e−. We use the bounds from the
analysis of Ref. [43] based on the CMS and ATLAS e+e− pair
production results [44,45]. The Drell–Yan, pair production,
and EDM constraints together are shown in Fig. 1 for two
particular choices of the Yukawa couplings and the scalar
mixing λRR . For large Yukawas, the EDM bounds push the
leptoquark mass scale into the multi-TeV regime, leading to
a stronger suppression of the D parameter than the maximum
value on Eq. (3.10). In this regime, the Drell–Yan bounds are
stronger than the pair production ones, but always weaker
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than the EDM ones. Very small Yukawas also suppress the D
parameter, and in this case the limit is set by the direct bounds
on leptoquark masses from pair production (which does not
depend on yRul and yRdl ). The D parameter is maximized
when the EDM and direct bounds coincide, which happens
for |yRul | ≈ |yRdl | ≈ 0.2. For these sweet-spot values of
the Yukawas, the Drell–Yan bounds happen to be somewhat
weaker than the pair production ones, due to a small ∼ 2σ

excess in the former data. All in all, we find that maximum
|D| ≈ 8 × 10−6 is possible for 23Mg. This is still below the
sensitivity of the next generation experiments, but it could be
a realistic goalpost in the future.

3.4 R2–R̃2–S1

The R2–R̃2–S1 model considered in this subsection was dis-
cussed in Ref. [5], and it realizes scenario IVb in the nomen-
clature of Table 2. While the dimension-6 νSMEFT oper-
ator H†DμH†ecσμν̄c cannot be generated at tree level in
models where the leptoquarks are the only exotic particles
(for that one would have to extend the gauge symmetry
of the SM and introduce the associated gauge bosons), the
dimension-8 νSMEFT operator ecσμν̄cq̄ H̃σμH†q can be
generated by the R2–R̃2 pair mixing after electroweak sym-
metry breaking. In this subsection we set the Yukawa cou-
plings yRul = yRdl = 0 in Eq. (A.2), as they will not play
any role in generating D. On the other hand, this time we
assume that yRqe and yRqν are non-zero. Integrating out the
R2-R̃2 pair in the presence of the scalar mixing in Eq. (A.5)
generates the ecσμν̄cq̄ H̃σμH†q operator with the Wilson
coefficient

C̃8 = − λ̄RR ȳRqe yRqν

2M2
R2
M2

R̃2

. (3.12)

In scenario IV, one also has to generate the Wilson coefficient
Ceνud of the dimension-6 operator ecσμν̄cucσμd̄c. To this
end we introduce in addition the S1 leptoquark, and assume
its Yukawa couplings ySue and ySdν in Eq. (A.2) are non-
zero. In this subsection we set ySql = 0 for simplicity. From
Eq. (A.4) one then has

Ceνud = ySdν ȳSue
2M2

S1

. (3.13)

Plugging the above Wilson coefficients into Eq. (2.42) one
finds the D parameter

D ≈ κD
v6

32M2
S1
M2

R2
M2

R̃2

Im
[
λRR ySdν ȳSue yRqe ȳRqν

]
.

(3.14)

In this scenario the D parameter is suppressed by six powers
of leptoquark masses, which then have to be very close to
the electroweak scale to obtain a sizable magnitude of D.
Therefore one expects that a large D will be in tension with
direct LHC searches. The LHC constraints from leptoquark
pair production imply MR2,R̃2,S1

� 1.4 TeV [42], indepen-
dently to a large extent of the value of the Yukawa couplings.
This alone brings a suppression factor of O(10−5), which
would have to be balanced by large Yukawas and/or scalar
mixing. Further constraints come from EDMs generated at
one loop. In the limit where MR2 = MR̃2

= MS1 ≡ MLQ one
generates the 4-quark operator in Eq. (2.13) with the Wilson
coefficient [5]

|Im C1LR | = v2

256π2M4
LQ

∣∣Im [
λRR ySdν ȳSue yRqe ȳRqν

]∣∣
+O(M−6

LQ). (3.15)

Fig. 1 Maximum value of the D parameter in 23Mg (red line) possi-
ble in the model with two leptoquarks R2 and R̃2 for two particular
choices of the leptoquark Yukawa couplings and for the scalar mixing
parameter λRR = 1. Left: For yRul = yRdl = 1 the colored parameter
space is excluded by pp → e+e− (Drell–Yan) [43] and by the neutron
EDM. The latter dominate and force the leptoquark mass scale to be

at least ∼ 6 TeV, which translates into a strong suppression of the D
parameter to the level below 4 × 10−7. Right: For yRul = yRdl = 0.18
we show the constraints from pair production at the LHC (direct) which
dominate over the Drell–Yan (not shown) and EDM constraints. This is
a more favorable situation from the point of view of the D parameter,
allowing for |D| ≈ 5 × 10−6
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Therefore the D parameter can be recast as

|D| � 8 × 10−4|κD|v
2|Im C1LR |

10−5

v2

M2
LQ

. (3.16)

The above is an inequality because hierarchies between the
leptoquark masses lead to a suppression of D with respect to
Im C1LR . Given the EDM constraints, the maximum value
of the D parameter is 4 times larger than in the model of
the previous subsection, cf. Eq. (3.9). Taking into account
the direct LHC constraints on leptoquarks, at face value one
can reach |D| ≈ 2 × 10−5. However, as we discuss below,
in the realistic parameter space |D| is always smaller. One
reason is that the present model also faces constraints from
pp → e+e− Drell–Yan production. For MLQ � v this is
described by the effective operators

LνSMEFT ⊃|ySue|2
2M2

S1

(ucσμūc)(ecσμēc)

− |yRqe|2
2M2

R2

(q̄σ̄ μq)(ecσμēc). (3.17)

In Fig. 2 we contrast the maximum value of D parameter in
this model with the direct, Drell–Yan, and EDM constraints.
For order one ySue and yRqe, the LHC process pp → e+e−
provides the strongest constraint, pushing the leptoquark
mass scale above 4 TeV, which leads to a prohibitive suppres-
sion of D. A larger D can be achieved in the regime where
ySue and yRqe are somewhat suppressed while ySdν and yRqν

are enhanced, in which case the direct LHC constraints from
leptoquark pair production dominate. Still, one can achieve
|D| ∼ 3×10−6 at best. In order to get to the values suggested

by Eq. (3.16) one would have to further increase ySdν yRqν .
This would not only be at odds with perturbativity, but would
also be subject to bounds from pp → e±nu production at
the LHC, |ySdν |2/M2

LQ, |yRqν |2/M2
LQ � 10−1. We conclude

that the R2–R̃2–S1 model cannot lead to a larger D parameter
than the R2–R̃2 one, in spite of more favorable EDM con-
straints. The problem is rooted in the fact that D ∼ O(M−6

LQ)

in the former, and is thus strongly suppressed given the LHC
constraints. It is reasonable to conjecture that any BSM model
with the new physics scale � where D ∼ O(�−6) will suffer
from similar bounds.4

4 CP-conserving new physics via the D parameter?

We have seen in the previous sections that imaginary parts
of the Wilson coefficients C±

X , of the magnitude that could
lead to a potentially observable D parameter, are strongly
constrained by EDMs. Therefore it is interesting to note that
the one-loop electromagnetic corrections to the beta decay
amplitude also contribute imaginary parts to the amplitude
when some particle in the loop goes on shell. As originally
shown by Jackson, Treiman and Wyld in Ref. [8], these
imaginary parts contribute to the D parameter and other
correlation coefficients in beta decay. But they do not con-

4 One could also consider a hybrid S1–W ′ scenario where, instead
of C̃8, one generates ecσμν̄cq̄ H̃σμH†q by integrating out the right-
handedW boson. This would realize scenario IVa in the nomenclature of
Table 2, in which case D ∼ O(�−4). However, direct LHC constraints
on new gauge bosons are typically a factor of few stronger than those on
leptoquarks, and it is unlikely that this avenue could lead to a significant
enhancement of the D parameter.

Fig. 2 Maximum value of the D parameter in 23Mg (red line) possible
in the model with two leptoquarks R2 and R̃2 for two particular choices
of the leptoquark Yukawa couplings and for the scalar mixing param-
eter λRR = 5. Left: For |ySdν | = |ySue| = |yRqe| = |yRqν | = 1 the
gray-shaded area (Drell–Yan) is excluded by pp → e+e− [43]. Due
to the strong Drell–Yan bound on M the D parameter is suppressed
below O(10−8) in the allowed parameter space. For these Yukawa cou-
plings the EDM constraints are much weaker, MLQ � 1 TeV. Right:
For |yRqe| = |ySue| = 0.35 and |ySdν | = |yRqν | = 2, one can arrive

at |D| ≈ 2 × 10−6 in the allowed parameter space. The gray-shaded
area (Direct) is excluded by the LHC searches for leptoquark pair pro-
duction. For these Yukawa couplings pp → e+e− gives almost the
same exclusion limit, although for such moderate values of M the EFT
analysis we perform is not a very good approximation of the Drell–Yan
process in the full leptoquark model and it overestimates the bounds
somewhat. The orange-shaded are shows the EDM constraints, which
are again weaker
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tribute to EDMs (since electromagnetic interactions are CP-
conserving) and are thus less constrained. In this section we
argue that the scenario where precision measurements of the
D parameter uncover CP-conserving new physics is perhaps
more realistic than observing CP violation in this kind of
experiments.

At one loop, the chief electromagnetic effect on the beta
decay amplitude arises due to photon exchange between
the daughter nucleus and the beta particle. When these last
two particles in the loop are on shell the amplitude devel-
ops an imaginary part which, via unitarity, is fully deter-
mined by tree level amplitudes. The leading term in the non-
relativistic expansion of that contribution is proportional to
�Z ≡ me

pe
ZN ′α, where ZN ′ is the charge of the daughter

nucleus, α is the fine-structure constant, me is the electron
mass, and pe is the momentum of the outgoing β particle.
In fact, at the leading order in 1/mN , the Coulomb unitarity
corrections5 to any correlation coefficient can be effectively
described by the following transformation of the Wilson coef-
ficients in the leading order expression:

C±
V →C±

V ± i�Z

2
C±
S , C±

S → C±
S ± i�Z

2
C±
V ,

C±
A →C±

A ± i�Z

2
C±
T , C±

T → C±
T ± i�Z

2
C±

A , (4.1)

where the ± sign in front of �Z refers to the β∓ transitions.
See Appendix B for a derivation of Eq. (4.1). Inserting the
shift Eq. (4.1) into Eq. (2.4), the expression for the D param-
eter is generalized as D = DLO + DCoulomb, where DLO is
given by the expression in Eq. (2.4), and the Coulomb cor-
rection is [8]

DCoulomb = ±2r

√
J

J + 1

�Z Re
[
C+
V C̄

+
T − C+

S C̄
+
A + C−

V C̄
−
T − C−

S C̄
−
A

]
|C+

V |2 + |C+
S |2 + |C−

V |2 + |C−
S |2 + r2

[|C+
A |2 + |C+

T |2 + |C−
A |2 + |C−

T |2] . (4.2)

The important point is that DCoulomb can be non-zero
even for real Wilson coefficients, that is in the absence of
CP violation in the nucleon-level EFT. Note that DCoulomb

is very small in the SM6 where C−
S = C±

T = 0 and C+
S

is suppressed by both me/mp ∼ 10−3 and isospin break-
ing, leading to the estimate v2C+

S,SM � 10−5. On the other

hand, in a general CP-conserving BSM set-up C±
S,T can be

non-zero. The current model independent constraints imply

5 Let us note that there is an additional Coulomb correction of order α

to the overall amplitude, also included in Ref. [8], which is the well-
known Fermi function. This correction is not directly related to this one,
which is fully fixed by unitarity, and cannot induce a nonzero D.
6 In the SM, larger contributions arise due to interference between the
Coulomb corrections and Wilson coefficients of interactions subleading
in recoil (such as e.g. the weak magnetism). These are of order ∼ 10−4

and are known with a certain precision [2,46–48].

v2ReC+
S,T � 10−3, while v2ReC−

X � 10−1 [10]. The addi-
tional suppression factor of ZN ′α is not a very small number,
especially for beta decays with ZN ′ � 10. All in all, with
completely real Wilson coefficients, it is possible to arrange
for O(10−5) BSM contributions to the D parameter in heav-
ier nuclei, or even O(10−4) when right-handed neutrinos are
present in the low-energy EFT. Taking into account that a
sensitivity of O(10−4) is expected in the near future [3], CP-
conserving new physics is a promising target for experiments
measuring D.

Translating Eq. (4.2) to the quark-level EFT parameters
one finds

DCoulomb ≈ ±ZN ′α
κD

2

me

pe

[
gT
gA

εT + gS
gV

εS + gT
gA

(ε̃R + ε̃L )ε̃T

+ gS
gV

(ε̃R − ε̃L )ε̃S

]
, (4.3)

where κD is defined in Eq. (2.8), and we neglected O(ε2
X )

(but not O(ε̃2
X )) terms. As a reference, let us take 23Mg, with

ZN ′ = 11, κD ≈ −1.3 and the averaged
〈me
pe

〉 ≈ 0.35. One
finds

D23Mg
Coulomb ≈ 0.019

[
εS + (ε̃R − ε̃L)ε̃S

]
+ 0.014

[
εT + (ε̃R + ε̃L)ε̃T

]
. (4.4)

Assuming the absence of CP violation, the future sensitivity
of �D23Mg ∼ 10−5 would translate into a sensitivity on εS
and εT of about ∼ 10−3.7 This is the same order of magnitude
as the sensitivity offered by the currently most precise CP-
even probes in β decays: superallowed 0+ → 0+ and neutron
decays [10]. We illustrate this point in Fig. 3, where hypo-
thetical constraints on εS and εT from future measurement

of D23Mg are compared to the existing ones from the combi-
nation of low-energy precision measurements performed in
Ref. [50]. The conclusion is that a measurement of D with
an uncertainty better than 10−4 would already affect the cur-
rent constraints. One important point is that the sensitivity of

7 The bound on εS is perhaps more interesting from the perspective of
the UV completion of the EFT. Once again, this is a consequence of
the mixing between εT and εP under renormalization group running.
Namely, εT ∼ 10−3 at the scale MZ induces εP ∼ 10−5 at μ � 2 GeV
[49], at odds with the bound |εP (2 GeV)| � 5 × 10−7 from π− →
e−ν̄e. Barring artificial fine tuning between two unrelated effects – the
QED running between two renormalization scales and the exact linear
combinations of Wilson coefficients generated from new interactions
at higher energies – the pion decay bound on εT (MZ ) is stronger than
what one can realistically obtain from the D parameter.
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Fig. 3 Constraints on the Wilson coefficients εS and εT in the quark-
level Lagrangian Eq. (2.5) at the scale μ � 2 GeV, assuming ε̃X = 0
and marginalized over the remaining Wilson coefficients. We show the
region preferred by the combination of low-energy precision measure-
ments performed in Ref. [50] at 68% CL (darker orange), and 95% CL
(lighter orange). We also show the region excluded by a hypothetical
measurement of the D parameter in the 23Mg beta decay with the uncer-
tainty of 10−4 (darker shade of gray) and 10−5 (lighter shade of gray)

D to the real part of εS and εT is linear, and that scales as
1/M2 in the new physics scale M . This is in contrast to most
CP-violating scenarios considered earlier, where the sensitiv-
ity scaled as 1/M4, which lead to strong tension with direct
LHC bounds. If right-handed neutrinos are present in the
low-energy EFT, a potential sensitivity of �D23Mg ∼ 10−5

would constrain the products of two ε̃X at the 10−3 level.
This sensitivity is highly competitive with the most precise
CP even bounds from β decays, which give |ε̃X | � 0.1 [10].

Moving upwards in our EFT ladder, if we assume the
validity of the SMEFT at the TeV energies, the potential
bound on εS and εT translates into a bound on the C (1)

lequ ,

C (3)
lequ , and Cledq Wilson coefficients in Eq. (2.22). Assum-

ing that new physics generating these Wilson coefficients is
above the LHC scale, this constraint would become comple-
mentary to the one obtained from LHC observables. Anal-
ogously, if the νSMEFT is the valid EFT at the TeV ener-
gies, the potential D parameter bounds on ε̃X translates into
bounds on C (1)

eνud , C (3)
eνud , Clνuq , and Ceνud in Eqs. (2.28) and

(2.33).
To compare the sensitivity of the D parameter and LHC

searches in a concrete BSM scenario, we turn to a particu-
lar leptoquark model. We consider the following (somewhat
contrived) model with the S1 and R2 with the common mass
MLQ and the cubic interactions

L ⊃ y1 (S1q + R2u
c) l̃ + y2 (S1ū

c − R2q̄) ēc + h.c., (4.5)

Fig. 4 Constraints on the parameters of the S1–R2 leptoquark model
with the cubic interactions in Eq. (4.5). We show the region preferred at
95% CL by the LHC pp → e+e− Drell–Yan data [43] (green), and by
the combination of low-energy precision measurements performed in
Ref. [50] (orange). We also show the region excluded by a hypothetical
measurement of the D parameter in 23Mg with the uncertainty of 10−4

(darker shade of gray) and 10−5 (lighter shade of gray)

where y1,2 are real. The model is designed to only gener-
ate the tensor but no scalar or pseudoscalar charged current
interactions at the high scale MLQ. Indeed, using Eq. (A.4)
one finds that integrating out the leptoquarks leads to, among
others, the SMEFT Wilson coefficients C (1)

lequ = Cledq = 0

and C (3)
lequ = − y1y2

4M2
LQ

. Without taking into account RG run-

ning this would translate to εS = εP = 0 and εT = y1y2v
2

2Vud M2
LQ

in the EFT below the electroweak scale. RG running is how-
ever relevant, because it generates εP . The future bound on
the D parameter in 23Mg beta decays would be another probe
of this CP-conserving scenario, in addition to the LHC and
low-energy precision measurements. In Fig. 4 we illustrate
the sensitivity of the different probes. A measurement of the
D parameter in 23Mg with the uncertainty of 10−5 would pro-
vide a competitive probe of the parameters of the model com-
pared to the current constraints from the LHC pp → e+e−
Drell–Yan data. In this analysis we assume MLQ � 1 TeV,
such that the effects of leptoquark on Drell–Yan production
can be correctly estimated by dimension-6 operators in the
νSMEFT. If the leptoquarks are lighter, say in the 2 TeV ball-
park, then the Drell–Yan constraints become actuallyweaker,
further increasing the relevance of the D parameter measure-
ments. On the other hand, the low-energy precision measure-
ments are in this specific scenario much stronger than the
LHC or the D parameter. This is because RG running gen-
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erates non-zero εP at μ � 2 GeV, which is very strongly
constrained by pion decay.8

5 Conclusions

In this paper we discussed the prospects to uncover new
physics beyond the SM via measurements of the D corre-
lation coefficient in beta decay. The experimental sensitivity
is expected to improve to �D ∼ 10−5 in the coming decade
[3]. This should allow one to measure the small D ∼ 10−4

predicted by the SM due final-state electromagnetic inter-
actions between the daughter nucleus and the beta particle.
More generally, D probes imaginary parts of Wilson coeffi-
cients in the general nucleon-level EFT, which are currently
not constrained by other experiments. Therefore, future mea-
surements of the D parameter will not only provide a test of
the SM but also add unique information about the EFT for
beta decay.

A separate question is: which concrete models of new
physics can be discovered or constrained by the D parameter
measurements? In principle, new heavy particle with CP-
violating interactions may induce complex phases of EFT
Wilson coefficients, and thus contribute to D. We argue how-
ever that realistic models leading to an observable shift from
the SM prediction would have to be severely fine-tuned to
avoid simultaneous constraints from other experiments, espe-
cially from measurements of electric dipole moments, but
also from pion decay and Drell–Yan electron pair produc-
tion at the LHC. We give a very general, model-independent
argument for this assertion, working at the level of an EFT
below and above the electroweak scale. We classify the sce-
narios for generating the D parameters in this EFT and iden-
tify the problems with each scenario. The constraints and
necessary tunings are also illustrated in concrete BSM set-
tings involving leptoquarks. Our conclusions update, gener-
alize, and strengthen those of Ref. [5] given the experimen-
tal progress in the last decade. Since the sensitivity of EDM
experiments is expected to improve fast in the coming years,
we expect our conclusions to only become stronger as time
goes by.

A word of caution is in order. It should be stressed that
our results do not exclude in a model-independent way that
a signal of CP violation appears in the next generation of
experiments measuring the D parameter. Non-trivial rela-
tions between parameters of BSM models may arise because
of symmetries or by accident, leading to an apparent fine tun-

8 The main point of this exercise was to compare the LHC and D param-
eter sensitivities in a concrete BSM setting. For the record, however,
we note that one could avoid the pion constraint by a small adjustment
of the leptoquark couplings in Eq. (4.5) so that εP (2 GeV) = 0 after
running. Of course, such a fine-tuning seems difficult to motivate from
the UV perspective.

ing from the low-energy perspective. If one allows for such
fine tuning, CP-violating contributions to the D parameter
can be significant, even O(10−4). What we claim is that, if a
deviation from the SM prediction is found, the BSM models
explaining it via new CP violating phases will necessarily
appear fine-tuned or involve an element of baroqueness.

We also discussed the possibility of CP-conserving BSM
contributions to the D parameter, reaching more optimistic
conclusions. While the D correlation is T-odd, final state
interactions at one loop level can provide necessary phases
to induce D even in the absence of fundamental CP viola-
tion. In particular, the real parts of non-standard scalar and
tensor charged currents in the nucleon-level EFT interfere
with the electromagnetic Coulomb corrections to beta decay
so as to generate D [8]. Even though the scalar and tensor cur-
rent must be suppressed compared to the standard vector and
axial currents [10], their contribution to D arises at the lead-
ing order in 1/mN expansion, unlike the SM one which arise
at the next-to-leading order. For this reason, the D param-
eter may soon become a sensitive probe of CP-conserving
non-standard currents. We find that the experimental uncer-
tainty of order �D ∼ 10−5 will be enough to compete with
other sensitive beta decay probes (superallowed and neutron
decays), as well as with the LHC observables.
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Appendix A: Classification of leptoquarks

In this appendix we review the classification and interactions
of leptoquarks, as well as the matching between the param-
eters of leptoquark models and the νSMEFT effective oper-
ators relevant for our analysis. Leptoquarks are bosons that
can have an interaction vertex with a quark and a lepton. In
this paper we restrict to leptoquarks coupling only to the first
generation of the SM fermions. For spin-0 and spin-1 lepto-
quarks, the representations under the SM gauge group that
allow for such interactions have been catalogued [51,52] and
reproduced here in Table 3. In this paper we forbid baryon
number violating interactions, such that leptoquarks can be
assigned baryon and lepton numbers that are conserved in
perturbation theory.

One can show that the S̄1, S̃1, S3, Ū1, Ũ1, and U3 lep-
toquarks do not contribute to the D parameter, therefore we
will not consider them in the following. A simple argument is
that the quantum numbers of these leptoquarks permit only a
single trilinear interaction term with a quark and a lepton, in
which case the phase of the coupling constant can be always
eliminated by rephasing the leptoquark field. On the other
hand, irreducible phases can be present in the interactions
of S1, R2, R̃2, U1, V2, and Ṽ2 if they couple to at least two
distinct lepton-quark structures. For these leptoquarks, we
consider a general Lagrangian of the form

Lleptoquark = Lkinetic + Lscalar + Lvector . (A.1)

Above,Lkinetic contains the kinetic and mass terms of S1, R2,
R̃2, U1, V2, and Ṽ2. Lscalar contains Yukawa interactions for
the scalar leptoquarks:

Lscalar = S1

[
ySqlql̃ + ySueū

cēc + ySdν d̄
cν̄c

]

+ R2

[
yRulu

cl̃ + yRqeq̄ē
c
]

+ R̃2

[
yRdld

cl̃ + yRqν q̄ ν̄c
]

+ h.c. (A.2)

Lvector contains all possible baryon-number conserving tri-
linear interactions of vector leptoquark with a quark and a
lepton:

Lvector = Uμ
1

[
gUql q̄σ̄μl + gUded

cσμē
c + gUuνu

cσμν̄c
]

+ Vμ
2

[
gVdl d̄

cσ̄μl̃ + gVqeq̃σμē
c
]

+ Ṽμ
2

[
gVul ū

cσ̄μl̃ + gVqν q̃σμν̄c
]

+ h.c. (A.3)

Integrating out the leptoquarks, we obtain the follow-
ing Wilson coefficients of the νSMEFT operators defined
in Eqs. (2.22), (2.28) and (2.33):

C (1)
lequ = ySue ȳSql

2M2
S1

+ yRqe ȳRul
2M2

R2

,

C (3)
lequ = − ySue ȳSql

8M2
S1

+ yRqe ȳRul
8M2

R2

,

Cledq = 2
gUdeḡUql

M2
U1

+ 2
gVqeḡVdl

M2
V2

,

C (1)
lνqd = ySdν ȳSql

2M2
S1

+ yRqν ȳRdl
2M2

R̃2

,

C (3)
lνqd = − ySdν ȳSql

8M2
S1

+ yRqν ȳRdl
8M2

R̃2

,

Clνuq = 2
gUuν ḡUql

M2
U1

+ 2
gVqν ḡV ul

M2
Ṽ2

,

Ceνud = ySdν ȳSue
2M2

S1

− gUuν ḡUde

M2
U1

. (A.4)

As expected, the Wilson coefficients pick up an imaginary
part when there is a relative phase between two different
tri-linear couplings of the same leptoquark. That phase is a
necessary but not sufficient condition for generating the D
parameter. As is clear from Eqs. (2.24) and (2.30), to this
end we also need a relative phase between the tensor Wilson
coefficient (C (3)

lequ orC (3)
lνqd ) and the scalar ones (C (1)

lequ ,Cledq ,

C (1)
lνqd , Clνuq ). Inspection of Eq. (A.4) shows that the relative

phase can arise only if two distinct leptoquarks with differ-
ent quantum numbers contribute. In other words, a (purely)
leptoquark scenario for generating an observable D parame-
ter must contain at least two leptoquarks near the TeV scale
coupled to the first generation fermions. Finally, we note that
leptoquarks do not generate the Wilson coefficientsCφud and
Cφeν in Eqs. (2.12) and (2.37). Therefore scenarios Ia and
IV in our nomenclature cannot arise from purely leptoquark
BSM models at tree level. They can however arise in hybrid
models, for example when a leptoquark is accompanied by
an exotic right-handed W’ vector boson.

So far we haven’t discussed how to connect leptoquarks to
the scenario Ib where the D parameter is generated through
the dimension-8 νSMEFT operator in Eq. (2.17). That opera-
tor is not induced by integrating out the leptoquarks from the
Lagrangian in Eq. (A.1). However, there is a natural general-
ization of Eq. (A.1) to include cubic and quartic interactions
of leptoquarks with the Higgs field. Such interactions result in
mixing between distinct leptoquarks after electroweak sym-
metry breaking, and lead to additional operators involving the
Higgs field in the νSMEFT effective theory below the lep-
toquark mass scale. All renormalizable interactions mixing
two scalar leptoquarks were catalogued in Ref. [53]. Among
those, the quartic interaction

�Lleptoquark = λRR(R†
2H)(H̃† R̃2) + h.c. (A.5)
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induces the dimension-8 operator in Eq. (2.17) with the Wil-
son coefficient

C8 = −λRR yRul ȳRdl
2M2

R2
M2

R̃2

. (A.6)

One can show that the remaining mixing interactions dis-
cussed in [53] induce dimension-6 and 8 operators that are
not relevant for the D parameter, and therefore they are not
considered in this paper. In analogy to Eq. (A.5) on can
also consider mixing of the vector leptoquarks via the (non-
renormalizable) quartic interaction

�Lleptoquark = λVV (V †
2 H)(H̃†Ṽ2) + h.c. (A.7)

This also induces the dimension-8 operator in Eq. (2.17) with
the Wilson coefficient

C8 = −λVV gVdl ḡV ul

M2
V2
M2

Ṽ2

. (A.8)

All in all, scenario Ib for generating the D parameter can be
realized in a BSM model with two distinct SU(2) doublet
leptoquarks that mix after electroweak symmetry breaking.
Such models were already considered in Ref. [5], and in this
paper we will update that analysis taking into account new
experimental constraints, in particular from the LHC.

We close this appendix with a discussion of other
dimension-6 νSMEFT operators generated at tree level
by integrating out the leptoquarks from the Lagrangian
Eq. (A.1). In addition to the operators defined in Eqs. (2.22),
(2.28) and (2.33), which can have complex Wilson coeffi-
cients, there arise certain 4-fermion operators with real Wil-
son coefficients. The latter are irrelevant for the sake of CP
violation, but they may be important for CP-conserving preci-
sion observables in low-energy experiments and at the LHC.
The set of dimension-6 CP-conserving dimension-6 opera-
tors generated by integrating out leptoquarks is

LνSMEFT ⊃ C (1)
lq (l̄σ̄ μl)(q̄σ̄ μq) + C (3)

lq (l̄σ̄ μσ kl)(q̄σ̄ μσ kq)

+ Ceu(e
cσμēc)(ucσμūc) + Ced(e

cσμēc)(dcσμd̄c)

+ Clu(l̄σ̄
μl)(ucσμūc) + Cld(l̄σ̄

μl)(dcσμd̄c)

+ Cqe(q̄σ̄ μq)(ecσμēc)

+ Cqν(q̄σ̄ μq)(νcσμν̄c) + Cνu(ν
cσμν̄c)(ucσμūc)

+ Cνd(ν
cσμν̄c)(dcσμd̄c). (A.9)

Matching the Wilson coefficients at tree level one finds

C (1)
lq =|ySql |2

4M2
S1

− |gUql |2
2M2

U1

,

C (3)
lq = − |ySql |2

4M2
S1

− |gUql |2
2M2

U1

,

Ceu =|ySue|2
2M2

S1

,

Ced = − |gUde|2
M2

U1

,

Clu = − |yRul |2
2M2

R2

+ |gVul |2
M2

Ṽ2

,

Cld = − |yRdl |2
2M2

R̃2

+ |gVdl |2
M2

V2

,

Cqe = − |yRqe|2
2M2

R2

+ |gVqe|2
M2

V2

,

Cqν = − |yRqν |2
2M2

R̃2

+ |gVqν |2
M2

Ṽ2

,

Cνu = − |gUuν |2
M2

U1

,

Cνd =|ySdν |2
2M2

S1

. (A.10)

Appendix B: Coulomb corrections

In this appendix we present a derivation of the one-loop
Coulomb corrections to the correlation coefficients in beta
decay, originally calculated by Jackson, Treiman, and Wyld
in Ref. [8]. More precisely, we focus here on the O(α)

Coulomb corrections due to on-shell particles propagating in
the loop, which is controlled by unitarity. We refer to those as
the unitarity Coulomb corrections. Note that there are addi-
tional Coulomb corrections, not captured by the unitarity
method. We are not concerned with those in this appendix.
Nevertheless, let us note that the leading part of these cor-
rections can be recovered by introducing the familiar Fermi
function multiplying the overall decay rate in Eq. (1.1). This
gives a small overall correction to correlation coefficients,
which may be very important to extract precise SM predic-
tions, but which is irrelevant for most applications in the
context of BSM physics.

As a particular application, we reproduce the unitarity
Coulomb corrections to the D parameter in Eq. (4.2). While
the final result merely reproduces the one in Ref. [8], our cal-
culation, based on a unitarity relation also used by Callan and
Treiman to compute extra recoil contributions to D within
the V -A (SM) picture [2], is more concise and compact. In
particular, we find that, at the leading order in the EFT expan-
sion, the unitarity Coulomb corrections to all the correla-
tion coefficients in Eq. (1.1) can be briefly summarized as a
shift of the leading order Wilson coefficients, cf. Eq. (B.11).
For simplicity, in the derivation we only consider β− decay
with the parent and daughter nuclei having the same spin J ,
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and ignore interactions involving the right-handed neutrino
(effectively setting the C−

X Wilson coefficients to zero). A
more general derivation would proceed along the same lines.
For concreteness of the discussion, we assume here that all
the Wilson coefficients C+

X are real. With this assumption,
the unitarity Coulomb corrections give the imaginary part
to the beta decay amplitude. Nevertheless, our derivation is
correct also for complex Wilson coefficients, as we discuss
at the end of the appendix.

The leading order amplitude for β− same-spin decay can
be written in the following form (see [13])

M(0)(N1 → N2e
−ν̄)

= 2mN MF

{
− δ

J z1
J z2

[
C+
V L0 + C+

S L
]

+ r√
J (J + 1)

[T k
(J )]

J z1
J z2

[
C+

A L
k + C+

T L0k]}. (B.1)

Above,C+
X are the Wilson coefficients in the EFT Lagrangian

of Eq. (2.2). J z1 and J z2 label the polarizations of the par-
ent and daughter nuclei. The leptonic currents are defined
as Lμ ≡ x̄3σ̄

μy4, L ≡ y3y4, L0k ≡ y3σ
0σ̄ k y4, where

k = 1 . . . 3, and x3, y3 are the 2-component spinor wave
functions of the outgoing electron and y4 is the spinor wave
functions of the outgoing antineutrino.9 Next, T k

(J ) are the
spin-J generators of the rotation group. We write down the
amplitude in the limit of unbroken isospin symmetry, thus
mN2 = mN1 ≡ mN . The common normalization factor is
MF = δ j ′3, j3+1

√
j ( j + 1) − j3( j3 + 1), where ( j, j3) and

( j, j ′3) are the isospin quantum numbers of the parent and
daughter nuclei. The parameter r , which is real by time-
reversal invariance, is referred to as the ratio of Gamow–
Teller and Fermi matrix elements in the literature. For the
neutron decay r = √

3, while for nuclear beta decay r is
extracted from experiment.

Next, we need the 1-loop corrections to this amplitude due
to a photon exchange between the daughter nucleus and the
electron. We denote this amplitude byM(1)(N1 → N2e−ν̄).
Actually, we only need the imaginary part of M(1), which is
determined by unitarity using the master formula

Im M(1)(N1 → N2e
−ν̄)

= 1

2

∑
h3′ J z2′

∫
d�′

2M(0)(N1 → N2e
−ν̄)Mem(N2e

− → N2e
−).

(B.2)

Here, d�′
2 denotes the 2-body phase space of the interme-

diate N2e− pair, J z2′ is the polarization of the intermediate

9 In the 4-component Dirac formalism u3 = (x3, ȳ3)
T , ū3 = (y3, x̄3),

v4 = (y4, x̄4)
T .

nucleus, and h3′ is he polarization of the intermediate elec-
tron.Mem is the tree-level scattering amplitude due to a pho-
ton exchange between the daughter nucleus and the electron.
Expanding it in 1/mN , for an arbitrary spin J the leading
piece takes the form

Mem(N2e
− → N2e

−)

= δ
J z

2′
J z2

2qeZe2

(k3 − p3′)2

[
x̄3 p2′ σ̄ x3′ + y3 p2′σ ȳ3′

]
. (B.3)

Above, qe = −1, Z is a (positive) charge of the daugh-
ter nucleus, e ∼ 0.3 is the electromagnetic coupling con-
stant, the incoming momenta of the nucleus and electron
are denoted by p2′ and p3′ , and the outgoing momentum of
the electron is denoted by k3. The 2-component spinor wave
function of the incoming electron are denoted as x3′ and y3′ ,
and the spinor wave function of the outgoing electron are
denoted as x3 and y3.

One comment is in order here. As mentioned earlier, there
are additional Coulomb corrections not captured by the uni-
tarity method. However, the only way of generating an imag-
inary part of the amplitude is through interactions of on-shell
particles, and at order α1 these are governed by the unitarity
relation in Eq. (B.2).

Plugging Eqs. (B.3) and (B.1) into Eq. (B.2) we get

Im M(1)(N1 → N2e
−ν̄)

= 2mN MFqeZe
2
∑
h3′

∫
d�′

2
1

(k3 − p3′)2

× [
x̄3 p2′ σ̄ x3′ + y3 p2′σ ȳ3′

]

×
{

− δ
J z1
J z2

[
C+
V L ′0 + C+

S L
′]

+ r√
J (J + 1)

[T k
(J )]

J z1
J z2

[
C+

A L
′k + C+

T L ′0k]}, (B.4)

where now L ′μ ≡ x̄3′ σ̄ μy4, L ′ ≡ y3′ y4, L ′0k ≡ y3′σ 0σ̄ k y4.
We perform the h3′ sum over the intermediate electron polar-
izations to derive

∑
h3′

[
x̄3 p2′ σ̄ x3′ + y3 p2′σ ȳ3′

]
L ′μ

= (k2k3)L
μ + me p

μ

2′L + me p2′νL
νμ

+ pμ

3′ p2′νL
ν − pμ

2′ p3′νL
ν

− iεαβμν p2′α p3′βLν,∑
h3′

[
x̄3 p2′ σ̄ x3′ + y3 p2′σ ȳ3′

]
L ′

= (k2k3)L + me p2′μL
μ + p2′μ p3′νL

μν,∑
h3′

[
x̄3 p2′ σ̄ x3′ + y3 p2′σ ȳ3′

]
L ′0k
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Table 3 Complete list of scalar and vector leptoquarks that can have
tri-linear couplings to a quark and a lepton. The nomenclature follows
the one used in Refs. [51,52]

Name Spin Representation Couplings

S1 0 (3̄, 1, 1/3) ql, ūcēc, d̄c ν̄c

S̄1 0 (3̄, 1,−2/3) ūc ν̄c

S̃1 0 (3̄, 1, 4/3) d̄cēc

R2 0 (3, 2, 7/6) ucl, q̄ ēc

R̃2 0 (3, 2, 1/6) dcl, q̄ ν̄c

S3 0 (3̄, 3, 1/3) qσ kl

U1 1 (3, 1, 2/3) q̄σ̄ μl, dcσμēc, ucσμν̄c

Ū1 1 (3, 1,−1/3) dcσμν̄c

Ũ1 1 (3, 1, 5/3) ucσμēc

V2 1 (3̄, 2, 5/6) lσμd̄c, qσμēc

Ṽ2 1 (3̄, 2,−1/6) lσμūc, qσμν̄c

U3 1 (3, 3, 2/3) q̄σ k σ̄ μl

= (k2k3)L
0k + me p

0
2′Lk − me p

k
2′L0

+ pk2′ pl3′L0l − pk3′ pl2′L0l

+ pk2′ p0
3′L − pk3′ p0

2′L − imeε
klm pl2′Lm

− iεklαβ p2′α p3′βL
0l + iεklm pl2′ pm3′ . (B.5)

We insert the spin sums Eq. (B.5) into Eq. (B.4). Working
at the leading order in 1/mN we can replace in the spin
sums p0

2′ → mN , pk2′ → 0, k2k3 → mN Ee. With these
replacement, the spin-summed Eq. (B.4) becomes

Im M(1)(N1 → N2e
−ν̄)

= 2m2
N MFqeZe

2
∫

d�′
2

1

(k3 − p3′)2

{

− δ
J z1
J z2
C+
V

[
EeL

0 + meL + pk3′Lk]

− δ
J z1
J z2
C+
S

[
EeL + meL

0 − pk3′L0k]

+ r√
J (J + 1)

[T k
(J )]

J z1
J z2
C+

A

[
EeL

k + meL
0k + pk3′L0

+ iεklm pl3′Lm]
+ r√

J (J + 1)
[T k

(J )]
J z1
J z2
C+
T

[
EeL

0k + meL
k − pk3′L

− iεklm pl3′L0m]}
. (B.6)

We can now integrate over the intermediate phase space using

∫
d�′

2
1

(k3 − p3′)2 = 1

16πpemN

∫ 1

−1
d cos θ

1

cos θ − 1
,

∫
d�′

2
pk3′

(k3 − p3′)2 = kk3
16πpemN

∫ 1

−1
d cos θ

cos θ

cos θ − 1
,

(B.7)

where for the time being we ignore the IR divergence cor-
responding to cos θ → 1 (forward re-scattering). This plus
some more spinor algebra leads to

Im M(1)(N1 → N2e
−ν̄) = 2mN MF

(−qe)Zα

4pe

×
∫ 1

−1
d cos θ

{
− δ

J z1
J z2
C+
V

[
EeL

0 1 + cos θ

1 − cos θ
+ meL

]

− δ
J z1
J z2
C+
S

[
EeL

1 + cos θ

1 − cos θ
+ meL

0
]

+ r√
J (J + 1)

[T k
(J )]

J z1
J z2
C+

A

[
EeL

k 1 + cos θ

1 − cos θ
+ meL

0k
]

+ r√
J (J + 1)

[T k
(J )]

J z1
J z2
C+
T

[
EeL

0k 1 + cos θ

1 − cos θ
+ meL

k
] }

.

(B.8)

Combine now the unitarity Coulomb correction with the lead-
ing order amplitude in Eq. (B.1) we obtain M ≡ M(0) +
iIm M(1):

M(N1 → N2e
−ν̄)

= 2mN MF

{
− δ

J z1
J z2
C+
V

[
L0(1 + i x) + i

�Z

2
L

]

− δ
J z1
J z2
C+
S

[
L(1 + i x) + i

�Z

2
L0

]

+ r√
J (J + 1)

[T k
(J )]

J z1
J z2
C+

A

[
Lk(1 + i x) + i

�Z

2
L0k

]

+ r√
J (J + 1)

[T k
(J )]

J z1
J z2
C+
T

[
L0k(1 + i x) + i

�Z

2
Lk

] }
,

(B.9)

where we defined

x ≡ (−qe)ZαEe
4pe

∫ 1

−1
d cos θ

1 + cos θ

1 − cos θ
, �Z ≡ (−qe)Zαme

pe
.

(B.10)

The effect of the blue terms in Eq. (B.9) is an overall rescaling
of all leading order Wilson coefficients by the same (IR diver-
gent) phase factor: C+

X → C+
X e

ix . This does not change the
correlation coefficients, as they always depend on the CXC̄Y

combinations. On the other hand, the effect of the red terms
is to rotate the leading order Wilson coefficients among each
other, which does affect the correlations. All in all, the uni-
tarity Coulomb corrections to the beta decay amplitude can
be concisely described by the transformation

C±
V →C±

V e
±i x ± i�Z

2
C±
S , C±

S → C±
S e

±i x ± i�Z

2
C±
V ,
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C±
A →C±

A e
±i x ± i�Z

2
C±
T , C±

T → C±
T e

±i x ± i�Z

2
C±

A ,

(B.11)

where at this point we generalize the result to β∓ decays
(the ± signs on the right-hand side), and to include the right-
handed neutrino interactions (the C−

X Wilson coefficients). It
also holds for complex Wilson coefficients (replacing imagi-
nary part by absorptive part in Eq. (B.2)). One can check that
inserting this transformation in the leading order expression
for the correlation coefficients (again except for the over-
all Fermi function effect and ignoring subleading O(Z2α2)

terms) reproduces the Coulomb corrections listed in Ref. [8].
One particular application of Eq. (B.11) is to easily obtain the
unitarity Coulomb corrections to the D parameter in Eq. (4.2)
at the 1/m0

N order in the EFT.
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